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Executive Summary

Network science allows us to visualize large data sets in the form of a mathematical model.
Partitioning a network into communities based on its topology, helps reduce the complexity
of large networks by placing vertices into groups based on similar attributes. Detecting
communities in single layer networks is a well-studied problem. However, detecting com-
munities in multiplex networks that contain many layers is challenging. Network layer
aggregation approaches reduce a multiplex network to a single weighted graph, which sim-
pli�es the network to a single layer community detection problem. However, aggregating
all of the layers causes the detailed information associated with each layer to be lost. A
new algorithm that detects communities in multiplex networks that reduces the cost of
information loss is needed.

This thesis proposes a purpose-driven community detection algorithm for multiplex net-
works that is user-engaged at multiple steps to develop analytically useful communities.
The algorithm focuses on a user-de�ned goal, which directs the algorithm to select and
combine layers appropriately in support of that goal. In addition, the user selects weights
and an information threshold that results in a spectrum of community numbers and sizes.
To test our algorithm, we used three dark network data sets from the NPS Common Op-
erational Research Environment Lab, with a user de�ned goal of network disruption. We
speci�cally tailored the algorithm to reduce the e�ects of incomplete information on dark
network analysis.

In total, we explored 81 subcases from our dark networks that included di�erent weights
and information threshold choices. To determine community quality, we measured cluster
adequacy and average adjusted conductance of the resultant communities from each subcase.
The community quality generally increased with the size of the community. The larger
communities were developed under the provisions of the most relaxed threshold values.
However, we also observed that graph components that were identi�ed as communities
resulted in perfect community quality scores regardless of the community size.

The main purpose of our community development was to disrupt a terrorist network. With
this goal in mind, we formulated a community guided shortest path interdiction network
�ow model. Subcase 3.9 provided the necessary community compositions to guide the
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shortest path interdiction model towards a faster solution. We recommend more trials
using other subcases to reveal the optimal community composition. However, subcase 3.9
demonstrated the utility of our communities to reduce the complexity of our network model
from 1196 to 698 edges. We believe there exists an optimal community composition for
each network, which depends on the associated community purpose as well as community
quality.

This thesis presented an alternativemethod for conducting community detection inmultiplex
networks. By analysing our resultant community properties, we enhanced current optimal
shortest path interdiction results. The community guided approach achieved similar optimal
results while signi�cantly reducing solution time. Our focus on �rst de�ning a purpose for
community detection helped guide our algorithm development into a working procedure
with tangible results. We believe that detecting purpose-driven communities in multiplex
networks by thresholding user-engaged layer aggregation is a promising area of research
that should be continued and examined with more data sets in the future.
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CHAPTER 1:
Introduction

Beginning early in our lives, we are instructed to develop our skills to describe and under-
stand the complex world around us. We label, or de�ne, other people based on our type
of connection or relationship to them. Social networks such as LinkedIn o�er a platform
for capturing our professional relationships, and we can visually describe or model these
relationships using tools from network science. This abstract model can be created by
representing each object as a dot or vertexwith a corresponding label. This group of objects
could then be divided or partitioned into smaller groups, or communities, based on similar
attributes. Any two vertices that are related by the same attribute form a connection, or
edge, between them. Modeling the information from LinkedIn as a graph and analyzing
the graph using network science enables us to mathematically articulate relationships. This
leads to increased understanding of the local and global importance of people, or groups,
of people in our graph.

For example, we can arrange the people from a LinkedIn network into communities based
on physical attributes or other characteristics such as age, gender, type of profession,
educational background, job title, or history of employment. Which arrangement is correct?
All arrangements are technically correct, but one relationship or set of relationships may
be more appropriate depending on our goal. First, we need to understand why we are
sorting people into communities. Imagine we are retiring from the military and searching
for a new job that requires credible references. This end-user goal focuses our choice(s) of
relationships or layers on type of profession, educational background, job title, and history
of employment.

We can build a graph for each relationship by �rst plotting each vertex and then connecting
vertices with an edge if they have that relationship. For example, in the graph of the
profession layer, two people are connected if they have the same type of profession. This
visualisation of relationships as graphs allows us to identify communities based on the type
of profession.

Network science is concerned with describing systems, such as social interactions, by
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representing objects and their relationships as graphs with information known as networks.
Typically the term graph is used in theoretical contexts whereas the term network is used
in reference to the application of graph theory. For the purposes of this thesis, graph
and network are used interchangeably. If we want to describe our system using multiple
relationships between the same vertices, Bianconi [1] explains we can build collective layers
of graphs called multiplex networks. De�ning and detecting communities across multiple
layers with large and diverse information data sets can become increasingly complex.
According to Radicchi et al. [2], community detection can be applied to help understand and
solve numerous technical and social problems. In the next section, we illustrate the utility
of community detection and describe the associated challenges of applying community
detection to multiplex dark networks.

1.1 Problem Description
Fear is not a newconcept, yet organizationswhose purpose is to spread fear remain di�cult to
fully comprehend. These groups are known by many names, such as terrorists, insurgents,
or simply criminal organizations. In social network analysis, Bakker et al. [3] refer to
these organizations as dark networks. The complex structure of dark networks challenges
network science to develop more precise analytical methods to model and enhance our
understanding of these networks. Section 2.4 covers dark networks and their associated
analytical challenges in more detail. The following motivational anecdote builds from my
professional military experience with dark networks as an Explosive Ordnance Disposal
O�cer.

As the senior Counter-Improvised Explosive Device O�cer for Nangarhar Province in
Afghanistan, my mission required me to eliminate explosive threats produced by dark
networks and to provide counsel to the combatant commander on predicting and preventing
future attacks. To succeed at this mission, my teams required information to begin mapping
out the networks.

The evidence and intelligence my teams gathered as part of sensitive site exploitation was
catalogued and processed for the dual purpose of prosecuting members of dark networks
and assembling targeting packages for future missions. My reports were supplemented by
other intelligence sources and reports from various other units to form a collective database.

2



Over the years, this temporal database has grown to include a wide spectrum and high
volume of information. How do we take advantage of this data to enhance our analysis of
a given network? Researchers visualize each aspect of a diverse data set as independent
graphs within a complex network.

Network science has developed several tools for analyzing single layers or aggregated
weighted graphs, whichKivelä et al. [4] de�ne asmonoplex networks. Community detection
is one such tool that, when wielded appropriately, can increase our understanding of dark
networks. Community detection partitions the vertices of the graph into densely connected
groups. The properties of these communities can be studied both locally and within the
context of the global graph to build community pro�les. The knowledge gained through
community pro�les has the potential to assist the analyst in developingmore robust targeting
packages for network disruption. Developing a method that maximizes the information
gathered increases the depth of the analysis by producing more meaningful pro�les of
network communities.

Analyzing layers independently or collapsing all layers into a monoplex network both fail
to capture the true details of the multiplex network. In the �rst case, we do not study the
network holistically, and in the second, we lose information by oversimplifying the network.
Researchers have made substantial progress on detecting communities in single layer net-
works. However, community detection in multiplex and multilayer networks has proven to
be particularly challenging. Several algorithms have successfully detected communities on
synthetic networks. However, when many of these algorithms are implemented on real net-
works, most have di�culty partitioning the network into the predetermined communities.
In this thesis, we explore a mathematical approach to de�ning and detecting communities
in multiplex networks.

1.2 Thesis Contribution
This research seeks a general purpose algorithm for multiplex networks that is detailed
enough to detect meaningful communities as well as �exible enough to be applied to a
variety of networks. The aim of this thesis is to build on research conducted on the merits
of layer aggregation methodologies used in multilayer community detection.

This thesis proposes a new algorithm that sorts the layers into aggregate weighted categories
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to enhance network data integrity and ultimately, to detect more meaningful communities.
Our method allows the user to choose the appropriate community detection algorithm and
the threshold that produces the most relevant community partition. We claim that this
new algorithm enhances network data integrity, resulting in more analytically meaningful
partitioned communities than current layer aggregation methods. Flexibility is achieved by
engaging the user at multiple stages throughout the methodology implementation process,
but also by o�ering a default. User input develops detailed and meaningful communities
within the context of the user’s analytical goals.

The goal of our proposed methodology is to increase the analytical depth of the resultant
multiplex communities. This objective is achieved by �rst allowing the user to choose
the appropriate combination of layers and weights per category. Next, the user picks the
appropriate community detection algorithm based on the data. Finally, the user enhances
both of these choices by selecting the threshold that gives the most relevant community
partition in the multiplex. This thesis focuses on real network data sets and attempts
to extend the methodology for general purposes. The resultant communities from this
proposed algorithm have the potential to enhance our current understanding of multiplex
networks. When this increased understanding is speci�cally applied to dark networks, it
has the potential to aid analysts in network disruption and consequently, to restore safety
and stability to terror in�icted regions.

In this thesis, we examine three dark multiplex network case studies to test our algorithm.
The Noordin Top Network provided the inspiration for our method and is discussed in
great detail. The Fuerzas Armadas Revolucionarias de Colombia (FARC) and Boko Haram
Terrorist Networks were used as further veri�cation of our methodology. For each network,
we validate our algorithm by determining the adjusted conductance and cluster adequacy of
the resultant communities. To demonstrate the utility of �nding communities for network
disruption purposes, we built a network �ow shortest path interdiction model. The model
determines the optimal strategy, given a �nite number of attacks, to disrupt the �ow of
information from a set of supply sources to a set of demand destinations. We enhance
the optimal solution strategy for this model by examining the properties of the detected
communities in the Noordin Network. The goal of this enhancement is to achieve similar
optimal solutions while increasing the algorithm performance e�ciency.
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1.3 Organization
This thesis is organized into six chapters including Introduction, Background, Data and
Methodology, Results and Analysis, Modeling and Application, and Future Work and
Recommendations. In the next chapter, Chapter 2, we examine prior work in network
science on community detection algorithms and dark networks. Chapter 3 provides an
overview of our data sets and a detailed explanation and justi�cation for our methodology
using the Noordin Top Network. Chapter 4 presents our community detection results for
di�erent threshold values in each data set and discusses the resultant community topological
characteristics, modularity, and conductance plots. Chapter 5 develops an attack and defend
model that demonstrates the application of the results from Chapter 4. The �nal chapter,
Chapter 6, recommends some potential extensions of this research to improve our detection
algorithm and our approach to disrupting networks using community properties.
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CHAPTER 2:
Background

In this chapter, we explore prior research contributions to community detection in multi-
layer networks. This research is organized into four sections including Network Science
Overview, General Community Detection, Multilayer/Multiplex Community Detection, and
Dark Networks. Network Science Overview introduces the reader to the basic terms and
concepts used in this mathematical �eld. General Community Detection covers some of the
challenges and current algorithms implemented for single layer networks. Multilayer/Mul-
tiplex Community Detection speci�cally focuses on e�orts to develop algorithms that are
applicable to multilayer or multiplex networks. Dark Networks highlights the prior research
that has been conducted to speci�cally analyze the dark network case studies we examine
in Chapter 3.

2.1 Network Science Overview
Network science is a relatively new and progressive area of study within the �eld of discrete
mathematics. According to Newman [5], "network science is concerned with understanding
and modeling the behaviour of real-world networked systems." Notably, depending on the
�eld of study and context, many authors use nodes and vertices interchangeably in reference
to an object. For clarity purposes, vertices is used exclusively in this thesis. Network
science builds upon the mathematical framework established by graph theory. The study of
graphs provides the foundation for all of the analytical tools network science has developed
to describe complex systems. In Chapter 1, we introduced the concept of a graph using
edges and vertices. According to BollobÆs [6], a graph, G, is de�ned as:

De�nition 2.1.1. Graph

an ordered pair of �nite disjoint sets (V; E) such that E is a subset of the set
V �V of unordered pairs of V . The set V is the set of vertices and E is the set of
edges. If G is a graph, then V = V (G) is the vertex set of G, and E = E(G) is
the edge set. An edge {x, y} is said to join the vertices x and y and is denoted
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by x y . Thus x y and yx means exactly the same edge; the vertices x and y are
the end vertices of this edge.

De�nition 2.1.1 can be generalized to networks to describe complex systems, by capturing
more than just the vertex-to-vertex relationship. Networks are more complex than graphs,
but they still simplify reality to develop a mathematical model for analytical purposes.
Newman [5] explains this connection by de�ning a network as:

De�nition 2.1.2. Network

a simpli�ed representation that reduces a system to an abstract structure cap-
turing only the basics of connection patterns and little else.

De�nition 2.1.2 can be augmented to describe diverse data sets as multilayered networks.
Kivelä et al. [4] introduce the term aspect, d, where an aspect represents a di�erent level
of dimensionality within a layer. For example, one aspect of a layer could be time, while
another aspect of the same layer could be displacement. Kivelä et al. further explain
that an elementary layer refers to one aspect and they distinguish the term layer to mean
the combination of elementary layers that belong to all aspects, much like the category of
elementary layers we will use in our research. The notation L represents a sequence of sets
of elementary layers, L = �La�d

a=1, where one set of elementary layers, La, is identi�ed for
each aspect, a.

Kivelä et al. use the cartesian product L1 � ::: � Ld to construct each layer in a multilayer
network by building a set of all of the linear combinations of elementary layers. To allow
for vertices to be absent in certain layers, they introduce VM � V � L1 � ::: � Ld . They
add that two vertices are described as adjacent if they are connected to each other in the
same layer. However, two vertices are described as incident to each other if the vertices are
connected across di�erent layers. Kivelä et al. provide the following notation to identify
the layer of the source vertex and the terminal vertex of an edge relationship: the set of
edges as EM , where EM � VM � VM . Kivelä et al. use the preceding notation to de�ne a
multilayer network, M as:
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De�nition 2.1.3. Multilayer Network

M = (VM; EM;V; L); (2.1)

where V is the total number of vertices in the Network, L = �La�d
a=1 for

elementary layers La for each aspect a, VM � V � L1 � ::: � Ld; and EM �
VM � VM [4].

Figure 2.1 depicts an example of amultilayer network using HumanHIV genetic interaction.
Di�erentiating between these types of connections allowsKivelä et al. to de�ne connections

Figure 2.1: Human HIV-1 genetic interaction network. Adapted from [7].

between vertices within layers and between layers. If there is only one aspect type and the
set of vertices considered in each layer are identical, then we can further classify the
multilayered network as a multiplex. Kivelä et al. [4] state that a multiplex network is:

De�nition 2.1.4. Multiplex Network

a sequence of graphs such that

�G��b
�=1 = �(V�; E�)�b

�=1; (2.2)

where E� � V� � V� is the set of edges and � indexes the graphs.
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Alternatively, Kivelä et al. [4] describe multiplex networks using the termedge-colored
multigraphs, Ge. They de�ne edge-colored multigraphs as:

Ge = (V; E;C); (2.3)

where V is the vertex set; C is the color set, which is used for labelling the type
of edge; and E � V � V � C is the edge set.

Figure 2.2 depicts an example multiplex network using social interactions on Twitter and
representing people as vertices, V . Connections between any two people, E, are plotted in
three separate graphs corresponding to retweeting, replying, and mentioning. Kivelä et al.
would consider these graphs as elementary layers that belong to the same aspect. However,
if temporal data was collected for when each action of retweeting, replying, and mentioning
occurred then we could build an additional layer of data as a separate aspect of the network.
Gray lines in Figure 2.2 depict vertices of one layer incident to vertices of another layer.
For a deeper explanation of this network see the paper written by Domenico et al. [8], The
Anatomy of a Scienti�c Rumor.

Figure 2.2: HIGGS multiplex social interaction Twitter data. Source: [8].
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When all the layers are collapsed into a single network with parallel edges or single edges
with weights, we can further classify the network as monoplex. Kivelä et al. [4] de�ne a
monoplex network, O, as:

De�nition 2.1.5. Monoplex Network

the aggregation of all of the layers of a multiplex network into a single weighted
layer. Aggregation is achieved by de�ning edge weights, m, between vertices
in each layer and expressing the �nal weight as a linear combination of m from
each layer.

When there is no order in layer importance, Kivelä et al. propose a default uniform
distribution of weights where m = 1 for each layer. We incorporate this default weight
concept into our methodology development in the next chapter. Figure 2.3 depicts a
multiplex network example, which represents airports as vertices, V ; direct connections
between airports as, E; and airline names as colors, C, for each layer. The far right layer
labelled Aggregate in Figure 2.3 is the resulting monoplex network after aggregating all
of the layers of the multiplex European Airport Network. The previous de�nitions have
explained our complex systems as networks and categorized them according to the types of
information they display. In our next set of de�nitions, Newman [5] describes some of the
vocabulary used to analyze network topology. He de�nes the topology of the network as:

De�nition 2.1.6. Network Topology

the physical or logical arrangement and structure of the network.

Network topology can be described using a variety of quantities and measures of features
within a network. Some of thesemeasures include centrality, components, diameter, density,
average path length, and clustering coe�cient. The preceding list of network topological
characteristics is not intended to be exhaustive. However, the topological characteristics
de�ned in Section 2.1.1 provide the reader with enough background to understand their
application within the context of this thesis.
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Figure 2.3: Multiplex European Airport Network. Adapted from [7].

2.1.1 Topological Characteristics
Centrality refers to how in�uential or important a vertex is within the scope of the network.
The in�uence of a vertex can be described locally amongst its neighbors or globally within
the context of the entire network. Some of the more popular measures of centrality include
degree, eigenvector, and betweeness centrality. Newman [5] de�nes degree and Eigenvector
centrality and Orman et al. [9] de�ne betweeness centrality measures in the following
manner:

De�nition 2.1.7. Centrality

the degree centrality, ki of vertex i, measures the involvement of a vertex in
a network by the number of vertices connected to it. Eigenvector centrality
calculates a degree centrality score proportional to the sum of the degree
centrality scores of its neighbors. Betweeness centrality asserts the ability of a
vertex to play a ’broker’ role in the network by measuring how well it lies on
the shortest paths connecting other vertices.
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For our purposes, betweeness centrality is particularly interesting since it involves the
connections between vertices on the shortest paths. Many network disruption techniques
involve some variation on increasing the lengths of the shortest paths. This makes vertices
with high betweeness centrality excellent targets. We attempt to apply this reasoning to
measure community centrality in Chapter 5 to build community targeting pro�les. In
addition to betweeness centrality, another useful metric that involves shortest paths is the
average path length. Newman [5] de�nes the average path length as:

De�nition 2.1.8. Average Path Length

the mean geodesic or shortest-path distance between pairs of vertices.

Average path length is a global measure that determines on average, the fewest number of
edges required to traverse between any two vertices. A small average path length number
implies there exists multiple redundancies in paths to connect vertices. This is typically the
case unless the network is not completely connected. It is often useful to describe a graph
by the number of independently connected groups of vertices or components. If a path
exists between every vertex in the graph to all other vertices in the graph, then the graph
is referred to as a connected graph and has only one component. Newman [5] de�nes the
component in an undirected network as:

De�nition 2.1.9. Components

a maximal subset of vertices such that each is reachable by some path from
each of the others.

In the context of community detection, small components of graphs typically form their own
communities since they have no outward connections to the rest of the graph. Graphs with
one component are desirable for many analytical algorithms that rely upon high connectivity
and the ability to detect the shortest path in the network. Another characteristic that assists
in describing the relative size of a given network is the network diameter.
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According to Newman [5], the diameter is:

De�nition 2.1.10. Diameter

the length of the longest �nite geodesic path anywhere in the network.

We can visualize this metric by thinking of the network as a road map where each edge
represents a length of road between cities or vertices. The diameter is essentially the
maximum of the lengths of all the shortest paths between vertices in the network without
repeating edges. Another metric that involves connections between vertices is density.
Newman [5] refers to network density as:

De�nition 2.1.11. Density

the fraction of edges that are actually present, out of the total number of possible
edges.

If every vertex in the graph is connected to all of the other vertices then it is referred to
as a clique with a density value of one. Density is also highly correlated to the clustering
coe�cient. Clustering coe�cient is the probability that vertices in the graph cluster together.
According to Newman [5], the clustering coe�cient, C:

De�nition 2.1.12. Clustering Coe�cient

measures the average probability that two neighbors of a vertex are themselves
neighbors:

C =
(number of triangles) � 3

number of connected triples
; (2.4)

where connected triples means three vertices uvw with edges (u; v) and (v; w).

In a social context, this is analogous to the probability of friendship transitivity. This metric
determines the likelihood that person a is friends with person c given that person a is
friends with person b and person b is friends with person c. Now that we have explored
some de�nitions related describing networks, in the next sections we focus on the research
conducted on community detection.
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2.2 General Community Detection
Fortunato et al. [10] reveal that one of the di�culties of community detection is that a detailed
and comprehensive de�nition of community does not currently exist in network science.
Many authors, including Kivelä et al. [4], agree that a universal de�nition potentially
constrains the creativity and applicability of the development of community detection
algorithms. For the purposes of this thesis, the community de�nition developed by Radicchi
et al. [2] is used as a foundation. Their de�nition of community covers the general concept
without being too speci�c as to hinder the development of our methodology. Radicchi et
al. de�ne communities as:

De�nition 2.2.1. Communities

a subset of vertices within the graph such that connections between vertices
within the community are denser than connections with the rest of the network.

Radicchi et al. further classify communities as either weak or strong based on degree
counts. The subgraph, V , is a community in a weak sense if the sum of all of the degrees
within V is greater than the sum of the degrees towards vertices outside of V , where kin

i (V )
and kout

i (V ) represent the degrees of the verticies inside and outside of the community
respectively. They symbolically represents this relationship as:

X

i2V
kin

i (V ) >
X

i2V
kout

i (V ): (2.5)

Radicchi et al. explain that the subgraphV is only considered a community in a strong sense
if each vertex has more connections, ki, inside the community, kin

i (V ), than the vertex has
with the remainder of the network outside of the community, kout

i (V ).

kin
i (V ) > kout

i (V );8i 2 V : (2.6)

In graph theory this concept of strong andweak communities has been previously introduced
by Eroh et al. [11] as an alliance. This concept provides a rough metric for understanding
the value of the communities that form as a result of our methodology.
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Du et al. [12] point out that algorithms are usually compared based on computational
complexity and accuracy. They refer to computational complexity as the time it takes an
algorithm to perform all of its mathematical operations as a function of an input size, n.
Du et al. further explain that this concept is known in the scienti�c community as big
O notation. While the computational complexity of community detection algorithms is
relatively easy to measure, accuracy is much more di�cult to quantify.

The known community structure is often referred to as the ground truth. Ideally, the ground
truth can be used to compare and validate the resultant communities from the detection
algorithm. This has not been an e�ective method as ground truth communities are hard to
detect just from the topology of the network. Another challenge is establishing a ground
truth for comparison. In many cases the ground truth is not known, which makes it
di�cult to determine if the algorithm successfully partitioned the network into appropriate
communities.

If the ground truth is known, Orman et al. [13] suggest Normalized Mutual Information
(NMI) as an algorithm performance measure. According to Ana et al. [14], this metric
compares the degree of similarity between two di�erent partitions, Pa and Pb, of the same
set of data. Ana et al. de�ne NMI by Equation 2.7 as:

N MI (Pa; Pb) =
�2

Pka
i=1

Pkb
j=1 nab

i; j log(
nab

i; j �n

na
i �n

b
j
)

Pka
i=1 na

i � log( na
i
n ) +

Pkb
j=1 nb

j � log(
nb

j
n )
; (2.7)

where ni; j counts the false positives: the vertices identi�ed by the algorithm to
be community i when in reality, the vertices belong to community j.

Orman et al. further explain that NMI values range from0 to 1, with 1meaning the algorithm
matches the ground truth. Jeub et al. [15] argue that in many cases, the ground truth is not
known and thus cannot be used as a comparison metric. Under these circumstances Jeub
et al. recommend measuring the conductance of the communities to develop the Network
Community Pro�le (NCP). Jeub et al. reveal that the purpose of the NCP is to establish
a pairing criteria for matching a given network with an appropriate community detection
algorithm.
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To de�ne conductance, Jeub et al. introduce the following terminology. They begin by
de�ning a graph, G, as G = (V; E; w), where G has a weighted adjacency matrix A. Jeub
et al. add that the volume (vol) between two given sets of vertices S1 and S2 is equal to the
total weight of edges that connect S1 and S2. They [15] represents this relationship as:

vol (S1; S2) =
X

i2S1

X

j2S2

Ai; j : (2.8)

Jeub et al. use the idea of volume to further develop the concept of conductance for a set
of vertices, S, as a ratio of the surface area of the hypothesized community to the volume
of the community. They de�ne the surface area of the community as the volume between
the vertices that belong to the community denoted by the set, S, and the vertices that do not
belong to the community in the set, S. Under this construct, they [15] de�ne conductance,
�, of a set, S, as:

�(S) =
vol (S; S)

min(vol (S); vol (S))
: (2.9)

Applying Equation 2.9, Jeub et al. conclude that the conductance of G is equivalent to the
minimum conductance of any subset of vertices.

�(G) = min
S�V

�(S): (2.10)

Jeub et al. explain that conductance values range from 0 to 1, with smaller values cor-
responding to better quality communities. Unfortunately, calculating conductance is con-
sidered an Non-deterministic Polynomial-time (NP) hard problem. Essentially this means
that for large networks, the operational complexity is too large for computers to calculate in
real time. The dark networks used in this thesis are small enough that conductance can be
calculated directly using Equation 2.10. However, Jeub et al. o�er a solution for calculating
the conductance of larger networks. Fortunately, Chung [16] has successfully approximated
�(G) using the second smallest eigenvalue, �2 of the normalized Laplacian. Building upon
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conductance, Leskovec et al. [17] developed the concept of the NCP to produce a commu-
nity quality score of the best community of a given size, k, as a function of the community
size, k:

�k (G) = min
S�V;jS j=k

�(S): (2.11)

Plotting NCP values results in three meaningful behavioral trends regarding the best com-
munity size [15]. These behaviors can be identi�ed in the following �gure from Jeub et al.,
Figure 2.4.

1. Increasing slope: small communities are optimal Networks (b) Figure 2.4
2. Horizontal line: community quality is independent of k networks (c-d) Figure 2.4
3. Decreasing slope: large communities are optimal Network (a-b) Figure 2.4

Network Community Pro�les Adjacency Block Models

Figure 2.4: Block Models and Network Community Pro�les: (a) Zachary
Karate Club (b) Core-periphery structure example (c) Erdfis-RØnyi graph.
(d) bipartite block model example. Adapted from [15].
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According to Kivelä et al. [4], some of the more popular community detection algorithms
are centered around the modularity function. Newman [18] uses the concepts of modularity
and spectral graph properties to partition the network into modules or communities. He
de�nes network modularity as:

De�nition 2.2.2. Network Modularity

the di�erence between the actual number of edges in a partitioned group and
the expected number of edges in a partitioned group for a similar network with
the same number of vertices, where the edges are randomly generated [18].

In the following example, Newman explains the concept of network modularity involving
a graph that is divided into two partitions. Given a graph G that has n vertices, G can be
partitioned into two groups, G1 and G2, where si = 1 if vertex i 2 G1 and si = �1 if vertex
i 2 G2.

In order to explain this algorithm, Newman �rst de�nes the number of edges between i and j
as ai; j . The ai; j values represent entries in the adjacency matrix A. If the degree of i and j is
ki and k j , respectively, and the total number of edges in G is m = 1

2
P

i ki, then the expected
random number of edges between i and j can be expressed as ki k j

2m . The modularity, Q, is
the result of summing ai j �

ki k j
2m for all pairs (i; j) in the same group.

After several observations and manipulation, Newman expresses modularity, Q, in matrix
form as:

De�nition 2.2.3. Modularity Matrix

Q =
1
4m

~sT B~s; (2.12)

where the modularity matrix represents~sT as the transpose of the column vector
with the group membership entries ~si, and B is a real symmetric matrix with
elements bi; j = ai; j �

ki k j
2m .

Newmanmathematically extended themodularity concept and expressed it using the spectral
properties of the graph. He de�nes the eigenvalues of B as �i and the corresponding
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eigenvectors of B as ui. And using them, he represents the membership vector ~s as a linear

combination of ui: ~s =
nX

i=1
aiui with ai = uT

i � ~s in order to rewrite modularity in the

following form:

Q =
1
4m

X

i
aiuT

i B
X

j
a ju j =

1
4m

nX

i=1
(uT

i � ~s)2 �i : (2.13)

The established mathematical convention is to order the eigenvalues in non-increasing
order, �1 � �2 � ::: � �n. According to Chung [16], the largest eigenvalue, �1, and its
corresponding eigenvector, u1, capture the eigenvector centrality of vertices in a graph. In
order to maximize the modularity value, Q, in Equation 2.13, the dot product of uT

1 and ~s
needs to produce the largest value possible. Since the elements of ~s are restricted to �1, the
maximum value results when the sign of the corresponding elements of si and u1 match.
A direct consequence of maximizing Q is the partition of the network into two groups.
Any vertex that has corresponding positive elements is assigned to G1 and the remainder
are assigned to G2. Newman reveals that this concept can be adapted for communities
with overlap, where the vertices corresponding to the zero entries are assigned to both
communities.

While this method of partitioning the network using De�nition 2.2.2 is only described for
two communities, the idea can be extended to form further partitions. Blondel et al. [19]
assert that by examiningG1 andG2 independently as sub-graphs and applying themodularity
method using Newman’s Equation 2.13, it is possible to further subdivide the network in a
hierarchical fashion until there are no more positive eigenvalues in the modularity matrix.
Under this procedure, a non-positive eigenvalue corresponds to an eigenvector �lled only
with 1’s, which results in all vertices belonging to the same community.

Newman [20] describes a methodology that incorporates network modularity to partition
the network into communities referred to as the fast greedy algorithm. This algorithm
optimizes modularity by �rst assuming every vertex is its own community and begins
merging communities at each step until all of the communities have been merged into a
single large community. Orman et al. [13] explain that the largest increase or smallest
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decrease in modularity is recorded and compared at each step to determine the �nal best
partition of the network into communities.

BarabÆsi [21] explains that modularity can be used as a metric for determining the optimal
partition of the network into communities. The closer the modularity value is to the value
one, the more optimal the partition. He demonstrates this concept in Figure 2.5 using a
small graph with nine vertices and 13 edges. Part a of Figure 2.5 depicts the optimal
partition of the graph into two communities with a modularity value of 0:41. This value
is considered optimal since there is no other arrangement of the vertices into communities
that creates a higher modularity value. Part b of Figure 2.5 demonstrates another partition
of the graph into communities that results in a smaller modularity value of 0:22 and is thus
labeled suboptimal. In part c of Figure 2.5 we can observe the e�ects of grouping all of the
vertices into a single community, which results in a modularity value of 0. Conversely, part
d of Figure 2.5 displays the case where all vertices belong to their own community, which
results in a negative modularity value of �0:12.

Figure 2.5: Understanding modularity using di�erent community partitions
of a network: (a) Optimal M = 0:41 (b) Suboptimal M = 0:22 (c) One
Community M = 0 (d) Negative M = �0:12. Adapted from [21].

Orman et al. [22] cautions against using modularity as a community quality metric. They
argue that the modularity value is highly dependant on the size of the community. Fortunato
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et al. [23] support this assessment and state that for large networks, there is a limit imposed
by modularity for a detecting communities of a certain size. For example, a large scale
network with a high degree of interconnectedness between communities results in poor
modularity values for the network. This is problematic when the network structure ground
truth is partitioned into many small communities. This also makes it di�cult to compare
modularity values between networks with di�erent numbers and sizes of communities. To
combat this, Everton [24] believes a normalization metric needs to be considered.

Everton expands upon the idea of using modularity as a community quality metric by
advocating a similar metric, cluster adequacy. Cluster adequacy, Q0, normalizes graph
modularity, Q, by dividing the measured Q by the best possible Q for a given number
of communities, m. The best possible Q is determined as a function of the number of
communities. According to Siems [25], UCINET [26] de�nes cluster adequacy, Q0, as:

Q0 =
Q

1 � 1
m
: (2.14)

Looking purely at themeasuredQ, it is possible tomistakenly conclude that the communities
are mediocre quality. However, by comparing the measured value of Q to the best possible
modularity for a given number of communities, cluster adequacy reveals that the community
quality is much higher. For example, in a graph of 100 vertices, the most ideal Q for two
communities is 0.5. Thus if the measured Q is also 0.5 then Q0 is computed to be 1. The
measured Q = 0:5 may seem mediocre, but when compared to the best possible Q, Q0 = 1
reveals this modularity and consequently community quality square to be ideal.

Cluster adequacy allows us to compare the quality of communities in di�erent graphs by
normalizing the value relative to the number of communities in each graph. However,
cluster adequacy continues to introduce bias into the community quality measure. Cluster
adequacy favors a uniform distribution of vertices into equal sized communities, which is
rarely possible in real networks. Orman et al. [22] argue that similar to a degree distribution,
community size tends to follow a power-law distribution as well. However, Orman et al.
concede that some real networks deviate from this trend. Although this metric contains
�aws, it’s basis in modularity is particularly helpful in comparing communities that are the
result of modularity optimization based algorithms.
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Orman et al. [13] describe another modularity based algorithm known as the Louvain
method, which is an extension of the fast greedy algorithm using a two phased approach.
During the �rst phase, communities are initially identi�ed using the fast greedy optimization
process. The second phase constructs an entirely new network by replacing all of the vertices
that belong to each community with a single vertex. The multiplicity of edges between the
newly formed vertices is preserved. The fast greedy is then applied to this new network until
all of the communities have been aggregated into a single community. The communities
in the original network are then created by collecting all of the original vertices that were
identi�ed into the vertex in the fast greedy algorithm. BarabÆsi [21] visually describes two
iterations of the the Louvain method using Figure 2.6.

Figure 2.6: Louvain method using fast greedy at Step 1 and collapsing
communities at Step 2 for a total of two iterations. Source: [21].

According to Newman [5], the early implementations of modularity based algorithms
resulted in an operational complexity of at best O(n2). However, Clauset et al. [27]
determined that if the fast greedy algorithm is applied to a sparse network, the algorithm
can be modi�ed to a reduced complexity of O(n log 2n). Newman [5] describes additional
algorithms such as the power method that seek to improve the speed of modularity based
algorithms by calculating eigenvector centrality without wasting computational e�orts on
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calculating the remainder of the eigenvalues of B. According to Blondel et al. [19], the
Louvain method’s operational complexity can be approximated as O(n log n). How does
this operational complexity translate for large networks? Blondel et al. explain that if the
Louvainmethod is applied to a large networkwith 2million vertices, the algorithmwill �nish
in approximately 2 minutes. BarabÆsi [21] claims Louvain can actually be implemented
even faster with a complexity of O(m). This means that the algorithm speed is linearly
proportional to the number of edges in the network. This is a tremendous advantage when
applying the algorithm to large scale networks. Although the networks we consider in this
paper are relatively small we would like to design a methodology that works for any size
networks. Louvain’s desirable operational complexity enhances its credibility as an e�cient
single layer community detection algorithm.

The relative speed of modularity based algorithms enable them to be applied to very
large networks. Additionally, Newman [18] advocates modularity based algorithms for
community detection because it does not require the user to input the size of the communities.
He further explains that this method does not preclude the possibility that there may only
be one community. This revelation means that not every network should to be partitioned
into communities. Newman reminds us that the absence of a partition is also useful in
describing the topological characteristics of the network. Another feature of this algorithm
is that every vertex is assigned to exactly one community. BarabÆsi [21] argues that this
features limits the potential of themodularity algorithm to produce the best possible partition
of the network into communities. He supports this claim by demonstrating that a vertex with
a high degree and high clustering coe�cient will naturally have a lower modularity based
on the de�nition of modularity. Consequently, these low modularity vertices will most
likely decrease the modularity of any communities that seek to incorporate them during the
fast and greedy portion of the algorithm. The area of research known as fuzzy community
detection also considers this to be a limitation.

According to Zhang et al. [28], fuzzy community detection allows each vertex to be simul-
taneously assigned membership to multiple communities. Zhang et al. propose an iterative
approach to propagating community membership degrees of all vertices in the network.
They incorporate the use of topological characteristics as a selection criteria for identifying
the starting vertex. New communities emerge under this construct from adjacent vertices
to the start vertex, and start vertices are updated at each iteration based on modularity
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performance. The algorithm developed by Zhang et al. claims to be highly �exible be-
tween performance and computational complexity. Our research in this paper focuses on
non-overlapping communities. However, the framework of our methodology is potentially
applicable to overlapping communities as well, as we allow the user the freedom to choose
the community detection algorithm for each layer.

2.3 Multilayer Community Detection
As a single layer of information might not provide enough information for community
detection, researchers have proposed various methods to detect community structure in
multilayer networks. Multilayer networks have a lot of information that can be helpful in
getting more modulated structure. Conversely, researchers such as Taylor et al. [29] believe
too much information can actually bring noise to the network while trying to identify
communities. Consequently, there must be a threshold of information that provides enough
and not too much information for community detection. However, this threshold may not
be the same for all types of networks, and we will address it in this research.

There are mainly two types of approaches to detect communities in multilayer networks:
Layer Aggregation Approach, and Non-Aggregation Approach. In layer aggregation ap-
proaches, all layers are merged into a single network to detect community structure. How-
ever, these approaches are limited to multiplex networks (because of vertex repetition) and
typically lose some information during the merging process. As a result, most researchers
focus on non-aggregation approaches.

2.3.1 Aggregation Methods
According to Kivelä et al. [4], one of the �rst pseudo-community detection methodologies
implemented on social networks was a concept known as blockmodeling. Batagelj [30]
describes blockmodeling as a general technique for partitioning the vertices of the network
into groups based on an identi�ed common pattern. This methodology is technically not
community detection because it does not rely speci�cally on the density of connections
as described in De�nition 2.2.1. Prescott et al. [31] successfully applied this process to
biochemical systems by building a multilayer network from a monoplex network.
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One of the bene�ts of layer aggregation is the ability to exploit established community
detection algorithms for single layer networks. Mucha et al. [32] used a modularity based
algorithm to detect communities on individual layers or slices of a network. Their work
resulted in vertices identifying with di�erent communities depending on the layer. Tang et
al. [33] used a similar approach by isolating individual layers to perform utility integration.
Utility integration constructs a utility matrix for each layer and then calculates an optimal
objective function using the summation of all of the utility matrices. Kivelä et al. [4]
comment that this approach allows �exibility in the de�nition of utility, allowing users to
choose established methods such as modularity to de�ne utility.

The multislice approaches used by Mucha et al. and Tang et al. are bene�cial for ana-
lyzing individual layers of the network, but they do not provide a satisfactory platform for
comprehensive layer analysis. Slicing captures all of the details of the layers by analyzing
them separately, but still requires a procedure for intersecting the analysis of these layers
to produce more meaningful results together. Analysing the details of each layer within
the context of the entire network is extremely challenging. According to Didier et al. [34],
many of the proposals for combining the analysis of individual layers include calculating
the intersection, union, or sum of the analysis of the layers. Our methodology expands upon
intersection aggregation techniques.

Kivelä et al. [4] introduce another class of aggregation methods called inverse community
detection, which makes use of the ground truth to cluster vertices into communities. Cai et
al. [35] describe that this method determines an optimal linear combination of weights, m,
that are applied during the layer aggregation process. An appropriate single layer community
detection algorithm that considers weights is then applied to the aggregate network. This
method is repeated, resulting in an optimal weight for each layer and consequently an
ordering of the layers. Rocklin et al. [36] built upon this method by clustering multiple
randomly weighted aggregate networks. They identi�ed communities by constructing a
distance matrix between pairs of di�erent clusters. The obvious limitation of this method
is that it requires knowledge of the realistically unattainable ground truth.

Taylor et al. [29] suggest it is possible to aggregate layers based on similarity to enhance the
identi�cation of community structure in the network. They observe that utility integration
in the form of adjacency matrices quickly approaches a community detection limit as the
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number of layers in the network increases. They observed that aggregating similar or
redundant layers into a single layer enhances the performance of the utility based methods.
The algorithm introduced in this thesis builds o� of the notion that layers can be combined
in a logical manner that maintains data integrity.

2.3.2 Non-Aggregation methods
Non-aggregation approaches seek to detect communities without combining the layers of
the network. Many of the proposed algorithms build from the foundation of single layer
detection. Howison et al. [37] build from the success of modularity-based algorithms and
proposes multilayer modularity maximization as a solution for detecting communities in
temporal multilayer networks. They explains that temporal multilayer networks are another
special class of multilayer networks that represents each layer as a di�erent time step of
the network. Temporal layers are considered ordinal and uniform. This means layers are
sequentially related and all equally weighted. Mucha et al. [32] de�nemultilayer modularity
maximization as:

max
C2C

j� jX

s=1

NX

i; j=1
Bi; j;s�(Cis; Cjs ) + 2!

j� j�1X

s=1

NX

i=1
�(Cis; Cis+1 ); (2.15)

where Bs is the single layer modularity matrix computed on layer s de�ned in
Equation 2.12, Bi; j;s is the (i, j)th entry of Bs, � is a sequence of adjacency
matrices for each layer, C is a partition of K sets of vertices, �(Cis; Cjs ) is the
Kronecker delta function for each layer, and N is the number of vertices.

Didier et al. [34] also build o� of Newman’s modularity concept by applying it to multiplex
biological networks. Didier proposes measuring the strength of the individual community
structure of each layer represented as a separate graph. This �rst step is similar to multi-
slicing approaches described in Section 2.3.1. This strength value is calculated by examining
for each community the sum of the proportions of within-community edges over all the
graphs minus the expectations of this sum. Using the logic that the sum of random variables
is congruent to the sumof their expectations, Didier et al. [34] derived the following equation
for multiplex modularity, QM , of a multiplex network, X (g),:
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De�nition 2.3.1. Multiplex Modularity

QM (X (g); C) =
X

g

1
2mg

X

�i; j�
i, j

(X (g)
i; j �

kgi kgj
2mg )�Ci;Cj; (2.16)

where mg is the total number of edges of the graph X (g), and kgi is the corre-
sponding degree of vertex i in the graph X (g).

Didier et al. [34] implemented this methodology on a 4-layer Biological network, in which
each layer represents information from a di�erent subset of genes or proteins. The multiplex
modularity method was compared against aggregation approaches using an adjusted Rand
index and verifying consistency with known biological processes. According to Santos
et al. [38], the adjusted Rand index is used to compare similarity between two partitions.
The results of the comparison by Didier et al. supports multiplex modularity as a more
accurate than common aggregationmethods for detecting strong communities in a biological
multiplex network.

The preceding work described on how community detection � in both aggregated and
non-aggregated approaches � overwhelming supports the inclusion of modularity into the
design process of algorithms. This thesis recognizes modularity as an extremely powerful
partitioning tool and incorporates it into our proposed methodology. For more information
on community detection in general and more details on multilayer community detection
approaches we recommend the paper by Kivelä et al. [4]. Now that we have explored some
research on community detection, in Section 2.4 we explore some background information
on dark networks to provide context for our algorithm development.

2.4 Dark Networks
There are many di�culties associated with mapping and analysing dark networks.
Krebs [39] uses the September 11th 2001 terrorist attack in the United States as a case
study in dark network mapping and analysis. Krebs describes three challenges previously
identi�ed by Sparrow [40] that are speci�cally associated with mapping and analysing crim-
inal social networks. Krebs identi�es these challenges as incompleteness, fuzzy boundaries,
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and dynamic behavior.

Krebs states that incompleteness is a huge factor since criminal networks do not want to be
discovered [39]. As a consequence, networkmapping and analysis are limited by the volume
and availability of relevant and accurate data. Krebs clari�es the term fuzzy boundaries by
connecting it to the process of data �ltration. Knowing which relationships are important
and which are not can have profound impacts on modeling and analyzing a network. The
importance of implementing a data �ltration process led us to incorporate �ltration into our
methodology in order to analyze the relationship data from the Noordin Network. Krebs
points out that another key idea from fuzzy boundaries is that not every vertex needs to
be included when mapping a terrorist network. This supports the idea that not all vertices
are essential to dark network analysis and thus do not need to be sorted into communities.
This idea will be incorporated in the development of our detection algorithm to sort some
vertices into a mis�t community. The mis�t community essentially acts as a theoretical
storage location for vertices that are not sorted into communities by our algorithm. The
last challenge Krebs identi�es for dark network analysis is the dynamic behavior of the
network. The idea is that one �nite viewing of the network results in an incomplete picture
of a dark network. Sparrow [40] suggests that overlaying temporal snapshots of the network
will enhance the overall understanding of the relationships between vertices in the network.
This follows because the actors of the dark network particularly keep interactions at a
minimum, thus temporal analysis has the potential to discover connected neighborhoods.
However, obtaining temporal data on dark networks has proven to be a di�cult challenge
for researchers.

Krebs [39] utilizes a project team based approach to sort data on the network into four main
categories. These categories are tasks, resources, strategy, and expertise links. Data that
represents the meaning of one of the identi�ed categories is placed in the same respective
category. Krebs believes overt project team analysis can be applied with some modi�cation
to reveal information about covert project teams in a dark network. We apply this idea of
categorizing similar relationships in the development of our methodology.

Krebs focuses his analysis on relationship data in "trusted prior contacts" based upon the
research conducted by Erickson [41]. Erickson believes the densest and most meaningful
under-layer of a dark network is trusted prior contacts. According to Krebs [39], this
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layer is usually not visible in current snapshots of the network. These dormant layers are
critical to maintaining secrecy and resilience through adaptability. For example, if one
contact becomes unavailable, a new contact can be established through accessing a dormant
trusted prior contact relationship. We explore these concepts further in our methodology
development and dark network modeling.

Krebs [39] further subdivided his trusted prior contacts relationship data based on the
strength of each relationship. He determined the strength of each relationship according to
the duration and relevancy to building trust. Classmates, living together, and trainingmet the
criteria for the strongest ties. Moderate strength included traveling partners, and meetings.
Dormant strength included �nancial transactions and occasional meetings. Visually, Krebs
represented the strength of each tie by the thickness of the connecting edge between people
in the graph of the network. This idea of assigning importance to layers or categories is
implemented in our methodology as well.

Krebs [39] describes dark networks such as the September 11th networks as sparse. There
was a noticeably high distance between hijackers on the same team. Usama bin Laden
explains the reason for sparseness in the network, stating that "Those who were trained to
�y didn’t know the others. One group of people did not know the other group" [39]. The
main idea is that if one member of the network is caught, the remainder of the network
cannot be compromised [39]. Generally this means there are very few brokers or connectors
between teams. Aswe apply community detection, ideally these brokers will become visible
as connectors between communities.

Sparseness in dark networks contributes to the idea that the de�nition of community should
not be applied for the purpose of identifying sub-organizational groups such as teams within
the network. Instead, we focused our de�nition of community based upon the end-user
analytical goals. Sparseness also makes it di�cult to establish ground truth communities
for community detection algorithm accuracy comparison.

Meetings are used by dark networks to temporarily connect groups for collaboration and
coordination [39]. A vertex that may have seemed inactive, suddenly becomes important
after adding edges from the meetings layer of the network. Krebs explains that usually
one representative from each group is sent to a meeting, which again makes it even harder
to identify density based communities. His analysis revealed that the individuals selected
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to attend the meeting were usually connected by a trusted prior contact relationship. The
sparseness of the dark network emphasizes the need for combining data sets from multiple
types of relationships in order to help increase the density of network for analytical purposes.
To mitigate the impact of sparseness, we aggregate many similar types of relationships
during our methodology process and develop a procedure for inferring additional ties.

Everton [24] points our that one of the main purposes of dark network analysis is network
disruption. He comments that many dark network analysts take the approach of using high
degrees of centrality to identify key actors. Everton contends that this tactic may not always
be e�ective and encourages the analyst to examine more of the topographical characteristics
of the network to identify more appropriate targets for disruption purposes. Krebs [39]
concurs with Everton’s assessment and indicates that using centrality as a metric for dark
networks is likely to fail. He believes this is due to the incomplete nature of dark networks
and the high sensitivity of centrality computations based on small changes to the network,
especially for small networks.

The resiliency of a dark network is qualitatively described by Krebs [39] as strong due to the
high redundancy of trust relationships which includes classmates, kinship, or participating
in terrorist related training and operations. Krebs highlights the di�erences in social network
and covert network analysis. The classi�cation of relationships as strong or weak ties is
entirely dependant on the type of network being analyzed. He maintains that for dark
networks, trusted prior contacts is typically considered a strong tie between two vertices
whereas the two vertices connected by the same nationality could be view as a weak tie. The
strong tie clearly emphasises a close relationship, whereas a weak tie viewed by itself may
o�er only ambiguity on the relationship status. Analysis of strong ties in social networks
usually produces the "cluster of network players" [39]. However, Krebs believes network
players in dark networks may visibly appear to only have weak ties. Everton [42] supports
Mark Granovetter’s claim that an optimal combination of both weak and strong ties is ideal
for dark network analysis. This claim highlights the notion that multiple layers of data must
be included when analyzing the network. The incomplete and secret nature of the dark
network requires weak ties to help illuminate potential hidden strong ties.

Krebs o�ers a strategy for disrupting terrorist networks through information aggregation
and knowledge sharing. Under this strategy, the key vertices to target in the network are
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vertices with unique skills and vertices that have deep rooted trust relationships with other
groups. For more information on understanding dark networks and using topographical
characteristics to disrupt them see Everton’s book [24].

Gerdes [43] highlights another strategy that focuses on the detection of covert commu-
nities in a dark network over a �ve year time period. This strategy uses a hierarchical
agglomeration algorithm based on �nding optimal network modularity in order to detect
communities. Gerde’s methodology was evaluated using a True Positive Rate that labels
one of the communities as covert, and calculates a performance ratio based on covert and
background population members found in the community. This strategy is particularly
interesting because it incorporates the temporal data recommended by Krebs in order to
facilitate a more comprehensive approach to detecting a target community. Our data set
includes some temporal information, but focuses on detecting multiple communities in the
network.

The research highlighted in this chapter served as the foundational understanding and inspi-
ration that enabled us to develop our methodology for detecting communities in multiplex
networks. Krebs and Sparrow helped us understand the sparse nature of dark networks.
Sparsity provides justi�cation for several steps throughout our methodology. We used
sparsity and the arguments provided by Taylor et al. as reasoning for aggregating similar
relationships into categories and for converting cliques into communities. Taylor et al.
established the need for our algorithm to be selective on our layer choices and warned us
against the dangers of too many layers and redundancy. Mucha et al. and Kivela et al.
con�rmed our intuition on layer aggregation and described how multi-slicing and single
layer community detection could be applied to a network. Didier et al. explained the
problems associated with aggregating layers, which allowed us to build from his research
to determine a new method for combining the multi-slicing and aggregation approaches
without compromising analytical depth. Krebs and Erickson guided our category selection
and ordering by establishing that trust was essential for dark networks to function. Newman
provided our foundational understanding of modularity in order to compare and contrast
modularity based algorithms. Our choice of single layer community detection using the
modularity based Louvain method was largely guided by Blondel et al. and BarabÆsi’s
performance assessment and comparison against other existing algorithms. BarabÆsi also
assisted us in understanding the weakness associated with modularity based algorithms by
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placing every vertex into a community. Identifying this weakness led us to develop the
concept of a mis�t community. Incorporating this idea allows us to theoretically achieve
higher modularity values than traditional modularity algorithms make possible. Now that
we have explored the research that enabled this thesis, in the next chapter we apply our
understanding of this research in greater detail. This allows us to justify and explain our
algorithm to detect communities in multiplex networks.
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CHAPTER 3:
Data and Methodology

This chapter describes our network data sets, explains our multiplex community detection
methodology, and presents our detection algorithm.

3.1 Data Description
Three small, real, and dark multiplex network case studies were examined in this thesis.
The Noordin Top Network data we use is a subset of the original data compiled by Roberts
et al. [44]. Based on the discussion in Section 3.1.1, the Noordin Network is represented
by 133 vertices and 2451 edges. The Boko Haram Terrorist Network data set contains 44
vertices, and 99 edges and the FARC Terrorist Network data set contains 142 vertices and
1650 edges.

Each network data set is graphically represented as monoplex networkO using an analytical
graphing and network visualization tool called Gephi [45]. Following each monoplex visu-
alization is a degree distribution plot using JMP [46] statistical software. We highlighted
this network characteristic to visually demonstrate some of the di�erences between the three
dark networks. We constructed a global overview of the network presented in Table 3.1 that
captures the Total Number of Vertices (V), Total Number of Edges (E), Average Degree
(AD), Average Weighted Degree (AWD), Network Diameter (Di), Graph Density (De),
Modularity (M), Average Clustering Coe�cient (ACC), Average Path Length (APL), and
Number of Partitioned Components (P) for each layer. These network topological charac-
teristics and the algorithms used to �nd them are explained by Chevren’s Book, Network
Graph Analysis and Visualization with Gephi [47]. For a more detailed explanation of
these topological characteristics terms, see Lewis’ book, Network science: Theory and
applications [48].

3.1.1 Noordin Top Network
The Noordin Top Network Data set contains the relationship information of 139 terrorists
that belong to �ve major parent terrorist organizations operating in Indonesia [44]. The
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network is named after the key broker, Noordin Top, who was known for coordinating
between terrorist organizations for training and operations. This network was primarily
developed from the information provided by an article published by the International Crisis
Group in 2006, Terrorism in Indonesia: Noordin’s Networks [24]. Roberts et al. [44] used
this information to construct a possible total of 36 relationship types and attributes. We
re-organized the relationships and attribute data into edge lists to build the layers of the
Noordin Network used in this thesis.

The layers of the network are de�ned to be the di�erent relationship types connecting
one vertex (person) to another vertex (person). The layers of the network are used in the
community de�nition. The attributes are the properties assigned to each vertex. The vertex
attributes will be used to measure community e�ectiveness and resilience. As it will be
discussed in Section 3.2.1, only 14 of these layers are used in this thesis. As a consequence
of using 14 layers, only a subset (133) of the known 139 terrorists is examined. Figure 3.1
illustrates an overview of the Noordin Network by collapsing the 14 selected layers into a
weighted aggregate monoplex network O. The individual layers are colored based on their
corresponding category, which is explained in Section 3.2.2. The monoplex network is
viewed in greater detail in Figure 3.2. Each type of relationship has an edge list. Multiple
occurrences of the same edge for each layer edge list results in a thicker line representation
of edge in O. The vertices in Figure 3.2 are colored based on degree. Higher degrees are
colored blue while lower degrees transition to the smallest degree color in red. Typically
the degree distribution follows the power law. However, the Noordin Network follows a
more sporadic distribution as illustrated in Figure 3.3. Notice that the highest degree on the
far right is Noordin Top. A summary of the associated properties of each of the separate 14
layers and the average of the layers is captured in Table 3.1.
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Figure 3.2: Noordin Network monoplex, O.
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Figure 3.3: Noordin Network weighted degree distribution.

Table 3.1: Noordin Network topological characteristics by layer.
Layer Name V E AD AWD Di De M ACC APL P

Classmates 44 217 9.32 9.86 7 0.22 0.35 0.76 2.48 1

Kinship 44 49 2.23 2.23 2 0.05 0.87 0.95 1.09 15

Soulmates 13 17 2.62 2.62 2 0.22 0.65 0.89 1.23 3

Friends 83 158 3.71 3.81 9 0.05 0.71 0.55 4.01 3

Mentor Ideological 21 15 1.43 1.43 5 0.07 0.68 0.00 2.03 7

Mentor Supervisory 46 51 2.22 2.22 6 0.05 0.57 0.40 2.50 6

Mentor Technological 13 13 2.00 2.00 5 0.17 0.34 0.00 2.20 2

Recruiting 27 24 1.78 1.78 3 0.07 0.75 0.37 1.78 5

Meetings 33 110 5.33 6.67 4 0.17 0.33 0.84 2.16 1

Communication 120 318 5.30 5.30 8 0.05 0.54 0.53 3.10 1

Logistical Place 34 106 5.71 6.24 3 0.17 0.28 0.83 1.73 5

Operations 60 490 15.63 16.33 2 0.27 0.51 0.94 1.67 4

Training 54 291 9.74 10.78 4 0.18 0.58 0.89 2.33 2

Logistical Function 49 592 22.61 24.16 2 0.47 0.28 0.89 1.53 1

Average 46 175 6.40 6.82 4 0.16 0.53 0.63 2.13 4
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3.1.2 The Boko Haram Terrorist Network
The Boko Haram Terrorist Network data set contains the relationship information of 44

terrorists that belong to an Islamic sect that primarily operates in northern Nigeria since

2002. According to Walker [49], the group believes the current government in Nigeria is

corrupted by false Muslims. The network is extremely sparse due to its relatively young

cell-like structure, and lack of collective leadership. This network data set was created by

Cunningham [50] using a variety of open source documents. We re-organized the available

relationship data into edge lists to build 9 separate layers for the case study on the Boko

Haram Terrorist Network.

Figure 3.4 illustrates an overview of the Boko Haram Network by collapsing the 9 layers

into a weighted aggregate monoplex networkO. Figure 3.5 enhances the representation

of the monoplex to include the label identi�cation of each vertex. This network follows a

power law distribution as depicted in Figure 3.6. A summary of the associated properties

of each of the separate 9 layers is captured in Table 3.2.
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Figure 3.4: An overview of the Boko Haram Network. The9 layers organized
from left to right by category color with the monoplexO representing the
aggregation of all the layers.
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Figure 3.5: Boko Haram Network monoplex,O.
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Figure 3.6: Boko Haram Network weighted degree distribution.

Table 3.2: Boko Haram Network topological characteristics by layer.

Layer Name V E AD AWD Di De M ACC APL P

Colleagues 9 8 1.78 1.78 4 0.22 0.41 0.00 2.33 1

Kinship 6 3 1.00 1.00 1 0.20 0.67 NA 1.00 3

Superior 18 17 1.89 1.89 3 0.11 0.54 0.18 1.93 4

Supporter 5 3 1.20 1.20 2 0.30 0.44 0.00 1.25 2

Financial Ties 2 1 1.00 1.00 1 1.00 0.00 NA 1.00 1

Communication 2 1 1.00 1.00 1 1.00 0.00 NA 1.00 1

Membership 14 32 2.71 4.57 2 0.21 0.30 0.93 1.34 4

Shared Events 16 21 2.63 2.63 2 0.18 0.40 0.81 1.22 5

Collaboration 13 13 2.00 2.00 7 0.17 0.47 0.35 2.84 2

Average 9 11 1.69 1.90 3 0.38 0.36 0.38 1.55 3
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3.1.3 The FARC Terrorist Network
The FARC Terrorist Network data set includes the relationship information of 142 terrorists

known as the Revolutionary Armed Forces of Colombia that primarily operates in Columbia

and Venezuela since 1964. According to Weimann [51], the organization believes in Marxist

ideology and seeks to overthrow the Colombian government. The network is sparse for

most layers, but has a well-documented hierarchical structural layer due to social media [51].

This network data set was created by Cunningham et al. [52] using a variety of open source

documents. We re-organized the available relationship data into edge lists to build 10

separate layers for the case study on the FARC Terrorist Network.

Figure 3.7 illustrates an overview of the FARC Network by collapsing the 10 layers into a

weighted aggregate monoplex networkO. Figure 3.8 provides an enhanced visualization

of the monoplex by increasing the size of the diagram. The labels are non-existent in this

�gure due to the anonymity of the available data set. This network has an unusual degree

distribution that is illustrated in Figure 3.9. It has 42 vertices in the middle of the distribution

with relatively high degrees of 35. This is most likely due to the highly visible hierarchical

leadership structure of the network depicted as yellow vertices in Figure 3.8. A summary

of the associated properties of each of the separate 10 layers is captured in Table 3.3.
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Figure��3.7:��An���Pverview��of��the��FARC��Network.��The��10��layers��organized��
from��left��to��right��by��category��color��with��the��monoplex��O��representing��the��
aggregation��of��all��the��layers.
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Figure 3.8: Boko Haram Network monoplex,O.
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Figure 3.9: FARC Network weighted degree distribution.

Table 3.3: FARC Network topological characteristics by layer.

Layer Name V E AD AWD Di De M ACC APL P

Friendship 2 1 1.00 1.00 1 1.00 0.00 NA 1.00 1

Kinship 8 8 2.00 2.00 1 0.29 0.41 1.00 1.00 3

Superior 17 12 1.41 1.41 2 0.09 0.74 0.00 1.52 5

Supporter 3 2 1.33 1.33 2 0.67 0.00 0.00 1.33 1

Lovers 8 4 1.00 1.00 1 0.14 0.75 NA 1.00 4

Radicalizer 2 1 1.00 1.00 1 1.00 0.00 NA 1.00 1

Communication 9 7 1.56 1.56 4 0.19 0.46 0.00 2.23 2

Meetings 17 30 3.53 3.53 3 0.22 0.43 0.91 1.44 4

Shared Orgs 120 1577 24.6 26.3 4 0.21 0.50 0.95 1.87 5

Collaboration 13 8 1.23 1.23 2 0.10 0.78 0.00 1.27 5

Average 20 165 3.87 4.04 2 .39 .41 .41 1.37 3
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3.2 Methodology Overview
In this section we introduce the process, or algorithm, used to transform the data from a

multiplex network into meaningful partitioned communities according to user-based ana-

lytical goals and objectives. Figure 3.10 provides an overview of our methodology and

Algorithm 1 presents the pseudo-code for implementing this algorithm. This method takes

layers of multiplex networkM as an input and produces threshold controlled communities

as an output.

Aggregating all of the layers ofM creates the simple weighted graphG. The layers of the

M are sorted into weighted categories (Categor ywi ). The layers of eachCategor ywi are

aggregated to form a simple graph for individual category community detection. These

communities in each category are converted into weighted cliques based on the assumption

that edges are missing as minimal information is usually captured on terrorist networks. The

aggregation of all of these cliques results in the weighted graphW. Choice of a threshold

" results in components inW" that create the �nal communities, which we then identify in

G. The vertices inG are partitioned into the recently identi�ed communities inW" . The

algorithm is designed to identify communities of order two and larger. Any vertex that is

not sorted into a community is placed in the Mis�t Community by default.

A user-based approach is implemented to increases �exibility of the algorithm and heighten

the de�ned categories ability to capture the user-intended meaningful communities as a

result (with a default built in). Cheever et al. [53] reveal that the user-based approach

philosophy has been implemented by many solution directed companies such as Decision

Lens. They further explain that Decision Lens incorporates user feedback at multiple stages

during the model development process to develop a product that accurately re�ects the

user's goals.

Building user input into our algorithm is essential to producing meaningful communities.

This understanding is critical in developing and selecting an appropriate detection algorithm.

Failure to skip this contextual step in the algorithm developmental process will result in a

misleading product, identifying communities that might have di�erent reasons for clustering

together.
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Each step is described in detail using the following format. The step is �rst introduced

and explained using a general network illustrated in Figure 3.10. The general case is then

followed by a speci�c example using the Noordin Network to demonstrate some of the

features of the algorithm in more detail. Figure 3.11 illustrates the application of all of the

algorithm steps to the Noordin Network.
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Figure 3.10: Algorithm overview (general case).
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Figure 3.11: Algorithm overview (Noordin example)

51



Algorithm 1 Multiplex community detection algorithm.
Input: Aggregate simple graph,G; multiplex layers,l ; set of all layers in the multiplex,S; single layer

community detection algorithm; category weights,wi , wherei = � 1; 2; :::;m� ; and threshold," ; and PDC

de�nition.

Steps 1-2:Manual layer selection and category

formation from similar layers.

for l in Sdo: . for each layer in the multiplex

if l supports the PDC de�nitionthen: . user judgement

Appendl to the layer selection list,S0 . S0 � S

for l i in S0 do: . for each selected layer

for l j in S0 do: . for each selected layer

if l i is similar in meaning tol j then: . user judgement

Appendl i andl j to the same category

Step 3: Discover Communities in each category.

for each categorydo:

Aggregate all layers . creates sub-monoplex graph

Perform single layer community detection . user choice, default Louvain

Step 4: Convert communities to cliques and assignwi .

for all communities in each sub-monoplexdo:

Remove external community edges . creates component graphs

Connect all vertices inside each community . creates clique components

for all edges in each clique componentdo:

Assign value towi . user choice, defaultwi = 18i

Step 5: Form consolidated weighted graph,W, by merging cliques

from all categories with appropriate category weighting factor.

for each weighted edge in each sub-monoplex clique componentdo:

Merge cliques from all categories . buildsW

Step 6: Threshold weighted graph,W.

for edges inW do

if " �
P m

i =1 wi then

plot edge in graphW" . removes" <
P m

i =1 wi , buildsW"

if W" is su�ciently partitioned then: . user judgement

Components are the �nal communities

if execute single layer community detectionthen: . user choice, default Louvain

New communities are the �nal communities

if vertices fromG are not in communitiesthen:

place vertices inMis f it_Community . accounts for all vertices inG

Output: Final communities plotted inG
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3.2.1 Step 1: Layer Selection
This �rst step is focused on preparing and selecting the network data that is most appropriate

based on the user's goals. First, we examine the user's goals to understand the motivation

behind identifying communities. From this we introduce the concept of thepurpose-driven

communities(PDC).

De�nition 3.2.1. Purpose-Driven Communities

Given a multiplex networkM and a userU, the PDC are the intersection of user-inspired

categorical communities based upon the analytical needs ofU. The PDC's structural

properties enhance the customer's understanding of the network in order to achieve the

customer's objective.

For the general case depicted in Figure 3.10, a total ofn layers (2 � n � j V(G)j) are

selected from the available network database of layers from the choices of� 1; 2; :::;k; k +

1; :::;t; t + 1; :::; f ; f + 1; :::n� . The selection of theses layers is entirely dependant on the

user's analytical goals. The detection algorithm's success and subsequent depth of the

community property analysis are also dependent on the available relationship data. This

step may be revisited to include new layers or exclude current layers as appropriate. Once

the layers have been selected, they will be sorted into one ofm categories (m � n) as

described in Step 2. Layers are sorted into categories based on Kreb's observation that dark

networks are sparse. The aggregation of similar layers into categories reduces sparseness

and increases network density for more accurate community detection.

Categor yw1 = � 1; 2; :::k�

Categor yw2 = � k + 1; k + 2; :::t�

.

.

.

Categor ywm = � f + 1; f + 2; :::n�

We apply Step 1 to the Noordin Top Network as an example. In the absence of a physical
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customer, this thesis uses the Joint Improvised Explosive Device Defeat Organization

(JIEDDO) Attack the Network (AtN) philosophy to infer the customer objectives.

Martin et al. [54] describe the mission of JIEDDO is "to focus, lead, advocate, and coordi-

nate all Department of Defense actions in support of the Combatant Commanders' and their

respective Joint Task Forces' e�orts to defeat Improvised Explosive Devices as weapons of

strategic in�uence." This thesis adapts the JIEDDO mission statement to include the pre-

vention of coordinated terrorist operations. The United States Joint Forces Command [55]

summarizes JIEDDO's AtN objectives to:

1. Identify key leaders in the network

2. Understand in�uence and relations

3. Identify and capitalize on vulnerabilities

4. Disrupt activities

5. Eliminate the ability for the network to function.

Understanding these customer objectives provides context and focus for our PDC de�nition.

Based on the inferred assumptions about the customer's objectives, a more focused de�nition

of PDC can be established. JIEDDO essentially wants to learn more about the terrorist

network for the purposes of disrupting its ability to function. Based on this reasoning, our

PDC for the Noordin Network are knowledge sharing communities (KSC).

De�nition 3.2.2. Knowledge Sharing Communities

Given the Noordin Network and JIEDDO, the KSC are the intersection of Trust, Lines

of Communication, and Knowledge communities based on the need to disrupt intra-

organizational coordination in the Noordin Network.

Using the de�nition of KSC, we selected the following 14 layers illustrated in Figure 3.12

from the available 36 layers in the Noordin Network Data Set. Layers not included either

were classi�ed as weak and redundant or irrelevant layers. For example, the classmate layer

was chosen over the education layer because the classmate layer included people who were

in the same class in the same school whereas the education layer included people who went

to the same school. Classmate thus established a stronger relationship tie and education

was excluded as a redundant weaker layer. External communication is an example of an

irrelevant layer that does not support the KSC de�nition and was thus not included in the

54



selected layers. This layer is irrelevant because it focuses on relationships outside of the

network. In Step 2, these layers are sorted into weighted categories.

Figure 3.12: Step 1: Layer selection (Noordin example).

3.2.2 Step 2: Layer Sorting into Weighted Categories (Categor ywi )
Now that we have identi�ed then layers, each layer is placed into exactly one ofmweighted

categories

Categor ywi ; 8i 2 � 1; 2; :::m� :

Following our user-based philosophy, categories are chosen based on their relevance to

the user's analytical goals. Weights are assigned to each category based on the degree

of importance and associated contribution toward forming the PDCs. As a default, all

categories are assigned a weight value of one. If a foundational category is identi�ed, then

the respective weight of the foundational category should be chosen to be greater than the

summation of the remaining categories.

wf oundation>
mX

i=1

wi � wf oundation

De�nition 3.2.3. Foundational Category

A category is labelled foundational if the relationships in this category are critical to the

de�nition of the PDC.

A minimum of two categories is recommended for achieving analytical depth. If only one

category were used then the resulting analysis would be the same as a collapsed simple

graph. While an upper-bound is not mandated, it is suggested to be no higher than 50% of
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the total number of layers.

2 � m < 0:5n:

An unbalanced number of categories may result in too many small community intersections.

After the categories have been established, Step 1 may be revisited to adjust layer selection

from the given network data set.

Applying Step 2 to the Noordin Network results in the 14 layers being sorted into three

categories, as illustrated in Figure 3.13. The layers were sorted into categories based on the

KSC de�nition. In the case of our dark networks, three categories was optimal for grouping

similar layers. However, the PDC de�nition and available network data may lead the user

to create more categories.

1. Trust: Members of the KSC must trust each other in order to develop the will to

communicate. Layers included build or demonstrate trust between members.

2. Lines of Communication (LOC): Members of the KSC require a communication

medium to share knowledge. Layers included in this category allow members to share

knowledge.

3. Knowledge: Members of the KSC need meaningful information or knowledge to

share. Layers included are tasks, events, and resources that members want or need to

share using one of the LOC layers.

The use of these three categories allows our algorithm to produce members of a KSC that

have knowledge that they are capable of and willing to share with other members of the

KSC. The topological characteristics for the categories and the aggregate monoplex,O, for

Noordin, Boko Haram, and FARC terrorist networks are represented in Table 3.4, Table 3.5,

and Table 3.6 respectively.

Table 3.4: Noordin Network topological characteristics by category.

Category Name V E AD AWD Di De M ACC APL P

Trust 111 544 7.53 9.80 7 0.07 0.51 0.66 3.10 3

LOC 121 534 6.33 8.83 7 0.05 0.38 0.57 2.92 1

Knowledge 106 1373 22.4 25.9 5 0.21 0.41 0.79 1.93 3

Average 113 817 12.0 14.8 6 0.11 0.43 0.89 2.65 2

Monoplex (O) 133 2451 22.5 36.9 5 0.17 0.35 0.71 2.13 1
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Table 3.5: Boko Haram Network topological characteristics by category.

Category Name V E AD AWD Di De M ACC APL P

Trust 29 31 2.07 2.14 4 0.07 0.56 0.26 2.28 5

LOC 17 34 2.47 4.00 2 0.15 0.33 0.92 1.48 5

Knowledge 21 34 2.95 3.24 7 0.15 0.46 0.56 2.64 4

Average 22 33 2.50 3.13 4 0.12 0.45 0.58 2.13 5

Monoplex (O) 44 99 3.32 4.50 5 0.08 0.50 0.50 2.42 6

Table 3.6: FARC Network topological characteristics by category.

Category Name V E AD AWD Di De M ACC APL P

Trust 32 28 1.68 1.75 3 0.05 0.81 0.39 1.61 8

LOC 130 1614 23.2 24.8 6 0.18 0.51 0.93 2.28 3

Knowledge 13 8 1.23 1.23 2 0.10 0.78 0.00 1.27 5

Average 58 550 8.70 9.26 4 0.11 0.70 0.44 1.72 5

Monoplex (O) 142 1650 21.5 23.2 8 0.15 0.52 0.91 2.90 1

We tested several sets of cases on the Noordin Network using di�erent weights. During one

case study, the Trust category was given the highest weight ofw1 = 4, followed by LOC

with w2 = 2 and Knowledge withw3 = 1. This weighting system was applied based on

the reasoning that Trust is the foundational category required to build KSCs. The dynamic

nature of the dark network allows two people that are only connected by trust to potentially

develop LOC and Knowledge and ultimately build a KSC. The combined weight of LOC

and Knowledge is intentionally less than Trust to further establish Trust as a foundational

category (w1 > w2 + w3).
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Figure 3.13: Step 2: Weighted category sorting (Noordin example).

3.2.3 Step 3: Community Detection on Categories
All of the layers of eachCategor ywi are aggregated to form a sub-monoplex network

OCategor yi . The user is given the option to choose which single layer community detection

algorithm to implement on eachOCategor yi . This research recommends the well estab-

lished and usedLouvain method described in Section 2.2 due to its relatively e�cient

computational complexity based on accuracy.

The results of applying this step to the Noordin Network Categories are depicted in Fig-

ure 3.14.

Figure 3.14: Step 3: Community detection algorithm (Noordin example).

3.2.4 Step 4: Community to Clique Conversion
The resultant communities for each category are converted into cliques. Each community

within the categories is represented as a complete graph to emphasize the edge relationship
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of belonging to the same community. The edges within each category are given the same

respective categorical weight.

Applying Step 4 to the Noordin Network results in the complete community cliques for

Trust, LOC, and Knowledge illustrated in Figure 3.15.

Figure 3.15: Step 4: Community to clique conversion (Noordin example).

3.2.5 Step 5: Build the Weighted GraphW

This step combines the resultant clique communities from all of the categories into an

aggregate weighted graphW. The edge weight,ewjk between any two verticesvj andvk in

W is the summation of the edge weights betweenvj andvk from each categorym.

ewjk =
mX

i=1

wi; 8 jk 2 Categor ywi ; 8i 2 � 1; 2; : : : ;m� :

Applying Step 5 to the Noordin Network results in the aggregate graphW pictured in

Figure 3.16.
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Figure 3.16: Step 5: Weighted graph,W (Noordin example).

3.2.6 Step 6: Communities Through Tolerance" Selection

The �nal step of this method is again user-driven to determine an acceptable threshold

tolerance," . Choosing di�erent thresholds creates a constraint on the graph that limits

the amount of data considered to build communities. A choice of" =
P m

i=1 wi carries the

strongest meaning and true intersection of communities across themcategories. The user is

left to decide an acceptable value for" and may want to experiment with di�erent" values

to produce the desired meaningful communities. The sum of all of the category weights

serves as a logical upper-bound for" . If a foundational category exists, then the weight of

the foundational category is recommended as a lower bound for" . This prevents the other

categories from forming communities without including the foundational category.

The threshold selection of" results in partitioningW into components. These components

of W are the PDCs. Any components that contain only one vertex are placed into a mis�t

community. As a �nal output, the algorithm plots the resultant PDCs' nodes ontoO to

observe inter-community relations in the Network to create the �nal communities plotted

in O.

Applying Step 6 to the Noordin Network results in the KSC identi�cation and the subsequent

plot in O illustrated in Figure 3.17. In order to demonstrate this step," � w1 + w2

was selected as an example to partition the graph into KSCs. The following bounds are
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recommended for cases with a foundational category for" :

max� wi � � " �
mX

i=1

wi; 8i 2 � 1; 2; :::m� :

Optional Step: If the output results in one component or the network is not su�ciently

partitioned according to the user's goals, we suggest executing single layer detection once

more onW" . Why would we do this? Lets consider whatW" actually represents. This

is a graph with vertices that are related because of the chosen threshold," , intersection

of categorical community relations. Performing community detection once more will

partitionW" into groups of vertices that are more related by this intersection of categorical

communities inside their group than to other vertices outside their community. This optional

process is consistent with the integrity of our de�nition of KSC.

Figure 3.17: Step 6: KSCs and plot inO (Noordin example).

Algorithm 1 was applied to all three dark network case studies. The results of this algorithm

are studied in the next chapter, Chapter 4.
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CHAPTER 4:
Results and Analysis

This chapter focuses on our experiment design, displaying and analyzing our results. First,

we de�ne our experiment in Section 4.1. All sections that follow contain the results and

subsequent analysis of applying our community detection methodology on the three dark

networks from Chapter 3.

4.1 Experiment Design
Three case studies were considered for each dark network. Each case study represents

a di�erent selection of weight values forw1, w2, and w3 as described in Step 3 of our

methodology. We then studied nine subcases for each case that corresponds to di�erent

choices for epsilon as described in Step 6 of our methodology. Figure 4.1 depicts the

organization of the di�erent weight cases and threshold subcases studied in this chapter.

Figure 4.1: Chapter 4 case study organization.
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We grouped the subcases in sets of three based on" values corresponding to :" �

w1 + w2 + w3, w1 + w2, andw1 + w3; " = w1 + w2 + w3, w1 + w2, andw1 + w3; and" �

w1 + w2, w1 + w3, andw1 respectively. For display purposes, we focused on plotting the

individual subcase community results for the Noordin Network. First, we show the output

community graphs in the original monoplex network from Step 6 of our methodology. For

visual clarity, communities of size less than or equal to three are colored grey in these plots.

A legend with the corresponding community name, community size percentage, and color

accompanies each community output graph.

We follow the community output graphs with the community size and adjusted conductance

plots per community. The community names are the independent variables on thex-axis

with M representing the mis�t community. The community size and adjusted conductance

values are the dependant variables ony-axis. We plotted two di�erent adjusted conductance

values. Adjusted conductanceW is the result of re-plotting the resultant communities from

our methodology back into the weighted graphW. Adjusted conductanceO is the result

of re-plotting the resultant communities from our methodology back into the original

monoplex graphO. These values are represented as red circles connected by a dotted red

line. Displaying the community size information allows us to potentially correlate adjusted

conductance to size and identify speci�c communities that are present in multiple subcases.

We also believe there may be some correlation between the average adjusted conductance

and the size of the mis�t community. The community size is represented as blue diamonds

with a solid blue line. All plots are ordered by either increasing adjusted conductanceW or

increasing average adjusted conductanceW.

After all of the network cases have been examined, we display the average results for the

network in a summary plot. This includes the average community size, cluster adequacyW,

cluster adequacyO, average adjusted conductanceW, and average adjusted conductanceO

represented as blue diamonds and a solid line, green squares and a solid line, green circles

and a dotted line, red squares and a solid line, and red circles and a dotted line respectively.

Recall from Section 2.2 that the conductance,� , ranges from 0 to 1 and that the smaller

the conductance value, the better the community quality. Since cluster adequacy values

range from 0 to 1 with larger values resulting in stronger communities, we adjusted the

conductance values for metric comparison clarity. We achieved this by subtracting the
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conductance values from 1. As a result, larger values for adjusted conductance,� 1, and for

cluster adequacy are considered consistent with higher quality communities.

We compare each plot against an established control case. For the purposes of this thesis,

we use the communities that result from implementing the Louvain method on the original

monoplex network as our control. The control case average cluster adequacyO and average

adjusted conductanceOare displayed on the summary plots as a dashed green and dashed red

lines respectively. This control provides us with an established benchmark for community

quality comparison.

Before conducting this experiment, we established our hypothesis for the quality of com-

munities that are produced by the di�erent cases and subcases. Qualitatively, we believe

Case 3 will produce the most meaningful communities based on our de�nition of KSC.

Case 3 provides the necessary category weight distribution for the trust foundation cate-

gory to dominate the remaining community information from the other categories. Krebs

and Everton established the importance of trust to the functionality and resilience of dark

network in Section 2.4. Forcing trust to be included as the lower bound for epsilon choices

in this case is consistent with their convictions.

Quantitatively, our intuition is that for a given value,v, subcases that involve" � v will

result in a small number of large sized communities. We believe this threshold will be too

relaxed of a choice for" . The subcases for" = v will produce many communities that are

very small as we exclude particular relationships from enforcing an equality in the treshold

versus inequality. Also, it prevents vertices from being neighbors in certain categories

in order to achieve equality, which doesn't seem to be realistic, but we consider them for

completeness. Consequently, these cases may be too restrictive of a choice for" . Finally,

we believe the subcases for" � v will produce better communities since these subcases are

more relaxed than" = v, yet more restrictive than" � v, requiring that vertices are friends

in at least that many categories, but possibly more.
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4.2 Noordin Results and Analysis
In this section we display the results and analysis of applying our methodology to the Noordin

Network. First, we display the community graph results and the size and conductance values

for the control case in Figure 4.2. We follow the control case with the results and preliminary

observations from case 1, case 2, and case 3.

Figure 4.2: Noordin control case community output plot and size, and con-
ductance plot.
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The control case yielded a total of seven communities, �ve of which were large and two

relatively small. We observe that the smallest communities have the highest adjusted con-

ductance in Figure 4.2 and that the smallest community,community4, has a perfect adjusted

conductance value of one. It is important to note thatcommunity4 is an isolated component

of the network. Component communities have no external community connections, which

results in no neighbors inS. SinceSis empty, the conductance calculation simpli�es to zero,

which yields a value of one for adjusted conductance.Community4 from the control case

is also visible in subcases where" � v. For example, in case 1, subcases 1:1; 1:2; and1:3

ascommunity3, community2, andcommunity2 respectively in Figure 4.4. Upon further

inspection, this two vertex component relationship exists only in one category, trust. This

community does not exist in the remaining subcases due to the increased restriction imposed

by " = v and" � v.

4.2.1 Noordin Results: Case1
Case 1 examines a uniform distribution of weight values including:w1 = 1, w2 = 1, and

w3 = 1. This case serves as a default if the user is unable to determine a logical ordering

for category importance. Consequently, this case represents equal importance amongst all

categories. We examine the subcase community graphs for case 1 in Figures 4.3, 4.5, and

4.7. We follow these graphs with the size and adjusted conductance per community subcase

plots in Figures 4.4, 4.6, and 4.8.

67



Figure 4.3: Noordin community output plot for subcases 1.1-1.3 withw1 = 1,
w2 = 1, and w3 = 1.
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Figure 4.4: Noordin community size and normalized conductance for sub-
cases 1.1-1.3 withw1 = 1, w2 = 1, and w3 = 1.
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Figure 4.5: Noordin community output plot for subcases 1.4-1.6 withw1 = 1,
w2 = 1, and w3 = 1.
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Figure 4.6: Noordin community size and normalized conductance for sub-
cases 1.4-1.6 withw1 = 1, w2 = 1, and w3 = 1.
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Figure 4.7: Noordin community output plot for subcases 1.7-1.9 withw1 = 1,
w2 = 1, and w3 = 1.
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Figure 4.8: Noordin community size and normalized conductance for sub-
cases 1.7-1.9 withw1 = 1, w2 = 1, and w3 = 1.
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Case 1 subcase graphs and plots provide an initial basis of comparison for the weighted cases

2 and 3. Due to equal weighting, some redundancy is observed in case 1. Algebraically,

w1 + w2 = 2 andw1 + w3 = 2 are equivalent. Consequently, we observe the same behavior

for subcases 1.2 and 1.3, 1.5 and 1.6, and 1.7 and 1.8. In Figure 4.6 we observe that

the " = v subcases produce many small communities with relatively low conductance.

In particular, subcase 1.4 performed the poorest in terms of adjusted conductance and it

also has the highest mis�t community. We also observe that the adjusted conductanceW

values typically are higher than the adjusted conductedO. This is to be expected since

the communities were formed using the edges fromW. By plotting the communities in

O, we no longer have the inferred edges we arti�cially attached during our community

detection process. The adjusted conductanceW values also tended to follow the same shape

as the adjusted conductanceO values. After examining case 1, it appears that subcase 1.1

produces the best communities in terms of adjusted conductance when plotted in bothW

andO.

4.2.2 Noordin Results: Case2
Case 2 examines the weight distribution ofw1 = 3, w2 = 2, andw3 = 1. This case

represents an established ordering of category importance. However, when both the LOC

and knowledge categories are included in the subcase, they are collectively equivalently

weighted to the trust category. Thus the trust category dominates individual categories, but

not the coalition of other categories. We examine the subcase community graphs for case

2 in Figures 4.9, 4.11, and 4.13. We follow these graphs with the size and conductance per

community subcase plots and summary tables in Figures 4.10, 4.12, and 4.14.
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Figure 4.9: Noordin community output plot for subcases 2.1-2.3 withw1 = 3,
w2 = 2, and w3 = 1.
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Figure 4.10: Noordin community size and normalized conductance for sub-
cases 2.1-2.3 withw1 = 3, w2 = 2, and w3 = 1.
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Figure 4.11: Noordin community output plot for subcases 2.4-2.6 withw1 =
3, w2 = 2, and w3 = 1.
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Figure 4.12: Noordin community size and normalized conductance for sub-
cases 2.4-2.6 withw1 = 3, w2 = 2, and w3 = 1.
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Figure 4.13: Noordin community output plot for subcases 2.7-2.9 withw1 =
3, w2 = 2, and w3 = 1.
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Figure 4.14: Noordin community size and normalized conductance for sub-
cases 2.7-2.9 withw1 = 3, w2 = 2, and w3 = 1.
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Reviewing the results from case 2 allows us to make several observations in comparison

to case 1. Similar to case 1, in Figure 4.12 we observe that the" = v subcases produce

many small communities with relatively low adjusted conductance. Again, subcase 1.4

performed the poorest in terms of adjusted conductance and it also has the highest mis�t

community. However, we observe that subcases 1.5 and 1.6 produced a higher quantity of

smaller communities than in case 1. By imposing an ordering of weights on the categories

we have better de�ned the edges that belong to each category and consequently limited the

edges that are included when we build our weighted graphs and apply a threshold value.

As in case 1, the adjusted conductanceW values typically are higher than the adjusted

conductedO. We also observe consistency in adjusted conductanceW values following the

same shape as the adjusted conductanceO values. After examining case 2, it appears that

subcase 2.2 produces the best communities in terms of adjusted conductance when plotted

in bothW andO.

4.2.3 Noordin Results: Case3
Case 3 examines an ordered distribution of weight values including:w1 = 4, w2 = 2, and

w3 = 1. This case is similar to case 2. However, when both the LOC and knowledge

categories are included in the subcase, they are collectively still less than the trust category.

Consequently, the trust category dominates individual categories and the coalition of other

categories. This distribution of weights emphasizes greater importance for the trust category

than case 2. We examine the subcase community plots for case 3 in Figures 4.15, 4.17, and

4.7. We follow these plots with the size and conductance per community subcase plots and

summary tables in Figures 4.16, 4.18, and 4.20.
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Figure 4.15: Noordin community output plot for subcases 3.1-3.3 withw1 =
4, w2 = 2, and w3 = 1.
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Figure 4.16: Noordin community size and normalized conductance for sub-
cases 3.1-3.3 withw1 = 4, w2 = 2, and w3 = 1.
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Figure 4.17: Noordin community output plot for subcases 3.4-3.6 withw1 =
4, w2 = 2, and w3 = 1.
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Figure 4.18: Noordin community size and normalized conductance for sub-
cases 3.4-3.6 withw1 = 4, w2 = 2, and w3 = 1.
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Figure 4.19: Noordin community output plot for subcases 3.7-3.9 withw1 =
4, w2 = 2, and w3 = 1.
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Figure 4.20: Noordin community size and normalized conductance for sub-
cases 3.7-3.9 withw1 = 4, w2 = 2, and w3 = 1.
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Reviewing the results from case 3 allows us to make several observations in comparison to

cases 1 and 2. Case 3 closely mimics the results from case 2. Increasing the importance of

the trust category caused only minor changes in the resultant community structure. However,

in general, these changes resulted in better adjusted conductance values for case 3. After

examining case 3, we determined that subcase 3.2 produces the best communities in terms

of adjusted conductance when plotted in bothW andO. This means that the combination of

trust and LOC, trust and knowledge, and each category individually produces topologically

better communities than the other combinations of categories.

4.2.4 Noordin Observations
Noordin is the largest of the three terrorist networks according to edge count, with a

relatively equal distribution of edges among the three categories. We summarize the results

of all three Noordin cases in Figure 4.21. The evidence from the Noordin cases supports

the observation that as the average community size increases, the average conductance

and cluster adequacy increases. We also consistently observed that" = w1 + w2 + w3

produced a high volume of small and qualitatively poor communities. In general, the" = v

threshold choices produced the poorest quality communities. On average, the more relaxed

the threshold choice, the better quality the community according to adjjusted conductance

and cluster adequacy. In terms of weight cases, we notice that case 1 reveals that an equal

distribution of weights actually produces, on average, high quality communities. However,

it is important to remember that many subcases from case 1 are redundant, thus we expect

many subcases to follow the same trend for case 1. For subcases 1.1, 1.2, 1.3, and 1.9, the

adjusted conductance and the cluster adequacy plotted in both the weighted graph and the

original monoplex out-preforms the control case. Recall that the control case also represents

an equal distribution in weights amongst all of the di�erent layers. Thus, our results from

case 1 indicate that we can increase community quality by employing our methodology.

We also notice that case 3 slightly outperforms case 2. The highest adjusted conductance

value when plotted in the weighted graph results from subcase 3.2. This suggests that

heavily weighting a particular category, such as trust, potentially produces better quality

communities. We continue to monitor these observed trends in the Boko Harm and FARC

results to see if a pattern develops in general for dark networks. We o�er an explanation for

these trends in Section 4.5.
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Figure 4.21: Average community size, average normalized conductance, and
cluster adequacy from communities plotted inO and W for Noordin cases
1-3.
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4.3 Boko Haram Results and Analysis
In this section we display the results and analysis of applying our methodology to the Boko

Haram Network. First we display our control case in Figure 4.22 and our results summary

case plots in Figure 4.23. We follow these plots with our observations for the Boko Haram

Network in Section 4.3.1.

Figure 4.22: Community size and adjusted conductance for Boko Haram
control case.

90



Figure 4.23: Average community size, average adjusted conductance, and
cluster adequacy for Boko Haram cases 1-3.
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4.3.1 Boko Haram Observations
The Boko Haram Network is much sparser and more disconnected than the Noordin Net-

work. However, each category contains a relatively equal amount of edges. Notice that

the control case is already partitioned due to the high number of components and light

external connectivity between communities. As a consequence, we do not expect large

improvements to community quality by applying our methodology. The control case in

Figure 4.22 reveals 11 communities. Three of these communities are larger and the re-

maining eight communities are of size three or smaller. We observe similar behavior to

Noordin for communities that are also components for perfect adjusted conductance. In the

largest connected component,community6 andcommunity9 have the worst conductance

since there have a high number of external connections relative to the internal connections

within their respective communities. For example,community6 has only one connection

inside the community, but has four connections outside the communitycommunity4 and

community0. Sincecommunity6 has poor adjusted conductance, placing these vertices in

the mis�t community has the potential for increasing the average quality of the remaining

communities.

In Figure 4.23 we observe similar trends as the Noordin Network. We continue to observe

that " = w1 + w2 + w3 provides the poorest quality communities as the intersection of

the communities in all three categories. The" � cases continue to generally produce

the best quality communities. However, we observe more variance in the ordering of

the subcases between the cases. The general trend of community quality increasing with

average community size continues for Boko Haram.
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4.4 FARC Results and Analysis
In this section we display the results and analysis of applying our methodology to the FARC

Network. First we display our control case in Figure 4.24 and our results summary case

plots in Figure 4.25. We follow these plots with our observations for the Boko Haram

Network in Section 4.4.1.

Figure 4.24: Community size and adjusted conductance for FARC control
case.
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Figure 4.25: Average community size, average adjusted conductance, and
cluster adequacy for FARC cases 1-3.
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4.4.1 FARC Observations
The FARC Network is dominated in edge distribution by the LOC category. This category

accounts for more than 98% of the edges. The clear hierarchy between organizations is

visible in the control case in Figure 4.24. Notice that the control case produces very high

quality communities. There are a total of nine communities. Notice thatcommunity7 is

dense internally and only has one external connection. This structure allowscommunity7

to have excellent adjusted conductance. These near component communities follow the

similar trends by component communities found in Noordin and Boko Haram.

In Figure 4.25 we observe that some threshold cases did not result in communities. This is

a product of the edge distribution in the three categories. Since there are no communities

in " = w1 + w2 + w3, this means that the same edge relationship does not exist in all three

categories. We also observe a much more dramatic shift in the quality of communities as

we transition from" � subcases to" � subcases. The domination of the LOC category

makes it di�cult to produce quality communities when LOC is not included.

4.5 General Observations
Through our analysis of the three terrorist networks we identi�ed the following common

observations. The two di�erent community quality metrics were relatively consistent in

their evaluation of each subcase. This consistency indicates that the metrics could provide

substantial evidence in determining the quality of the communities in absence of ground

truth. For average adjusted conductance, we identi�ed the community strength relative to

the remainder of the network. For modularity, we evaluated community strength relative to

the expected connections in a random graph. We further re�ned modularity using cluster

adequacy to determine the strength of the graph relative to the best possible modularity

based on partitioning the network intom communities. The consistency in these metrics is

critical to our analysis of identifying the best quality communities from the subcases.

The control case cluster adequacy and adjusted conductance values were typically very high

when compared to the other subcases, yet several subcases still performed better. Recall that

the control case represents aggregating all of the information into a single weighted graph,

which results in the loss of detailed information that is inherent to each layer. Consequently,

a connection in the control graph means two vertices are related, but we no longer have
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the available information to distinguish how they are related. Our subcases methodically

aggregate layers that are similar in meaning to manage the information loss problem of

aggregating the entire network. Choosing a weight case and threshold subcase allows the

user to determine which categories to include, and how important they are to the analytical

goals. For example, small communities may not be the best quality, but they may be easier

to target. While not the focus here, Chapter 5 and 6 discuss this possibility in greater depth.

Generally, as the average size of the communities increased, the adjusted average con-

ductance and the cluster adequacy values increased as well. This indicates that fewer

communities of larger size is more optimal for the dark networks we have studied. How-

ever, as discussed previously in section 4.2.2, the size of the community becomes irrelevant

if the community is a component of the network. Communities that are also characterized

as components have no external edges to the community, which results in perfect adjusted

conductance.

Our hypothesis that" = v would produce many small and poor quality communities was

supported by the results of all three networks based on the two metrics used. Placing this

high restriction on the community development forced the communities to remain small.

Embedding these small communities in the weighted graph and the original monoplex

revealed their poor quality. The external connections that were ignored during the com-

munity development process of applying thresholds become very important in determining

community quality. For example, notice thatcommunity0 from Noordin subcase 3.6 in

Figure 4.17 is a small 4-vertex community. At most, this community can have six internal

connections. Yet, when these community members are plotted back into the monoplex, we

notice a large number of external connections to other communities, including the mis�ts.

As a result, both adjusted conductance and cluster adequacy rank this community as poor

in quality in Figure 4.18.

In most cases, the subcases with the highest average adjusted conductance and cluster

adequacy came from the threshold choice of" � v, which was the most relaxed of all of

the thresholds and did not contain any mis�t vertices. This is surprising considering our

initial claim that threshold choices of" � v would produce the best quality communities.

Community quality instead increased as the restriction of the threshold cases was relaxed.

It is important to note that under these relaxed conditions, every vertex was assigned to a
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community and no vertices were labelled mis�ts. We assumed that by placing vertices in

a mis�t group, the overall quality of the community would increase. These mis�ts are still

connected in the graph when our cluster adequacy and adjusted conductance are calculated.

Boko Haram case 1.9 demonstrated that physically removing mis�t vertices from the graph

does have the potential to increase the quality of the communities. In this subcase, the

vertices incommunity6 from Figure 4.22 were re-designated as mis�ts, which removed it

from consideration in averaging the adjusted conductance values of the communities.

In this chapter, we have identi�ed the best quality communities based on average adjusted

conductance and cluster adequacy, as we had no ground truth community. Based on these

metrics, case 1 generally performed the best, yet the best overall subcase for Noordin was

subcase 3.2. However, we return to our de�nition of KSC to verify that we have successfully

identi�ed the best possible communities for network disruption. Our intuition still points

to subcase 3:9 because it provides the necessary bias for the trust foundation category to

dominant the remaining community information from the other categories. At this point,

we are unable to determine if the best quality community is indicative of a meaningful

community as described by the KSC. To explore this, we model the Noordin Network in

Chapter 5 as a network �ow problem and examine the community properties in detail for

subcase 3.9 to build community targeting pro�les to disrupt the network.
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CHAPTER 5:
Modeling and Application

In this chapter we develop an optimization model for the Noordin Network using Pyomo [56],

which is a python software package from Sandia Labs. We begin with some background

information and an explanation of our network �ow model formulation. Next, we present the

optimal attack results for network disruption. We then examine the community properties

from subcase 3.9 to re�ne our disruption strategy and compare performance results against

the control attack plan.

5.1 Model Formulation
According to Ahuja et al. [57], minimum cost network �ow problems involve some type

of resource or commodity that exists as a supply for some set of vertices and as a demand

for another set of vertices. The objective of these problems is to transport commodities

from supply to demand in the most e�cient manner possible without violating a given set

of constraints. There are a myriad of di�erent approaches to transforming a network into

a network �ow problem. According to Carlyle [58], one technique for optimizing network

�ow involves building and interdicting the shortest path algorithm. He explains that the

shortest path algorithm calculates the shortest distance between a source or set of source

vertices and a destination or set of destination vertices. Alderson et al. [59] represent the

shortest path formulation between a designated initial start vertex,s, and a terminal vertex,

t, as a linear program using the following objective function and constraint equations:

min
x

X

(i; j )2A

ci j Xi j ; (5.1)

whereci j is the cost assigned to the edge between vertexi andj andXi j is a binary variable,

which represents �ow along edge(i; j ). Xi j is equal to one if the edge(i; j ) is on the shortest

path and is equal to zero otherwise.

Equation 5.1 essentially means we are adding up the length or cost of all of the edges along

the shortest path to produce a total cost amount. The objective of this linear program is to
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minimize the total cost to �ow or transport a commodity or resource froms to t. Alderson

et al. [59] invoke the following constraint equations on the objective function:

X

j :(i; j )2A

Xi j �
X

j :( j;i )2A

Xji =

8>>>>>><
>>>>>>
:

1 if i = s

0 if i , s; t 8i 2 N

� 1 if i = t;

(5.2)

Xi j � 0; (5.3)

whereXi j is the �ow into the vertexj andXji is the �ow out of the vertexj .

These constraints ensure the �ow at each vertex in the network is properly balanced and

that all �ow is non-negative. To interdict the network, Alderson et al. [59] de�ne a new set

of data and variables to represent the attacker problem as:

max
Y

min
X

X

(i; j )2A

(ci j + qi j Yi j )Xi j ; (5.4)

whereqi j is the associated penalty for attacking the edge(i; j ) andYi j is a binary variable

that equals one when edge(i; j ) is attacked, and zero otherwise.

Alderson et al. [59] point out that there are two competing objectives represented in Equa-

tion 5.4. The network defender continues to desire the shortest possible path in order to

minimize cost. Conversely, the network attacker's goal is to maximize the length of the

shortest path to maximize the cost and consequently, the damage to the network. Alderson

et al. [59] de�ne the following additional constraints for the attacker problem:

X

(i; j )2A

Yi j � max_num_attacks; (5.5)

Yi j 2 � 0; 1� : (5.6)

These constraints ensure the optimal number of attacks is chosen to be equal to or less

than a speci�ed number by the attacker. Alderson et al. reveal that a problem that
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simultaneously maximizes and minimizes the objective function cannot be directly solved

as a linear program. To remedy this di�culty, they explains that for a �xed attack plan, the

minimization problem can be transformed into the dual maximization problem.

According to Ahuja et al. [57], the max-�ow min-cut theorem states that:

the maximum value of the �ow froms to t equals the minimum capacity of all

s � t cuts.

Since an optimal solution exists for our original primal problem, the theorem of strong

duality states that an optimal solution for the dual problem must exist as well. Alderson

et al. exploit this property by transforming the primal attacker problem into a dual integer

linear program where the objective function is represented as:

max
�; Y

� s � � t; (5.7)

where� s and� t represent a relative distance betweens andt.

The dual objective function allows us to maximize the distance betweens and t. This

relative distance increases when edges are attacked. For a detailed explanation on how to

build the dual problem from the existing primal problem see Brown et al. [60]. After some

simpli�cation, Brown et al. represent the attacker dual constraints as:

� i � � j � qi j Yi j � ci j 8(i; j ) 2 A; (5.8)
X

(i; j )2A

Yi j � max_num_attacks; (5.9)

Yi j 2 � 0; 1� ; (5.10)

� i unrestricted; (5.11)

� s � 0: (5.12)
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Alderson et al. [59] explain that formulating the shortest path interdiction problem results

in a linear optimization problem that seeks to increase the length of the shortest path from

the supply vertices to the demand vertices. In the next section, we apply the shortest path

interdiction dual formulation to the Noordin Network.

5.2 Noordin Formulation
We developed a scenario that exploits Noordin's documented success in coordinating be-

tween the �ve major terrorist organization in Indonesia. Under this scenario, Noordin is

planning a joint attack with the support of the major terrorist organizations in Indonesia.

To model this coordination, Noordin represents our start vertex with a commodity supply

of information. His objective is to optimize the �ow of information to the key tactical

leaders from Darul Islam, KOMPAK, Jemaah Islamiyah, and Ring Banten Group. The

corresponding set of destination vertices,D, from these terrorist groups is:

D = � 'Kang Jaja', 'Aris Munandar', 'Ali Imron', 'Iwan Dharmawan'� : (5.13)

The attacker in this case is represented by our established user in Chapter 3, JIEDDO. The

attacker objective is interrupt the �ow of information by attacking the optimal combination

of edges that maximize the sum of the lengths of the shortest paths from Noordin to the

elements in the setD. Here, the cost of each edge is represented as increments of time in

hours. For example, a path that is 24 units long corresponds to a message delay of 24 hours

or one day. Attacking an edge corresponds to less invasive actions such as jamming cell

phone capabilities, which, given time, can be overcome by actions such physically meeting

with the person. However, this time delay has the potential to disrupt the coordination of a

planned attack. The edges used to build this model are extracted from the LOC and Trust

categories as described in Table 3.4.

It is important to note that the LOC category only includes 120 of the total 133 terrorists

and 318 of the 2451 total connections. Here we extend Krebs idea of the trust relationship

importance to improve the realism of our model and increase the number of terrorists and

available connections to 128 and 598 respectively. Another aspect we must consider is

that network �ow problems require directed networks. To model this requirement in the

Noordin undirected data set, we create parallel edges, in the opposite direction, for each
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pair of vertices. This results in doubling the number of available edges to 1196.

Given the importance of trust, it is feasible to infer additional communication edges using

existing trust relationships. For example, two terrorists who were friends in school, may

not have any documented terrorist activity communication between them. However, if

an existing point of contact is unable to be reached, the terrorist can potentially activate a

dormant relationship, such as trust, to reestablish communication. Using this theory, we can

enhance our network model's resilience and robustness capability using the trust category

edges. If an edge between two vertices is attacked, then the vertices have the option of

formulating new communication channels using the trust category edges. By rewarding

redundant connections between terrorists, our model re�ects choosing the path with more

familiar relationships over a path between vertices with a single acquaintance.

To model this capability, we added some of the edges from the trust category to the

model, but incorporated the desired secondary availability of trust edges by establishing a

cost hierarchy. Under this hierarchy, costs for edges in both LOC and trust categories were

calculated by subtracting the total number of LOC edges,w2i j , and trust edges,w1i j , between

i and j from the value 13. The value 13 was chosen because themax(w2i j + w1i j ) = 12,

which results in a range of edge costs between 1 and 12. This construct rewards two

terrorists who have multiple connections for trust and LOC by lowering the cost value of

communicating with each other.

The next case in our cost hierarchy is LOC connections only. Similar to LOC and trust,

LOC connections only simply subtracts the total number of LOC edges,w2i j from the values

13, which results in cost values between 5 and 12. In an e�ort to delay the use of trust

only edges, the total number of trust only edges,w1i j , betweeni and j was subtracted from

the value 24, which results in a range of edge costs between 21 and 23. The value 24 was

chosen since it results in a range of cost values that is higher than LOC only and LOC and

trust, yet lower than the penalty cost. We established a uniform arbitrarily high penalty

cost ofqi j = 50, when edges are attacked. As a result, this model always favors the edges

according to the established cost hierarchy in calculating the shortest path. For comparison,

we also created a uniform cost dictionary that weighted each edge as one regardless of the

category or redundant edges within a category.

We conducted 16 attack scenarios, each corresponding to an increase in the available
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number of attacks by one from 0 to 15. Figure 5.1 depicts the resultant parametric curves

from executing the attack scenarios. The number of attacks is displayed on the x-axis and

the corresponding shortest path distance is displayed on the y-axis for the uniform and

hierarchical cost values. To solve this linear program, we used a commercial solver called

Gurobi [61]. According to Meindl et al. [62], commercial optimization solvers such as

CPLEX and Gurobi outperform open source solvers in both speed and accuracy.

Figure 5.1: Cost in hours for attack plans in uniform and hierarchical cost
models.

Notice in Figure 5.1 that the hierarchical cost scenario results in a relatively linear increase

in the cost hours as the number of attacks increase. However, the rate of increase slows

slightly after nine attacks. Conversely, the uniform cost scenario results in three noticeable

plateaus at zero, �ve, and nine attacks. Since all edges are equally weighted for cost, the

only noticeable increase occurs when vertices become completely disconnected. Under this

scenario, the shortest path interdiction algorithm simply attacks the edges connected to the

demand vertices in order of smallest to largest degree. Thus at attack number �ve, all edges
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connecting to Ali Imron have been targeted resulting in the maximum penalty of 50. The

algorithm then begins targeting all of the connections to Aris Munandar until he becomes

disconnected at nine attacks. In the next section, we analyze the community properties of

subcase 3.9 to enhance the attack strategy.

5.3 Community Properties and Attack Strategy
Subcase 3.9 was chosen to examine in depth due to its inclusion of (i) trust and (ii) trust and

LOC edges. However, this subcase does not completely re�ect the edges chosen to model

the network �ow problem. Subcase 3.9 does not include LOC only edges and includes

extra edges from (i) trust and knowledge and (ii) trust, LOC, and knowledge combined. Yet,

subcase 3.9 provides the best approximation for the network �ows model out of the available

threshold cases while still maintaining a relatively high average community quality value.

For each community, we examined the following properties: Size, Density (De), Total

External Edge Count (TEEC), Total Internal Edge Count (TIEC), Number of Demand

Vertices (NDV), Adjusted ConductanceO (� 1), In�uence (I), Community In�uence (CI),

and Total In�uence (TI), which are summarized in Table 5.1. We also examined Between

Community Edge Count (BCEi j ), which is summarized in Table 5.2.

The community density is calculated by dividing the actual number of internal edges in the

community by the maximum possible number of edges in the community. The maximum

possible number of undirected edges for a clique isn � n� 1
2 . To model this number for our

converted directed network, we multiplied this value by two. It is important to note that our

modi�cation to the density equation is only possible because for every edge (i,j) there is a

corresponding edge (j,i) in the network. For a community withn vertices, andjEj edges,

we represent community density as:

De =
jEj

n � (n � 1)
: (5.14)

The TEEC refers to the total number of edges that begin with a vertex in the community and

terminate with a vertex outside the community. TIEC refers to the total number of edges

that begin and end within vertices inside the community. The NDV is a count of the total

number of vertices within the community that have a demand for the information commodity.
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Between Community Edge Count calculates the total number of external edges from the

source community to each destination community. For example, forcommunity0, the value

for BCE09 is calculated by counting the number of edges that originate incommunity0 and

terminate incommunity9.

The In�uence is calculated by summing the ratio ofBCEi j of the source community to

theTEECj of each terminal community. For a �xed source community,i and a terminal

communityj in�uence is de�ned as:

I =
X

j

BCEi j

TEECj
; 8i : (5.15)

In�uence allows us to determine how important the terminal community views the source

community relative to the total number of external connections from the terminal community

to the whole network. For example, if person A is friends with person B and person B only

has three friends total, then person A's in�uence is1
3. However, if person B only has one

friend, then person A increases their in�uence to1
1. We calculate CI by totaling the number

of communities connected to the source community. The TI is calculated as their sum:

T I = I + CI: (5.16)

Figure 5.2 summarizes four of the community properties including Size, TI, De, and� 1. The

community names are displayed in order of increasing TI on the x-axis. Community size is

represented as blue diamonds and TI is represented as green triangles on the primary left

y-axis. Density is represented as purple squares, and� 1 is represented as red circles on the

secondary right y-axis. We observe that the community density and adjusted conductance

generally follow the same shape. Additionally, the total community in�uence generally

increases as the size of the community increases.
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Table 5.1: Subcase 3.9 community properties.
Name Size De TEEC TIEC NDV � 1 I CI TI

3 2 0.50 0 2 0 1.000 0.000 0 0.000
6 4 1.00 2 12 0 0.800 0.014 2 2.014
0 10 0.56 7 90 0 0.672 0.045 2 2.045
5 2 0.50 5 2 0 0.286 0.064 2 2.064
7 13 0.32 31 50 1 0.334 0.312 4 4.312
4 13 0.40 69 62 0 0.378 0.778 5 5.778
1 10 0.40 77 36 1 0.401 1.109 5 6.109
2 17 0.21 58 58 1 0.401 1.313 5 6.313
9 17 0.35 122 96 0 0.287 2.010 8 10.010
8 23 0.41 164 206 1 0.451 4.018 9 13.018

mis�t 20 0.04 29 16 0 NA 0.349 5 5.349

Table 5.2: Subcase 3.9 community total in�uence summary.
Name BCEi0 BCEi1 BCEi2 BCEi3 BCEi4 BCEi5 BCEi6 BCEi7 BCEi8 BCEi9

3 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 6 1
5 0 0 3 0 0 0 0 0 2 0
7 0 12 0 0 3 0 0 0 9 7
4 0 8 8 0 0 0 0 3 36 10
1 0 0 5 0 8 0 0 12 18 29
2 0 5 0 0 8 3 0 0 23 10
9 1 29 10 0 10 0 1 7 62 0
8 6 18 23 0 36 2 1 9 0 62

Mis�t 0 5 9 0 4 0 0 0 9 2

The least in�uential and smallest community iscommunity3. This makes sense since

community3 is a component community and thus is isolated and incapable of in�uencing

other communities. Not surprisingly, Noordin Top belongs to the largest community with

the greatest total in�uence,community8. The tactical commanders he is sending his or-

ders to are each in separate demand communities including:community1, community2,

community7, andcommunity8. As we examine the properties of these demand commu-

nities, we notice thatcommunity7 is the least in�uential, which means it is more isolated

than the other communities. We hypothesize that the more isolated the community, the

more vulnerable it will be to edge attacks. As a result, we can prioritize targeting edges that

connect the source community to the demand communities in increasing order of in�uence.

We discuss modeling this attack plan in more depth in Chapter 6.
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Figure 5.2: Subcase 3.9 community properties.

Another approach to using community information in the network is to reduce the complexity

of the current attack plan. As seen in Equation 5.8, every edge represents an additional

constraint, and consequently, more computations. The current Noordin Model has a total

of 1196 edges. We believe that attacks should be primarily focused on edges inside

communities that contain demand vertices and on edges that connect these communities to

the remainder of the network. Given this logic, we can reduce the communities without a

demand vertex to representation as a single vertex. Under this construct, the internal edges

of community0, community3, community4, community5, community6, community9 and

communitymis f it are considered defended and not available for attack. This reduces the

number of edges subject to attack calculations to 628 from the original 1196. We consider

the communities with demand as priority for analysis, and the remainder of the network as

noise that can be ignored. As a result, we implement the shortest path interdiction algorithm

on the simpli�ed representation of the network. The goal of this simpli�cation is to achieve

similar damage, but to reduce the computation time. According to Lundh [63], the python
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time module can be used to benchmark the run time of an algorithm. For our purposes,

the time module recorded the elapsed time required for Gurobi to solve the shortest path

interdiction dual algorithm as a function of the number of attacks.
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Figure 5.3: Noordin original and simpli�ed attack models.
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To model removing these edges from attack consideration, we place a large cost of 100 on

the internal edges of the designated communities, and place a penalty cost equal to zero.

Consequently, these edges will never be considered for the shortest path, and they will never

be attacked.

In the top diagram in Figure 5.3 we arranged the vertices in the Noordin Network ac-

cording to community and distance away from Noordin. The red color corresponds to

community0, the yellow color corresponds tocommunity1, the light green color corre-

sponds tocommunity2, the gray color corresponds tocommunity3, the dark blue color

corresponds tocommunity4, the dark green color corresponds tocommunity5, the orange

color corresponds tocommunity6, the light blue color corresponds tocommunity7, the

purple color corresponds tocommunity8, the pink color corresponds tocommunity9, and

the black color corresponds tocommunitymis f it. Using the same color scheme, the bottom

diagram in Figure 5.3 illustrates our method of collapsing communities into single vertices

that do not contain a demand vertex. Demand vertices are represented by a red negative

one and an orange hexagon. The supply vertex, Noordin Top, is represented by a black four

and a green hexagon. Vertices are further organized into groups according to the number

of hops,D, that they are away from Noordin Top, whereD 2 � 1; 2; 3; 4� .

The results of attacking the Noordin Network using the optimal attack strategy with uniform

costs on all edges are displayed in Figure 5.4. We refer to the optimal attack as the results

from directly applying the shortest path interdiction algorithm to the Noordin Network

�ow model. The community guided attack refers to the modi�ed attack we implemented

by simplifying the Noordin Network �ow model based on community partitions. On the

primary left y-axis, the optimal uniform cost is represented as purple squares with a solid

line and the community guided uniform cost is represented as a red x with a dotted black

line. The cost is represented in units of hours. On the secondary right y-axis, the optimal

uniform cost time and community guided cost times to execute the algorithm are represented

as blue circles and orange diamonds respectively. The execution time is represented in units

of seconds.
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Figure 5.4: Uniform cost results.

We observe that the uniform cost for the optimal and community guided attacks are identical.

Notice the spike in the amount of time to calculate the optimal attack strategy for four attacks.

Another spike, though considerably smaller, is also visible for the optimal attack strategy

for four attacks as well. As the attack number is increased from nine to 15, we observe a

seemingly exponential increase in the time to execute the algorithm. As we increased the

attack number beyond 15 to 16 we noticed a dramatic increase in the run time for the optimal

attack from 10:19 to 113:20 seconds. However, 16 community guided attacks resulted in a

nominal change from 0:40 to 0:39.

We attempted to execute a 50 attack scenario for the optimal attack, but the solver timed

out after 30 minutes without determining an optimal solution. However, the community

guided attack did determine an an optimal solution after only 0:39 seconds. Generally, we

observe an increase in the run time of the algorithm as the cost value plateaus with a spike

occurring right before a large increase in cost. We also observe that the community guided

uniform cost time is virtually horizontal. This supports our assessment that communities

can be used to reduce the complexity of the problem while achieving the same results.

The results of attacking the Noordin Network using the optimal attack strategy with hier-

archical costs on all edges are displayed in Figure 5.5. The optimal hierarchical cost and
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community guided cost produce perform similarly. However, the community guided cost

does slightly out perform the optimal cost at several attacks including the �nal attack case.

Yet, there are a few instances where the community guided cost is lower than the optimal.

To understand these discrepancies, the Gurobi reference manual [61] reveals that Gurobi has

a default optimality gap of 1� 10� 4. This tolerance is also known as the relative optimality

criteria gap.

Figure 5.5: Hierarchical cost results.

Brown et al. [60] state that the optimal solution occurs when the di�erence gap between

upper and lower bounds is ideally zero. However, this could prove to take an inordinate

amount of time. Relative optimality criteria allows the user to choose the level of accuracy

of the optimal solution at the expense of time. It is possible that this default optimality

criteria gap caused the solutions to vary slightly between optimal and community guided

approaches.

We observe for the hierarchical algorithm times, that both optimal and community guided

run times follow a gradual increase until attack nine where the slope increase sharply

for the optimal strategy attack strategy. We also attempted a 50 attack scenario for the

optimal cost, but the solver timed out after 30 minutes without determining an optimal

solution. However, the community guided cost determined an optimal solution after only
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10:31 seconds. Similar to the uniform cost results, the hierarchical cost results support

simplifying the network model using the community partitions for similar cost values and

reduced algorithm performance times. Additionally, simplifying the model potentially

allows the user to reduce the optimality criteria for a more precise optimal solution.

In this chapter we demonstrated one potential use for exploiting community properties to

disrupt terrorist networks. In the �nal chapter, Chapter 6, we discuss improvements to both

the community detection algorithm and modeling the network as a network �ow problem.

Additionally, we discuss some general observations and recommendations for continuing

this research in the future.
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CHAPTER 6:
Future Work and Recommendations

In this thesis we have presented a community detection algorithm for multiplex dark net-

works. We have also demonstrated the utility of partitioning a network into communities

to disrupt network functionality. Given our results, we provide some future direction in

this chapter for improving our community detection algorithm, enhancing our network �ow

model, and alternative strategies for disrupting networks using communities. Finally, we

summarize the key �ndings from this thesis and o�er some general conclusions.

6.1 Community Detection Algorithm Improvements
In this section we discuss improving the community detection algorithm based upon our

current results. We suggest a procedure for selecting layers, determining category weights

in Subsection 6.1.1. We also discuss the e�ect of removing mis�t vertices from the graph

on community quality in Subsection 6.1.2, and some recommendations for applying the

algorithm to multiplex networks with complete information in Subsection 6.1.3.

6.1.1 Layer and Category Importance
Our community detection algorithm requires user input for selecting layers from an available

data set. For the dark networks we examined, we selected layers based on similar meaning.

However, some networks may not be as easily sorted, and user intuition on layer selection

may not be as obvious. This problem is particularly di�cult for large data sets with many

layers.

Sharma et al. [64] suggest that one technique for selecting layers is to determine the relative

importance of each layer. His approach focuses on the impact of missing data with respect

to network modeling. They asserts that missing information or data has a more profound

e�ect upon the analysis conducted on multiplex networks than other types of network

models. One of the metrics he uses is called exclusive relevance. This metric determines

the importance of a particular layer,L, based upon the fraction of connections from a node,

n, to the nodes adjacent ton in L. Crawford et al. [65] explored the concept of network

115



layer importance by examining the contribution of a layer with respect to �nal community

structure of a graph.

Recall from Section 2.3, Taylor et al. [29] proclaim that layer aggregation is extremely

bene�cial for network analysis if conducted appropriately. They asserts that one of the

fundamental problems of layer aggregation is determining which layers to aggregate. They

believe that using all of the available layers of a network can actually over-model a network.

Over-modeling refers to threshold at which the amount of information used to model the

system hinders the analysis. Taylor et al. explain that over-modeling leads to computational

and memory storage di�culties. They suggests that repetitive layers should be aggre-

gated to more concisely represent the network. Their work supports the idea of increased

detectability of communities in a network when layers are aggregated.

In [65] the authors establish additional criteria for layer aggregation using community

evolution to determine which layers or set of layers are dominant in the network for producing

communities. They examined the same three dark terrorist networks as this thesis, as well

as two transportation networks. They used Normalized Mutual Information (NMI), purity,

density, and modularity as metrics for comparing our resultant community evolution cases

to the established ground truth communities from the layer aggregation.

The key �ndings in [65] were that layer uniqueness and edge density were the most important

factors in assigning importance to layers and categories. The knowledge category was the

dominant category for the Noordin Network. Recall that the knowledge category accounts

for more than 50% of the edges in the Noordin data set, thus it is expected to be the most

dominant category. However, combining knowledge category layers with trust category

layers resulted in the most accurate approximation of ground truth communities. The trust

category represents many of the social relationships, which suggests that the community

structure of social relationships is unique.

The research of [65] implies that uniqueness and edge density are important factors when

determining which layers or categories are dominant in the data set. Their research requires

further veri�cation on other types of networks, but identifying layers that are both dense

and unique in structure is a promising method for layer selection and inclusion for analytical

purposes. However, while density is easily calculated, uniqueness is a more di�cult quality

to evaluate prior to conducting the layer dominance procedure.
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This concept could be applied to category importance to determine an appropriate weight

for each category in step 5 of our community detection algorithm. To extend this thesis,

the dominant set of layers from each category could be selected to model the Noordin

Network. Additionally, the categories could be weighted according order of dominance

explained in [65]: knowledge, trust, and then LOC. For more details on the layer and

category dominance results of the three dark networks see [65].

6.1.2 Mis�t Community Elimination
Another modi�cation to our community detection algorithm involves removing the mis�t

vertices from the network. In Chapter 4, our results revealed that the networks with larger

mis�t communities tended to produce poorer quality communities according to adjusted

conductance and cluster adequacy. We initially believed removing vertices with high

external connections would increase the community quality value. However, since the

mis�t vertices are still part of the graph, the communities external connections remain as

high or higher that reduces the adjusted conductance score. Also, by removing vertices from

the community, the community loses some of the valuable internal connections that cluster

adequacy favors. Simply labeling a vertex as a mis�t is not enough to bene�t increased

community quality. As an extension to this thesis, we recommend physically eliminating

mis�ts and all of their associated connection from the graph. The resultant graph would

be considerably less complex and produce higher quality communities according to our

established metrics. We performed an initial localized experiment on the Noordin Network

case 3 to demonstrate the potential bene�ts of pursuing this extension.

We explored mis�t elimination for the Noordin Network case 3 and compared it to our

original community quality results for average adjusted conductance,� 1, and cluster ade-

quacy for plotting communities in the original graph. We subtracted the values produced

by eliminating the mis�ts from the results where mis�ts remained present to produce the

change in values,� . These results are summarized in Table 6.1.

Notice that some of the subcase average adjusted conductance and cluster adequacy values

did not change. This is because there are no identi�ed mis�ts in these subcases. A

preliminary analysis of the results suggests that physically removing mis�t vertices from

the network always improves the quality of the community according to cluster adequacy and
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Table 6.1: Noordin case3 mis�t elimination � .
Mis�ts Present Mis�ts Eliminated Changes in Values (� )

Subcase
Average

� 1
Cluster

Adequacy
Average

� 1
Cluster

Adequacy
� Average

� 1
� Cluster
Adequacy

1 0.578 0.214 0.578 0.214 0.000 0.000
2 0.602 0.244 0.602 0.244 0.000 0.000
3 0.578 0.226 0.578 0.226 0.000 0.000
4 0.149 0.049 0.191 0.096 0.047 0.042
5 0.242 0.054 0.295 0.085 0.031 0.053
6 0.162 0.057 0.213 0.118 0.060 0.051
7 0.263 0.082 0.303 0.111 0.029 0.040
8 0.383 0.143 0.419 0.173 0.031 0.036
9 0.501 0.157 0.520 0.188 0.032 0.019

average adjusted conductance. The greatest improvements generally increased for subcases

4, 5, and 6, which had the largest populations of mis�ts with 64, 47, and 68 respectively.

These results need to be compared with other cases and networks to verify the trends we

identi�ed with our preliminary analysis.

Throughout this thesis, the Noordin Network was the primary focus for in-depth analysis. We

can continue dissecting the Noordin data set using di�erent thresholds, weights, categories,

and layer combinations. All of the recommendations and applications should also be applied

to the Boko Haram, and FARC networks. Additionally, the results need to be con�rmed

with other classi�ed dark network data sets. To demonstrate the �exibility of the community

detection algorithm, we need to apply our methodology to a variety of networks.

6.1.3 Complete Information Multiplex Networks
This thesis has focused on dark networks where incomplete information is an inherent and

challenging property. However, partitioning non dark networks into communities is also

useful for analysis. For example, a group of NPS students in a class may be represented as a

multiplex network with layers representing di�erent skill sets. In this case, the PDC would

be equivalent to a group project team. By sorting the students into di�erent communities

based upon skills, the professor can easily identify and build modular project teams that are

balanced in terms of a wide spectrum of capabilities. In this example, all of the information

used to construct the network is already available. We can apply our algorithm to networks,
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such as this example, which contain complete information. For these networks, the only

recommended change is to remove the clique conversion instruction from step 4 of the

algorithm. Converting the communities into cliques serves no logical purpose for inferring

edges when all of the edges are already known. In the next section, we explore some

alternative modeling practices that could enhance the model described in Chapter 5.

6.2 Network Flow Model Enhancements
In this section we discuss two improvements to our network �ow model focused more

realistically modeling the terrorist network. These improvements include modeling invasive

attacks, and defender capabilities.

6.2.1 Invasive Attacks
In Chapter5 we focused on attacking edges between vertices. These attacks equated to

non-invasive actions such as jamming cell phone communication or indirectly a�ecting

the terrorist's ability to communicate by causing a route to be blocked or closed. It is

conceivable that non-invasive attacks can be implemented at a higher volume and low risk

to the attacker. However, if more direct action is desired, we can model an invasive attack

that would mean physically removing or capturing an individual in the network. To model

the removal of a vertex, Alderson et al. [59] suggest vertex splitting. Vertex splitting is a

method for representing each vertex as a additional edge in the data set. Of course, this

increases the number of edges,jEj, in the model by the number of vertices,n. Figure 6.1

demonstrates how a green vertexi can be replaced by a pair of vertices,i0, which is red, and

i00, which is yellow, and an edge,(i0; i00), betweeni0andi00.

Notice how all of the edges �owing intoi are now attached to vertexi0, and that the edges

�owing out of vertex i are now connected toi00. To model attacking vertexi, we can

now attack edge(i0; i00). This modi�cation to the data set allows the attacker to attack the

best combination of edges and vertices in the graph. Attacking a vertex can be extremely

e�ective by disrupting multiple connections with one attack. However, direct attacks, such

as removing vertices, should be more restrictive and costly for the attacker to execute.

For example, the number of attacks could be constrained as a function of invasive,y and

non-invasive,y0attacks such that:
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Figure 6.1: Vertex splitting example.

num_attacks= 2y + y0: (6.1)

Equation 6.1 allows the attacker to choose an optimal combination of invasive and non-

invasive attacks for a given number of available attacks with the understanding that invasive

attacks are twice as resource depleting as non-invasive attacks. Constraining the attack

resources in this manner adds realism to the di�culty and risk associated with direct action

verses indirect actions.

The knowledge of which vertices are involved in the shortest paths is also valuable for

analysis. For example, if invasive action is not possible, and the message cannot be blocked

by less invasive measures, it is still possible to gather valuable intelligence by monitoring the

vertices along the shortest path. Another modi�cation to the network �ow model involves

the defender capability.
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6.2.2 Defender Capabilities
Our model primarily focused on the attacker's resources and capabilities to interdict the

network. However, in reality, an intelligent defender understands their own network vulner-

abilities and, given a �nite amount of resources, strengthens these weaknesses accordingly.

Alderson et al. [59] recommend formulating the defender model to strengthen existing

connections or potentially build new connections in the network. In the Noordin network,

forging new relationships could represent sending more individuals to planning meetings or

forcing individuals to train more together to potentially build friendship and stronger work-

ing relationships. However, Krebs [39] reveals that building too many new connections

could come at the costly expense of secrecy.

Defending an individual could have a more physical representation such as placing him in a

safe house with armed guards or constantly moving his location. Alderson et al. [59] believe

that an intelligent defender can mitigate the e�ects of a network attack by incorporating a

new binary decision variable into our existing model,wi j , which is equal to one if a new

connection between terrorists is forged, and zero otherwise. Alderson et al. [59] explain

that the objective function is modi�ed to the following equation:

max
w

min
x

max
y

yts �
X

(i; j )2E

2(yi j + y ji )xi j ; (6.2)

wherexi j is the attacker's decision to attack edge(i; j ), yts is an arti�cial �ow variable that

connects the source,s, to the demand vertices,t, yi j is the �ow of information from vertex

i to j , andE are all of the undirected edges betweeni and j ; wherei < j;8(i; j ) 2 E.

This new objective function is subject to additional constraints involving new data that

includes a defense budget as well as a defense cost. For more information on how to

formulate the defender model, see [59].

Alderson et al. [66] reveal that the practice of defending a vertex also provides valuable

attack alternatives. By protecting or hardening a link in the optimal attack plan, the attacker

is able to develop multiple attack strategies. These plans are less optimal than the original

attack, but provide alternative options for decision makers to use in case the optimal attack

cannot be physically carried out or is too costly.
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6.3 Alternative Disruption Strategies
Our model focused on interdicting the shortest path from a source vertex to a set of

destination vertices. We used the knowledge of the communities to reduce the complexity

of our model in order to enhance the optimal solution time. In this section, we discuss

some additional ideas for using community properties to disrupt the network according to

shortest path interdiction and methods for measuring network resilience.

6.3.1 Community Isolation
Community isolation is another potential option for exploiting community properties for

disruption purposes. We recommend targeting the external edges of the communities with

demand vertices in order of increasing in�uence in the network. By this logic, we would

push the weaker communities away �rst, since they will require fewer external edge attacks.

To conduct this experiment, we recommend isolating each community for attack by only

leaving the isolated communities external edges available for attack. For each community,

record the number of external attacks required to fully isolate the community from the

network, as well as the total resultant cost damage to the network.

A modi�cation of this option is to extend the concept of total in�uence to the the individual

vertex level. We can then target the vertices that are the most in�uential in the network. In

essence, this approach is similar to determining vertex centrality with respect to community

in�uence. Establishing the total in�uence of a vertex enhances our ability to identify the

key brokers in the network. targeting these brokers assists in the process of isolating the

communities they belong to from the rest of the network and consequently disrupts the �ow

of information. This experimental idea can also be applied to the other dark networks as

well for additional trials and veri�cation of results.

6.3.2 Optimal Community Size
In Chapter5, we examined only one subcase threshold, subcase 3.9. All of our threshold

cases need to be examined to determine if there is an optimal community size for applying

our strategy of collapsing communities that do not contain supply or demand vertices. If

the number of communities is too high, then we risk protecting edges from attack that

would normally provide the shortest path from supply to demand vertices. Conversely,
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if the number of communities is too low then collapsing the demand free communities

may not signi�cantly decrease the solution evaluation time. Thus, an optimal community

size would reduce the complexity of the linear program while still determining an optimal

solution within an acceptable tolerance. We recommend testing the remaining thresholds

and comparing the results to the established community quality metrics.

Community size optimality will also depend on the nature of the attack model scenario.

For example, if one threshold subcase placed all of the demand vertices into one small

community, then all attack resources could be focused on isolating one community. How-

ever, if the defender objective was to deliver a message to every vertex in the network, then

an attacker strategy based on separating the network into multiple components might be

more appropriate. Many small size communities might be more bene�cial for fracturing

the entire network. We can guide our attack based on the aforementioned community iso-

lation technique described in the previous subsection. Now that we have identi�ed some

other methods for attacking the network, in the next subsection we discuss some additional

performance metrics for measuring the quality of the attack with respect to the resilience of

the network.

6.3.3 Network Resilience
Alderson et al. [66] recommends measuring the operational resilience, which is the adapt-

ability of the network to maintain functionality after attacks. Alderson et al. [67] propose

that one method to quantitatively measure operational resilience is to build the resilience

curve, which measures the post-attack cost growth as a function of the number of lost com-

ponents. This is similar to the parametric curves in Section 5.2, but also incorporates the

defender capabilities described in Section 6.2.2. Alderson et al. explains that the shape of

the parametric curve indicates the resilience of the network. Curves that begin with a steeper

slope and then gradually level (high elbow) represent less resilient networks. Conversely,

Alderson et al. points out that curves with a more gradual slope followed by a steep slope

(low elbow) after many attacks represent a more resistant system.

Bhatia et al. [68] discuss an alternative method for measuring network resilience using

percolation theory to de�ne the State of Critical Functionality (SCF). They de�ne Total

Functionality (TF) to be the number of demand vertices in the giant or largest component
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of the graph after zero attacks. They then record the Fragmented Functionality (FF), which

is the number of demand vertices that are still part of the giant component as a function

of the number of attacks on the network. Using the de�nitions of TF and FF, Bhatia et al.

de�ne SCF as:

SCF=
FF
TF

: (6.3)

Bhatia et al. [68] explain that SCF values range between zero and one, with values closer to

one representing higher functionality and resilience for the network. The metrics introduced

by Alderson et al. and Bhatia et al. for network resilience could be applied to our network

data sets to determine the adaptability of the networks to attack and defensive operations.

6.4 Conclusions
This thesis has presented an alternative method for conducting community detection in

multiplex networks. The algorithm was speci�cally tailored for dark network data sets, and

was tested on three data sets. However, the user engagement in our algorithm allows it to

be �exible for other networks. The thresholding option in our algorithm produces di�erent

numbers of communities of di�erent sizes according to the user's purpose.

We noticed that the community quality generally increased with the size of the community.

The larger communities were developed under the provisions of the most relaxed threshold

values. The observation of threshold relaxation will most likely depend on the network, but

we do believe an optimal value does exist for most networks. However, optimality depends

on the goal the communities will be used for. Some networks have poor community

structure in general due to high connectivity amongst all vertices. In these cases, the graph

would prefer to remain one large community. The degree distribution may provide an

initial indicator on the potential for good quality communities, but the optimal number

of communities depends more speci�cally on the arrangement of the connectivity of the

data set. The speculation of the generality of our observations to other types of networks

provides a lot of potential for continuing this research.

The main purpose of our community development was to disrupt a terrorist network. With

this goal in mind, we formulated a community guided shortest path interdiction network
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�ow model. Subcase 3.9 provided the necessary community compositions to guide the

shortest path interdiction model towards a faster solution, and it was the only subcase tested

for validation. More trials using other subcases may reveal a more optimal community

composition, but subcase 3.9 demonstrated the utility in reducing solution time by using

our community guided approach. Our focus on �rst de�ning a purpose for community

detection helped guide our algorithm development into a working procedure with tangible

results. We believe that detecting purpose-driven communities in multiplex networks by

thresholding user-engaged layer aggregation is a promising area of research that should be

continued and examined with more data sets in the future.
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