Advanced Pilot Training (T-X) Program: Background and Issues for Congress

Ceir Coral
National Defense Fellow

May 31, 2017
Summary

On December 30, 2016, the United States Air Force (USAF) issued a final solicitation and request for proposal (RFP) to industry to replace the USAF trainer fleet of T-38C Talon aircraft and associated ground-based training systems. The USAF intends to buy 350 Advanced Pilot Training (APT T-X) aircraft and 46 Ground Based Training Systems (GBTS), a contract valued at roughly $1.5 billion for the Research, Design, Test, and Evaluation phase of the program and estimated $18 billion in future procurement.

The APT T-X acquisition strategy poses potential oversight issues for Congress, including the following: is the number of planned aircraft purchases sufficient? Given the reported pilot shortage, should the procurement be accelerated? What effects do increased F-35A & KC-46 purchases, along with development of the new Long Range Strike Bomber, B-21, have on the USAF budget and the feasibility of an additional Major Defense Acquisition Program?

According to the USAF, the T-38C trainer fleet is old, costly, and outdated. It lacks the technology to train future pilots for fifth-generation fighter and bomber operations. Based on Air Education Training Command’s evaluation of the required capabilities to train future pilots for fifth-generation fighters and bombers, the T-38C falls short in 12 of 18 capabilities, forcing the USAF to train for those capabilities in operational units where flying hours are costly and can affect fleet readiness.

Based on the requirements set forth in the USAF’s RFP, the APT T-X aircraft may shift training from Field Training Units, where expensive fifth-generation aircraft are used, to less expensive trainer aircraft. Also, the higher fidelity GBTS could improve training for student pilots and move many tasks from aerial flight training into simulators.

Industry has worked closely with the USAF in shaping the requirements to facilitate better understanding and improve acquisition effectiveness. Some analysts believe the source selection plan is focused on price as the dominant factor. A field that started with five viable offerors has been reduced to four.
Contents

Introduction .. 1
Background ... 1
 U.S. Air Force Trainer Aircraft ... 1
 Roles and Missions ... 1
 Current USAF Trainer Fleet ... 1
 Air Force Pilot Training .. 6
 How does the USAF produce pilots? ... 6
 Advancements in Pilot Training ... 10
 Advanced Pilot Training (APT T-X) Program Basics 13
 Trainer Aircraft System Requirements ... 16
 Ground-Based Training System Requirements .. 17
Acquisition Strategy ... 18
 Request for Proposal (RFP) ... 18
 Contracting Plan ... 18
 Source Selection Evaluation Plan .. 19
 Prospective Offerors ... 21
 Boeing-Saab T-X ... 21
 Northrop Grumman-BAE-L-3 T-X ... 22
 Lockheed Martin – Korean Aerospace Industries T-50A 23
 Leonardo T-100 ... 23
 Sierra Nevada Corp.-Turkish Aerospace Industries T-X 24
Legislative Activity for 2017 .. 25
 FY2017 Funding Request ... 25
 House .. 25
 Senate ... 25
 Final Action ... 25
Issues for Congress ... 25

Figures

Figure 1. T-1A Jayhawk ... 2
Figure 2. T-6A Texan II ... 3
Figure 3. PACER CLASSIC III Program ... 5
Figure 4. T-38C Talon .. 6
Figure 5. Diamond DA20-C1 .. 8
Figure 6. APT T-X Operational View ... 15
Figure 7. APT Source Selection Strategy .. 20
Figure 8. Boeing-Saab T-X .. 21
Figure 9. Northrop Grumman/BAE/L-3 T-X Prototype 22
Figure 10. Lockheed Martin-KAI T-50A .. 23
Figure 11. Leonardo T-100 .. 24
Tables
Table 1. AETC Main Trainer Fleet .. 1
Table 2. Follow-on Fighter Aircraft Training Bases 9
Table 3. Follow-on Airlift, Tanker, Helicopter, Reconnaissance Aircraft Training Bases 10
Table 4. Air Force RDT&E Budget Request FY2017 25

Appendixes
Appendix A. Prior Legislative Activity ... 27
Appendix B. APT Capability Gap Summary ... 28
Appendix C. System Specification for the Advanced Pilot Training Program Aircraft System ... 31

Contacts
Author Contact Information .. 32
Introduction

The APT T-X acquisition strategy poses potential oversight issues for Congress. The addition of a new Major Defense Acquisition Program as the Air Force continues to purchase F-35A’s, KC-46’s and development of the new Long Range Strike Bomber, B-21, will inevitably affect the USAF budget requests going forward. Specific to the APT T-X acquisition, questions pertaining to the correct number of trainer aircraft and ground-based training systems need to be addressed along with procurement and fielding timing.

Background

U.S. Air Force Trainer Aircraft

Roles and Missions

For the purpose of this report, a trainer is defined as an aircraft primarily designed to facilitate aircrew or pilot flight training. Trainer aircraft features include tandem flight controls, simplified cockpit arrangements, and other elements that allow student pilots to operate the aircraft safely. US Air Force trainer aircraft are assigned under the Air Education and Training Command’s (AETC) 19" Air Force, which includes 19 training locations, 10 regular Air force wings supported by six Guard and Reserve wings, approximately 32,000 personnel and more than 1,350 aircraft of 29 different models. Currently, flight training bases that use the trainer fleet are Joint Base San Antonio-Randolph, TX, Laughlin Air Force Base (AFB), TX, Vance AFB, OK, Columbus AFB, MS, and Sheppard AFB, TX.

The current US Air Force (USAF) pilot trainer aircraft fleet consists mainly of the T-1A Jayhawk, T-6 Texan II, and the T-38 Talon.

Current USAF Trainer Fleet

<table>
<thead>
<tr>
<th>Table 1. AETC Main Trainer Fleet</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-1A Jayhawk</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Numbers of Aircraft</td>
</tr>
</tbody>
</table>

Source: HQ AETC/A5RX Email dated 6 Dec 2016
Notes: AETC maintains other trainer aircraft in addition to T-1, T-6 and T-38, however, these three models comprise almost 80% of the trainer fleet.

T-1A Jayhawk

The T-1A Jayhawk trainer aircraft is a medium-range, twin-engine jet used in the advanced phases of Specialized Undergraduate Pilot Training (SUPT). Students selected to become airlift or tanker aircraft pilots will train in the T-1A after completing Undergraduate Pilot Training. The aircraft is manufactured by Raytheon and Hawker Beechcraft and derived from the commercial

Beechjet 400A aircraft. The USAF first acquired the jet in 1992 and students began using the aircraft for training in 1993. The main differences between the military aircraft and civilian version are structural enhancements for bird strike resistance and an additional fuel tank. The cockpit is configured to support an instructor pilot and two student pilots. The T-1A is currently used for pilot training at Columbus AFB, Mississippi, Laughlin AFB, Texas, Vance AFB, Oklahoma, Randolph AFB, Texas, and for combat systems officer training at Naval Air Station Pensacola, Florida.

Figure 1. T-1A Jayhawk

Source: http://www.af.mil/AboutUs/FactSheets/Display/tabid/224/Article/104542/t-1a-jayhawk.aspx

T-6 Texan II

The T-6 Texan II trainer aircraft is a single-engine, two-seat, turbo-propeller aircraft designed to train student pilots in basic flying skills common to both USAF and U.S. Navy (USN) pilots. It is the trainer aircraft employed for Joint Primary Pilot Training. The aircraft was originally manufactured by Raytheon Aircraft then, later, Beechcraft. It is a military version of the Beech/Pilatus PC-9 Mk II. The USAF acquired the aircraft in May 2000 and began training with it that same year. In 2001, the USAF and USN began using the T-6 as the primary trainer in the Joint Primary Pilot Training program at Moody AFB, Georgia. The aircraft has tandem seating

placing one pilot behind the other with interchangeable instructor/student seating. The aircraft features a pressurized cockpit, an anti-G force system, an advanced avionics package, ejection seats, and fully aerobatic flight controls. The T-6A is the aircraft portion of the Joint Primary Aircraft Training System (JPATS). The T-6A is currently in use at Columbus AFB, Mississippi, Vance AFB, Oklahoma, and Laughlin AFB and Sheppard AFB in Texas.

Joint Primary Aircraft Training System (JPATS)

The JPATS acquisition program is a system-of-systems for primary flight training devices to meet USAF and USN initial pilot training requirements. The principle JPATS mission is to train entry-level student pilots in primary flying skills to a proficiency level that will allow them to transition to advanced pilot training tracks. The program was initiated in 1994 and designed to replace the USAF T-37B and USN T-34C aircraft and associated ground-based training systems. The JPATS program consisted of the T-6 Texan II aircraft, simulators, ground-based training devices, a Training Integration Management System, instructional courseware and contractor logistics support. The original JPATS program called for production of 452 T-6A aircraft for the USAF and 249 for the USN. Raytheon was awarded the acquisition and support contract in 1996.

The Training Integration Management System is a computer driven system used to manage student progress through the Joint Primary Pilot Training program. It contains all the academic modules, tracks student events and grades, performs aircraft scheduling and assists in overall training management.

Figure 2. T-6A Texan II

![T-6A Texan II](http://www.af.mil/AboutUs/FactSheets/Display/tabid/224/Article/104548/t-6a-texan-ii.aspx)

T-38C Talon

The T-38 C Talon is a twin-engine, high-altitude, supersonic jet trainer used for Joint Specialized Undergraduate Pilot Training (JSUPT). It is used to train pilots selected to fly fighter and bomber aircraft. Other versions of the T-38 are assigned to Air Combat Command, Air Force Materiel Command and the National Aeronautics and Space Administration (NASA) in various roles. The T-38 has a history of economy of operations, ease of maintenance, high performance and exceptional safety. The T-38 is manufactured by Northrop Grumman Corporation and first flew in 1959. Production ended in 1972. Over 1,100 aircraft were delivered to the USAF between 1961 and 1972. The aircraft has swept wings, tricycle landing gear, and a steerable nose wheel. It incorporates a glass cockpit and integrated avionics displays and tandem seating similar to the T-6A. More than 60,000 USAF pilots have trained in the T-38 since entering service. In addition to U.S. forces, the T-38 is in service in Germany, South Korea, Taiwan, and Turkey.

Numerous design improvements have been retrofitted into operational T-38s. In 2007, Boeing Company completed a major avionics suite upgrade to the T-38A/B models converting 463 T-38s to T-38Cs. Also, Northrop Grumman developed and delivered replacement wing sets to extend the life of the T-38C. In 2015, the USAF embarked on a structural modernization program known as PACER CLASSIC III (See Figure 3). The program procures 180 structural upgrade modification kits to ensure the structural integrity of the T-38C aircraft that were at high risk of grounding. The structural work includes replacement of the ejection seat, longerons, landing gear, brakes, flight controls, and canopy, among other structural work. USAF maintainers perform the modifications, extending the aircraft’s life to 2029. The USAF’s Ogden Air Logistics Complex at Hill AFB, Utah, is charged with executing the modification program. However, the actual modification of the aircraft takes place at Randolph AFB, TX.

7 Ibid.
9 E-mail communication with Maj Joseph Clapsaddle, Trainer Program Element Monitor, Global Reach Directorate, Secretary of the Air Force for Acquisition, March 7, 2017.
The T-38C is used to train USAF, USN, and North Atlantic Treaty Organization (NATO) pilots. In addition, USAF and USN test pilots and flight test engineers are trained in the T-38A. The T-38C is the current trainer used to prepare front-line fighter and bomber pilots to operate all USAF fighters except the F-35. In addition, NASA uses the T-38C to train future astronauts.¹⁰

Air Force Pilot Training

How does the USAF produce pilots?

The USAF uses a deliberate, competitive process to select pilot candidates. Once chosen, candidates undergo a lengthy academic and flight training program.

Pilot Candidate Selection

The USAF pilot selection process begins with a battery of academic and psychomotor tests; candidates must also meet flight physical requirements and anthropometric standards. The USAF uses a Pilot Candidate Selection Method (PCSM) tool to predict the ability of a prospective candidate to complete pilot training. The PCSM score is a combination of performance on the Test of Basic Aviation Skills (TBAS), Air Force Officer Qualifying Test (AFOQT) and the total number of flying hours the candidate has already accumulated from civilian flight training. A pilot selection board, comprised of senior USAF aviators, uses the PCSM score along with other whole-person concept factors to select candidate pilots.\(^\text{11}\) According to some researchers, higher scores on the PCSM may predict:

- greater probability of successfully completing training;
- reduced flight hours needed to complete training;
- a higher class rank; and
- greater likelihood of being fighter aircraft qualified.\(^\text{12}\)

\(^\text{11}\) The *whole person concept* considers the individual’s performance, leadership potential, breadth of experience, job responsibility, professional competence, specific achievements, and education.

The TBAS is a computerized psychomotor test to measure a candidate’s motor skills, cognitive aptitude, and attitude towards risk. The candidate manipulates a joystick, throttle, and rudder pedals to accomplish tasks to measure directional orientation, listening skills, horizontal tracking, aircraft tracking, and combining all actions at once.\(^\text{13}\)

The AFOQT is a standardized test similar to the Scholastic Aptitude Test. It measures applicants’ aptitudes for various officer commissioning programs and includes a specific portion dedicated to measuring aptitude for pilot and combat systems officer career fields. Regardless of the desired field, the AFOQT is mandatory for application for a commission in the USAF. The AFOQT has been used for officer selection since 1957 and has been updated about every seven years.\(^\text{14}\) The pilot composite, another test for pilot selection, measures a candidate’s knowledge of aviation and mechanical systems, his or her ability to determine aircraft attitude from a flight instrument graphic, his or her spatial ability and knowledge of aeronautical concepts; and ability to interpret and read tables and scales.\(^\text{15}\)

Flight Training

Pilot candidates enter flight training by attending the Introductory Flight Training (IFT) course. IFT is a civilian flight instructor-led program administered in Pueblo, Colorado.\(^\text{16}\) The course provides a pilot candidate the opportunity to complete flight ground school and a 25 flight-hour screening program. Doss Aviation administers the IFT program for the USAF. IFT prepares USAF students to enter Specialized Undergraduate Pilot Training (SUPT), Undergraduate Combat Systems Officer Training or Undergraduate Remotely Piloted Aircraft Pilot Training. According to Doss Aviation, the two primary objects of IFT are to:

- Provide the Air Force an opportunity to screen aviation candidates prior to undergraduate flight training attendance; and
- Begin the development of the student’s aviation skills in order to enhance his/her ability to succeed in undergraduate flight training.\(^\text{17}\)

Doss Aviation operates Diamond DA20-C1 aircraft (See Figure 5) to execute the IFT program.

\(^{13}\) Baseops.net, “Test of Basic Aviation Skills,” at https://www.baseops.net/militarypilot/tbas.html.

\(^{15}\) Ibid.

Following IFT, student pilots either attend the Euro-NATO Joint Jet Pilot Training (ENJPT) program or Specialized Undergraduate Pilot Training (SUPT) program. ENJPT is located at Sheppard AFB, Texas and is a three-phase, 55-week training program taught by USAF and Euro-NATO country instructor pilots. Upon graduation, the new pilots will attend follow-on training on their assigned aircraft at various bases around the country. There are eight ENJPT classes per year with six-week entry/graduation cycles. Each ENJPT class has 20-25 students.18

Euro-NATO Joint Jet Pilot Training Phases19

<table>
<thead>
<tr>
<th>Phase I – Academic Classes and Preflight Training:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Aerospace Physiology and Altitude Chamber sessions</td>
</tr>
<tr>
<td>• Ejection Seat/Egress Training and Parachute Landing Falls</td>
</tr>
<tr>
<td>• Aircraft Systems Course</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase II – Primary Aircraft Training (T-6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 26-Week, 125-hour flight training instruction</td>
</tr>
</tbody>
</table>

Advanced Pilot Training (T-X) Program: Background and Issues for Congress

Pilots selected to fly fighter aircraft attend the Introduction to Fighter Fundamentals (IFF) course at Sheppard AFB, Texas. There are 15 ENJJPT IFF classes per year and the course lasts approximately eight weeks. Following IFF, the pilots transition to training on their assigned aircraft at bases throughout the U.S., depending on aircraft assignment. Table 2 identifies the respective aircraft and training base.

Table 2. Follow-on Fighter Aircraft Training Bases

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Training Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-15C Eagle</td>
<td>Kingsley Field, OR</td>
</tr>
<tr>
<td>F-15E Strike Eagle</td>
<td>Seymour Johnson AFB, NC</td>
</tr>
<tr>
<td>F-16 Fighting Falcon</td>
<td>Luke AFB, AZ</td>
</tr>
<tr>
<td>A-10 Thunderbolt II</td>
<td>Davis-Monthan AFB, AZ</td>
</tr>
<tr>
<td>B-52 Stratofortress</td>
<td>Barksdale AFB, LA</td>
</tr>
<tr>
<td>B-1B Lancer</td>
<td>Dyess AFB, TX</td>
</tr>
<tr>
<td>T-38 Talon</td>
<td>Sheppard AFB, TX</td>
</tr>
</tbody>
</table>

Source: https://www.baseops.net/militarypilot/enjjpt.html

Notes: Pilots may be assigned as a First Assignment Instructor Pilot (FAIP) in the T-38. FAIPs selected for ENJJPT will only be assigned to instruct at ENJJPT and attend Pilot Instructor Training at ENJJPT.

SUPT is a joint USAF and USN pilot training program conducted at Vance AFB, OK and Naval Air Station Whiting Field, FL. The program lasts approximately 54 weeks. Upon graduation, the new pilots attend follow-on training in their assigned aircraft at bases throughout the U.S. known as Formal Training Units (FTUs). There are 15 SUPT courses per year at each SUPT base. A class enters and graduates SUPT every eight weeks. SUPT classes are typically 8-10 student pilots.20

USAF and USN students complete primary flight training on the T-6 aircraft. Some USAF students complete their primary flight training at Columbus AFB, MS or Laughlin AFB, TX, flying the T-6. Following primary flight training, students assigned to the fighter/bomber track will go on to train on the T-38, concentrating on low-level tactics, instrument procedures, formation flying and navigation training. Pilots selected for airlift and tanker aircraft complete their advanced training on the T-1A at Columbus AFB, MS, Laughlin AFB, TX or Vance AFB, 20

OK. Airlift and tanker pilots are introduced to crew resource management techniques, air-to-air refueling, airdrop missions and radar positioning and navigation.21 Students selected to fly multi-engine turboprop aircraft train on the Navy’s T-44 or Air Force’s C-12 turboprop trainers at Naval Air Station Corpus Christi, TX and are introduced to C-130 training mission profiles. Very few students are selected to fly helicopters; however, their advanced training is conducted at Fort Rucker, AL in the UH-1 Huey. \textbf{Table 3} identifies the respective airlift, tanker, and helicopter training bases. SUPT graduates assigned to a fighter/bomber aircraft attend IFF at Randolph AFB, TX or Columbus AFB, MS. There are 12 IFF courses per year with a four-week entry/graduation cycle.22

In addition to academic classes and flight instruction, students are also required to train in aircraft simulators to apply learned techniques and to be prepared for the cockpit. Experts agree that simulators provide a cost-effective means of instruction to help reduce the burden and cost of aircraft operations and maintenance. Also, simulators allow instructors to introduce a variety of emergency conditions that pilots may confront during flight operations in a safe and controlled environment. The emergency simulations are critical to enhance the student pilot’s awareness and skills in preparation for encountering similar emergencies in flight.

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
\textbf{Aircraft} & \textbf{Training Base} \\
\hline
KC-135 Stratotanker, C-17 Globemaster III & Altus AFB, OK \\
KC-10 Extender & Travis AFB, CA and Joint Base McGuire-Dix-Lakehurst, NJ \\
C-5 Galaxy & Joint Base San Antonio, TX \\
C-130 Hercules & Little Rock AFB, AR and Dobbins ARB, GA \\
MC-130 Combat Talon, HC-130, UH-1N, HH-60 Pave Hawk, CV-22 Osprey & Kirtland AFB, NM \\
C-21 & Keesler AFB, MS \\
U-28A & Hurlburt Field, FL \\
MC-12 & Meridian, MS \\
\hline
\end{tabular}
\caption{Follow-on Airlift, Tanker, Helicopter, Reconnaissance Aircraft Training Bases}
\end{table}

\textbf{Source:} https://www.baseops.net/militarypilot

\section*{Advancements in Pilot Training}

A 1996 USAF research project demonstrated that advancements in aircrew training methods and technologies allow ground-based pilot training to move beyond training procedural skills to training wartime mission skills.23 As training resources become scarce, analysts agree that more realistic and advanced synthetic training environments have evolved to support more complex training requirements. One of the major advancements is the ability to link a variety of training simulators, constructive models, and live aircraft in a wide area network to accomplish mission

21 Baseops.net, “Specialized Undergraduate Pilot Training,” at https://www.baseops.net/militarypilot.

training. According to USAF researchers, modeling and simulation increase scope and realism of warfighter training at an affordable cost. Simulator networking allows construction of large federations of disparate simulators which permit multi-service and allied country joint combined training in a variety of military mission sets. In addition, simulated combat environments provide instructional advantages, such as avoiding range constraints like electronic warfare restrictions and enabling real-time kill removal during an air battle.

One major consideration in using simulators for aircrew training is spatial awareness development. Spatial awareness is the ability to comprehend the spatial parameters of an air-combat or flight training mission. The challenge lies in the difficulty the pilot has mentally visualizing a three-dimensional (3-D) environment while using two-dimensional displays. Technology has advanced to supply more realistic 3-D views through virtual reality, allowing pilot trainees to experience spatial situations in a computer-generated virtual battlespace. Spatial cognition trainers augment academic instruction by allowing the trainee to practice visualization skills that mimic in-flight spatial problem-solving situations.

Past aircrew training relied heavily on actual aircraft flight training to provide realistic mission training. Aircraft training devices were used to prepare the aircrews to use limited flying hours effectively. The increase in training requirements due to fourth- and fifth-generation fighter aircraft, coupled with the high cost of flight hours, reduced both the quality and quantity of available aircrew training. USAF analysts agree that the advent of distributed mission training (DMT) and advanced distributed simulation technology can significantly improve aircrew training. DMT allows multi-player, multi-site training scenarios from individual and team participation to full-theater battles. USAF analysts believe that expanding on-demand, realistic training opportunities will significantly improve aircrew training and help overcome limited training resources. According to the USAF, the planned T-X program includes state-of-the-art Ground-Based Training System (GBTS) requirements to take full advantage of the advancements in pilot modeling and simulation training.

According to a Defense Media Network article, the cost to train a USAF fighter pilot is $2.6 million and the cost to train an airlift pilot is $600,000. USAF analysts argue that the increased use of simulators is a cost-saving imperative. Simulator use reduces flight hour costs, airframe flight hours and maintenance. AETC commented that

...current Air Force live flight/simulator training balance varies from pipeline to pipeline. Primary training that all USAF pilots go through in the T-6 Texan II demonstrates the current emphasis on live flight. The division between live flight and simulation events is

24 Ibid.
25 Ibid.
26 Ibid.
27 Ibid.
28 Fifth-generation aircraft incorporate the most modern technology and are considered to be more capable and advanced than earlier generation aircraft.
29 Ibid.
30 Ibid.
31 Ibid.
65 percent/35 percent. That equates to about 87 hours in the aircraft and 46 hours in the simulator.

For the airlift/mobility pipeline where students fly the T-1 Jayhawk, the current balance is similar, 71 percent of events occurring in the aircraft and 29 percent in the simulator. This will shortly change, however. The USAF is working its way through a “tech refresh” of its T-1 simulation devices, which will grow significantly in capability. With T-1 flight training total time scheduled to drop to 130 hours, the pipeline will move toward a 60/40 percent live flight/simulator split by 2013.\(^{34}\) This represents 76.5 hours of aircraft time and 53.5 hours of simulator time.

As the Air Force’s upgrade to the TH-1H Iroquois helicopter with its new engine and glass cockpit progresses, the live flight/simulator balance for rotary-wing students will go from 77 percent/23 percent to 74 percent/26 percent. The fighter-bomber track sees students in the venerable T-38C Talon 71 percent of the time, comprising 96 hours, and in the simulator 29 percent of the time or 39 hours.\(^{35}\)

According to AETC, all flying training programs have seen a drop in flight times of approximately 15% and a move to integrate more simulator time. However, the USAF maintains that although simulation is complementary to live flight across all training programs, this is not true for new pilots. Undergraduate pilot training is biased to live flight training to ensure the student pilot experiences enough live flight that he or she can appreciate what occurs in simulation.\(^ {36}\) Analysts agree that simulators can help reduce the costs of pilot training; however, the extent of the reduction is unknown. According to financial analysts, the global flight simulator market, both military and commercial, is expected to grow 4.5% by 2022 as a result of the need to cut costs associated with pilot training while ensuring aviation safety.\(^ {37}\) High-fidelity full-motion simulators are very expensive and require energy, maintenance, and personnel to operate and maintain. The initial cost of the system along with continuous maintenance, upgrades, and operation costs must be considered in making comparisons to live flight operations. Analysts have yet to define all the variables that go into calculating costs associated with simulator versus live flight training costs.\(^ {38}\)

The US Navy is also planning to progressively boost simulator fidelity to improve full-immersion mission experience for its pilots and sensor operators. The US Navy’s aviation simulation master plan for 2020 “is designed to cautiously and progressively increase the amount of cost-saving virtual training while maintaining enough in-aircraft practice to ensure safety.”\(^ {39}\) According to Aviation Week reporting, the U.S. General Accountability Office (GAO) had reported that...

\(^ {34}\) CRS was not able to confirm if the 60/40 percent live flight/simulator split was accomplished by 2013.

\(^ {36}\) Ibid.

\(^ {38}\) Ibid.

With upgraded MH-60 Romeo and Sierra, F/A-18E and F, and EA-18G TOFTs [Tactical Operational Flight Trainer], however, the Navy estimates it will be able to boost the virtual training ratio to approximately 50% for the MH-60 fleet, and more than 30% for the F-18s by 2020. Capt. Craig Dorrans, program manager of PMA-205 at the Naval Air Systems Command says crews for the Boeing P-8A Poseidon, the replacement for the P-3, will probably be able to perform as much as 70% of their training in a TOFT. The P-8A is based on the Boeing 737-800, allowing the military to leverage commercial simulation capabilities already developed.

Training for Fire Scout pilots is already moving to 100% synthetic training. “We’re Looking at 100% simulation to train aircrew for the Fire Scout and MQ-4 Triton,” Dorrans says. “The cockpit is already separated from the aircraft. Everything that you see on the ground in the cockpit, you can simulate.”

Advanced Pilot Training (APT T-X) Program Basics

The USAF identified and documented gaps in its ability to meet advanced pilot training requirements in 2018 and beyond in an October 2009 Initial Capabilities Document (ICD). Within the ICD, the USAF identified 12 shortfalls, out of 18 mission tasks set forth in SUPT and IFF courses, of the T-38C Talon aircraft. (See Appendix B.) Based on the ICD, the USAF commissioned an Analysis of Alternatives (AOA) in 2011 to determine potential solutions to meet the identified shortfalls in training. In 2014, as a result of a change in the Initial Operational Capability (IOC) date from 2017 to 2023, the USAF published an update to the original 2011 AOA document. The results of the AOA recommended a materiel solution to the issue and the USAF developed a Capabilities Development Document (CDD) to describe the requirements of the materiel solution, now known as the APT T-X program. The Joint Requirements Oversight Council approved the CDD in October 2015. According to the USAF, the current planned IOC for the APT T-X is 2024 and Full Operational Capability (FOC) in 2034.

The stated mission of the APT T-X system is to prepare student pilots to operate fourth- and fifth-generation fighters and bombers. The USAF plans to integrate the APT T-X within the advanced phase of the fighter/bomber track of SUPT as well as IFF. The scope of the acquisition program is to acquire an advanced trainer aircraft and ground-based training system to be used by the Air

40 Ibid.

42 Ibid.

Education and Training Command (AETC) in the pilot training pipeline. The purpose of the trainer aircraft is to bridge the UPT primary phase in the T-6 Texan and fifth-generation Formal Training Unit (FTU) aircraft.

The APT T-X is comprised of multiple systems working together to enable advanced pilot training. The major components include the aircraft, ground-based training systems, virtual training systems, electronic classrooms, aircraft maintainers (personnel), maintenance training systems, and support infrastructure. **Figure 6** provides a high-level graphical view of the APT mission and associated architecture capabilities.

Figure 6. APT T-X Operational View

Source: Advanced Pilot Training (APT T-X) Concept of Operations, Air Education and Training Command, Directorate of Plans, Programs, Requirements and Assessments

Notes: The Operational View shows the interdependencies with support services such as air traffic control, as well as the interoperability between the ground-based training systems.
According to the USAF, the APT T-X system will close the 12 capability gaps identified in the ICD and better prepare student pilots for operations in fifth-generation fighters and bombers. Based on the stated requirements found within the CDD, the APT T-X will provide more effective high-G and high angle of attack training than the T-38C and will more closely resemble fifth-generation operational environments.\(^{45}\) AETC leaders believe the improved fidelity and aerodynamic modeling required in the Ground-Based Training System (GBTS) will enable better training and allow some tasks to be moved from flight training to the simulators. Also, the more capable aircraft will provide better opportunity to move training from the FTUs into SUPT and IFF, thereby reducing the high cost of flight hours in fifth-generation aircraft normally required to develop experienced pilots.\(^{46, 47}\)

In addition to the operational training gains projected with the APT T-X system, the planned sustainment concept envisioned by the USAF seeks to reduce ownership, operation, and system support costs, while increasing system readiness and operational capability. According to the USAF, the current T-38C fleet has an operational availability of 60%, which continues to fall yearly while maintenance costs continue to rise.\(^{48}\) The USAF requirement for the APT T-X is an operational availability of 80% or greater.\(^ {49}\)

Trainer Aircraft System Requirements

The USAF contends that by 2031, 60% of all combat air forces will be fifth-generation aircraft and therefore the force will require a modern aircraft to train future fighter and bomber pilots.\(^ {50}\) The USAF’s 2009 ICD showed that the current T-38C fleet cannot accomplish 12 of the 18 mission tasks required for advanced pilot training. These tasks include high-G training, advanced air-to-air skill sets, and advanced cockpit/crew resource management tasks such as data fusion using modern sensors.\(^ {51}\) Currently, FTUs fulfill the 12 tasks; student pilots train using actual fourth- and fifth-generation fighters and bombers at a higher operating cost. Before 2014, the F-16 bridge course mitigated the risk of sending student pilots directly into the cockpit of an F-22 with students operating a fourth-generation fighter under instructor pilot tutelage before moving to the fifth generation fighter. However, AETC deemed the bridge course inefficient and ended the course.\(^ {52}\)

Based on USAF projections, the 430 T-38C aircraft remaining in active inventory have a projected service life thru 2034, when the APT-T-X reaches FOC.\(^ {53}\) Beginning in the 1950s, the original mission of the T-38 fleet was to serve as the advanced pilot trainer for the Century Series fighters (F-100, F-104, etc.).

\(^{45}\) Angle of attack is defined by Britannica as the angle of the aircraft wings relative to the wind or oncoming flow. According to NASA analysts, modern fighter aircraft that can maintain controlled flight at high angles of attack provide the fighter pilot the ability to turn rapidly and enhance his or her nose-pointing capability, forming the basis for superior handling qualities. For more detailed information see NASA Technical Memorandum 104322.

\(^{47}\) CRS has been unable to find views dissenting from AETC assertions.

\(^{48}\) Ibid.

\(^{49}\) Ibid.

\(^{50}\) Ibid.

\(^{51}\) Ibid.

\(^{52}\) Ibid.

\(^{53}\) Ibid.
The APT T-X System Specifications (See Appendix C) detail the specific system requirements for the new trainer aircraft to meet the USAF’s 18 identified mission tasks. The USAF’s December 30, 2016, final RFP solicitation includes the system specification document.

The current USAF plan is to recapitalize five existing T-38C bases with APT. These are:

- Columbus AFB, MS (SUPT/IFF)
- Laughlin AFB, TX (SUPT)
- Vance AFB, OK (SUPT)
- Sheppard AFB, TX (ENJJPT/IFF/Pilot Instructor Training)
- Joint Base San Antonio-Randolph, TX (IFF/Pilot Instructor Training).

Ground-Based Training System Requirements

The Ground-Based Training System (GBTS) includes simulators, training devices, computer-based training systems, and academics. The largest portion of the GBTS is the simulator and is referred to as Aircrew Training Devices (ATD). The ATDs are further broken down into three categories: Unit Training Devices (UTD), Operational Flight Trainers (OFT), and Weapons Systems Trainers (WST).

The most basic ATD is the UTD. It provides training in normal procedures, instruments, and emergency procedures. Its primary use is to train basic flying tasks such as instrument and navigation training, ground and systems procedures, and emergency procedures.

OFTs provide a networked simulator capability to train more advanced flight profiles and IFF course tasks. The OFT provides a greater training capability than the UTD, enabling visual flight patterns and landings, basic formation flying and low-level operations. The ability to link the OFT simulators provides the capability to train formation flying in a virtual battlespace.

The WST is also a linked simulator network similar to the OFT. In addition to OFT capabilities, the WST’s greater field of view capability allows students to train in basic fighter maneuvers. WSTs are critical to training fighter formation flight and tactical maneuvering.

The GBTS will include all Interactive Multimedia Instruction (IMI) to include instructor-based training and computer-based training. Also, the USAF requires that all aspects of aircraft maintenance training be integrated into IMI. The IMI system must be web-based and provide seamless communication with student management systems.

According to the USAF, a high-fidelity GBTS that can replicate advanced sensors as well as actual aircraft handling characteristics will enable more accurate simulated flying training to facilitate more offloaded training (training moved from an aircraft into a simulator). The desire to evolve simulator training from traditional stick-and-throttle flying to sensor-driven tactics is a direct result of fifth-generation fighter capabilities such as advanced data links, multispectral sensor fusion, and Advanced Cockpit/Crew Resource Management. The level of performance

54 Ibid.
55 Ibid.
56 Ibid.
57 Ibid.
58 Ibid.
59 Advanced Cockpit/Crew Resource Management means the ability to prioritize mission tasks and operate on-board sensors and systems to maximize situational awareness and mission effectiveness.
provided by the GBTS will be a driving factor in determining how much training can be offloaded into the simulator.

The current inventory of T-38C ATD’s is 36 total systems. The USAF’s ATD requirement for T-X is 46 total systems.

Acquisition Strategy

Request for Proposal (RFP)

In March 2015, the USAF began its pursuit of the APT family of systems through release of a request for information (RFI) to industry. The RFI focused on soliciting industry comments and questions on the draft requirements. In addition to the industry comments, the USAF announced a pre-solicitation conference at Wright-Patterson AFB, OH, home of the APT System Program Office. The conference was an opportunity for prospective offerors to engage with the system program office and discuss early requirements in relation to the upcoming APT source selection. During the following year, numerous engagements between the government and industry occurred to ensure clear communication and transparency throughout the solicitation process. All written communication was initiated through the FedBizOpps.gov internet-based e-business tool.

In July 2016, the USAF issued a draft request for proposal (RFP) and encouraged prospective industry bidders to provide comments, questions, concerns, and requests for clarification in preparation for a final RFP release in 2016. Interactive dialogue continued after release of the draft RFP to improve the clarity of the system specifications, program schedules, contract documentation, and eventually updating the complete draft RFP in September 2016. Following the release of that updated draft RFP, the USAF made minor corrections to solicitation documents and responded to industry questions. The USAF proceeded through final reviews and approvals of the RFP culminating in the release of the final solicitation RFP on December 30, 2016.

Contracting Plan

The statement of work (SOW) associated with the APT solicitation includes all engineering and manufacturing development (EMD), production, and sustainment activities. In addition, the SOW calls for Field Service Representatives and Interim Contractor Support for the APT aircraft in

60 Ibid.
62 FedBizOpps.gov is a single government point of entry for Federal government procurement opportunities that exceed $25,000. Government buying agents can publicize their business opportunities by posting information directly on the site. Vendors seeking Federal markets for their products and services can search for opportunities solicited by Federal contracting agencies. The portal can provide transparency when communicating with potential vendors and ensure all interested parties have access to the same information.
support of transitioning to a government organic supply chain management and maintenance concept. The GBTS devices will be supported by a contractor logistics support contract.

The USAF plans to award a 16-year Indefinite Delivery/Indefinite Quantity contract as allowed by the Federal Acquisition Regulation (48 CFR 16.504). According to the USAF’s planned contract award, the maximum quantity of aircraft the government may order is 473 and maximum quantity of GBTS is 120. The minimum quantity of aircraft the government must order is 5 (test articles) and the minimum quantity of GBTS is 7. The contract types include both fixed price incentive firm and firm fixed-price.

The acquisition strategy calls for mature, demonstrated technologies as opposed to a new, developmental system. The EMD portion of the contract will be limited and focused on developmental work to incorporate capabilities to meet the system specifications. The current program schedule identifies the IOC date in FY24.

Some analysts argue that the fixed-price elements of the contract place new designs at a disadvantage compared with vendors offering a modified existing platform. This is based on the fact that the vendor offering a new design must invest corporate funds to cover design costs. Other analysts argue that the decision to offer a new design is a corporate business decision and not a requirement; therefore, the risk and investment is purely a business consideration when deciding to compete for the contract award.

Source Selection Evaluation Plan

According to the USAF APT solicitation, the competition is a best value source selection conducted in accordance with Federal Acquisition Regulation Part 15, Contracting by Negotiation. A contract award will be made to the offeror whose proposal is determined to offer the best value to the government based on an assessment of evaluation factors and subfactors identified in the solicitation’s Section M – Evaluation Factors for Award. According to the USAF, lessons learned from the KC-X source selection have been incorporated into the source selection strategy employed for the APT competition. Figure 7 represents the evaluation factors and subfactors that will be used to evaluate offeror proposals.

Based on the evaluation plan, an offeror’s proposal must be less than $16.3 billion in order to be evaluated. This is the first measure for a proposal to be considered as a viable offer. This gate is considered an affordability measure based on the USAF program office estimate.

According to the USAF solicitation, in order for a proposal to be considered awardable, offerors must meet the affordability gate, and receive a Low or Moderate technical risk rating for

67 For further details on contract specifics see the RFP Model Contract at https://www.fbo.gov/utils/view?id=ec098127ff89a2e70a83d6a88bba27.

70 For additional information on the KC-X program, see CRS Report RL34398, Air Force KC-46A Tanker Aircraft Program, by Jeremiah Gertler

71 The Affordability Gate is a cost cap on the total contract value of the vendor’s offer. In order to be considered as an (continued...)
Subfactors 1.1-1.5, as well as an *Acceptable* rating for Subfactors 1.6-1.7. Also, if any nonprice factor or subfactor is evaluated as *High* or *Unacceptable*, the entire proposal will be ineligible for award.\(^{72}\) The offerors must meet all standard government solicitation requirements (e.g. compliance with terms and conditions, intellectual property assertions, cost and data requirements, and security compliance). Each subfactor will be evaluated individually and assessed based on detailed criteria found in Section M of the solicitation. Proposals from prospective offerors were submitted by the March 30, 2017 deadline and the USAF plans to award the contract in December 2017.\(^{73}\)

Figure 7. APT Source Selection Strategy

Evaluation Factors and Subfactors

Source: Solicitation FA8617-17-6219, Section J – Attachment 18, Section M – Evaluation Factors for Award

Notes: Value Adjusted Total Evaluated Price (VATEP). For a greater explanation of each subfactor and evaluation criteria see Solicitation FA8617-17-6219, Section J – Attachment 18, Section M – Evaluation Factors for Award

(...continued)

awardable offer the contract value must be less than or equal to $16.3B. Nice. thanks.

\(^{72}\) Ibid.

Prospective Offerors

Currently, five aerospace company partnerships have voiced intent to compete for the APT contract. Details of each partnership’s offering are limited due to the nature of contract competitions; however some marketing information has surfaced in anticipation of the APT solicitation. The following section will identify the prospective offerors and their intended product offerings.

Boeing-Saab T-X

In December 2013, Boeing and Saab formed a partnership to develop a purpose built trainer in anticipation of the USAF APT program. According to Boeing, the T-X (See Figure 8) is a production aircraft and not a prototype. As of December 2016, two T-X aircraft are built and have already flown maiden flights.74 Boeing claims the purpose-built trainer was designed from the ground up to include the Ground Based Training System and support. The single-engine, twin-tail, stadium seating trainer was unveiled on September 13, 2016, at Boeing’s St. Louis, MO facility. Parts of the aircraft were manufactured in Sweden and final assembly took place in St. Louis, MO.75 Boeing has not announced where the aircraft will be built should they win the contract.

Figure 8. Boeing-Saab T-X

Source: http://www.boeing.com/defense/t-x/#/gallery

75 Ibid.
Notes: According to the Boeing website, this picture was taken during T-X’s second flight.

Northrop Grumman-BAE-L-3 T-X

In late 2011, Northrop Grumman and BAE Systems announced they would offer the single-engine BAE Hawk as the replacement bid for the T-38C. However, in 2014 the companies announced that they would offer a new purpose-built jet trainer system. According to open source reports, the aircraft is being built in secret in a Mojave Desert facility. According to Northrop executives, the new design would better meet the USAF requirements than the Hawk offering. The partnership with BAE Systems and L-3 would combine ground-based training systems and training devices to form a complete training system. In August 2016, a single-engine, single-tail, two-seat T-X prototype was seen performing high-speed taxi tests at the Mojave Air and Space Port in California (See Figure 9). According to aerospace analysts, the design resembles the Northrop T-38C it is intended to replace. On February 1, 2017, Defense News reported that Northrop Grumman-BAE-L-3 Comm has decided not to enter the competition for the T-X contract “as it would not be in the best interest of the companies and their shareholders.”

Figure 9. Northrop Grumman/BAE/L-3 T-X Prototype

Source: http://www.janes.com/article/63129/northrop-grumman-s-t-x-design-breaks-cover

77 Ibid.
79 Ibid.
Lockheed Martin – Korean Aerospace Industries T-50A

Lockheed Martin (LM) and Korean Aerospace Industries (KAI) jointly developed the T-50A (See Figure 10), a modernized T-50 aircraft, as the APT contender. According to company officials, the block upgrade to the T-50 aircraft includes the addition of air refueling capability, embedded training, open system architecture, and a fifth-generation cockpit.\(^{81}\) The T-50 aircraft was designed by KAI and LM in 2002 and is used as a trainer in Korea, Indonesia, Thailand, Philippines, and Iraq.\(^{82}\)

Figure 10. Lockheed Martin-KAI T-50A

Source: Lockheed Martin from Janes Defence Weekly Article
Notes: First flight of the T-50A by Lockheed Martin

Leonardo T-100

On January 25, 2017, Defense News reported that the partnership between Raytheon and Leonardo to offer the T-100, a variant of Leonardo’s M-346 military trainer, has ended. Prior to the Raytheon-Leonardo partnership, General Dynamics had teamed with Leonardo to offer the T-100, but General Dynamics dropped out of the partnership in March 2015.\(^{83}\) The T-100 (See Figure 11) is a variant of the M-346 trainer that is currently in use in Italy, Israel, Poland, and

Singapore. On February 8, 2017, Defense News reported that Leonardo will be entering the competition on its own with its U.S. subsidiary DRS as the prime contractor.

Figure 11. Leonardo T-100

Source: https://milaviate.files.wordpress.com/2013/08/t-100-alenia-aermacchi.jpg

Notes: The T-100 is a variant of the Leonardo M-346. Leonardo has been previously known as Finmeccanica and Alenia Aermecchi.

Sierra Nevada Corp.-Turkish Aerospace Industries T-X

A late entrant into the T-X competition is an offering from Sierra Nevada Corp. and Turkish Aerospace Industries. On December 16, 2016 Aviation Week reported that the two companies are partnering to offer an advanced pilot trainer replacement. According to Aviation Week, “the two businesses have quietly set up shop in Centennial, Colorado, as Freedom Aircraft Ventures LLC, to develop a lightweight, all-composite trainer...” Additional information on their offering has not been released to date.

84 Ibid.

Legislative Activity for 2017

FY2017 Funding Request

The Obama Administration’s proposed FY2017 defense budget requested $12.377 million in Air Force research and development funding to continue APT T-X development and acquisition. The Obama Administration’s proposed FY2017 defense budget requested $12.377 million in Air Force research and development funding to continue APT T-X development and acquisition.\cite{note86} Table 4 represents the USAF’s portion of the Future Years Defense Program (FYDP) submission dedicated to the T-X and the $12.377M requested budget for FY2017.

\begin{table}[h!]
\centering
\caption{Air Force RDT&E Budget Request FY2017}
\begin{tabular}{lccccccccc}
\hline
\textbf{Prior Years} & \textbf{FY15} & \textbf{FY16} & \textbf{FY17} & \textbf{FY18} & \textbf{FY19} & \textbf{FY20} & \textbf{FY21} & \textbf{Cost to Comp} & \textbf{Total Cost} \\
\hline
\textbf{APT (T-X)} & 0.000 & 8.201 & 10.395 & 12.377 & 105.699 & 263.274 & 272.973 & 277.816 & 670.087 & 1,620.822 \\
\hline
\end{tabular}
\end{table}

\textbf{Notes:} This only represents the Research, Development, Test and Evaluation budget. Procurement, MILCON, and Operations & Maintenance budget requirements will start in FY2020

\textbf{House}

The House Armed Services Committee, in its report accompanying H.R. 4909, recommended funding the Advanced Pilot Training program at $12.377 million, the requested level.

\textbf{Senate}

The Senate Armed Services Committee, in its report accompanying S. 2943, recommended funding the Advanced Pilot Training program at $4.477 million, $7.9 million below the requested level finding that the funds were early to need given the current contract award schedule.

\textbf{Final Action}

The conference report accompanying H.R. 4909, as passed, recommended $7.377 million, a reduction of $5 million from the Administration’s request, finding the funds were early to need. Due to a continuing resolution, the FY2017 Defense Appropriations Act has not been passed.

\textbf{Issues for Congress}

DOD’s APT T-X acquisition strategy poses a number of questions for Congress, including the following.

\cite{note86} The requested funding is found in the Air Force’s research, development, test and evaluation (RDT&E) account in program element (PE) 0605223F, Advanced Pilot Training.
- Given the USAF’s position on the looming pilot shortage, the anticipated purchase of 350 T-X aircraft and the current fleet size of 430, what are the minimum and optimum recapitalization levels needed? Should the number of new aircraft increase, would a corresponding increase in GBTS be appropriate?

- Is there an opportunity to consolidate the USAF’s five pilot training locations into fewer bases? Is a study warranted at this time to further consolidate pilot training?

- Given the ramp up in F-35A purchases, additional KC-46 lots, and development of the B-21 bomber, what is the impact of a fourth major defense acquisition program to the USAF budget? Should the training fleet be recapitalized sooner to accommodate the increase in the number of fifth-generation platforms?

- What, if any, acquisition reform initiatives need to be in place to facilitate faster procurement of the T-X?

- Should the USAF consider the selected T-X platform, with modification, as a light-attack fighter to take advantage of the fifth-generation capabilities required in the T-X system?

The USAF source selection process is underway and is scheduled to end in December 2017 with a contract award. According the USAF FYDP submitted (Table 4) to DOD, the APT T-X FY18 program estimated cost is $105.7M. As of April 24, 2017, the FY18 President’s Budget request has not been submitted.
Appendix A. Prior Legislative Activity

FY2016 Funding Request

The Obama Administration’s FY2016 defense budget request included $11.395 million in Air Force research and development funding to continue APT T-X development and acquisition.

House
The House Armed Services Committee, in its report accompanying H.R. 1735, recommended funding the Advanced Pilot Training program at $11.395 million, the requested level.

Senate
The Senate Armed Services Committee, in its report accompanying S. 1376, recommended funding the Advanced Pilot Training program at $11.395 million, the requested level.

FY2016 Defense Appropriations Act (H.R. 2685/S. 1558)

House
The House Appropriations Committee, in its report (H.Rept. 114-139 accompanying H.R. 2685) recommended funding the Advanced Pilot Training program $10.395 million, a reduction of $1 million from the Administration’s request with no accompanying language.

Senate
The Senate Appropriations Committee, in its report (S.Rept. 114-63 accompanying S. 1558) recommended funding the Advanced Pilot Training program at the Administration’s request, $11.395 million.

Final Action
H.Rept. 114-139 accompanying H.R. 2685 funded the Advance Pilot Training program at $10.395 million, a reduction of $1 million from the Administration’s request.

FY2015 Defense Authorization and Appropriations (H.R. 4870)

H.Rept. 113-473 and S.Rept. 113-211 accompanying H.R. 4870 funded the Advance Pilot Training program at $8.201 million, the Administration’s requested level. FY2015 was the first year of funding to execute the program.

87 The requested funding is found in the Air Force’s research, development, test and evaluation (RDT&E) account in program element (PE) 0605223F, Advanced Pilot Training.

88 Ibid.
Appendix B. APT Capability Gap Summary

<table>
<thead>
<tr>
<th>Task</th>
<th>Gap Description</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Basic Aircraft Control</td>
<td>The T-38 Family of Systems (FoS) does an adequate job in basic aerobatics and basic aircraft control cognitive development. The basic aircraft control skill sets learned in an APT configured with the T-38 FoS will not readily transfer to the 5th generation aircraft Formal Training Unit (FTU). The T-38 FoS cannot replicate the fly-by-wire aircraft feel and other 4th and 5th generation performance such as high-AOA maneuvering, high-altitude maneuvering, and higher thrust-to-weight ratios. The T-38C life support systems are also not representative of 5th generation systems (oxygen, pressure breathing for G, etc.).</td>
<td>Lack of existing capability; need for recapitalization; proficiency</td>
</tr>
<tr>
<td>2 Emergency Procedures</td>
<td>From a procedural perspective, the T-38 FoS does an adequate job enabling this task. The basic tenets for handling emergencies are aircraft independent: maintain aircraft control; analyze the situation and take proper action; land as soon as conditions permit. Nonetheless, each aircraft has unique procedures for dealing with emergencies. The 5th generation aircraft will have more computer controlled systems with emergencies diagnosed and manipulated via these computer systems. Also, the F-35 is a single-engine aircraft. Engine out emergency training is more challenging without an instructor in the same aircraft.</td>
<td>Proficiency</td>
</tr>
<tr>
<td>3 Operational Availability</td>
<td>Although the current figures are positive, the T-38 FoS is beginning to show its age. The increasing non-mission capable maintenance (NMCM) rate and cannibalization actions reflect areas of concern. There are issues with engines, airframes, landing gear and avionics. Also, fuel supplies and the cost of fuel may affect Operational Availability, as well as the cost per flying hour.</td>
<td>Sufficiency</td>
</tr>
<tr>
<td>Task</td>
<td>Gap Description</td>
<td>Category</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>4 Normal Procedures</td>
<td>The T-38 FoS does an adequate job enabling this task. Moreover, the T-38’s high airspeed enhances the pilot’s cognitive decision cycle development. Nonetheless, the limitations borne from a lack of 4th and 5th generation aircraft capabilities in the T-38 FoS affect portions of this area. First-time landings in the F-35 will be challenging.</td>
<td>Proficiency</td>
</tr>
<tr>
<td>5 Advanced Cockpit/Crew Resource Management (CRM)</td>
<td>The T-38 FoS lacks the necessary 4th and 5th generation aircraft systems for adequate Advanced CRM training. The T-38 FoS has no radar, sensors, or data-link capability.</td>
<td>Lack of existing capability; need for recapitalization; proficiency</td>
</tr>
<tr>
<td>6 Advanced Air-to-air (A/A)</td>
<td>The T-38 FoS lacks the necessary performance, cockpit visibility, avionics, and sensors for 4th and 5th generation aircraft familiarization training in Advanced A/A Mission Employment. The T-38 FoS has no air refueling capability.</td>
<td>Lack of existing capability; need for recapitalization; proficiency</td>
</tr>
<tr>
<td>7 Support Infrastructure</td>
<td>USAF foresees airspace and range access challenges. Recent examples (Luke AFB, NAS Oceana and Nellis AFB) suggest airfield encroachment will continue to be an issue. Moreover, commercial air operations may further erode access to training airspace and training ranges.</td>
<td>Sufficiency</td>
</tr>
<tr>
<td>8 Instruments and Navigation</td>
<td>Although the T-38 FoS does an adequate job enabling basic Instruments/Navigation, the trend away from “radio-type” navigation to the National Airspace Structure use of Global Positioning System (GPS) and microwave capabilities creates limitations. Also, the T-38C anti-ice deficiencies and high density altitude takeoff and landing limitations inhibit all-weather training.</td>
<td>Lack of existing capability; need for recapitalization; proficiency</td>
</tr>
</tbody>
</table>
Advanced Pilot Training (T-X) Program: Background and Issues for Congress

### Task	Gap Description	Category
9 **Formation**
Formation means the ability to perform formation flight within the course training standards; this supports the performance of two-/four-ship operations from briefing to debriefing as a wingman and lead.
Although the T-38C aircraft does an adequate job enabling basic formation, it is deficient in enabling autonomous formation operations. These operations include night, all-weather and beyond-visual range formation activities. The T-38 FoS lacks lighting, radar, data-link, and Night Vision Goggle (NVG) systems. Also, the T-38 simulators lack the visual clarity necessary to enhance advanced formation activities.
Lack of existing capability; proficiency
10 **Basic Air-to-Air (A/A)**
Basic A/A Mission Employment means the ability to perform basic A/A mission employment within the course training standards. Basic A/A mission employment supports the introduction of basic A/A mission employment fundamentals to include: basic offensive and defensive maneuvering (e.g., Basic Fighter Maneuvers (BFM), sustained high-G maneuvering); as well as low altitude navigation environment challenges and hazards (e.g., Low Altitude Step Down Training (LASDT)).
Although the T-38 FoS does a reasonable job enabling BFM skills development using classic offensive and defensive maneuvers, the lack of sustained high-G capability and 5th generation fly-by-wire and computer-aided maneuvering capabilities limits the T-38 FoS BFM relevance and applicability in comparison to 5th generation aircraft. Also, the T-38 FoS lack of sensors, data-link and automation constrains the development of this task.
Lack of existing capability; need for recapitalization; proficiency
11 **Advanced Air-to-Ground (A/G)**
Advanced A/G Mission Employment is the ability to perform advanced A/G mission employment within the course training standards. Advanced A/G mission employment supports the introduction of tactical A/G mission employment fundamentals to include: A/G (e.g., Surface Attack (SAT), Close Air Support (CAS)) operational combat tactics; low altitude employment challenges and hazards and night vision device employment.
The T-38 FoS lacks the necessary performance, avionics and sensors for 4th and 5th generation aircraft familiarization training in Advanced A/G Mission Employment. The T-38 FoS has no capability to enable training with advanced weapons such as J-series, laser guided, and data-link versions.
Lack of existing capability; need for recapitalization; proficiency
12 **Pilot Throughput**
Pilot Throughput means the ability to provide the capacity to graduate Headquarters USAF-tasked numbers of pilots on-time. Pilot throughput is a force structure issue independent of the FoS’ capabilities. The objective is to graduate a sufficient number of pilots at a rate adequate to meet USAF FTU pipeline requirements as well as ensuring adequate pilot production is maintained to sustain operational unit requirements.
Although the definition states Pilot Throughput is independent of the T-38 FoS capabilities, the analysis team wanted to capture Cockpit Anthropometric Accommodation. The T-38 aircraft limits the population of potential pilots.
Lack of existing capability

Appendix C. System Specification for the Advanced Pilot Training Program Aircraft System

Source: https://www.fbo.gov/utils/view?id=646b86a7bd46af87a7fc69de9ed306fc.
Author Contact Information

Ceir Coral
National Defense Fellow
ccoral@crs.loc.gov, 7-2602