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ABSTRACT

Both the number of hosts using Internet Protocol version 6 (IPv6), and the volume of
IPv6 traffic, has increased exponentially since 2012. With this adoption, the IPv6 routed
infrastructure becomes an increasingly important component of global critical infrastructure
and network policy. Unfortunately, the tools and techniques used to perform active network
topology discovery were designed for Internet Protocol version 4 (IPv4), leading to a
potentially opaque view of the IPv6 Internet. In this thesis, we extend nascent work
on stateless high-speed IPv4 active topology probing to develop a new IPv6 traceroute
method “Yelling At Random Routers Progressively version 6” (Yarrp6). Yarrp6 randomly
permutes the set of IPv6 targets and hop counts to distribute load, thereby helping to
avoid IPv6 response rate limiting. Further, we encode state in the IPv6 payload to permit
Yarrp6 to both match responses with probes and use different probe transport protocols.
Via active experimentation on the public IPv6 Internet, we compare the results obtained
from Yarrp6 against the current state-of-the-art [Pv6 topology mapping tool. We show that
Yarrp6 can discover topology at more than an order of magnitude faster than previously
possible. Finally, we conduct a study of the effect of transport layer protocol on forward
Internet Protocol (IP) path inference to determine what protocol is best used for active IPv6

topology discovery.
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CHAPTER 1

Introduction

There are currently two versions of the Internet Protocol (IP) used by hosts to communicate
over a network: the original Internet Protocol Version 4 (IPv4) and its successor, Internet
Protocol Version 6 (IPv6). While IPv6 is not a new protocol (the specification for IPv6
was published in 1998 with Request for Comments (RFC) 2460), it has seen relatively slow
adoption until around 2012. IPv4 uses 32-bit addresses, frequently represented in human-
readable form as “dotted decimal” notation (e.g., 192.168.1.1). The 32-bit addresses used
by IPv4 allow for a total of 232 (~ 4.2 x 10°) possible unique addresses. Despite this
seemingly large number of addresses, the growth of the Internet has lead to IPv4 address

exhaustion and the need for the larger address space afforded by IPv6.

Allocation of IP addresses is handled by the Internet Assigned Numbers Authority (IANA),
which allocates contiguous blocks of IP addresses to each of the five Regional Internet
Registries (RIRs). The RIRs then use these allocated address blocks to sub-allocate IP
addresses to network service providers, and ultimately, for use by end users. The American
Registry for Internet Numbers (ARIN), the RIR for the U.S. and Canada, depleted its
allocated IPv4 address space on September 24, 2015 [1]. Similarly, the four remaining
RIRs have all started sub-allocating IPv4 addresses from their last allocated block of
addresses [2]-[5].

A long-term solution to IPv4 exhaustion is to transition to native IPv6. One of the primary
design goals of IPv6 was expanding the address space to a point where address exhaustion
would no longer be an issue. IPv6 thus uses 128-bit addresses, typically written in human-
readable form as eight groups of 16 bits in hexadecimal (e.g., 2607:f8b0:4001£:803::200¢e) [6].
The 128-bit addresses used by IPv6 allow for a total of 2!28 (~ 3.4 x 103®) possible unique

addresses.

Until recently, IPv6 has seen relatively slow adoption. The reason for this slow adoption
may be due to the difficulties that come with the transition from IPv4 to IPv6. Czyz et al.
look at adoption of IPv6 using six metrics divided into two classes [7]. The first four of
these metrics are classified as “prerequisite functions” and are functions that must be met for

communication to take place over the IPv6 Internet. The final two metrics are classified as
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“operational characteristics” and are only evident once nodes start exchanging packets. The
four prerequisite functions are Addressing, Naming, Routing, and End-to-End Reachability.
While all four prerequisites must be functioning to allow communication over the IPv6
Internet, the two which present the greatest challenge to Internet Service Providers (ISPs)
and web content providers are routing and end-to-end reachability. This is due to the fact
that IPv6 is not backwards compatible with IPv4. While transitioning to IPv6, providers
must maintain a complex network configuration to allow access to content over both IPv6
and IPv4.

The exhaustion of IPv4 addresses with the continued growth in the number of hosts has lead
to a resurgence in the transition from IPv4 to IPv6. On June 6, 2012, major ISPs and web
content providers such as AT&T, Comcast, Google, and Facebook permanently enabled
IPv6 in what was called the “World IPv6 Launch.” Since this event, there has been a 500%
increase in the volume of Global IPv6 traffic [8]. The relatively recent widespread use of
IPv6 has generated considerable recent research into its operation and usage [7], [9]-[14].
However, the active measurement tools and techniques used to characterize IPv4 traffic and
networks are not always immediately applicable to IPv6. In this thesis, we consider the

specific problem of active IPv6 network topology mapping.

Network topology mapping is the mapping of the way a network is connected (i.e., the
interconnection of the routers that make up the network). Topology mapping can be
conducted through either passive or active means. In passive topology mapping, inferences
are made about network connections based on data-plane traffic observed at specific points
such as web servers or routers. In passive topology mapping there is no attempt to send
probes to elicit this information. In contrast, active topology mapping is the inference
of network connections based on active probes sent with the sole purpose of eliciting a
response from a network device or host. Active topology mapping gives greater control to
the researcher to obtain the data which they feel is most important to their study. While
active topology mapping gives a researcher this control, the extra network traffic it generates
can cause overloading of the bandwidth or processing power for routers in the path of the
probes and is also susceptible to filtering of packets which can effect the overall results.
Active topology mapping can be used for mapping hosts, Autonomous Systems (ASs),
routers, interfaces, and links. In this study we are primarily interested in mapping router

interfaces and determining links between these interfaces.
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Active topology mapping of the IPv6 Internet presents challenges that have not been seen
with active topology mapping of the IPv4 Internet. The vast address space, the requirement
to implement rate-limiting of Internet Control Message Protocol Version 6 (ICMPv6) Error
Messages [15] more aggressively than with IPv4, and different network configurations
present new challenges that the Internet measurement community must determine how to
besthandle. While there has been a great deal of research on mapping the IPv4 Internet [16]—
[25], there has been relatively little work on IPv6 mapping. Many of the current techniques
used for IPv4 do not scale well to the vast address space of IPv6. Most tools developed for
active topology mapping of the IPv4 Internet ascribe to the slow and steady method, where
probes are sent relatively slowly with the tool waiting for a response for the probe or a timeout
before sending another probe. Given the much larger address space that IPv6 represents, this
method does not scale well to the IPv6 Internet and makes large scale mapping infeasible.
New techniques must be developed to deal with this much larger address space in order
to make large scale scanning possible. Prior IPv6 specific research has concentrated on
methods of reducing the search space by making inferences into what portions of this
address space contain active hosts [11]—[13]. In this study, we concentrate on the speed
at which probing is conducted. We introduce a new method to perform active topology
mapping faster than the current state-of-the-art tools. Our method is complementary to

previous studies into discovering the active portions of the IPv6 Internet.

1.1 Motivation

Since the World IPv6 Launch in 2012, IPv6 traffic has doubled every year. Figure 1.1 shows
the percentage of users that access Google over IPv6 . This trend shows that [Pv6 adoption
is increasing and suggests it will continue to increase as more and more ISPs and Web

content providers support IPv6.

With this increased adoption and use comes the need and desire to study and understand
the IPv6 Internet. Network and security researchers rely on topological maps of the
logical Internet to address problems ranging from critical infrastructure protection to policy
development. These maps of the logical Internet are important for making informed

decisions in the public and private sectors in, at least, the following ways:

* Researchers use them in determining peering on the Internet [20].



» Large Content Delivery Networks (CDN5s) use them to determine how they can better
deliver data to customers [23].

* Governments use them to determine the effects of outages to critical infrastructure
[26].

* Researchers also use them to understand logical network connections to better deter-

mine how traffic flows through a network [21].

Native: 14.01% | Mar 17, 2017
18.00% |

16.00% |
14.00% |
12.00%
10.00% |
8.00% |
6.00% |
4.00% |

2.00% |

9 =
0'O(MJan 2009 Jan2010  Jan 2011 Jan2012  Jan2013 Jan2014 Jan2015 Jan2016 Jan 2017

Figure 1.1. Percentage of Users Accessing Google over IPv6 (March
2017). Source: [27].

Active topology mapping is critical to producing accurate topological maps of the logical
Internet, but state-of-the-art tools have not been able scale with the size of the IPv6 Internet.
To address the shortcomings of these state-of-the-art tools, we develop a new tool called
Yelling at Random Routers Progressively Version 6 (Yarrp6), which is a version of Yelling
at Random Routers Progressively (Yarrp) [16] which supports IPv6. Yarrp implements
a new stateless traceroute technique to enable high-speed active topology mapping which
has been demonstrated to do 100K Packets-Per-Second (PPS) [16]. We hope to leverage
this capability to enable scanning of a large protion of the IPv6 Internet. While scanning
of the entire IPv4 address space has become common place, the sheer size of the IPv6
Internet makes the possibility of scanning the entire address space infeasible. Despite the
fact that scanning the entire IPv6 address space may be infeasible, using previous research
techniques that attempt to discover the active portion of the IPv6 Internet can facilitate

active scanning of the IPv6 Internet by providing candidate addresses to probe [11], [12].
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Additionally, while there has been research conducted on what is the best transport protocol
to use for active probing of the IPv4 Internet [18], we have been unable to find equivalent
research for the IPv6 Internet. Knowing which transport protocol gives the best results is
essential to ensuring accurate and valid results for topology mapping. The speed at which
Yarrp6 is able to complete scans enables us to conduct a study of which transport protocol
returns the best results by allowing us to run scans in rapid succession using different

transport protocols.

1.2 Research Questions

The focus of this thesis is the extension of Yarrp to support IPv6, allowing for high-speed and
rapid scanning of the IPv6 Internet. In extending Yarrp to cover IPv6, we hope to leverage
high speed probing to enable scanning of a large portion of the IPv6 Internet. We also wish to
determine which transport protocol (Transmission Control Protocol (TCP), User Datagram
Protocol (UDP), or ICMPv6) returns the best results in terms of infrastructure discovered.
Determining which transport protocol is best to use for active scans is imperative for future

research in active topology mapping of the IPv6 Internet.

We begin by using IPv6 scan data from the Center for Applied Internet Data Analysis
(CAIDA) Archipelago (Ark) infrastructure [28] as a basis for comparison against results
from Yarrp6. Using the same target list used for the March 4, 2017, CAIDA scans as an
input for Yarrp6, we compare topological recall. Topological recall is the fraction of routers
and links discovered versus the actual number of routers and links that exist. We also do
a comparison of the two scans’ recall as a function of time to determine how much faster
Yarrp6 scans. We then use the same target list to conduct scans using ICMPv6, UDP, and

TCP based probes and do a comparison of the recall as a function of the transport protocol.
In our research we hope to answer the following questions:

* How should Yarrp be modified to support IPv6 while maintaining high probe rates?

* How do the results obtained using Yarrp for IPv6 compare with prior topology
studies [10], [13], [28] on IPv6?

* Which IPv6 probe transport protocol returns the highest infrastructure recall?



1.3 Summary of Contributions
In this thesis we develop new methods of active topology probing on the IPv6 Internet
which improve on the speed of state-of-the-art methods. This research makes the following

contributions:

1. Development of Yarrp6 (i.e., Yarrp with IPv6 support) to allow for rapid mapping of
the IPv6 Internet.

2. Analysis of Yarrp6 recall compared to CAIDA as a function of time.

3. Analysis of Yarrp6 recall as a function of transport protocol (e.g., TCP, UDP,
ICMPv6).

1.4 Thesis Structure

The remaining chapters of this thesis are organized as follows:

* Chapter 2 introduces IPv6 and associated protocols, tools and techniques for IPv6
mapping, and prior research on IPv6 topology measurement.

» Chapter 3 discusses the data set used by this study, our methodology in compar-
ing Yarrp6’s results, and our methodology for evaluating the performance of probe
transport protocols.

» Chapter 4 provides our results and analysis of Yarrp6’s recall as a function of time as
well as a function of transport protocol.

* Chapter 5 details our research conclusions as well as our recommendations for future

work.



CHAPTER 2:
Background

As discussed in Chapter 1, we have reached a point of address exhaustion for IPv4. One
long-term solution for this is the adoption of IPv6. Czyz et al. examine IPv6 adoption using
12 metrics applied to 10 global datasets to examine the state of IPv6 [7]. They show that the
number of [Pv6 DNS records, queries for IPv6 DNS records, amount of traffic being carried
over [Pv6, the number of ASs that support IPv6, the number of IPv6 prefixes being globally
advertised, and the number of IPv6 enabled clients and servers, while still relatively small
compared to [Pv4, have all grown at an exponential rate since 2012 and will only continue

to grow. They conclude that IPv6 is now being used as a real production protocol.

2.1 IPvé6

IPv6 was developed in response to the rapid expansion of the Internet and the exhaustion of
IPv4 addresses. The address space of the IPv6 Internet is vast compared to that of the IPv4
Internet, using 128 bits to represent an address of an interface on the Internet compared to
the 32 bits used by IPv4. This allows for the use of 2128 or ~ 3.4 x 1038, unique addresses.
This increased address space gives IPv6 the ability to easily expand with the Internet well

into the future.

For human-readable presentation, IPv6 addresses are broken into eight 16-bit groups written
in the form x:x:x:x:x:x:x:X. Each “x” is a four hexadecimal digit representation of the cor-
responding 16-bit portion of an address with each hexidecimal digit representing one nyble
(4 bits) of the address(e.g., 2607:£8b0:400f:0803:0000:0000:0000:200e.) Additionally, two
shorthand notations are used to reduce the amount of space required to display an address:
(i) removal of all leading zeros within a group; and (ii) a variable length run of zeros can

be replaced by the double colon ‘::” once in an address [29] (e.g., the above address can be
shortened to 2607:f8b0:400£:803::200e.)

One of the main considerations given in the development of IPv6 was the reduction in
processing and bandwidth cost of the IPv6 header [30]. Many of the fields in an 1Pv4
header were dropped in an effort to achieve this. Figure 2.1 shows the fields of the IPv6

header and a brief description of each field.



16 32
Vers. Traffic Class Flow Label

Payload Length Next Header Hop Limit

Source IP Address

Destination IP Address

Figure 2.1. IPv6 Header.

* Version (4 bits) — The version of IP (always 6 in IPv6 packets)

 Traffic Class (8 bits) — Can be used to distinguish different classes or priorities of
packets

* Flow Label (20 bits) — Can be used to label a sequence of packets for which special
handling is desired

* Payload Length (16 bits) — The length of the packet after the IPv6 header

* Next Header (8 bits) — Identifies the type of the next header immediately following
(e.g., ICMPvoO)

* Hop Limit (8 bits) — The maximum number of hops the packet can be forwarded

* Source IP Address (128 bits) — The IPv6 address of the packet’s sender

* Destination IP Address (128 bits) — The IPv6 address of the packet’s destination

2.1.1 ICMPvé6

RFC 4443 states that, “ICMPv6 is used by IPv6 nodes to report errors encountered in
processing packets, and to perform other internet-layer functions such as diagnostics” [15].
ICMPv6 has two key features that are important for the purpose of this study. The first
feature relates to the Time Exceeded error message and how much of the packet invoking
the Time Exceeded error message is returned when an error occurs. A Time Exceeded error

message is sent to a given packet’s source address by a router if it receives a packet where
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the hop limit is zero, or if the router decrements the hop limit to zero (each router in the
path decrements the hop limit by one before forwarding the packet.) In ICMPv6, a Time
Exceeded error message returns “as much of the invoking packet as possible without the
ICMPv6 packet exceeding the minimum [Pv6 Maximum Transmission Unit (MTU)” [15].
The second feature which is important to this research is rate-limiting of ICMPv6 error
messages. RFC 4443 states that, “in order to limit the bandwidth and forwarding cost
incurred by originating ICMPv6 error messages, an IPv6 node MUST limit the rate of
ICMPv6 error messages it originates.” It later states that, “rate-limiting mechanisms that
cannot cope with bursty traffic (e.g., traceroute) are not recommended” [15]. To the best of
our knowledge, the exact implementation of IPv6 rate-limiting varies among vendors and
is not public knowledge. As we will show in Section 4.1.1, rate-limiting in practice is a
significant contributor to missing traceroute hops, especially when performed at the high

rates we envision.

2.2 Traceroute

Traceroute is a tool used to trace the forward data-plane path an IP packet takes from
the current host to a selected destination [31]. It is used by system administrators for
diagnosing network issues as well as researchers who wish to actively scan the Internet to
infer properties such as topology. To determine the path taken, traditional traceroute sends
a series of IP packets to a destination, incrementing the Time To Live (TTL), in the case
of IPv4, or the Hop Limit, in the case of IPv6, by one in each subsequent IP packet. This
continues until the destination is reached or a predetermined number of packets are sent with
no response. A response may not be received for several reasons: (i) anode being configured
to not send ICMPv6 Time Exceeded in transit messages; (ii) the probe or response packet
being dropped by another node in the path; (iii) the probe or response packet being lost
due to network errors; or (iv) a node dropping the probe packet due to rate-limiting. As
discussed in section 2.1.1, when a router receives an IP packet with a TTL or Hop Limit
of zero, or the router decrements the TTL or Hop Limit to zero, instead of forwarding
the packet, it generates a Internet Control Message Protocol (ICMP) Time Exceeded error
message and sends it to the packet’s originating source address. One limitation of forward
IP path inference using traceroute is how nodes determine what source address to use when

originating ICMP error messages. RFC 4443 states that, when a router originates an ICMP



message, it MUST use an address belonging to the node, but leaves the choice of which
address to use up to the node [15]. In a node that has multiple IP addresses, this means
we could get an ICMP error message from a source address that is not in the direct path
to the destination, resulting in incorrect path inferences. Traceroute reconstructs the path
to the destination by recording the source addresses of these ICMP Time Exceeded error
messages. The ICMP Time Exceeded error messages are matched to the probe that induced
the message by comparing the destination port header field in UDP probes, the ID/Sequence
number header fields in ICMP probes, and the IPID header field in TCP probes contained in
the quote of the ICMP time exceeded message. The quote is the portion of the ICMP Time
Exceeded error message that contains the headers of the packet that induced the message.
By matching these quotes with the corresponding probe, traceroute is able to determine the

addresses for each hop the IP packet takes to the destination.

Traceroute probes can use any transport layer protocol that IP supports. It can use TCP,
UDP, or ICMP packets and each has distinct advantages and disadvantages. In [18], Luckie
et al. look at the result of using different transport layer protocols on forward IPv4 path
inference and lay much of the groundwork for the selection of different probing methods
to benefit different research goals. They find significant differences in observed topology
based on the transport layer protocol used for the probes. They concluded that ICMP probes
tended to reach more destinations, reaching their destination 72.2% of the time, and yield
better results for AS path inferences, discovering 92.3% of all AS links. In comparison UDP
reaches fewer destinations, reaching only 42.7% of their destinations, but performs better
for IP link inferences, discovering 89.1% of all IP links. To our knowledge no equivalent
study has been published for IPv6.

While traceroute is essential to active topology mapping, it is susceptible to error “in the
presence of routers that employ per-flow load balancing on packet header fields” [19]. Per-
flow load-balancing is the selection of a path by a router based on a packet’s flow identifier
where a flow identifier is defined as the five-tuple consisting of the source IP address,
destination IP address, source port number, destination port number, and the protocol (i.e.,
TCP or UDP). When using traditional traceroute, errors induced by per-flow load balancing
routers can cause incorrect route inference which may result in erroneous results such as

missing links, false links, routing loops, and routing diamonds.

10



To resolve these issues, a new method of traceroute was proposed by Agustin et al. known as
Paris traceroute [19]. In Paris traceroute, certain probe packet header fields are maintained
throughout the entire probe to a single destination to ensure that per-flow load balancing
routers within the path allow the packets to follow the same path on each successive hop.
The header fields which must be maintained for the duration of a single trace to a destination
are the five-tuple discussed above as well as the Type of Service (TOS) field in the IPv4
header, the Traffic Class and Flow Label in the IPv6 header, and the Code and Checksum
in the ICMP and ICMPv6 headers.

The current de-facto standard tool used for active Internet topology mapping of both the
IPv4 and IPv6 Internet is scamper which is developed by CAIDA [32], [33] and is used by
many of the major active Internet topology studies [10], [17], [28]. Scamper uses the Paris
traceroute method and has the capability to conduct scans using ICMP, TCP, and UDP.
Scamper, like traditional traceroute, maintains state on each probe sent to match a response
with its corresponding probe. Scamper outputs results in a binary format known as warts.
Warts output contains a substantial amount of metadata about the individual scan as well as

a substantial amount of detail about responses received.

2.3 Yarrp

Yarrp is a new traceroute technique designed for high-rate, Internet-scale probing [16],
[34]. As discussed in Section 2.2, In classic traceroute, we send each probe toward a single
IP destination in sequence (i.e., TTLs 1, 2, 3, 4, and so on.) When initially developed,
traceroute sent only one probe at a time, waiting for a response to this probe or a timeout
before sending the next probe. In order to reduce the amount of time required to complete
a trace, modern implementations now send multiple probes at one time. The requirement
to maintain state on these probes limits the number of simultaneous probes that can be
sent at one time. Upon receiving a response to a probe, the response is matched to the
corresponding probe packet and the TTL of the originating probe packet and the source
address of the response packet is recorded. This requirement to maintain the state on each
probe can significantly slow down scans due to unresponsive or non-existent hosts and
routers that do not return ICMP Time Exceeded error messages. Yarrp achieves 100K PPS
by separating the scanning and path reconstruction tasks. This separation allows Yarrp to

remain stateless, and only concern itself with sending packets. To achieve this statelessness
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but still allow for path reconstruction, Yarrp encodes data about each probe within the
header fields of the probe packet. Figure 2.2 displays the IPv4 and TCP headers with the
Yarrp encoded fields highlighted. Upon receiving the response to the probe, Yarrp records
the encoded information from the ICMP message quotation, which contains the first 28
bytes of the packet that induced the expiration, into a plain text file in the order they are
received. The file is then processed offline at a later time and paths are reconstructed and

written to a file in the standard warts format.

Len
Frag Offset .Send H
P TTL P=TCP Header Checksum Dcksum Target IP)
Source IP = prober DSend Elapsed
Destination IP = target Time (
op Source Port ‘| d_port = 80 DTarget P
Sequence Number

Figure 2.2. Yarrp Encoding of IPv4 and TCP Header. Source: [16].

In order to prevent the overloading of any one path, Yarrp randomizes the probing order
over the domain of IPs and TTLs (D = IPs X TTLs). For example, Yarrp will send
a probe to IP address A with a TTL = 10, then to address B with a TTL = 3, then
address C with a TTL = 6, and so on until the entire space of TTLs for each target IP is
covered. In order to achieve this randomization, Yarrp uses RC5 [35], a 32-bit symmetric
block cipher, to permute over the domain of IPs and TTLs. Yarrp encrypts the sequence
i =0,1,....|D| — 1 with key k using the results of C; = RC5; (i) to determine what target
IP address (G;[0 : 23] = 28 + (C;[0] + C;[1] + Ci[2])%256) and TTL (C;[24 : 31]) to use for
the probe. By doing this, Yarrp ensures that same random address for each /24 is probed
for each TTL.

2.4 Actively Mapping the IPv6 Internet

We have found two examples of previous or ongoing attempts to actively map the IPv6
Internet. The first example is CAIDA’s ongoing effort since December 12, 2008, in which
they probe one random address and the ::1 of all /48 or shorter prefixes announced in
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the global IPv6 Border Gateway Protocol (BGP) routing tables once every 48 hours from
multiple globally distributed monitors within the Ark Infrastructure [28]. The overall goal of
this study is the discovery of IPv6 topology and is not concerned with discovering responsive
IPv6 destinations. The scans utilize scamper to perform ICMPv6 Paris traceroute probes of
the ::1 and one random address from each announced /48 or shorter. As of March 4, 2017,
this amounts to a total of 39,196 prefixes being scanned by 46 monitors from around the
globe. These scans are designed in an attempt to balance the time required for scans with

the expected coverage.

The second example is Rohrer’s et al. scan conducted over the period of November 13, 2014,
to March 1, 2015. In this study, probing was performed to one address in each /48 in all
/32s advertised in the global IPv6 BGP tables [10]. The design of their experiment is based
on recommendations for allocations provided in RFC 3177 [36]. While RFC 3177 was
obsoleted by RFC 6177 [37], they conclude that because the recommendations from RFC
3177 were used by providers for a decade, scanning all /48’s gives a reasonable compromise
between completeness and probing time. For their study they scanned 406,388,736 /48

prefixes over this 4 month period.

These studies have fallen short in either the timeliness of complete scans or the number of
prefixes scanned. In this study, we extend Yarrp, which previously only supported IPv4, to
map IPv6 routers. The speed at which Yarrp is able to scan will reduce the amount of time
required to complete scans from months to days, while still allowing for the scanning of a

significant portion of the IPv6 address space.

2.5 Reducing the Target Space

The sheer size of the IPv6 Internet makes scanning the entire address space impossible.
Even at the 100K PPS rates Yarrp can achieve, it would take ~ 3.45 x 10?7 years to probe
each address. This does not mean that active topology mapping is not possible or should
not be done, but we must develop methods to reduce the target space to a more realistic size
for active scanning. We could use simplistic methods to reduce the size (i.e., only scanning
blocks of the IPv6 Internet that have been allocated by IANA or sub-allocated by the RIRs),
but this still leaves a very large target space which is not much more feasible to scan then

the entire IPv6 Internet. This forces us to take new approaches to reducing the target space
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for our probes. In the following paragraphs, we look at four studies that attempt to reduce

this target space.

In the first study, LaFever develops Recursive Subnet Inference (RSI) for IPv6 (IPv6 RSI
(RSI6)) which is a method to determine if subnetting is present within an advertised
prefix [14]. To determine if subnetting is present within the prefix, RSI6 sends a traceroute
probe to two addresses within the prefix. Generally, addresses located at }‘ and % portion
of the prefix are probed and if the results of the two probes match, he infers that subnetting
is not present. However, if the two probes’ routes differ, he infers that subnetting is present
and the prefix is further divided until all subnets are found. He also proposes that, due
to common subnetting practices on IPv6, probing the ::1 and % portion provide additional
topology with little to no extra cost. This method allows us to create a list of candidate
addresses for our active probes by determining the existence of subnetting within a prefix.
The existence of subnetting would imply that this prefix is actively being used and would

provide us with candidate subnets to probe using Yarrp6.

In the second study, Gray develops heuristics for generating candidate addresses for active
probing [13]. To create his method for candidate generation, he uses historical IPv6 topology
probing results to determine the most common lower 64-bit values present. He then obtains
a list of all globally advertised BGP prefixes and generate a candidate list by combining
each advertised prefix, regardless of size, with one of the most common lower 64-bit values.

The list generated by this method can then be used for active probing with Yarrp6.

In the third study, Plonka et al. develop methods to classify IPv6 addresses spatially and
temporally using log data from a large CDN [12]. Their temporal classification method
is designed to determine the lifetime or stability of an IPv6 address. By examining active
client addresses within the log data over a period of one year, they determine the stability
of a client IPv6 address by looking for common IPv6 addresses within each log. For
example, if an address is observed as active in a log over a 1 year time period, then they
classify this as a stable address and assign it to a stability class. Stability classes are named
according to length of time (i.e., the previous example would be classified as 1 year stable.)
Their spatial classification method is designed to determine the proximity of addresses and
prefixes as well as to give a visualization of the containing address block. They introduce

two metrics for spatial classification, Multi-Resolution Aggregate (MRA) Count Ratios and
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Prefix Density. Both MRA plots and Prefix Density are used to expose structure within
prefixes and can be used to determine dense, or highly active portions of a prefix. By
determining portions of the IPv6 address space that have a high density of active addresses,

we can generate list of candidates for active probing with Yarrp6.

In the fourth study, Foremski et al. develop a method to discover IPv6 address structure
based on analysis of a subset of known active IPv6 addresses obtained through active and
passive means [11]. To infer structure in IPv6 addresses, they first plot the entropy of
each address nyble across the entire dataset and then each nyble is segmented into groups
with similar entropy. Within each segment the values are then sorted by probability and a
heatmap is generated. This method can be used to probabilistically model IPv6 addresses
based on information theory and machine learning for generation of candidate address lists

for active probing with Yarrp6.
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CHAPTER 3:
Methodology

As discussed in Section 2.4, we have found two studies that conducted active topology
mapping of the IPv6 Internet. These studies have fallen short in either the amount of time
required to complete scans or in the number of prefixes that they scanned. The main thrust
of this study is the extension of Yarrp to support IPv6 topology discovery. We call this new
tool “Yarrp6.” Our hope is that Yarrp6 will serve as an initial step toward the ability for
active topology measurement systems to cover a significant number of IPv6 prefixes within

a reasonable amount of time.

This chapter discusses the key design considerations, unique challenges, and development
of Yarrp6. After initial development of Yarrp6 we validate our tool by comparing its results
with the results of CAIDA’s IPv6 dataset [28] and quantify Yarrp6’s speed improvement.
We then use Yarrp6 for a study of the effect of transport protocol on forward IP path

inference, partially recreating the experiments of Luckie et al. [18] for IPv6.

3.1 Yarrp6

Yarrp is a tool that implements a stateless traceroute technique designed for high-rate,
Internet-scale topology mapping. Yarrp6 is an extension of Yarrp’s techniques to IPv6
and further allows for the capability to conduct scans using ICMPv6, UDP, and TCP. In
extending Yarrp to IPv6 we must address three primary challenges:

* Accommodating per-flow balanced paths in IPv6
* Encoding state in IPv6, where the packet header is different than in IPv4
* Permuting the probing order of IPv6 prefixes and TTLs.

For each packet we ensure that we are following the Paris traceroute methods discussed in
Section 2.2. To do this, we ensure that all packets sent by Yarrp6 have the traffic class and
flow label set to O to ensure that any per-flow load balancing routers along the path do not
cause our scans to infer false or missing links. Additionally, there are specific considerations
given for header fields of each transport protocol we use, which we discuss in the following
sections. In order to control the entire packet header, we must craft raw packets which we

will discuss in greater detail in section 3.1.4.
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Recall from Section 2.3 that Yarrp achieves its stateless operation by encoding the state
within the IP and TCP headers and reconstructing this state offline at a later time based on
the recorded ICMP response’s quotation. Instead of encoding the information needed to
reconstruct the path in the packet headers, as Yarrp does, Yarrp6 includes the necessary state
within the packet’s data payload. This simplification is a result of the difference in behavior
between ICMP and ICMPv6. RFC 4443 states that, when a node sends an ICMPv6 Time
Exceeded error message, it should include, “as much of the invoking packet as possible
without the ICMPv6 packet exceeding the minimum IPv6 MTU” [15]. This is a change
from ICMP where RFC 792 states that, the ICMP Time Exceeded error message should
only include, “the Internet header + 64 bits of the Original Data Datagram” [38]. Figure
3.1 shows the structure used for Yarrp6’s payload and below this we provide a description

of each field within the payload.

struct payload {
char id|[7];
uint8 _t hlim;
uint32_t diff;
}s

Figure 3.1. Yarrp6 Payload Structure.

* ID (7 bytes) — Always set to “Yarrp6” (0x59417272703600). Used as a unique
identifier that ensures we only examine ICMPv6 packets received as a result of a
Yarrp6 probe.!

* hlim (1 byte) — Holds the hop limit with which we sent our packet and is used later to
match our packet with its corresponding hop.

* diff (4 bytes) — holds the time at which we sent our packet as the time elapsed since
the start of our scan in milliseconds. Used to calculate the Round-Trip Time (RTT)

of each hop.

'The ID field was added after running Yarrp6 on CAIDA’s Ark infrastructure for the first time. During
these first scans, we were unable to differentiate Yarrp6 probes from scamper probes being run on the same
Vantage Point (VP).
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Using a structure to define our payload makes referencing our fields easier when decoding
the responses to our probes. When we receive responses to our probes we know that our
data structure will be included in the response and this allows us to reference these fields
by name when decoding. Using a structure to define our payload also makes Yarrp6 easily
extensible in the future if the need arises to include more information within the payload.
We will discuss two such additions in Section 5.1. These additions are, (i) a version field to
differentiate probes from different versions of Yarrp6; and (ii) a checksum of the payload

to determine any modifications to our encoded information.

3.1.1 TCP Probes

For TCP-based probes, we implemented the capability to send both TCP SYN as well as
TCP ACK packets. TCP SYN packets are the first packets sent as part of the three-way
handshake in the establishment of a TCP connection. We send the TCP SYN packets
with the destination port set to 80, which is the well known port for Hypertext Transfer
Protocol (HTTP) traffic. We choose these parameters due to the fact that TCP SYN packets
to port 80 are very common and are less likely to be dropped by firewalls within the path.

TCP ACK packets are sent between two nodes communicating over TCP to acknowledge
receipt of packets. For every TCP packet sent, there is a corresponding TCP ACK sent
by the receiving side acknowledging receipt to the sender. For TCP ACK packets, we use
the well known port 80 as our destination port. These parameters are chosen again, due
to the prevalence of TCP ACK packets for communication with web servers. However, a
potential problem with TCP ACK packets is that many stateful firewalls will not allow TCP
ACK packets that do not belong to an established connection. Therefore, the potential for

dropped packets may increase with this method.

We ensure that we follow Paris traceroute methods with our TCP probes in order to reduce
anomalies and erroneous results. This dictates that we must use the same source and
destination port for each packet within a traceroute to a single host. As discussed above, we
use port 80 as the destination port in all packets. For our source port we use port 51234,
which is an ephemeral, unreserved port and fits with the expected behavior of a typical TCP
connection. This helps ensure that our packets are not dropped by firewalls that filter out

TCP connections from well known source ports (i.e., ports less then 1024.) We set our
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initial sequence number to 1 and we do not include any TCP options. We set only the SYN
flag in TCP SYN probes and only the ACK flag in TCP ACK probes.

3.1.2 UDP Probes

We send all UDP packets with the destination port of 53, which is the well known port
for Domain Name System (DNS) traffic. DNS is the protocol which converts a domain
name (e.g., google.com) into an IP address. The queries that are used to determine these
hostname-to-IP mappings are sent as UDP packets to a resolving DNS server on port 53.
Much as we used port 80 in TCP to mimic common traffic, we use port 53 in UDP in order
to increase the number of firewalls our packet can traverse and increase our forward IP path

discovery.

We ensure that we follow Paris traceroute methods with our UDP probes in order to reduce
anomalies and erroneous results. This dictates that we use the same source and destination
port for each packet within a traceroute to a single host. As discussed above, we use port 53
as the destination port in all packets. For our source port we again use port 51234, which is
an unreserved port and fits with the expected behavior of typical UDP traffic. This ensures
that the resulting packets are not dropped by firewalls that filter out UDP traffic from well
known source ports (i.e., ports less then 1024.)

3.1.3 ICMPv6 Probes

For ICMPv6 probes, we use ICMPv6 Echo Request packets. One issue that may impact
our ICMPv6 Echo Request probes is the fact that many sites follow the security best
practice of not allowing hosts to respond to ICMPv6 Echo Request message, blocking
outgoing ICMPv6 Time Exceeded error messages, and blocking Echo Reply messages at
the firewall [24], [39]. Despite this, [ICMPv6 Echo Request messages are still very common
and both active topology mapping studies discussed in Section 2.4 used ICMPv6 probes in
their study.

We ensure that we follow Paris traceroute methods with our ICMPv6 probes in order to
reduce anomalies and erroneous results. This dictates that we use the same code and
checksum for each packet within a traceroute to a single host. The code for an ICMPv6

echo request message will always be 0, but keeping the checksum the same presents a
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problem in ICMPv6. In calculating the checksum for ICMPv6 we are required to include
a pseudo IPv6 Header. In every packet Yarrp6 sends, we change the hop limit within our
IPv6 header which will cause our checksum for each packet to differ. While this means that
we cannot do Paris traceroute as specified in [19], per-flow load balancing is less prevalent
on ICMP packets [25]. We will discuss possible solutions to this problem as future work in
Section 5.1

3.1.4 Challenges

Recall from Section 2.3 that in order to prevent the overloading any one path, Yarrp
randomizes its probing order by using RC5 to permute over the target domain of IPs and
TTLs (D = [PsXTTLs). The permutation library encrypts the sequencei =0, 1, ..., |D| -1
where C; = RC54 (7). The ciphertext returned by the RCS5 algorithm is 32 bits, which Yarrp
then takes and splits into the most significant 24 bits and the least significant 8 bits. The 24
bits is used as the first three octets of the IPv4 address and the 8 bits is used as the TTL.

Our first challenge in developing Yarrp6 is the fact that the permutation library used for
probe randomization in Yarrp makes use of the RC5 cipher which only supports 32-bit block
size in the implementation used. While RC5 does support 64-bit and 128-bit block sizes as
well as the 32-bit block size, neither of these 3 present a ideal block size for use in IPv6.
To understand this, we must look at the target space over which we permute. For example,
in both [10] and [28], the authors choose to divide the prefixes they are probing into /48s.
Looking at the RC5 block sizes, we see that 32 bits is too small to permute over this space,
but 64 bits is to large, causing us to potentially waste 232 (4,294,967,296) calculations as
we permute over a target space that is 32 bits larger then we need. The wasted calculations
are due to the cycle-walking algorithm that is used to permute over the target space [40]. In
order to address the block size issue we change the block cipher used by the permutation
library from RC5 to a new lightweight block cipher developed at the National Security
Agency (NSA) known as Speck [41]. Speck is designed to be lightweight, fast, and most
importantly, supports block sizes of 32, 48, 64, 96, and 128-bits. The number of different
block sizes gives a great deal of flexibility. The block size can be changed to the smallest
block size needed to achieve permutation of the target space (i.e., if you only need 48 bits
for the permutation of your target space you can use the 48-bit block size instead of wasting

the extra calculations that would be required if you were using the 64-bit block size.) In the
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development of Yarrp6 we use a block size of 32-bits, which was sufficient for permutation
of the target space we scanned in this research. Changing the block size of the cipher to
support the scanning of larger target spaces only requires the modification of one parameter

within the compilation of the library and makes switching between block sizes very simple.

Our second challenge in developing Yarrp6 is that IPv6 does not give the ability to control
all header fields in the packet when using raw sockets [42]. Yarrp uses raw sockets in
order to control each field of the IPv4 header. IPv6 raw sockets only allows changes to
the hop limit within the header which is insufficient for implementing the Paris traceroute
method. In order to allow us to control all fields of the headers in our packets, we must
use a packet socket instead of a raw socket [43]. While this gives us the ability to control
our packet’s header fields, it also places the burden of creating the layer 2 header on the
developer instead of the operating system. To create the layer 2 header we must know the
Media Access Control (MAC) address of our default gateway and the MAC address of the
host we are conducting the scans from. We leave the responsibility of supplying the two
required MAC addresses to the user. In order to conduct scans the user must supply these
MAC addresses as command line options when running Yarrp6. On Linux, the source MAC
address can be obtained by using the “ifconfig” command and recording the “HWaddr” for
the interface they will be conducting scans from. On Linux, the destination MAC address
can be obtained using the “ip neighbor show” command and recording the “lladdr” for the

default gateway.

Our third and final challenge in developing Yarrp6 is that rate-limiting of ICMPv6 error
messages can impact scan results at the rates at which Yarrp6 scans. As discussed in Section
2.1.1, an IPv6 node, “MUST limit the rate of ICMPv6 error messages it originates” [15].
We postulate that rate limiting will have a significant impact on the responses we receive
from routers within 1 or 2 hops of the host we are running scans from. This is due to the
tree like structure of the network which implies that the set of router interfaces close to our
host (i.e., 1-2 hops) is small compared to the set of router interfaces at hops further along
the path. Yarrp has the capability to maintain a list of “neighborhood” interfaces from 1 to
a runtime configurable number. We currently have not yet implemented this capability in
Yarrp6, but, if analysis shows significant rate limiting within these lower hops, this feature
could alleviate the problem. To detect rate limiting we will look at the distribution of

missing hops within our scan results.
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3.2 Validating Results of Yarrp6

To evaluate Yarrp6, we wish to examine its topological recall as a function of probing speed
and probe protocol. Instead of running Yarrp6 in a closed test environment, we chose to
evaluate it on the public world-wide Internet in order to obtain real-world performance
metrics. However, there is no ground truth of the IPv6 Internet’s topology, and it is not
feasible to probe every IPv6 address. Therefore, we must (i) choose prefixes (and addresses
within those prefixes) to probe; and (ii) perform relative comparisons against results obtained

via other techniques.

We use the March 4, 2017, scans which were started at 7:08 PM from the san-us (San
Diego, CA) Ark VP [28] for the validation of our results. These scans were conducted
using scamper [32] with ICMPv6 Paris traceroute probes to 75,594 IPv6 targets. In order
to validate the results of our scans, CAIDA granted us access to probe from the san-us VP.
We start by extracting the target list and then probe from the same VP with Yarrp6 to the
same target list. By ensuring the same VP and target list is used, we would expect the paths
to be largely congruent, allowing us to do a valid comparison of topological recall between
the two methods. We conducted our scans on March 6, 2017, starting at 0845 GMT. We
accept that this difference of 37 hours may cause some difference in Yarrp6 scan results
when compared to CAIDA’s.

In order to preform the validation, we reconstruct the traces offline by converting the yrp
file produced by Yarrp6 into a warts binary trace. We must do the reconstruction offline
because Yarrp6 maintains no state while conducting scans, it only receives responses from
probes it sends and writes them to file instead of pairing them to the corresponding probe
that produced the response. We compare our results to CAIDA by using two metrics. The
first metric we compare is the degree distribution of Yarrp6’s data compared to CAIDA’s.
Showing that we have a similar degree distribution when scanning from the same vantage
point using the same target list suggests that we discover similar infrastructure. Additionally,
we preform a comparison of the edit distance between Yarrp6’s results and CAIDA’s. The
edit distance is the number of differences there are between two traces. It can be expressed
as the number of insertions, deletions, or substitutions there are in a Yarrp6 trace when
compared to CAIDA’s trace to the same destination. For the purpose of this study, an
insertion is a hop that is present in the Yarrp6 trace and is not present in the corresponding

CAIDA trace, a deletion is a hop that is present in the CAIDA trace and is not present in
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the corresponding Yarrp6 trace, and a substitution is a hop that is present in both traces but

which contains a different address for each.

We are also interested in the rate at which Yarrp6 discovers unique interfaces compared to
CAIDA. After initial validation of topological recall with CAIDA’s data, we will compare
the speed at which we discover unique router interfaces compared to CAIDA as a function
of time. To determine this we will plot the number of unique interfaces found as a function

of time and calculate number of unique interfaces found per second.

3.3 Determining the Effect of Transport Protocol

In the second part of this study, we are interested in determining the best transport layer
protocol to use for active IPv6 topology mapping. As discussed in section 2.2, Luckie et
al. studied the effect of transport layer protocols on forward IP path inference for IPv4 [18].
Our hope is to recreate parts of this experiment to obtain a better understanding of transport
layer protocol impact on forward IPv6 path inference.

In their study, Luckie et al. define four metrics to evaluate the effect of different transport

layer protocols on forward IP path inference [18]:

1. Destinations Reached
2. Complete IP Paths

3. Unique IP Links

4. Unique AS Links

In this study we will only use three of these four metrics in determining the best transport

layer protocol to use, leaving the study of unique AS Links to future work.

Destination Reached is a metric of how many of our probes reached their intended target.

Luckie et al. consider a destination to be reached if any of the following conditions occur:
* an ICMP port unreachable message is received in response to a UDP or TCP probe.

* a TCP packet is received from the destination in response to a TCP probe.

* an ICMP echo reply packet is received from the destination in response to an ICMP
echo request packet.

» an ICMP destination unreachable message is received with a source address matching

the destination address probed. [18]
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Due to the stateless nature of Yarrp6, we are currently unable to determine if a destination
was reached with a TCP probe where the target sends a TCP SYN or TCP RST. While these
are valid responses to a TCP probe, they do not contain the quotation with our encoded
information like ICMPv6 error messages. This means that, because we cannot determine
if a TCP SYN or TCP RST is in response to one of our probes, we cannot determine if
the destination was reached in these cases. Compounding this problem is the fact that TCP
SYN and TCP RST packets are very common among network traffic and are not unique to
traceroute traffic meaning we would have to try and find the packet which corresponds to
our probe within a myriad of traffic. Reaching a destination gives us a better understanding
of forward IP path length and RTT when reconstructing the paths offline. To determine if a
destination was reached, we iterate through each hop of all probes and if the target address

is seen as a hop in the probe we count the probe as reaching its destination.

Luckie et al. define a complete IP path as any path where, “the destination is reached and
there is a response from all intermediate hops” [18]. Complete IP Paths allow for more
accurate inferences because the entire path the probes took enroute to the target is recorded.
To determine complete paths, we iterate through each hop in a probe checking if we have
any missing hops until we find our target’s address. If we are missing no hops, and have

reached the destination, we count the probe as a complete path.

Unique IP Links is the measure of how many interface level connections we find within a
trace. An IP link is any pair of adjacent IP hops seen within a probe. IP links are important
to topology measurement because they suggest router adjacencies and allows us to make
much stronger inferences. To determine the number of unique IP links, we create a graph
from the probes where unique hops are added as nodes and any adjacent hops in the probe
are added as edges connecting these nodes. We then count the number of edges as the

number of unique IP links within the probe.
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CHAPTER 4

Results

In chapter 3 we introduced our methods for evaluation of Yarrp6 using current CAIDA
data which represents the state-of-the-art. After initial validation, we compare the rate
at which Yarrp6 discovers unique interfaces, performing a comparison of our results to
CAIDA’s results of unique interfaces discovered per second and unique interfaces per probe
sent. Finally, we investigate the effect of the transport layer protocol on forward IP path
inference, comparing the number of destinations reached, complete IP paths, and unique IP
links for probes sent using ICMPv6, TCP SYN, TCP ACK, and UDP.

4.1 Validation of Yarrp6

Validation of active topology requires the scanning of a network where ground truth can be
obtained. While comparing our results to a ground truth network would be the ideal form
of validation, networks that allow for running ground truth are very hard to find. We leave
ground truth validation to future work and instead define validity in this study relative to
CAIDA'’s probing.

In order to determine the validity of the results produced by our tool, we must do a
comparison of the data our tool gathers against data gathered by a state-of-the-art tool. As
discussed in Section 3.2, we choose to validate our tool against the IPv6 scans conducted
by CAIDA. We validate our results against CAIDA’s results for scans conducted on March
4, 2017, by running our scans using the same target list, from the same vantage point,
and nearly on the same day. The day we chose to scan had no significance and was done
for experimental convenience. While we do not expect results to differ when comparing
different days, we will leave this comparison for future work and concentrate on validating
our tool against a single scan from CAIDA. CAIDA’s IPv6 scans make use of the scamper
tool to conduct ICMPv6 Paris traceroutes of the target destinations [28], [32], [33].

For the remainder of this study we label all graphs key legends for CAIDA scans simply as
CAIDA. This was done for efficiency of explanation due to the fact that the results from
only one scan were used for the analysis. This label refers to the production IPv6 active
topology mapping scans conducted on March 04, 2017, by CAIDA using scamper on the
san-us VP.
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We initially validate the correctness of Yarrp6 by probing the same destination used in
CAIDA’s scans. By probing the same destinations used in the CAIDA scans from the same
VP, we expect that the paths will be largely congruent allowing for a fair determination of
the recall of our method. We first pursue this by creating the resulting interface-level graph
from the scans. The interface-level graph has unique interfaces represented as nodes and
connections between nodes in consecutive hops represented as edges. we do not perform
alias resolution to create the router-level topology as this is not one of the goals of this
study. Instead, we are interested in comparing results at the IP address level from the two
methods. Figure 4.1 displays the degree distribution of this graph on a log-log scale. While
degree distributions are known to miss structural differences when comparing graphs [44],
the two graphs represent the same underlying probed network. In particular, since the two
graphs are produced by running the tools from the same source to the same destinations,

we use the degree distribution plot to provide a first-order comparison.

We can see from Figure 4.1 that the distribution matches closely, providing a level of
confidence in the ability of Yarrp6 to accurately recover similar topologies. We do see
some areas of difference which we attribute to the more aggressive rate-limiting of ICMPv6.
Yarrp6 discovers ~ 0.035% fewer interfaces (51,909 versus 51,927) and discovers ~ 3%
more edges (63,422 versus 61,049) than CAIDA’s measurements.
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Figure 4.1. Degree Distribution of Yarrp6 versus CAIDA.
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In addition to examining the degree distribution, we compare methods by evaluating the
per-path edit distance for the trace to each target. By applying the Levenshtein edit distance
method to each path, we can evaluate how many deletions, insertions, and substitutions
there are in each of the 78,435 paths in the Yarrp6 results when compared to same path in
CAIDA’s results. In the context of this study, a deletion is a hop that is present within the
CAIDA trace which is not present in the Yarrp6 trace, an insertion is a hop that is present
within the Yarrp6 trace which is not present in the CAIDA trace, and a substitution is a
hop that is present in both traces but contains a different address for each. An edit distance
of zero indicates that the discovered paths to a particular target are identical between the
two methods — the ideal outcome for our validation. Figure 4.2 provides the Cumulative
Distribution Function (CDF) of the overall edit distance, missing hops, substitutions, and
deletions in comparing Yarrp6 and CAIDA scans. We see that ~ 52% of the paths have an
edit distance of 0, indicating that the paths are the same, while ~ 25% of the paths differ by
one hop and ~ 13% differ by two hops.
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Figure 4.2. Edit Distance of Yarrp6 versus CAIDA.

Because we expect a larger percentage of path comparisons to yield an edit distance of zero,
we conduct further analysis by comparing the edit distance between two CAIDA scans,
each conducted with scamper. In this fashion, we seek to better isolate the influence of

different methods on the edit distance from differences attributable to network. Using the
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same Levenshtein edit distance method, we compare CAIDA scans conducted on March
3, 2017, at 7:56 PM and March 4, 2017, at 11:08 AM. When comparing these scans, it is
important to note that we can only compare the results of traces to the ::1 of each prefix.
This is due to the fact that CAIDA performs a trace to the ::1 and a random address in each
prefix. The random addresses probed in each cycle differ and thus we can only compare
the results of the traces to the ::1. Figure 4.3 shows the results of this comparison. When
comparing results of scans which used the same tool conducted only 15 hours apart, we see
that only ~ 46% of the paths have an edit distance of zero, while ~ 43% of the paths differ
by one hop and ~ 6% differ by two hops. These results show that only a small portion of

the paths scanned are the same.
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Figure 4.3. Edit Distance of Two Different CAIDA Scans Separated by 15
Hours.

These results require a more in depth analysis of the traces in an attempt to discover the
reason for these anomalies. We look at the resulting warts binary trace files by hand to see
if we can determine any patterns. We find two interesting cases that show up repeatedly

and help explain the high number of differences in our edit distance analysis.

The first case is what appears to be traces taking different load balanced paths. This is
possible because, while both methods use Paris traceroute, a per-flow load balancing router

could route the probes from CAIDA’s scans through one path and the probes from Yarrp6
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through a different path. We see that most of these cases result in the edit distance differing
by N number of substitutions where N appears to be the number of hops beyond the per-flow
load balancing router. Table 4.1 shows one example of this. We see that the CAIDA trace
and Yarrp6 trace take the same hop thru hop 5, at which point they diverge.

Table 4.1. Yarrp6 and CAIDA ICMPv6 Traces to 2607:b400::1.

Hop Yarrp6 CAIDA
1 2001:48d0:101:501::18 | 2001:48d0:101:501::18
2 2001:468:e00:¢48::1 2001:468:e00:¢48::1
3 * 2607:£380::108:9a41:af60
4 2001:468:¢00:801::2 2001:468:¢00:801::2
5 2001:470:0:72::2 2001:470:0:72::2
6 2001:470:0:362::2 2001:470:0:15d::1
7 2001:470:0:360::1 2001:470:0:204::2
8 2001:470:0:351::2 2001:470:0:2¢9::1
9 2001:478:132::182 2001:504:0:2:0:4:220:1
10 | 2607:b400:f0:8002::f0 2607:b400:10:2002::10

The second interesting case is created as a result of the fact that we run our reconstruction
offline. An error in our yrp62warts.py script, which converts the file from the yrp file output
by Yarrp6 into a warts binary trace file, handles the reconstruction of loops incorrectly.
Table 4.2 shows an example of this case. Looking at the edit distance we see that this trace
has 2 deletions where the Yarrp6 trace is missing hops 12 and 13. We further analyze
this by pulling out all responses received from probes to 2801:80:330::1 from our yrp file.
In looking at these responses, we discover that we receive a response for all hops sent by
Yarrp6 to this destination with the exception of hop 2. Our results also show a loop with
the same two addresses starting at hop 11. We leave the improvement of the yrp62warts.py

to future work.

In using the above methods of comparison we take a first step toward demonstrating that
the results of Yarrp6 sometimes match with the results obtained using state-of-the-art tools.
We have shown that Yarrp6 discovers similar number of interfaces and produces more links

between these interfaces.
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Table 4.2. Yarrp6 and CAIDA ICMPv6 Traces to 2801:80:330::1.

Hop Yarrp6 CAIDA
1 2001:48d0:101:501::18 2001:48d0:101:501::18
2 * 2001:468:e00:c48::1
3 2607:£380:1::108:9a41:ac91 | 2607:£380:1::108:9a41:ac91
4 2001:468:11:302::1 2001:468:11:302::1
5 2001:468:11:100::1 2001:468:11:100::1
6 2001:468:11:110::2 2001:468:11:110::2
7 2001:468:11:9¢5::2 2001:468:11:9¢5::2
8 2001:12£0:0:1d::26 2001:12£0:0:1d::26
9 2001:12f0:0:fc::3e 2001:12f0:0:fc::3e
10 2001:12f0:0:fe::82 2001:12f0:0:fe::82
11 2801:82:0:18::8 2801:82:0:18::8
12 2801:82:0:18::1
13 2801:82:0:18::8

4.1.1 Rate-limiting

As discussed in Section 2.1.1, RFC 4443 states that, “an IPv6 node MUST limit the rate of
ICMPv6 error messages it originates” [15]. The effect of this rate-limiting at the speeds at
which Yarrp6 scans is unclear. In this section we present some initial analysis that appears
to support that rate-limiting does affect the scan results of Yarrp6. In Figure 4.4 we plot a
CDF of the hop depth of missing hops in our scan results. We see that in our scans, hops
1-3 account for ~ 64% of all of the missing hops. Additionally, hop 3 accounts for ~ 47%

of all missing hops.

We do a further analysis of missing hops by comparing our scans with the scans conducted
by CAIDA. We look at each probe at a given hop (e.g., hop 3) and if we are missing
this hop in a trace we check the corresponding trace to the same destination in CAIDA’s
scans. If CAIDA’s scans are not missing the corresponding hop, we record the address
for that hop. We find that in all traces, 36,864 of 78,435 (~ 47%) are missing hop 3.
Of these 36,864 missing hops, CAIDA’s scans have an address for 31,312 (~ 85%) of
these hops. The list of addresses for missing hops in Yarrp6’s scan for which we found an
address in the corresponding CAIDA trace contains only 6 unique addresses. Additionally,
4 of the 6 addresses found had IPv6 addresses assigned in an address block allocated to
the California Research and Education Network (CalREN). This could be due to more

aggressive rate-limiting put in place by CalREN, or some other unrelated circumstance.
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Figure 4.4. CDF of Missing Hops by TTL in Yarrp6 ICMPv6 Scan Results.

While these results do not definitively show the presence of rate-limiting affecting our
traceroute results, they suggest possible rate-limiting. We are unaware of any current or
past research into rate-limiting of ICMPv6 Error messages and we believe that there is a
strong need for continued research into rate-limiting of ICMPv6 error messages. In Section
5.1 we discuss some ideas for possible future research that might be done into ICMPv6

rate-limiting [22].

4.1.2 Comparison of discovery rate of Yarrp6 vs. CAIDA

A primary goal of this research is to develop a tool that has the ability to scan the vast
IPv6 address space more rapidly then current tools. In this section we evaluate how much
quicker Yarrp6 scans than the state-of-the-art tool. We evaluate the scan speeds of Yarrp6
by comparing our scan rates to the scan rates obtained by CAIDA’s IPv6 active topology

measurements that use scamper.

We start by looking at the number of unique interfaces discovered by Yarrp6 and CAIDA’s
scans as a function of time. We plot the number of unique interfaces discovered by each
tool, sampling every 10 seconds for the duration of the time it takes Yarrp6 to complete
the scan (601 seconds). Figure 4.5 displays this plot and shows that Yarrp6 discovers many

more unique interfaces per second then CAIDA. Yarrp6 discovers 51,898 unique interfaces
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in 601 seconds averaging ~ 86 unique interfaces per second, while CAIDA discovers 1,623

unique interfaces within the same time period averaging ~ 3 unique interfaces per second.
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Figure 4.5. Discovery Rate of Yarrp6 versus CAIDA as a Function of Time.

While this is a substantial increase in speed, we also wish to compare the number of
unique interfaces discovered as a function of probes sent by each tool. We use this metric
to determine if Yarrp6 is more efficient by examining the probing cost relative to the
infrastructure discovery benefit. We plot the discovery rate of Yarrp6 and CAIDA as
unique interfaces discovered per probe as a function of the number of probes in Figure 4.6.
We can see from the shape of the graph that Yarrp6 initially begins with a much higher
rate of interfaces discovered per probe sent, staying above the CAIDA scans until around
100 probes. Overall, Yarrp6 discovers 51,909 unique interfaces using 2,508,576 probes
averaging ~ 0.02 unique interfaces per probe, while CAIDA discovers 51,940 unique
interfaces using 1,673,211 probes averaging ~ 0.03 unique interfaces per probe. This
increase in the number of probes sent can be attributed to the fact that Yarrp6 is stateless.
Scamper is designed to stop probing a destination if it has been reached or if there are five
consecutive non-responsive hops, but Yarrp6 will continue to probe in these cases due to

its stateless nature.
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Sent.

The max hop limit used by Yarrp6 is runtime configurable via a command line option and
has a direct impact on the number of packets Yarrp6 will send. The total number of packets
Yarrp6 sends in a trace can be calculated using IPs X HopLimit. For example, the scans we
conducted in this study probed 78,393 destinations using the hop limit of 32. This means
that we send 2, 508, 576 (78, 393 x 32) packets. The default hop limit used by Yarrp6 is 32,
and is based on our analysis of the number of unique addresses observed at each hop limit

in historical scan data.

In Figure 4.7, we plot unique addresses discovered at the corresponding hop limit. We use
data from all scans conducted from the 46 VPs used in CAIDA’s February 12, 2017, IPv6
cycle. The red line indicates the median number of interfaces per hop limit among each VP.
We can see from this graph that the most interfaces are discovered in hops 9-14 with the
inflection point around hop 10. We also see that the number of interfaces discovered beyond
hop 27 is negligible. We also compare this to the same analysis done for IPv4 in [16]. We
see that, compared to IPv4, the graph of CAIDA’s IPv6 data shows that the distribution
of unique router interfaces discovered is skewed toward lower hop limits. While reducing
the number of hops that we probe will reduce the number of packets that we are required
to send, it could come at the cost of possibly discovering less infrastructure. We leave a

thorough investigation of the optimum max hop limit to future work.
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Figure 4.7. Distribution of Interfaces Discovered as a Function of Hop Limit.

While Yarrp6 scans at a higher rate than other tools, it requires more packets to do so.
The stateless nature of Yarrp6 allow it to scan 28 times faster than scamper, as configured
in the CAIDA results, but at the cost of sending 1.5 times the packets. The amount of
packets sent can be reduced by reducing the amount of hops Yarrp6 probes, but this has
the potential to reduce the amount of infrastructure Yarrp6 discovers. In our opinion, the
reduced completion time that we achieve using Yarrp6 outweighs the relatively small cost

of sending more packets.

4.2 Effect of Transport Layer Protocol

The second component of the results is aimed at determining which transport layer protocol
performs best for active topology mapping of the IPv6 Internet. As discussed in Section
3.3, we define best by using three metrics: (i)destinations reached; (ii) complete IP paths;
and (iii) unique IP links. The three metrics used in this study mirror three of the four metrics
used in the same study of IPv4 [18]. We excluded unique AS links in this study, and will
leave this for future work. We also include the number of unique addresses discovered for

a direct comparison of actual infrastructure discovered.

We start by using Yarrp6 to probe the same destinations from the same san-us VP used for
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the validation portion of this study. We conduct scans using UDP, TCP SYN, and TCP
ACK probes. We use the same scan conducted for the validation portion as our results for
ICMPv6. Table 4.3 list the results of these scans for each metric.

Table 4.3. Result of Probes for Different Transport Layer Protocols.

Probe Unique Interfaces | Destinations | Complete IP Paths | Unique IP Links
Method Reached

ICMPv6 51,909 10,320 4,339 73,590
UDP 44,353 4,546 1,126 59,884
TCP SYN 40,592 N/A N/A 53,013
TCP ACK 40,602 N/A N/A 52,664

4.2.1 Destinations Reached

We first examine the results of the Destinations Reached metric by looking at the total
number of destinations reached for each method. ICMPv6 elicits a response from far more
destinations than UDP: 13% of the time compared to 6% of UDP. As discussed in Section
3.3, Yarrp6 does not attempt to determine when a destination is reached while probing with
TCP SYN or TCP ACK packets. The expected response from a node when a TCP SYN
or TCP ACK packet is received is a TCP SYN ACK or a TCP RST. These responses will
not contain the quote of the invoking packet and therefore none of the encoded information

Yarrp6 uses for path reconstruction will be received. For this reason we do not include any
results for destinations reached in the case of TCP SYN or TCP ACK.

As part of our analysis of the destinations reached metric, we also compare the halting
reasons of ICMPv6, UDP, TCP SYN, and TCP ACK probes. The halting reason of a probe
is the reason for which the probing of a destination is stopped. Scamper has four halting

reasons that will cause it to stop probing a destination:

1. A probe can halt due to the destination being reached.

2. A probe can halt due to receiving an ICMPv6 Destination Unreachable error message
with a source address other then the probed destinations address.

3. A probe can halt due to the detection of a routing loop, where an address appears for

a second time in the same trace.
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4. A probe can halt when a gap limit of unresponsive hops is reached. In scamper the

gap limit is reached when there are five consecutive unresponsive hops.

Due to Yarrp6’s stateless operation, it will continue probing a destination until the configured
number of max hops for a destination are probed (i.e., 32 hops.) While Yarrp6 does not halt
for any of the reasons listed above, we can determine the halting reason that would occur
in our offline reconstruction of the paths and thus we are able to conduct an analysis of the

halting reasons.

Table 4.4 shows the results of the analysis of the halting reason. Gap Limit is the largest
reason for halting with ~ 52% of all ICMPv6 and ~ 57% of all UDP probes halting for this
reason. The second largest reason for halting was due to destination unreachable messages

that contained a different source address than that of the target we were probing.

Table 4.4. Halting Reasons for Probes.

Probe Method | Total Probes | Destination Unreachable | Loop | Gap Limit
ICMPv6 78,435 19,301 8,112 | 40,780
UDP 78,343 21,911 7,260 | 44,654
TCP SYN 78,412 19,703 7,095 N/A
TCP ACK 78,609 18,712 7,262 N/A

According to RFC 4443, an ICMPv6 Destination Unreachable error message can have one

of seven codes:

¢ 0 — No route to destination.

* 1 — Communication with destination administratively prohibited.

2 — Beyond scope of source address.

3 — Address unreachable.

4 — Port unreachable.

* 5 — Source address failed ingress/egress policy.

6 — Reject route to destination. [15]

Of these seven codes, three are of particular interest to us when talking about active topology
mapping of the IPv6 Internet. Codes 1, 5, and 6 indicate filtering of our traffic by firewalls
and routers. This can affect the amount of infrastructure we are able to discover by filtering
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our probes to certain destinations and not allowing us to probe any further.

Table 4.5 shows the number of these three codes received within our Yarrp6 scans. The
absence of code 5 in Table 4.5 is due to the fact that we do not receive any code 5 messages
in our scan results. Of the remaining two codes for ICMPv6 Destinations Unreachable
error messages received by the different probe methods, we see that the reject route code
is the most prevalent, accounting for 18%—20% of each method’s ICMPv6 Destination

Unreachable error messages and ~ 5% of each methods total probes.

Table 4.5. ICMPv6 Destination Unreachable Codes in Yarrp6 Data.

Probe Method | Total | Administratively Prohibited (1) | Reject Route (6)
ICMPv6 19,301 688 3,849
UDP 21,911 2,212 3,824
TCP SYN 19,703 2,216 3,788
TCP ACK 18,712 1,039 3,804

The final ICMPv6 Destination Unreachable code we will discuss is code 1 which is sent
when a packet is administratively prohibited and indicates the filtering of a specific type of
traffic rather then all traffic coming from a certain prefix. Table 4.6 shows the results of our
analysis of the percentage of ICMPv6 Destination Unreachable code 1 error messages. We
see that ICMPv6 probes are filtered substantially less than the three remaining methods.
ICMPv6 Destination Unreachable code 1 messages account for only ~ 4% of the ICMPv6
Destination Unreachable error messages and ~ 0.8% of ICMPv6’s total probes. Of the
three remaining methods, TCP ACK receives only slightly more ICMPv6 Destination
Unreachable code 1 messages with ~ 5% of all ICMPv6 Destination Unreachable error
messages and ~ 1% of all probes. UDP and TCP ACK both experience similar numbers of
ICMPv6 Destination Unreachable code 1 message with ~ 10% and ~ 11% of all ICMPv6
Destination Unreachable error messages respectively and ~ 1% of total probes. The higher
rate of filtering on UDP and TCP SYN may be a direct result of our choice of ports for
these protocols. These specific ports may be filtered by destinations that do not have a web
server running (TCP port 80) and do not allow for external DNS queries (UDP port 53).
Additionally, a large number of TCP SYN packets in a short period of time might be flagged
as a SYN flood by some destinations, resulting in higher filtering of our TCP SYN packets.
We will discuss methodology for evaluating port selection in Section 5.1.
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Table 4.6. Percentage of ICMPv6 Destination Unreachable Code 1 in Yarrp6

Data.
Probe Method | Percentage of Destination Unreachable | Percentage of Total Probes
ICMPv6 ~ 4% ~ 0.8%
UDP ~ 10% ~ 1%
TCP SYN ~ 11% ~ 1%
TCP ACK ~ 5% ~ 1%

The final reason for halting is the detection of a routing loop, where the same IP address is
seen for a second or more times in a trace. Routing loops account for the halting reason in
~ 10% of all probes for each method. Routing loops are indicative of routing problems and
are not dependent on the method of the probing as can be seen by their relative consistency
among all methods. While it is unlikely that duplicate addresses on different hops is due
to real routing loops, we have not identified conditions in which the same IPv6 source
address responds to probes to a given destination address with different hop limit values.
The presence of routing loops requires more in depth analysis, but we leave that for future

work.

4.2.2 Complete IP Paths, Unique IP Links, and Final Analysis

Next, we examine the complete IP paths metric. As discussed in Section 3.3, a complete
IP path is a path where the destination is reached and a response is received from all
intermediate hops within the path. We again exclude the TCP SYN and TCP ACK methods
from these results due to the inability of Yarrp6 to currently retrieve the state information
from the destinations response packets. We also exclude hop 3 of all paths in our analysis
of complete IP paths based on results of the analysis conducted in Section 4.1.1. We feel
that due to the large amount of missing addresses at this hop and relatively small number of
addresses found at these hops in CAIDA’s data, the results presented here are still accurate
when excluding these hops. We see from Table 4.3 that ICMPv6 probes discover nearly 4
times as many complete IP paths as UDP probes. Of all ICMPv6 probes, ~ 5% are complete
IP paths compared to ~ 1% of UDP probes.

The last metric we examine is the Unique IP Link metric. Recall from Section 3.3 that a
Unique IP Link is any pair of adjacent hops within a trace. Looking again at Table 4.3, we
see that ICMPv6 probes find ~ 1.3 times the amount of unique IP Links over UDP, TCP
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SYN, and TCP ACK probes.

Based on our above analysis, we conclude, that for active topology mapping of the IPv6
Internet, ICMPv6 probes are the best method. ICMPv6 probes discover more unique IP
links, find more complete IP paths, reach the most destinations, and are the least filtered of
the four methods. While TCP SYN and TCP ACK probes were excluded from some of the
results, we feel that the number of metrics collected on them support our conclusion that
they will not perform better then ICMPV6.
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CHAPTER 5:

Conclusion

In this thesis, we develop a new tool for high-speed, active topology mapping of the IPv6
Internet. This new tool is based on Yarrp, a tool and traceroute method, developed at
The Naval Postgraduate School (NPS), which is stateless in nature and enables scanning at
speeds of up to 100K PPS. Yarrp currently only supports IPv4. We extend the functionality
of Yarrp to IPv6 and name this new tool Yarrp6. To the best of our knowledge, and based on
our evaluation, Yarrp6 redefines the state-of-the-art in high-speed discovery of IPv6 routing

infrastructure.

After development, we evaluate Yarrp6 by comparing its performance against existing state-
of-the-art tools and production mapping systems. In particular, we compare against results
from CAIDA’s IPv6 active topology mapping scans which employ the scamper tool for
probing. We demonstrate Yarrp6’s ability to produce topologically similar results to those
from CAIDA, even when run at high speeds. Our evaluation shows that Yarrp6 discovers
similar numbers of unique interface addresses and more links between these interfaces. We
also evaluate the edit distance (the number of interface level address insertions, deletions,
and substitutions) between CAIDA’s traces and ours. We find that only ~ 50% of the paths
match exactly, but find that similar differences between successive CAIDA’s scans, even

when separated by a short 15-hour period.

After validation of our tool’s results, we use Yarrp6 to conduct a study of the impact of
transport layer protocol on forward IP path discovery. We start by probing the same list of
destination addresses used by the validation portion of our study using four different probe
methods. These four methods differ in the transport layer protocol used for the probes and
consist of ICMPv6, UDP, TCP SYN, and TCP ACK-based probes. We then analyze the data
using three metrics for comparison of these different protocols. We evaluate each protocol
based on the number of destinations reached, the number of complete IP paths, and the
number of unique IP links found by each method. We find that in all three metrics, ICMPv6
based probes preform better than the remaining three methods. ICMPv6 probes reach over

two times the number of destinations, reach thousands of destinations not reached by any
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other method, discover four times as many complete IP paths, and discover ~ 1.3 times as
many unique IP links. These findings suggest that ICMPv6 traffic is filtered by firewalls
and routers far less frequently than other probe transport layer protocols. We conclude from
these results that ICMPv6 based probes are the best method for active topology mapping of
the IPv6 Internet.

5.1 Future Work

In this section, we present suggestions for possible future work in improvements to Yarrp6

and further research into active topology mapping of the IPv6 Internet with Yarrp6.

5.1.1 Improvements to Yarrp6
We provide six specific ways to improve our tool:

* As discussed in Section 3.1.3, Yarrp6 currently does not follow the Paris traceroute
method for ICMPv6 probes. This is due to the inclusion of the hop limit, which
changes with every packet Yarrp6 sends, in the calculation of the checksum and the
use of the checksum for load balancing by per-flow load balancing routers. Future
version of Yarrp6 should include a function which adds a value to the payload in order
to ensure that the checksum matches for all packet, regardless of what header fields
within the packet change.

* In order to control all of the fields within the IPv6 packet, Yarrp6 uses a packet socket.
While this allows control of all fields within the packet, it comes at the cost of requiring
the developer to include the layer 2 header with their packets. This requires them to
determine the destination MAC address and source MAC address in order to build and
send the packets. This responsibility is offloaded to the user for initial development of
Yarrp6. Future versions of Yarrp6 should have the capability to determine the source
MAC and destination MAC without input from the user. Potential solutions to this
problem might include the addition of the capability to use Neighborhood Discovery
to determine the MAC addresses or use an already developed library to leverage the
already existent routing tables within the system to determine the MAC addresses.

* The use of the packet sockets in order to control the headers for Paris traceroute

restricts the use of Yarrp6 to systems running Linux. Many active measurement
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platforms have a mix of Linux and other operating systems (i.e., CAIDA’s Ark active
measurement infrastructure uses a mix of Linux and FreeBSD nodes [45].) In future
versions of Yarrp6, a more portable solution might be found, allowing for its use on
as many systems as possible.

* As discussed in Section 3.1.4, the RFC-required rate-limiting of ICMPv6 error mes-
sage responses by routers is likely to be triggered by the high rates at which Yarrp6
is capable of scanning. In section 4.1.1, our analysis show some indications of rate-
limiting within hops 1-4. We accounted for this by excluding hop 3 from some of
our results, but this is clearly a compromise. In later versions of Yarrp6, the “neigh-
borhood” list method that Yarrp uses should be added to Yarrp6. By tracking new
addresses within those hops, and ceasing probing to them if no new addresses are
seen within the last 30 seconds, we can reduce the over-probing of hops close to our
VP and potentially reduce the amount of rate-limiting we experience.

* In this study, Yarrp6 only achieved scan rates of ~ 4,000 PPS. While this is a sub-
stantial increase in speed when compared to state-of-the-art tools, it is not anywhere
near the 100K PPS speed achieved by Yarrp on IPv4 [16]. In future development of
Yarrp6, improvements should be made to allow for scanning at 100K PPS speeds.

* Finally, we currently have no mechanism in place to determine if the information
returned in the ICMPv6 Error Message quote is the same information we initially
placed in the packet when we sent it. The fact that we are encoding all of the
information needed to reconstruct the path within the payload of the packet requires
us to ensure that the data in the payload was not modified after being sent. In future
versions of Yarrp6, a Hashed Message Authentication Code (HMAC) should be added
to the payload in order to allow us to determine if the information has been modified

in any way and ensure that our offline reconstruction is accurate.

5.1.2 Scanning with Yarrp6

Besides improvements to Yarrp6 itself, we suggest the following procedural enhancements:

* The number of prefixes that were scanned for this study is still quite modest relative to
the vast address space of IPv6. In this study we only performed an initial performance
evaluation of Yarrp6. Future studies should scan a much larger number of prefixes.

Scanning of the prefixes used in Rohrer et al. [10] is a logical continuation of this
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study. Additionally, using a technique to reduce the target space by finding the active
portions of the IPv6 Internet (i.e., Entropy/IP [11]) and generating a target list from
this for active scans using Yarrp6 present an interesting potential direction for future
work.

As discussed in Section 4.1.1, there appears to be evidence of rate-limiting occurring
within our scan data. In this study, we do a simple analysis of missing hops in an
attempt to detect rate-limiting. A more rigorous analysis of rate-limiting is needed to
determine its effect on active topology mapping of the IPv6 Internet. Guo et al. have
done a more rigorous study on rate limiting of ICMP [22]. The methodology for this
study might be extended to ICMPV6.

The impact probing rate has on topology discovery is currently unknown. A rigorous
study should be done to better understand how the speeds at which Yarrp6 can scan
will impact overall topology discovery.

Additionally, the impact of the load Yarrp6 imposes on nodes at the edge of the IPv6
Internet is also unknown. A study should be completed to fully understand the impact
Yarrp6 will have on the load that is placed on nodes at the edge of the IPv6 Internet.
One application of rapid topology discovery is the study of short-lived dynamics
within the Internet as discussed in [16]. Conducting successive scans to the same
destinations within a short period of time allows us to observe these short-lived
dynamics and gain a better overall understanding of the Internet. An experiment
similar to the one conducted in [16] should be conducted to study these short-lived
dynamics within the IPv6 Internet.

Finally, in this study, we only use one destination UDP port (53) and one destination
TCP port (80). In our scan data, we see significant filtering of UDP and TCP which
may be related to our choice of ports. A study of the effect of the port number on
active topology mapping of the [Pv6 Internet should be conducted. Scans conducted
with many different well-know ports as well ephemeral ports should be analyzed to

determine how port selection might minimize filtering of active scanning.
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