
NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

POSE AND WIND ESTIMATION FOR AUTONOMOUS
PARAFOILS

by

Charles W. Hewgley IV

September 2014

Dissertation Supervisor: Roberto Cristi

Approved for public release; distribution is unlimited



THIS PAGE INTENTIONALLY LEFT BLANK



REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

12–09–2014
3. REPORT TYPE AND DATES COVERED

Doctoral Dissertation 2008-08-13—2013-09-30
4. TITLE AND SUBTITLE

POSE AND WIND ESTIMATION FOR AUTONOMOUS PARAFOILS
5. FUNDING NUMBERS

6. AUTHOR(S)

Charles W. Hewgley IV

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Department of the Navy

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense
or the U.S. Government. IRB Protocol Number: N/A

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This dissertation presents two contributions to the development of autonomous aerial delivery systems (ADSs), both of which advance
the prospect of enabling an ADS to land on a moving platform, such as the deck of a ship at sea. The first contribution addresses the
problem of estimating the target’s position and velocity. A novel, dual-rate estimation algorithm based on Unscented Kalman filtering
allows the ADS to use visual measurements from a fixed monocular sensor to estimate the target’s motion even when the ADS’s
swinging motion in flight causes the target to be out of view. The second contribution addresses the problem of planning a landing
trajectory considering winds in the vertical air mass between the target’s height and the ADS’s altitude. A wind model that assumes a
logarithmic relationship between horizontal wind velocity and height in the air mass enables the ADS’s guidance algorithm to plan a
valid landing trajectory in the presence of these winds. This dissertation contains simulation results for the visual estimation algorithm
that show that estimation errors are minimal after estimator convergence. Flight test results indicate that the wind modeling algorithm
was useful for computing landing trajectories.

14. SUBJECT TERMS

Aerospace and electronic systems, Robot vision systems, Kalman filters, State estimation, Aircraft navigation
15. NUMBER OF

PAGES 245
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2–89)

Prescribed by ANSI Std. 239–18



THIS PAGE INTENTIONALLY LEFT BLANK

ii



Approved for public release; distribution is unlimited

POSE AND WIND ESTIMATION FOR AUTONOMOUS PARAFOILS

Charles W. Hewgley IV
Commander, United States Navy

B.S., Carnegie Mellon University, 1992
M.S., Naval Postgraduate School, 2001

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2014

Author: Charles W. Hewgley IV

Approved by: Roberto Cristi Oleg A. Yakimenko
Professor of Electrical and Computer
Engineering
Dissertation Committee Chair and
Dissertation Co-Advisor

Professor of Mechanical and Aerospace
Engineering
Professor of Systems Engineering
Dissertation Co-Advisor

Xiaoping Yun Robert G. Hutchins
Distinguished Professor of Electrical
and Computer Engineering

Associate Professor of Electrical and
Computer Engineering

Nathan J. Slegers
Associate Professor of Mechanical and
Aerospace Engineering

Approved by: R. Clark Robertson
Chair, Department of Electrical and Computer Engineering

Approved by: O. Douglas Moses
Vice Provost for Academic Affairs

iii



THIS PAGE INTENTIONALLY LEFT BLANK

iv



ABSTRACT

This dissertation presents two contributions to the development of autonomous aerial de-
livery systems (ADSs), both of which advance the prospect of enabling an ADS to land on
a moving platform, such as the deck of a ship at sea. The first contribution addresses the
problem of estimating the target’s position and velocity. A novel, dual-rate estimation al-
gorithm based on Unscented Kalman filtering allows the ADS to use visual measurements
from a fixed monocular sensor to estimate the target’s motion even when the ADS’s swing-
ing motion in flight causes the target to be out of view. The second contribution addresses
the problem of planning a landing trajectory considering winds in the vertical air mass be-
tween the target’s height and the ADS’s altitude. A wind model that assumes a logarithmic
relationship between horizontal wind velocity and height in the air mass enables the ADS’s
guidance algorithm to plan a valid landing trajectory in the presence of these winds. This
dissertation contains simulation results for the visual estimation algorithm that show that
estimation errors are minimal after estimator convergence. Flight test results indicate that
the wind modeling algorithm was useful for computing landing trajectories.
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Executive Summary

Autonomous aerial delivery systems (ADSs) are autonomous vehicles that are deployed
from an airborne carrier vehicle and that descend to the earth under a steerable round
parachute or rectangular parafoil canopy. These systems are used by the U.S. Army and
U.S. Air Force most often for resupply of ground forces. In this way, ADSs represent the
modern evolution of aerial delivery, or airdrop, techniques that came into widespread use
during the Second World War. Two current Micro Light-Weight systems (5 kg to 77 kg)
are shown in Figure 1. Image 1a is the Mosquito by Stara Technologies, Inc. and image 1b
is the Onyx by Atair Aerospace, Inc. These two images suggest that the various systems
currently in use in general have very similar configurations.

Modern ADSs have achieved a high degree of accuracy in guiding toward a fixed target
on land. In recent conflicts in Iraq and Afghanistan, the U.S. Air Force and U.S. Army
have relied on aerial delivery to resupply forward operating bases that are widely dispersed
about the region of operations and often in rough terrain.

The two contributions to the science of aerial delivery contained in this dissertation were
developed with the goal of enabling an autonomous ADS to land on a moving platform,
such as the landing deck of a ship at sea. To accomplish this feat, the ADS must estimate
both the position and velocity of the target and then plan a trajectory to follow down to
the target. The first contribution described herein is the development of a novel, dual-rate
estimation scheme based on an Unscented Kalman filter that enables a moving observer to
use measurements from a monocular visual sensor to estimate the position and velocity of
a target even when the target is intermittently out of view. The second contribution is the
development of an algorithm that allows a landing ADS to assume a logarithmic functional
relationship between height above landing and horizontal wind speed in its calculation of
landing trajectory. Key details for each of these contributions follow below.

An overhead depiction of an ADS in flight estimating target position and velocity to com-
pute an intercept point is illustrated in Figure 2. The main challenge of the visual estimation
portion of the landing task is that the typical ADS tends to oscillate in yaw in flight. This
oscillation can be caused by wind or by the vehicle dynamics after a control actuation.
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(a) Mosquito ADS (b) Onyx ADS

Figure 1: Two aerial delivery systems (ADSs) in flight. Both are Micro Light-Weight
systems: 5 kg (a) and 77 kg (b) (images reproduced from Lafond et al. [1].)

Rather than adding a complicated panning mount to the visual sensor, an algorithm was de-
veloped that uses the motion of the ADS in an advantageous way. When the target swings
out of the fixed field of view of the visual sensor, and then later swings back in view, these
two snapshots of the target are used to generate one measurement based on the two-view
epipolar constraint. The duration that the target remains out of view represents one sam-
pling interval, and a much shorter interval (higher sampling rate) is used when the target
remains in view. Furthermore, the relationship between the three-dimensional (3D) state
of the target and the two-dimensional (2D) measurement of its image on the image plane is
highly nonlinear. The estimation algorithm described in this dissertation uses the recently-
developed Unscented Transform to characterize errors in the target estimate based on errors
in measurement.

A profile view of an ADS’s planned landing trajectory to the aft landing deck of the ship
is depicted in Figure 3. To plan a landing trajectory such that the ADS’s arrival at the
height of the landing deck is simultaneous with its arrival at the intercept location, the
guidance algorithm must consider the effect of the wind throughout the entire descent.
A sample profile of horizontal wind velocity versus height is shown on the left side of
Figure 3. Because the ADS will have no measurements of wind velocity at altitudes below
its own, it needs a working assumption, or model, of wind horizontal velocities between

xxii



Figure 2: Estimating target position and intercept. An ADS in flight uses a sensor to
estimate target motion and to compute an intercept point in this overhead depiction.

Figure 3: Trajectory for shipboard landing. An ADS in flight plans a trajectory for ship-
board landing considering an estimated wind profile.

its altitude and the landing height. A logarithmic model of near-surface boundary layer
winds represents a good balance between fidelity and simplicity. To take advantage of the
logarithmic profile, a prototype ADS was developed that used an algorithm for estimating
the shape of the logarithmic wind profile based on current altitude winds. The wind profile
parameters so determined were also incorporated into the landing trajectory calculations.

A development team consisting of members from Naval Postgraduate School (NPS) and
University of Alabama in Huntsville built a small prototype ADS called Snowflake and

xxiii



Figure 4: Snowflake prototype ADS. The Snowflake prototype ADS glides toward landing
at Camp Roberts, California.

conducted a series of flight tests starting in 2008 and continuing to the present day. During
some of these tests, the team gathered data to support visual estimation algorithm develop-
ment; during others, the team evaluated an implementation of the wind modeling algorithm.
The Snowflake prototype is shown in Figure 4 in flight above McMillan Airfield, Camp
Roberts, California, which was the location for the majority of flight tests. Video data
gathered from a camera mounted to the Snowflake during the flight tests served as a model
upon which a simulation of the visual estimation algorithm was developed. The estimation
algorithm was implemented in the Simulink modeling environment and was executed using
synthetic video input.

The output of the simulations indicated that the estimation algorithm was able to converge
to small position estimation error values in times on the order of 20 s to 30 s under various
measurement noise conditions. The algorithm was also found effective in estimation of
target velocity. Convergence to small values of estimation error occurred within 15 s under
various measurement noise conditions. The wind modeling algorithm was flight tested in
simultaneous side-by-side deployments comprising one system using the logarithmic wind
profile model and one system using the simple assumption of a constant wind profile. The
system using the logarithmic wind profile was found to make correct choices in the terminal
phase of flight. Foremost among the recommendations for future research is the integration
into the Snowflake prototype of a visual sensing system that records video using a time
reference common to all telemetry and other sensor data.
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CHAPTER 1:
Introduction: Shipboard Delivery

The resupply of ships at sea is a challenging task that is a hallmark of U.S. Navy blue-water
operations. One common method that naval forces use to transfer supplies from one ship to
another is known as vertical replenishment (VERTREP). This technique involves a rotary-
wing aircraft transferring sling loads from the deck of one ship to the deck of another.
While it is both effective and fast, this method is also risky and expensive. This chapter
introduces autonomous aerial delivery systems (ADSs) as a means to provide a fast but safe
and economical method of delivering cargo to a ship underway. The chapter opens with a
mathematical analysis of the problem of landing an ADS on a moving platform such as a
ship and continues with a sample operational scenario in which an ADS would be used for
such a task.

1.1 Problem Description
A typical ADS is shown in Figure 1.1b. The U.S. Army at its Natick Soldier Research,
Development, and Engineering Center (NSRDEC), in Natick, Massachusetts, is actively
developing such systems under the Joint Precision Airdrop System (JPADS) program [1].
Shown is the Ultrafly by Wamore, Inc., which is designed to deliver a suspended cargo
pallet to a fixed location on the ground. The system has the capability of self-steering in
flight by using control lines to deflect the left and right trailing edges of the parafoil canopy
shown above the suspended cargo. The Ultrafly ADS uses an on-board Global Position-
ing System (GPS) receiver to determine its current position and then to compute guidance
commands to a preprogrammed fixed location on the ground. The current shipboard de-
livery technique using a piloted helicopter is shown in Figure 1.1a. For shipboard delivery
capability, the first and most obvious necessary change to an autonomous ADS such as
the Ultrafly is to replace the guidance algorithm with one designed to seek a moving tar-
get. In this section, the mathematical framework is constructed for the problem of terminal
guidance of an autonomous parafoil to a moving landing platform.
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(a) (b)

Figure 1.1: Comparison of traditional VERTREP with precision aerial delivery. USS Sacramento
(AOE-1) in the foreground performs VERTREP with USS Lassen (DDG-82) in the background
in (a). U.S. Navy photograph by Photographer’s Mate Airman Nicole Carter, 2003. In (b), the
Ultrafly ADS is shown in flight. Image reproduced from Lafond et al. from [2].

1.1.1 Trajectory Planning and Optimization
An oft-repeated maxim for large projects is to “begin with the end in mind.” For the study
of ADSs, this idea suggests analyzing the landing problem first. The final outcome, or final
conditions, of the landing problem are simple: the ADS should arrive at the coordinates of
the target, and at the surface of the world, simultaneously. This desired final condition lends
itself to optimization techniques: finding a solution—a final trajectory—that minimizes the
differences between desired final conditions and achieved final conditions. This section
contains an example of one optimization technique developed jointly by Naval Postgrad-
uate School (NPS) and University of Alabama in Huntsville (UAH) during ADS research
and testing. The purpose of describing this example is to show how the key problem as-
pects to be discussed subsequently, target estimation and wind profile modeling, fit within
the larger framework of the landing problem.

Consider the three-dimensional (3D) depiction of the landing trajectory shown in Fig-
ure 1.2. The final trajectory is shown as a thick dashed line between the two terminal points.
The ADS must conform to certain conditions at these boundary points; therefore, the tra-
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Figure 1.2: Final Turn Trajectory in 3D. The intended landing target of the ADS is shown as an
X on the world surface.

jectory planning problem is related to the two-point boundary-value problem (TPBVP)
family. In this case, the second terminal point is not actually the target on the surface but
a point in the air at the beginning of the final straight-in descent to the target. The TPBVP
is solved to determine what path the ADS should steer to travel from an initial state x0, the
first boundary point, to a final state x f , the second boundary point, arriving at the final state
at a specified final time t f .

These boundary points consist of two horizontal position coordinates and vehicle track and
are summarized as:

x0 =

x0

y0

ψ0

 at t0 x f =

x f

y f

ψ f

 at t f (1.1)

where ψ is defined as the angle between the ADS’s track over the ground and the positive
x-axis. The vertical coordinate is missing from the boundary points because the final trajec-
tory is planned in two dimensions only; the ADS descends at a constant rate in the vertical
dimension. In summary, the optimization problem is to calculate a sequence of steering
commands ψ̇(t) such that the ADS travels from x0 to x f , minimizing the difference be-
tween x f and the actual final state achieved, at the time of arrival t f .
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The optimization technique used by the NPS and UAH researchers to solve this TPBVP
is a simple but powerful and flexible technique known as Inverse Dynamics in the Virtual
Domain (IDVD). This technique is introduced by Yakimenko [3], and its application to
the guidance of the Pegasus parafoil is described in subsequent articles with Kaminer [4]
and with Kaminer and Pascoal [5]. The use of IDVD for the specific purpose of calcu-
lating an optimal trajectory for an autonomous parafoil is well documented by Slegers
and Yakimenko [6], [7], and will only be summarized here. With this method, a vir-
tual parameter τ̄ = τ/τ f is used as a parameter for polynomials for both dimensions of
the two-dimensional planar trajectory. The assumption of constant vertical velocity is
used to account for the third dimension of parafoil motion. The parametrization of the
two-dimensional planar trajectory in the x- and y-directions of the coordinate system are
parametrized as two polynomials P1(τ̄) and P2(τ̄) as

x(τ̄) = P1(τ̄) = a10 +a11τ̄ +a12τ̄
2 +a13τ̄

3 +b11 sin(πτ̄)+b12 sin(2πτ̄)

y(τ̄) = P2(τ̄) = a20 +a21τ̄ +a22τ̄
2 +a23τ̄

3 +b21 sin(πτ̄)+b22 sin(2πτ̄)
(1.2)

where coefficients ai j and bi j are defined by initial and final boundary conditions on poly-
nomials P1(τ̄) and P2(τ̄).

One of the hallmarks of the IDVD method is that, in this method, the virtual parameter τ̄

is not directly proportional to time. In fact, the correspondence between the virtual domain
and the time domain is accomplished by defining a speed factor λ such that

λ (τ) =
dτ

dt
. (1.3)

The decoupling of the virtual domain and the time domain in IDVD allows the shape of the
trajectory to be varied independently of the trajectory’s duration in time. In other words,
the trajectory’s shape can be independent of the speed at which the parafoil moves along
the trajectory.

To apply the IDVD technique to the moving target landing problem, the boundary condi-
tions first need to be specified. The initial conditions x0 are the elements of the current state
of the ADS at the instant that it initiates the final turn; the final turn is then triggered by
a separate process. The final conditions x f are that the ADS is airborne at some distance
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Lapp directly in line with the target intercept position along the assumed wind vector and
that the ADS is tracking directly at the intercept position. The desired straight-in approach
time T des

app , along with the ADS’s no-wind horizontal speed V ?
h and horizontal wind speed

W , determine the approach distance:

Lapp = (V ?
h +W )T des

app . (1.4)

This value combines with the computed position of the target at the landing time (the target
intercept position) Equation (1.7) to constitute the full set of final conditions:

x f =

xT(tstart)−VT
zstart
V ?

v
+(V ?

h +W )T des
app

0
−π

 at t = t f ,τ = τ f . (1.5)

The final value of the x-coordinate here assumes constant wind profile W . In these equa-
tions, tstart is the starting time of the final approach maneuver, and xT and VT are the position
coordinate and velocity of the target, respectively. The variables related to the ADS are its
starting altitude zstart as well as its no-wind horizontal and vertical velocities V ?

h and V ?
v .

The horizontal wind speed, assumed to be constant in this case, is denoted by W .

Next is the calculation of the coefficients in the polynomial equation (1.2) and also the
derivatives of these equations using the boundary conditions expressed in terms of virtual
parameter τ . There is only one varied parameter for this optimization problem, which is the
final virtual parameter value τ f . An efficient gradient-free optimization algorithm can then
perform these steps iteratively, seeking to find the value of τ f that minimizes a specified
cost function.

Once the algorithm determines the optimal value of τ f , it can then define a discrete set
of computation points from τ = 0 to τ = τ f and calculate desired track ψ and turn rate
ψ̇ at each of these points. The set of turn rate values ψ̇ are then a schedule of control
inputs for the ADS’s autopilot to follow. The advantage of having a future schedule of
control inputs is that this schedule is useful for advanced control schemes such as model
predictive control (MPC). Slegers and Costello have applied this control scheme to parafoil
guidance [8].
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Another advantage that this method has is that an optimal solution can be easily and quickly
recalculated while the ADS is in flight. If unexpected winds deflect the ADS from the
optimal trajectory, the algorithm can simply compute another optimal trajectory using the
ADS’s current state for the initial conditions.

Notice that target estimation and wind profile modeling have a part to play in the final
trajectory calculation because both target and wind parameters appear in the final boundary
conditions in Equation (1.5). Even though Equation (1.5) has only a single value of W and
assumes a constant wind profile, Yakimenko and Slegers [9] have recently extended this
formulation to handle various wind profiles.

1.1.2 Target Motion Estimation
Slegers and Yakimenko [7] devised the coordinate framework that is relevant to this ter-
minal guidance problem. Consider the overhead view of the landing scenario shown in
Figure 1.3. This is the same landing scenario as that shown in Figure 1.2, this time shown
with more details in two dimensions. A diagram of the coordinate frame is shown in the
lower-left corner, with the x- and y-axes in the plane of the world’s surface and the z-axis
positive in the down direction. The ADS’s parafoil canopy is shown on the right side, ini-
tially moving in the positive x-direction. The target ship is shown in the upper-left corner,
initially moving in the negative x-direction. A vector representing prevailing wind direction
in the negative x-direction is shown at bottom center.

For the moving target scenario, one must first define the starting time, labeled tstart. In this
case, it is assumed that the ADS follows a two-stage trajectory of which the first stage is
a loitering stage during which the ADS flies a holding pattern upwind of the target while
calculating the moment at which it should exit the loiter pattern and begin the approach
for landing. Therefore, tstart is defined as this moment of exiting the loiter pattern. In
Figure 1.3, the labels tstart indicate the positions of the ADS and the target at this time.

The target’s location may be defined by the change in its position along the x-axis from
the moment the parafoil leaves the loitering phase to the moment the parafoil lands; that is,
from tstart until landing. The assumption, in this case, is that the landing platform is moving
in the negative x-direction with constant speed. The resultant change in x-coordinate, is
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Figure 1.3: ADS in flight with moving target landing platform. In this overhead depiction, the
ADS estimates target motion to compute an intercept point.

defined as:
∆xT =VT

zend− zstart

V ?
v

=−VT
zstart

V ?
v

(1.6)

where the ending altitude zend is assumed to be zero. The ratio zstart/V ?
v determines the

time duration from the moment the loitering phase is ended to the moment the parafoil
lands, and VT is the constant speed of the target. Furthermore, zstart is the altitude of the
ADS at tstart, and V ?

v is an assumed-constant vertical velocity. Note that Equation (1.6)
was previously published in a paper by Hewgley [10, Eq. 1]; however, the right-side of the
equation was erroneously given as positive in that paper. Equation (1.6) is the corrected
version with a negative sign now properly in place before VT. The position of the landing
platform at any given moment along the x-axis is labeled xT(t). This definition is justified
because in actual implementation, xT(t) is a value that is updated on every execution of the
guidance algorithm’s software control loop.

The guidance algorithm calculates the distance L from the ADS’s position at tstart to a point
abeam of the target’s final position at the time of landing along the x-axis. In words, these
expressions state that, commencing at tstart, the parafoil must move a distance L along the
x-axis before commencing the final turn to land on a moving target that is at a position on
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the x-axis determined by

xT(tend) = xT(tstart)+∆xT = xT(tstart)−VT
zstart

V ?
v

. (1.7)

For convenience, let the x-coordinate of the ADS’s starting position be zero. Assuming
that the target traveled at a constant velocity VT in the negative x-direction from its starting
location xT(tstart), we find the value of distance L is

L = xT(tstart)−
VT

V ?
v

zstart. (1.8)

Slegers and Yakimenko used an on-target landing condition—that the ADS must be both at
the target and also at ground level simultaneously—to solve for an expression relating the
ADS starting altitude zstart to the following parameters [7]:

• V ?
h , the ADS’s no-wind, constant horizontal velocity,

• V ?
v , the ADS’s constant vertical velocity,

• Tturn, the time duration for the ADS to complete the final 180° turn,
• T des

app , the desired time duration for the ADS’s final, straight approach to landing,
• L, the distance that the ADS travels past the landing location before initiating its final

turn, and,
• W , assumed constant horizontal wind velocity along the x-axis toward the coordinate

frame origin.

Equation (1.8) is useful to recast distance L in terms of parafoil and target motion. The
resulting equation is solved for zstart,

zstart =−V ?
v

xT +V ?
h (Tturn +2T des

app )

V ?
h −W −VT

(1.9)

which expresses the altitude at which the ADS must exit the loitering phase in order to
achieve a landing on the moving target platform. Equation (1.9) indicates that for the guid-
ance algorithm to calculate zstart, it must have estimates of target position xT, target speed
VT, and horizontal wind speed W . A key assumption that allowed a simple expression for
Equation (1.9) was that the speed of the wind W was constant throughout the descent of the
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ADS. In general, the wind varies with height and with time, and so a better mathematical
representation of the wind merits further investigation.

1.1.3 Wind Profile Modeling
By their very nature, all unpowered ADSs that rely on parachutes or parafoils are gliding
machines and will drift with the wind. When landing accuracy is a performance goal for
an ADS, some estimate, or model, of the wind in that part of the atmosphere at and below
the ADS’s altitude, down to the earth’s surface, must be considered. This model takes the
form of a wind profile, or a description of the horizontal wind magnitude, and sometimes
wind direction, over a range of heights above ground level.

Knowledge of an accurate wind model is important because wind disturbance during the
landing phase of an autonomous parafoil’s flight is a leading contributor to miss distance.
In fact, flight tests of a small prototype ADS conducted by NPS and UAH have indicated
that errors due to unknown winds, along with errors in altitude estimation, were the two
largest contributors to miss distance [11].

For an autonomous parafoil system, unknown winds can have their most profound effect
on landing accuracy just prior to touchdown. For the trajectory illustrated in Figure 1.3, the
ADS commences a final 180° turn for landing at the target assuming that this final approach
is aligned with the wind vector. Furthermore, Equation (1.9), which determines the altitude
zstart at which the ADS should exit the loiter phase and begin the approach phase, is based
on the simplifying assumption that the final wind estimate is constant down to the target.
The assumption of constant wind velocity across a range of altitudes near the earth’s surface
does not agree with empirical evidence. Introductory meteorology texts such as Salby [12]
and Stull [13] examine this topic in detail.

Consider the profile view of the ADS’s final landing trajectory to a moving target shown
in Figure 1.4. Vectors representing horizontal wind velocity at altitudes from the surface
up to the ADS’s starting height are shown on the left side of the figure. In Figure 1.4
the horizontal wind velocity increases with altitude, but not according to a simple linear
relationship.

One method of defining a wind profile is with an analytic functional relationship, such as
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Figure 1.4: Landing ADS with wind profile. An ADS in flight plans a trajectory to landing
considering some estimated wind profile.

horizontal wind magnitude being a function of height above the surface, or W (z). If the
guidance algorithm has knowledge of what the functional relationship for the wind model
is, then it can calculate values of horizontal wind velocity for every intermediate height
between its current altitude and the earth’s surface and incorporate this knowledge into its
trajectory planning. A challenge for the descending ADS in this situation is that it might
have no direct measurement of winds below its current altitude. In other words, the ADS
may not be able to rely on a ground-based sensor or on another airborne sensor at a lower
altitude to transmit wind information.

In this case, the guidance algorithm must make an assumption about the functional rela-
tionship W (z), such as in the following examples:

W (z) =


W1 z < α

W2 α ≤ z < β

W3 β ≤ z

piecewise constant (1.10)

W (z) = αz+β linear (1.11)

W (z) = α ln(−z)+β logarithmic (1.12)

where the vertical coordinate z is positive in the down direction from the origin at the
surface of the earth, as defined in Figure 1.3; therefore, the value of z for an object in
flight is negative. Equations (1.11) and (1.12) demonstrate that, along with the assumption
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Figure 1.5: Wind profile examples. These include: (a) logarithmic, and (b) linear profiles.

of the form of the functional relationship, there may also be unknown parameters, such
as α and β in these examples. A graphical representation of the linear and logarithmic
profiles is shown in Figure 1.5. In summary, the wind profile modeling problem for the
guidance algorithm is to estimate the unknown parameters of the assumed wind model as
the ADS descends through the air mass, collecting horizontal wind measurements at its
current altitude. A recursive estimation technique lends itself to this problem.

At this point, the two main aspects of the problem are:

target estimation, determining through some means both the position and velocity of a
target moving on a two-dimensional (2D) world surface, and

wind profile modeling, constructing a mathematical functional relationship W (z) for wind
velocity in the air mass at all altitudes between the surface target and the airborne ve-
hicle.

These two aspects of the problem, once solved, enable the ADS to plan a final trajectory
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for landing on the target. The trajectory planning process is examined in more detail in
Section 1.1.1.

1.1.4 Other Considerations
To this point, this section has contained a discussion of the technical aspects of the ship-
board landing problem which identified two key aspects of the problem: target estimation,
and wind profile modeling. It is fair now to ask whether shipboard delivery using an ADS
is feasible. In other words, is shipboard aerial delivery a task that could be accomplished on
a regular basis with operational U.S. Navy ships? The answer to that question is unknown
because shipboard aerial delivery by an autonomous ADS has not even been demonstrated
in an experimental setting to date. The remainder of this section contains a survey of traits
and capabilities which may make shipboard landing by an autonomous ADS both possible
and feasible.

Figure 1.6: Standard shipboard approaches for helicopters. These approaches are from a standard
procedures manual for flight deck operations from [14].

One place to start is to examine helicopter shipboard landing, which is practiced and exe-
cuted with great regularity by the U.S. Navy. Various standard helicopter approach paths
are shown in Figure 1.6. In these methods, the helicopter approaches the landing deck from
astern, aft of the ship’s superstructure. For an ADS to replicate such an approach, it must
have the capability to plan and execute an appropriate final trajectory.

Consider the approach to landing trajectories by two different ADSs shown in Figure 1.7.
The spiraling approach trajectory flown by a set of four Onyx MLW ADSs developed by
Atair Aerospace, Inc. is shown in Figure 1.7a, and a recorded flight trajectory of the NPS
and UAH Snowflake prototype ADS is shown in Figure 1.7b. The Snowflake trajectory is
shown adjacent to an overhead image of a helicopter carrier as a notional illustration of a
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(a) (b)

Figure 1.7: Trajectory comparison between Onyx and Snowflake. The descent trajectory of a set
of four Onyx MLW ADSs is shown in 3D [15] in (a). For comparison, a notional Snowflake ADS
trajectory is shown in (b).

shipboard approach. The Snowflake flies a box-shaped loiter pattern, then a straight path
to a 180° final turn to landing. To replicate a standard helicopter approach, the planned
approach of the Snowflake ADS is preferable to the simple, spiraling approach of the Onyx
ADS because a spiral approach from overhead entails a high risk of collision with the ship’s
superstructure.

Another enhancement that may be necessary for feasibly landing a parafoil accurately on
a moving target is the capability to aim for a specific location or landing area on the target
itself. This capability is useful because different ships have different landing areas as a
function of the ship’s design. For example, U.S. Navy combatant ships are configured to
have the flight deck located on the fantail aft, whereas some auxiliary ships may have the
appropriate landing area on a forward deck, toward the bow of the ship. A few ships,
notably the hospital ships USNS Mercy (T-AH-19) and USNS Comfort (T-AH-20), have
helicopter flight decks positioned amidships, as illustrated in Figure 1.8. The capability for
the ADS to select a specific area on the target for landing suggests the use of a visual sensor
both for terminal guidance and for landing area identification.

In the scenario of logistic resupply to a vessel underway proposed in the opening of this
chapter, the target is cooperative. In other words, the target maintains a course and speed
most conducive to a successful landing by the ADS. The target could also be cooperative
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Figure 1.8: Two ships with different locations for helicopter landing decks. USNS Pecos (T-
AO-197) in the foreground and USNS Mercy (T-AH-19) in the background demonstrate various
configurations for helicopter landing deck placement. Official U.S. Navy photograph by Chief
Photographer’s Mate E. G. Martens.

by having an automatic beacon that broadcasts the target’s position, course, and speed
at regular intervals so the landing algorithm has more information with which to plan its
trajectory. On the other hand, for ADSs in general to be useful, they should not require the
installation of significant additional equipment on board the destination ships.

Another possible scenario is that the target vessel is unaware of the presence of the airborne
ADS and, therefore, is uncooperative. This scenario could involve the effort to land a covert
sensor package aboard a vessel of interest. In this case, the target, being unaware, is most
likely not maneuvering evasively but neither is it broadcasting signals that are especially
helpful to the ADS. The uncooperative target that is maneuvering evasively for some reason
is another matter. In that case, the ADS would almost certainly fail in its landing attempt.
For the ship to evade the landing ADS is exceedingly easy; therefore, the uncooperative
and evasive target scenario is not considered in this work.
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1.2 Prescriptive Scenario
A logical extension to the feasibility discussion in Section 1.1.4 is to question whether
shipboard delivery using an ADS is practical. In other words, does shipboard aerial deliv-
ery make military or economic sense? That question is not answered in this dissertation;
however, a first step in constructing an answer is to describe a scenario in which shipboard
aerial delivery might be used.

1.2.1 Mission Planning
The traditional method of resupplying ships underway is known as underway replenishment
(UNREP). This method involves sending a support ship out to rendezvous with the ship to
be resupplied and then maneuvering both ships in a side-by-side formation while stores are
transferred using cables and fuel is transferred through hoses connecting the two ships. The
two vessels in Figure 1.8 are engaged in UNREP. During an UNREP, a VERTREP can also
occur; in fact, the two ships need to be fairly close to make VERTREP feasible. The key
advantage of aerial delivery over UNREP and VERTREP is speed of response: an aerial
delivery mission could conceivably be planned and executed in a matter of hours, not days
as in the case of traditional UNREP. A shore-to-ship helicopter VERTREP is possible but
requires that the receiving ship be fairly close to shore. For these reasons, aerial delivery
to ships underway, far from the coast, would be especially useful for high-value, mission-
critical components for which at-sea spares are not readily available, such as components
for ever-more sophisticated shipborne radars and unmanned aircraft systems (UASs).

Mission planning for aerial delivery resupply of high-value components to a ship underway
in the South China Sea might proceed as follows. A surface combatant underway on indi-
vidual patrol is shown in Figure 1.9. At this patrol location, an aerial delivery mission can
be planned and executed in hours, whereas it may take days for the needed component to
be loaded aboard a Combat Logistics Force (CLF) ship and for the CLF ship to be diverted
to rendezvous with the combatant. A cargo aircraft such as a C-130 Hercules transport is
launched instead to rendezvous with the ship.

1.2.2 Rendezvous and System Deployment
Upon arriving at the ship’s location, the aircraft’s crew calculates coordinates of the loca-
tion upwind of the ship’s position at which the ADSs will be deployed from the aircraft.
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Figure 1.9: Overview of aerial delivery resupply mission. The combatant ship on patrol in this case
is best served with aerial delivery resupply. Map Source: U.S. Energy Information Administration,
International Hydrographic Organization.

This point is called the computed air release point (CARP) by definition in the U.S. De-
partment of Defense dictionary of terms [16]. An overhead view of the CARP is shown in
Figure 1.10. This point is calculated such that, with the prevailing winds and the receiving
ship’s motion, the ADS is able to calculate a feasible trajectory that it will be able to fly to
a landing on the ship’s aft flight deck.

1.2.3 Aerial Delivery System Approach
After one or more ADSs are deployed, each ADS enters a holding pattern as it descends and
calculates its approach to the target ship. In this scenario, the receiving ship is a cooperative
target; however, if the receiving ship wishes to maintain radio silence, a visual sensor on
the ADS can track the landing area on the receiving ship and provide guidance commands
to the ADS autopilot. The calculation of the final portion of the trajectory to landing is, of
course, the most critical phase of the flight. The trajectory planning algorithm aboard the
ADS must be sophisticated enough to plan a precise landing trajectory that will approach
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Figure 1.10: Release point for aerial delivery resupply mission. The transport aircraft computes
the CARP in flight, then releases the ADS at that point.

the receiving ship’s flight deck from aft of the ship’s superstructure. The holding pattern
and transition to the final trajectory is shown in Figure 1.11.

1.2.4 Contingency Design Features
Future design evolutions of the ADS described above must consider contingencies such
as the ADS being unable to reach the ship for an on-deck landing or that the ship’s cap-
tain deems the approach of the ADS unsafe and commands an abort. For these instances,
provision must be made for emergency flotation in the container system so that the ADS
can make a landing at sea in the vicinity of the receiving ship. The cargo container must
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Figure 1.11: Aerial delivery system rendezvous with target. The ADS flies a holding pattern,
then acquires the target and computes a trajectory to land.

have the capability to be hoisted on deck from the sea surface. This requirement sets the
maximum weight limit for an individual cargo container.

1.2.5 Military Utility of Shipboard Aerial Delivery
The concept of operations for the use of aerial delivery for the resupply of ships underway
has significant potential in the near term as an additional logistic delivery method that can
be used when an extremely quick response time is needed. As future mission demands on
the U.S. Navy’s fleet grow, while the capacity of the CLF simultaneously declines, the use
of aerial delivery may become a necessity for future logistics planners.

1.3 Contributions of this Work
So far in this chapter, the technical fundamentals of the shipboard landing problem for an
autonomous parafoil have been introduced, and a first examination has been made of the
feasibility of cargo deliveries to U.S. Navy ships using this idea. The contributions to the
science of aerial delivery that are contained in the later technical chapters of this work are
detailed in this section.
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The main aim of this work is to advance the science of autonomous aerial delivery so that
it can be useful to the U.S. Navy in a maritime setting. The idea of maritime use of ADSs
for cargo delivery was first published by Hewgley [17]; the aim of this dissertation is to
advance the science of autonomous ADSs for this purpose. Toward this aim, the two main
contributions of this work are a target estimation method for an airborne ADS to determine
the target’s course and speed using visual sensing and a wind profile modeling method that
enables the ADS to calculate the effects of winds on its landing trajectory.

The target estimation method developed in this dissertation uses a monocular vision sensor.
Such a sensor is passive and does not require any supporting equipment to be installed on
the target. Monocular sensors are inexpensive to implement for rapid prototyping and
field testing. The target estimation method features a novel, dual-rate estimation scheme:
the estimator uses a constant sampling rate when the target is continuously in view and
a variable sampling rate that handles periods when the target is out of view by sampling
just the scenes immediately before the target disappears and immediately after the target
reappears. This technique is necessary because the target intermittently leaves the field of
view of the fixed monocular sensor due to the inherent side-to-side swinging motion of an
ADS in flight. The target estimation algorithm is based on Unscented Kalman estimation
with two different underlying state-space models: one model when the target is in view
and another model for when the target has been out of view and then returns to view.
The Unscented Transform is used as part of this algorithm to estimate uncertainty in the
inherently nonlinear transformation from the 3D scene to the 2D image.

The wind profile modeling method presented in this dissertation offers an improvement to
the simple assumption of constant or piecewise constant horizontal wind velocity profile
found in the original implementation of the Snowflake ADS guidance algorithm by Slegers
and Yakimenko [7]. A method for including the assumption that the horizontal wind profile
is not constant but follows a logarithmic curve of wind speed versus height above ground
is described in this dissertation. The wind profile modeling algorithm estimates the shape
of the logarithmic curve using a recursive least squares (RLS) estimation scheme with
successive wind measurements made by the ADS as it descends. This wind model more
accurately represents typical wind profiles in nature and better allows the ADS’s guidance
algorithm to calculate the effect the wind will have on the ADS’s landing trajectory. This
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wind model was evaluated during flight tests of the Snowflake prototype ADS in which the
logarithmic wind profile model enabled Snowflake to calculate the point at which to initiate
the final turn to the target. The results of this series of flight test experiments involving the
logarithmic wind model have been published in a paper by Hewgley and Yakimenko [18].

In fact, flight testing was a large part of the effort involved in this dissertation work. A
secondary contribution of this dissertation is a set of scripts written in the MATLAB pro-
gramming language for processing and storing in data structures recorded flight test data
from several versions of the Snowflake prototype ADS.

1.4 Dissertation Organization
Following this chapter, a brief history of the military use of aerial delivery is contained in
Chapter 2 to provide a perspective on the origins of the technology in current ADSs. A sum-
mary of current research in ADS technology as well as a survey of other research related
to autonomous landing, computer vision, and visual estimation is contained in Chapter 2.

The theoretical development of the visual estimation algorithm, as well as results of a
simulation of the working estimation algorithm based on video from a camera externally
attached to the Snowflake ADS prototype during flight testing, is contained in Chapter 3.

Chapter 4 begins with an introduction to the atmospheric science upon which the logarith-
mic wind profile is based, followed by an explanation of how the wind model affects the
decision-making of the guidance algorithm used in the Snowflake ADS. Results of flight
testing conducted to validate and evaluate the logarithmic wind model versus the constant
wind profile assumption are contained in Chapter 4.

The conclusions drawn both from the simulations described in Chapter 3 and from the flight
tests detailed in Chapter 4 and Appendix B are summarized in Chapter 5. Also, this final
chapter contains suggestions for directions for continuing research.

MATLAB code listings including important routines used for simulation and data process-
ing techniques used to analyze recorded experimental data are contained in Appendix A.

An overview of the flight tests conducted related to the NPS and UAH Snowflake project
from 2009 to 2011 is contained in Appendix B.
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CHAPTER 2:
Aerial Delivery to the Present Day

Airdrop is considered a fundamental military capability today, and with this capability,
modern armies are more mobile and better supplied than ever before. Autonomous ADSs
exist today that use sophisticated guidance, navigation, and control (GN&C) systems to fly
automatically to a desired target on the surface of the earth after being deployed from the
aircraft. This chapter begins with a short history of military airdrop to provide context to
the more recent developments in aerial delivery technology. These recent developments are
the subject of the end of this chapter, along with a review of other research in the field of
autonomous systems relevant to the shipboard landing problem.

2.1 A Short History of Military Aerial Delivery
Airdrop (Also air delivery) “The unloading of personnel or materiel from aircraft in flight”

[from Joint Publication 1-02 “Dictionary of Military and Associated Terms”] [16]

The history of air drop, or air delivery, or, more formally, aerial delivery,1 begins with
the conception of the parachute, which is the quintessential tool of this trade. One of the
first recorded designs of a parachute is credited to none other than that master inventor of
the Renaissance, Leonardo da Vinci, who sketched a design for a conical parachute in the
fifteenth century [19, p. 42]. It was not until the nineteenth century that a successful jump
from a height using a parachute was demonstrated; early balloonists were pioneers of using
parachutes as means to escape burning balloons [19, p. 42].

2.1.1 Demonstration of Military Utility
The potential military utility of the parachute and aerial delivery was realized early in the
twentieth century by the famous American military aviator Major General William “Billy”
Mitchell, U.S. Army. General Mitchell, just prior to the conclusion of World War I, was
planning an airdrop of a U.S. Army infantry division behind German lines using large
bomber aircraft that had been developed for Britain’s Royal Air Force during the war;

1Henceforth, the term aerial delivery is used in preference to the other related terms—consider the other
terms to be synonyms.
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Figure 2.1: Early conical parachute design by Leonardo da Vinci. The parachute is one of the
many inventions from the mind of the Italian Renaissance genius (1452–1519) that was only
realized after his time. This photograph of a sketch in the margin of a da Vinci notebook dates
from 1483.

however, the Armistice was signed before these plans could be put into action [20, p. 1].
It was not the Americans, but the Russian Red Army that next took the lead by being first
to demonstrate the use of parachute-borne soldiers in the mid-1930s. The Red Army’s
Airlanding Corps staged demonstrations in which not only soldiers, but also crew-served
weapons, were landed, quickly assembled, and moved [21, p. 47].

2.1.2 Wartime Logistics Use
A quotation that is often heard in military settings is “Amateurs talk tactics, professionals
talk logistics.” With the first use of aerial delivery in World War II, there was much talk
of the tactics of employment of airborne forces, but the use of aerial delivery for logistics
and resupply led to some remarkable results. Following World War II, aerial delivery for
logistics was again used during the conflicts in Korea and Vietnam.
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Bastogne, France, 1944
In December, 1944, during the Battle of the Bulge, the Screaming Eagles of the famed
American 101st Airborne Division were surrounded by German forces near the French
town of Bastogne. When asked by German forces to surrender the forces under his com-
mand, Brigadier General Anthony McAuliffe famously replied “Nuts!” [19, p. 45] Over the
next five days, 1046 tons of ammunition and supplies were delivered using airdrop to the
101st, enabling them to hold out until General George Patton’s Fourth Armored Division
broke through the German lines [21].

Figure 2.2: Airdropped supplies near Bastogne, France. Soldiers of the 101st Airborne Division
retrieve supplies during the Battle of the Bulge in 1944. U.S. Army photograph from Cole [22].

Leyte, Philippines, 1944
In 1942, General Douglas MacArthur withdrew from the Philippines, vowing “. . .I shall
return!” In 1944, he did just that as U.S. Army forces landed at Leyte Island. Another
innovation in aerial delivery was introduced by the Eleventh Airborne Division during the
battle for this island when components for two portable surgical hospitals were delivered
using parachutes into the mountains of Leyte, allowing medical personnel to treat casualties
for whom such care would have otherwise been unavailable [21, p. 228].
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Chosin Reservoir, Korea, 1950
The use of aerial delivery to supply a surrounded force was again demonstrated in the winter
of 1950 when U.S. Marines of the First Marine Division were surrounded by Chinese forces
in North Korea at the Chosin Reservoir. During the ensuing two-week battle, 1571 tons of
supplies were delivered using airdrop to the Marines, as well as eight sections of an M-2
portable bridge, each weighing 4500 lbs [23]. The Marines were eventually able to break
out to the port of Hungnam, where they were taken aboard U.S. Navy ships and evacuated.

Khe Sanh, Vietnam, 1968
Aerial delivery for resupply of ground forces was undertaken on an even greater scale
almost two decades later when U.S. Marines of the Third Marine Amphibious Force (III
MAF) and elements of the South Vietnamese army at their fortified outpost at Khe Sanh,
Vietnam, were besieged by several division-sized elements of the North Vietnamese army.
Twice during the siege, the ammunition storage area inside the compound was destroyed
by rocket and mortar fire; but, over the 78 days of this battle, 8120 tons of ammunition and
supplies airdropped to the compound enabled the Marines and South Vietnamese soldiers
to mount a successful defense [23].

2.2 Modern Aerial Delivery
The use of aerial delivery for resupply of military ground forces has not become obsolete;
in fact, it is in widespread use during current military campaigns. The dispersed nature
of the ground force deployments in both Iraq and Afghanistan make aerial delivery even
today a vital logistics tool. In fact, the estimated total weight of delivered goods in Iraq
and Afghanistan in 2008 was more than 16 million pounds [1]. Modern use of aerial
delivery is also characterized by improvements in technology as well as application of
airdrop techniques to new operational situations.

2.2.1 Humanitarian Airdrop
A prime deterrent to the modern employment of aerial delivery in a high-threat environment
has been the necessity for the delivering aircraft to fly at low altitude in order to achieve an
accurate airdrop to the target and, thus, become vulnerable to ever more sophisticated anti-
aircraft weaponry. Low-threat missions such as delivery of humanitarian supplies are not
subject to the same risks and are still routinely executed. A recent dramatic example of a

24



humanitarian airdrop mission was as part of Operation UNIFIED RESPONSE, a relief effort
to Haiti in the wake of a devastating earthquake in January 2010. One C-17 Globemaster
III aircraft was able to deliver nearly 15000 meals on one sortie; however, for operational
reasons, the goods were delivered to a rural area instead of the place where the supplies
were most needed, which was the capital city, Port-au-Prince [24].

Figure 2.3: Relief supplies delivered from the air to Haiti. Operation Unified Response
delivered supplies outside the capital Port-au-Prince in 2010. U.S. Air Force photograph.

2.2.2 Precision Airdrop
In the 1990s, various research teams, including one at NPS, began investigating the devel-
opment of autonomous control systems that could guide an airdropped payload to a precise
landing location [25], [26]. Since that time, this research area has blossomed. A recent
overview presentation lists 14 modern ADSs, ranging in payload capacity from just 2 kg to
over 13500 kg. These modern systems share a common feature in that they are all designed
to land on a fixed, immobile, target on the ground [27].

2.3 Beginnings of Maritime Use
Recently, there have been some demonstrations that illustrate the exciting possibilities of
applying aerial delivery for maritime missions. Surprisingly, one of the most publicized
demonstrations came not from naval forces but from the continuing piracy epidemic around
the Horn of Africa. In January 2009, the British Broadcasting Corporation reported on a
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Figure 2.4: Aerial delivery of ransom payment to pirates. The detail in the upper-right is of a
parafoil in flight during an apparent aerial delivery of payment to pirates holding the MV Sirius
Star. U.S. Navy photograph with annotation by the British Broadcasting Corporation.

case where ransom payment was delivered to pirates who had seized the MV Sirius Star

near Somalia [28]. An accompanying U.S. Navy photograph, shown in Figure 2.4, shows
a container, presumably holding the ransom payment, flying toward the deck of the Sirius

Star using a parafoil canopy. This example of ransom delivery using airdrop leads to the
idea of delivering needed supplies to naval vessels at sea using precision aerial delivery.

Another demonstration of aerial delivery in a maritime setting was from a recent exercise
in the Mediterranean Sea. In May 2007, during exercise FLEXIBLE LEADER 07, the
Maritime Craft Air Delivery System (MCADS) was tested. During this exercise, two C-
130 cargo aircraft delivered two Naval Special Warfare 11-meter Rigid Inflatable Boats into
the operations area, with each drop using four cargo parachute canopies [29]. From this
example, one can envision precision aerial delivery being used to place unmanned surface
vehicles (USVs) or autonomous underwater vehicles (AUVs) at precise starting positions
for their missions.

Again, it may be logistics that provides the compelling motivation for the application of
precision aerial delivery in the maritime domain. Evidence is already emerging that the
need for quick and flexible delivery to ships underway can be achieved using precision
aerial delivery. In the spring of 2011, the USCGC Bertholf (WMSL-750), the first of a new
class of U.S. Coast Guard National Security Cutters, began a patrol of the maritime bound-
ary line in the Bering Sea. During her patrol, a critical part for the on-board helicopter was
delivered using aerial delivery from a U.S. Coast Guard HC-130 aircraft [30]. The deliv-
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Figure 2.5: Maritime Craft Air Delivery System (MCADS). A Naval Special Warfare 11-meter
Rigid Inflatable Boat is delivered during exercise Flexible Leader 07. U.S. Navy photograph.

ery of the canister containing the part is illustrated in Figure 2.6, where a round parachute
was used and dropped from low altitude. The U.S. Coast Guard crew retrieved the floating
package using a small boat, as illustrated in Figure 2.7. If precision aerial delivery had
instead been used, the possibility exists that the part could have been delivered directly to
the cutter’s helicopter flight deck.

2.4 Potential for Maritime Use
The use of aerodynamic decelerators (e.g., parachutes and parafoils) and aerial delivery is
not new to naval platforms; both sensors and weapons are already deployed from aircraft
using this technique. For example, the U.S. Navy’s P-3C Orion aircraft and SH-60B and
MH-60R Seahawk helicopters deploy acoustic listening sensors called sonobuoys that are
stabilized and slowed during their fall with a small drogue parachute. Also, air-deployed
torpedoes from both patrol aircraft and helicopters use a drogue parachute to stabilize the
torpedo prior to water entry. The sonobuoy is a sensor that the U.S. Navy has employed for

27



Figure 2.6: Aerial delivery of an aircraft part. A U.S. Coast Guard HC-130 is shown deploying
an aerial delivery system containing a critical aircraft part to USCGC Bertholf (WMSL-750) on
patrol in the Bering Sea in May 2011. U.S. Coast Guard photo by Petty Officer 3rd Class Charly
Hengen.

anti-submarine warfare (ASW) for nearly fifty years. While the acoustic sensor has been
upgraded with improving technology, the drogue parachute system of modern sonobuoys is
very similar to those of the past. Accuracy in sonobuoy placement is achieved not through
a precision aerial delivery system but rather through standard tactics that call for the de-
ploying aircraft to drop the sonobuoys from a low altitude. As outlined in previous work by
Hewgley and Yakimenko [17], a series of studies was conducted to study various methods
of improving the accuracy of sonobuoy placement from higher altitudes; yet, the incor-
poration of a self-steering mechanism that is common to precision aerial delivery systems
outlined by Tavan [27] has not yet been the focus of serious research. With these points
considered, precision placement of sonobuoys represents another potential for maritime use
of precision aerial delivery.

Sonobuoys are not the only sensors that could benefit from placement using precision aerial
delivery. The strategic science and technology plan published by the Office of Naval Re-
search (ONR) lists Maritime Domain Awareness as one of its thirteen focus areas [31].
One of the objectives of this focus area is “Homeland and port defense monitoring,” which
includes “new systems for target identification and tracking using fixed and deployable
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Figure 2.7: Aerial delivery payload being retrieved by small boat. A special purpose craft crew
from USCGC Bertholf (WMSL-750) in the Bering Sea prepare to retrieve a floating canister
containing a critical helicopter part. U.S. Coast Guard photo by Petty Officer 3rd Class Charly
Hengen.

cueing systems.” One possible deployable cueing system might consist of a covert sensor
landed on a ship of interest using precision aerial delivery.

The U.S. Navy has also funded investigations into means of deploying torpedoes accurately
from high altitudes, as summarized in a previous paper by Hewgley and Yakimenko [17].
The drawback to using precision aerial delivery for torpedo deployment is that the speed
with which the torpedo can be delivered to its target point on the sea surface is extremely
important. A slow flight down to the surface under a guided parafoil after deployment,
even if very accurately delivered, would degrade the torpedo’s effectiveness. Therefore,
weapon delivery using aerodynamic decelerators represents an area of limited potential for
the application of precision aerial delivery to the maritime domain.

The use of precision aerial delivery as a technique for providing swift and flexible logistics
delivery to ships underway is an untapped area of research. As noted in previous work
by Hewgley and Yakimenko, the continual improvement of the demonstrated landing ac-
curacy of modern aerial delivery systems at events such as the biannual Precision Airdrop
Technology Conference and Demonstration (PATCAD) have made it possible to consider
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using this technology as a way to deliver cargo to ships underway [17]. The inherent flexi-
bility and responsiveness of aerial delivery has the potential to create a revolution in naval
logistics.

2.5 Current State of the Art in Precision Aerial Delivery
The field of research into precision aerial delivery and, especially, autonomous aerial deliv-
ery systems is new. Much of the current development falls under a program of record led
by the U.S. Army called the Joint Precision Airdrop System (JPADS), which is managed
from the U.S. Army NSRDEC in Natick, Massachusetts. One current focus of effort at
NSRDEC is a Joint Capability Technology Demonstration (JCTD) entitled Joint Medical
Distance Support and Evacuation (JMDSE) [2], [32]. This demonstration seeks to illustrate
the use of MLW systems, those in a payload weight range of 5 kg to 77 kg, to deliver critical
medical supplies and equipment to injured soldiers on a battlefield using precision aerial
delivery. This project is representative of current research, with much of the effort spent on
repackaging the aerial delivery system to be deployable from different platforms; for exam-
ple, UASs and ensuring the reliability of the aerodynamic decelerator system. By contrast,
it seems that relatively little research has been conducted into advancements that are be-
ing pursued in current UAS research, such as advanced guidance algorithms and sensors,
networking, and vision systems. Furthermore, whereas autonomous shipboard landing has
been an area of research in UASs, there is very little in the literature about such research
for parachute or parafoil-based ADSs. The following subsections constitute a survey of
some relevant research in the ares of sensors and guidance algorithms, wind estimation,
and networking that specifically applies to ADSs.

2.5.1 Sensors and Guidance Algorithms
The U.S. Army’s JPADS work began as a technology demonstration program in 2003 and
was formalized as a program of record in 2007 [1], [33], [34], and GN&C research has
been a part of the development of this system throughout its history. The airborne guidance
unit (AGU) component of JPADS which executes the system’s GN&C functions at first
relied only on GPS to provide measurements of the system’s position in 3D space; how-
ever, some recent research at NSRDEC has focused on a sodar sensor for a more accurate
measurement of the system’s height above the ground [35]. Draper Laboratory in Cam-
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bridge, Massachusetts, under contract to NSRDEC, develops the software that performs
the GN&C functions for JPADS [36]–[38]. The guidance module of this software com-
putes a trajectory in terms of a commanded turn rate ψcmd but limits this turn rate such that
its derivative with respect to altitude dψ/dz is below a maximum threshold value [38]. The
commanded turn rate is tracked using a proportional-integral-derivative (PID) inner-loop
controller, with the actual turn rate measured by newly-incorporated inertial sensors in the
AGU [37].

The Aerodynamic Decelerator Systems Center (ADSC) at NPS was founded in 2001 with
a mandate to investigate advanced concepts, particularly in the field of guidance, naviga-
tion, and control pertaining to aerodynamic decelerators, including both round parachutes,
and rectangular-planform parafoils (http://www.nps.edu/Academics/Centers/ADSC/
index.html). An early project was the development of an autonomous control system that
could guide an airdropped payload under a standard U.S. Army G-12 round cargo parachute
to a precise landing location on the ground [25], [26]. Since 2008, Yakimenko from NPS
and Slegers from UAH have continuously developed a small prototype aerial delivery sys-
tem that flies under a rectangular parafoil canopy. This system, known as Snowflake, has
become a major focus of research at the ADSC. An image of the Snowflake prototype ADS
in flight during experimentation at Camp Roberts, California, in May 2011 is presented in
Figure 2.8, and characteristics of the Snowflake ADS are presented in Table 2.1. The latest
version of Snowflake is integrated with the Arcturus T-20 UAS to form a complete delivery
system known as Blizzard [39].

Table 2.1: Snowflake system characteristics. These values are for a set of prototypes developed
by NPS and UAH and flight tested between 2008 and 2011.

Characteristic Value Units

dry weight 1.9 kg
canopy span 1.4 m
canopy chord 0.6 m
descent rate 3.7 m/s
forward speed 7.2 m/s
glide ratio 2:1
minimum turn radius 15.2 m

Sensors and guidance algorithms are two major topics of research for the Snowflake system.
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Figure 2.8: Snowflake autonomous parafoil in flight. The small-scale prototype aerial delivery
system is flying autonomously toward a preprogrammed target.

Snowflake’s autopilot’s advanced suite of sensors includes three-axis accelerometer, rate-
gyroscope, and magnetometer as well as a GPS receiver and a barometric altimeter [11].
Snowflake’s advanced guidance algorithm includes model predictive control for the path-
following steering commands and an optimal control algorithm for terminal guidance tra-
jectory planning [6], [7]. A history of Snowflake flight tests between 2009 and 2011 is
presented in Appendix B. The majority of these tests were conducted to support the im-
provement of guidance to a fixed target on the ground; however, moving target experiments
were conducted in February and May 2011.

In addition to the JPADS and Snowflake research, there have been several recent research
efforts specifically investigating terminal guidance algorithms using simulation. Rademacher
investigated the use of optimal control techniques to determine a final trajectory based in
part on Dubins paths [40]. A Dubins path is a path constructed for a vehicle using the as-
sumption that the vehicle can only move forward at a constant speed or turn with a turning
rate ψ̇ that is limited by a maximum turn rate ψ̇max such that |ψ̇| ≤ ψ̇max. This motion
is called nonholonomic, meaning that the vehicle cannot perform arbitrary translations in
the two-dimensional plane. Parafoils using real differential brake steering tend to fly with a
constant forward velocity and have the nonholonomic movement constraint in that they can
either fly straight or turn up to a maximum turn rate. Because the Dubins path is associ-
ated with minimum time problems, and the parafoil terminal guidance problem is an exact
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time problem, Rademacher proposes the idea of modified Dubins paths, in which a hybrid
scheme is developed that uses a minimum-control, exact-time trajectory combined with
minimum-time Dubins path segments for the final portions of the trajectory. Rademacher’s
technique, like that of Slegers and Yakimenko, plans for the final trajectory to terminate
with a landing directly into the assumed wind.

Fowler and Rogers also propose a technique with which the final trajectory can be con-
structed with an upwind landing. They rely on Bézier curves instead of Dubins paths so
that they can achieve flexibility in selecting a final trajectory to avoid known obstacles
and also flexibility in selecting the flight duration of the final trajectory [41]. Rogers and
Slegers address the problem of planning a final trajectory when the target is located among
complex terrain features such as ridge lines or canyons [42]. This problem is very relevant
to the current use of ADSs to resupply forward operating bases (FOBs) in the mountain-
ous regions of Afghanistan. Rogers and Slegers propose a novel technique in that their
algorithm treats the horizontal wind profile as a stochastic process. To deal with this, the
algorithm executes many simulations simultaneously, each with a different perturbation to
a mean wind profile, and each simulation producing a candidate trajectory. One of these
many candidate trajectories is chosen based on predicted landing accuracy, accounting for
the effect of the complex terrain on landing accuracy. For example, a trajectory for which a
slight overshoot of the target leads to the ADS plunging down an adjacent canyon would be
rejected in favor of a trajectory in which the final approach direction minimized that risk.
The trajectory planning algorithms discussed in this subsection represent the current state
of the art in this field; although all of them still assume a fixed target on land rather than a
moving landing platform at sea. The work in this dissertation addresses the new challenge
of the moving target.

2.5.2 Wind Models and Estimation
The axiom that gliding ADSs are at the mercy of the winds as they strive for accurate
landings was introduced in Section 1.1.3. A consequence of this axiom is that, to plan
for an accurate landing, the ADS’s guidance algorithm needs some estimate of the wind
velocity that will confront the ADS during its descent toward the target. One indicator of
the importance of accurate wind knowledge to ADSs is the significant amount of work that
has been done to gather accurate wind measurements.
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The U.S. Army’s Yuma Proving Ground (YPG) is a test range in Yuma, Arizona where
much testing of ADSs occurs. Test engineers at YPG have over time refined their methods
of measuring ambient winds. Kelly and Peña describe the original balloon-borne instru-
mentation, or radiosonde, used to measure horizontal wind velocity in comparison to the
WindPack air-deployed probe, or dropsonde, developed at YPG [43]. Further study by
Rogers compared data from these two systems with a U.S. Air Force consolidated wind
prediction system [44], and Fraser documented improvements and further testing on the
WindPack [45]. Most recently, Herrmann proposed the use of a ground-based lidar wind
measurement system to transmit real-time information to an ADS in flight [46].

The idea of making real-time wind profile information available to an ADS in flight has
potential to improve the accuracy of the planned final trajectory because the ADS itself
can only make wind estimates at its current altitude. Several current ADSs still rely on the
simple assumption that the wind speed and direction measured at the ADS’s current altitude
is also a valid representation of the wind profile for the rest of the way down to the surface.
The AccuGlide ADS, developed by NSRDEC, uses a technique described by Bergeron
as glideslope surface guidance, whereby the ADS uses the aforementioned constant wind
profile assumption to compute a 3D surface along which to fly to the target [47], [48]. The
AccuGlide uses features of its parafoil canopy that allow direct control of glideslope; this
additional control can be used to counteract inaccuracy introduced by the constant wind
profile assumption. The ParaLander system, developed by European Aeronautic Defence
and Space Company (EADS) subsidiary Cassidian, uses an assumption of constant wind
profile to construct a wind drift trajectory: the trajectory that would be flown by the ADS if
no steering control were applied. Altmann describes how this system estimates horizontal
wind velocity in flight; and, although it relies on a constant wind profile assumption at the
beginning of its flight, the ParaLander assumes a linearly decreasing wind profile for its
descent through the final 250 m to the surface [49], [50].

These wind profile assumptions are still too simplistic, claimed Ward in his examination of
higher-fidelity wind models for ADS simulations [51]. He proposed conducting ADS simu-
lations using more sophisticated stochastic wind models from the meteorology community
so that system designers can obtain a more realistic assessment of what an ADS’s accu-
racy might be. Calise makes a further argument that not only accuracy, but also dynamic

34



stability of an ADS in flight, may be degraded if wind knowledge is not accurate [52].
One additional recent paper by Yakimenko and Slegers [9] takes another look at account-
ing for the effect of one, two, and three-dimensional winds for Snowflake’s final approach
trajectory optimization algorithm. This paper considers constant, linear, and logarithmic
horizontal wind profiles in the direction aligned with Snowflake’s approach path as well
as methods for adding crosswind and vertical wind components to the calculations. The
logarithmic wind profile was first presented by Hewgley and Yakimenko in 2011 [18] and
is further explored in this dissertation as a model that aims for a middle ground between
models that are simple but unrealistic and those that are realistic but overly complex.

The current ADS research described in the literature, as listed in this section, has so far
failed to address the problem of landing on a moving target in a maritime environment.
On the other hand, the experiment of landing a parafoil vehicle on a ship has, in fact,
been done. In a 1991 paper entitled Parafoils for Shipboard Recovery of UAVs, G. Brown
describes experiments, including at-sea flight tests, of a system for landing a fixed-wing
UAS [53]. Using this system, the UAS would deploy a parafoil canopy from the top of its
fuselage to achieve a slow, controlled descent to the deck. The key differences between this
experiment and the problem at hand is that, in Brown’s experiment, the UAS kept engine
power on, so that the operator could use the vehicle’s throttle to control its rate of descent.
Also, this system relied on a human operator instead of an automatic control algorithm.
Nevertheless, Brown’s paper does contain good observations on the mechanics of landing
a parafoil-borne object on to a moving deck at sea. The next section contains a survey
of research in other disciplines that is relevant to certain aspects of the shipboard landing
problem, particularly to target estimation and to wind profile modeling.

2.6 Relevant Research in Other Fields
The previous section contained a survey of current ADS research which focused on au-
tonomous ADSs seeking to land accurately on a fixed target on land. For the single instance
of parafoil shipboard landing research found, Brown’s experiment did involve a parafoil
and a landing vehicle; however, it was not an autonomous parafoil—a human operator
landed the vehicle using remote control. A logical topic with which to start the survey of
other relevant work is that of autonomous shipboard landing. First, though, it is necessary
to survey the fields of computer vision and image processing because visual sensing plays a
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major role in several of the GN&C schemes of the aerial vehicles that will be surveyed. In
particular, the fields of image and video processing and computer vision both have methods
for deducing information about a three-dimensional scene from its two-dimensional image.

2.6.1 Computer Vision and Image Processing
In the last three decades, a very rich body of literature has been developed within the top-
ics of image and video processing and computer vision. A dividing line within this body
of literature was stated elegantly by Woods [54]: “image-in/image-out” is a succinct de-
scription of problems that can be categorized within image and video processing, whereas
“image-in/analysis-out” describes problems that are traditionally grouped under the title
computer vision. Another author, Umbaugh, also addressed the point expertly by noting
that image processing concerns images and data for human consumption, whereas com-
puter vision involves processing images for use by a machine [55]. Because the aerial
delivery systems addressed in this dissertation are autonomous machines, designed to act
without human intervention in flight, the use of visual sensor data in this context fits the
definition of an application of computer vision. In their classic text on computer vision,
the authors Ballard and Brown state that computer vision “is the construction of explicit,
meaningful descriptions of physical objects from images” [56]. An explicit, meaningful
description, consisting of position and velocity, is precisely what the ADS should derive
from a sequence of images of the target.

A subtopic common to both image processing and computer vision is that of motion esti-
mation. Within the realm of image processing, motion estimation is done as a precursor
to such tasks as video compression and video sampling rate conversion. For computer vi-
sion, the goal is to deduce structure and motion of an object in three dimensions, using
information from two-dimensional images, as explained by Yang [57]. Specifically, in the
case of an ADS attempting to land on a moving platform that is not transmitting its posi-
tion, the ADS must compute the vectors representing the position and velocity of the target
relative to the ADS using information from the visual sensor together with other on-board
sensors. In a seminal paper on the topic of motion estimation, Aggarwal and Nandhakumar
identified two major families of motion estimation techniques: optical-flow-based (also
called intensity-based) and feature-based [58]. The intensity-based methods are designed
to compute a two-dimensional field of velocities of pixels in the image plane by considering
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changes in pixel intensity values over time. The intensity-based methods are considered to
be simpler than feature-based methods. Using the latter, one must first analyze each image
in order to locate a set of features which can then be tracked frame-to-frame in order to
compute motion in the two-dimensional image plane.

In the robotics community, using information from a visual sensor as part of a feedback
loop is known as visual servo control, and intensity-based and feature-based motion esti-
mation methods are sometimes expressed as image-based and position-based algorithms,
respectively. A classic tutorial by Hutchinson [59] explores both of these methods with re-
spect to fixed-base robotic arms with manipulators. In this dissertation, the terms intensity-

based and feature-based will be used to described the two families of motion estimation
techniques. As will be shown, a feature-based approach will be followed in addressing
the problem of enabling an airborne ADS to estimate motion of a moving target landing
platform. Note that the algorithms in this section assume that the image features have al-
ready been identified. The actual mechanics of feature extraction are beyond the scope
of this work. The topic of motion estimation is particularly applicable to the problem of
autonomous shipboard landing; therefore, this topic receives in-depth treatment in Sec-
tion 2.6.3. First, a more broad range of methods for addressing the autonomous shipboard
landing problem will be examined.

2.6.2 Autonomous Shipboard Landing
In examining autonomous shipboard landing examples, the most prevalent case in U.S.
Naval operations is that of a rotary-winged aircraft, or rotorcraft, landing on small-deck
air-capable ships.2 The most relevant research to review pertinent to ADSs would be that
involving UASs rather than rotorcraft with human pilots.

Rotary-wing UAS
Fortunately, an excellent and very thorough survey paper by Kendoul [60] has been pub-
lished that catalogs and summarizes 27 research groups worldwide (excluding military
and industrial groups) pursuing research and development of autonomous rotorcraft UAS.

2Active ships in service in 2013 include 19 large deck ships: 10 aircraft carriers (CVN) and 9 amphibious
assault ships (LHA, LHD), and 101 small deck ships: 22 cruisers, 62 destroyers, and 17 frigates (CG, DDG,
FFG). Source: http://www.navy.mil/navydata/fact.asp.
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The key finding is that autonomous rotorcraft UAS shipboard landings have been demon-
strated, not just by the U.S. Navy with the MQ-8B Fire Scout [61], but also by industry
groups [62], and also academic research groups [63]. Unfortunately, these results for ro-
torcraft UAS may have little to offer for ADS experimental development because the most
common rotorcraft UAS landing technique is the low overhead hover and straight vertical
descent. This maneuver, being executed by the Fire Scout UAS as shown in Figure 2.9, is
one that an ADS cannot perform.

Figure 2.9: RQ-8A Fire Scout UAS prepares for autonomous landing. The vehicle hovers above
the deck before landing autonomously aboard the amphibious transport dock ship USS Nashville
(LPD-13). U.S. Navy photograph, 17 January 2006.

Fixed-wing UAS
Research on autonomous shipboard landing of fixed-wing UAS, while much less common
that that for rotorcraft, may prove more relevant. A fixed-wind aircraft would most likely
fly a straight-in approach to the landing area, much as an ADS would do. In fact, shipboard
landing of a fixed-wing UAS, including tests with flight hardware, has been a particular
area of focus at NPS, with extensive hands-on work by Lizarraga [64], Kaminer [65], and
Yakimenko [66]. Some of these efforts have relied on a differential GPS beacon on an ar-
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resting net on the target vessel. This recovery gear setup would most likely not be available
in the ADS landing scenario.

Distinctive visual markings and features and their use with a visual sensing system are a
focus of fixed-wing shipboard landing research at the French Institut National de Recherche
en Informatique et en Automatique (INRIA). Research published by Coutard [67], [68]
considers certain features of an aircraft carrier landing deck that the landing algorithm
uses to compute the relative pose between the landing aircraft and the deck. The landing
algorithm uses this relative pose to control the aircraft along a constant flightpath descent
to the deck. This work’s emphasis on visual estimation of relative pose is relevant to the
problem at hand of landing an ADS, even though the French research focused on human-
piloted fighter aircraft landing on a full-sized aircraft carrier.

Another group at Brigham Young University (BYU) has actually demonstrated autonomous
landing of a fixed-wing UAS first to a fixed point on the ground [69], then to an actual
moving platform [70]. In the latter case, the platform was not a ship but a pickup truck
driving on a runway. The earlier BYU research by Barber [69] focused on estimating the
height above ground level (AGL) of the aerial vehicle by combining measurements from a
visual sensor designed for optic flow measurements with velocity measurements from GPS
and barometric altimeter measurements. Accurate estimates of vehicle height AGL were
shown to enable accurate landings to a fixed point on the ground with known coordinates.
Barber’s later BYU research [70] relaxed the requirement for a precisely known target
location and instead used a vision-based glidepath tracking algorithm once the target was
in the visual sensor’s field of view. The vision-based control algorithm was designed to
handle constant-velocity target movement by treating this motion as an extra component of
estimated wind. The visual guidance algorithm described in this work had the advantage
of requiring no modifications to the target vehicle save distinctive markings in the landing
area (bed of the pickup truck).

One additional autonomous landing research effort conducted at the Georgia Institute of
Technology (GT) is notable for its incorporation of optimal estimation techniques. Proctor
and Johnson in 2004 [71] equipped a small glider with only a vision sensor and designed
an extended Kalman filter (EKF) that allowed the glider to estimate its relative pose with
respect to the landing target, which was an open window on one wall of a small rectan-
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gular structure. These two researchers furthered their research in 2005 [72] when they
equipped the GTMax autonomous helicopter with an updated visual sensing algorithm that
used an EKF to estimate the aircraft’s pose with respect to colored markers at the corners
of a landing runway. In this case, the GTMax was programmed to fly a standard fixed-
wing approach to the runway instead of a helicopter hover-to-land approach to evaluate the
suitability of this algorithm to a fixed-wing UAS.

It is interesting to note that both the BYU and GT vision-based UAS navigation research
efforts evolved to include motion estimation of moving targets: ground targets for BYU
and airborne targets for GT. These motion estimation research efforts along with others
will be explored in the next section after a more general overview of motion estimation is
presented.

2.6.3 Motion Estimation
In considering the overarching problem of estimating motion of some target based on lim-
ited measurements available to an observer, one may realize that this is a problem that the
U.S. Navy, the submarine community in particular, has addressed under the label target
motion analysis (TMA) [73]. TMA is used in situations in which a submarine attempts
to determine course and speed of a target, which could be an adversary submarine or sur-
face ship, using passive (bearings-only) sonar. Subsequent research in mobile robotics
has extended this problem definition to include the estimation of several combinations of
observer and target states using passive or active (ranging) sensors. Frew [74] presents a
clear and logical categorization of the various estimation scenarios as target-motion estima-

tion (observer state known, target state estimated), localization or navigation (target state
known, observer state estimated), and simultaneous localization and mapping (SLAM)
(partial knowledge of, and estimation of, both observer and target states). The problem of
an airborne ADS seeking a moving landing platform on the surface is firmly in the category
of target motion estimation.

Monocular Vision, Stereo Vision, and Range-finding Sensors
Before proceeding further, the question should be addressed of why monocular vision (one
camera) is used and not binocular, or stereo, vision (two cameras). For the application of
an ADS attempting to land on a moving target on the ocean’s surface, it was presumed
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that cheaper and more expendable sensors would be preferable to more complex and ex-
pensive systems. Binocular, or stereo vision systems, even though declining in price, still
require baseline calibration between the two visual sensors and more sophisticated video
processing than do monocular systems.

The same argument of too much complexity can be made against active, or range-finding
sensors such as radars, laser rangefinders, and lidars. Compared to these alternative sensors,
a monocular visual sensor would likely be lighter, cheaper, and consume less power. For
these reasons, it was decided that for the purposes of this research, only methods that could
be applied to a monocular system would be considered.

Airborne Observer and Moving Target
The BYU team achieved the moving target landing described in Section 2.6.2 by estimating
the position and velocity of the target relative to the observer [70]. Barber demonstrated
geolocation of a fixed ground target by constructing a circular orbit around the target and
performing RLS estimation on the raw visual measurements of target position [75]; geolo-
cation of a moving ground target would involve a combination of these two techniques.
Subsequent work by Johansen [76] focused on stabilization of video from the airborne
visual sensor and synchronization of video with other flight data.

The GT target motion estimation technique was developed in the context of air-to-air pur-
suit, formation flying, or docking (such as for aerial refueling). Johnson developed an EKF
for estimating both the position and velocity of the airborne target relative to the airborne
observer [77]. The challenge when both observer and target are airborne is computing the
distance between the vehicles in three dimensions using an image plane measurement in
two dimensions. Johnson details two techniques to overcome this challenge: the first is to
maneuver the observer laterally and estimate the range using multiple views; the second is
to estimate range using a known size of the target (the target’s wingspan).

The problem of tracking a ground moving target by an airborne fixed-wing observer was
addressed in recent work by T. Oliveira at the Portuguese Air Force Academy [78]. In this
paper, trajectory planning was the focus: a fixed-wing observer computed a fixed-radius
orbit around a moving ground target so that no matter the target’s motion, the airborne
observer could maintain a fixed-radius orbit around the target. Motion estimation was not

41



addressed in this paper; the target’s position was assumed to be known, not estimated.

At NPS, both tasks of trajectory planning and target motion estimation were investigated in
a series of experiments. A solution to the problem of estimating the range from an airborne
vehicle to an object on the earth’s surface was proposed by Kaminer, Kang, Yakimenko, and
Pascoal for the application of automated landing of a fixed-wing UAS on to an underway
vessel [79]. In this work, the geometry and kinematics of the flying vehicle and surface
landing platform are exploited in order to estimate the range (or the position of the landing
platform relative to the flying vehicle) based on the flying vehicle’s own measured angular
orientation, its height above the surface, and the two-dimensional coordinates of the image
of the landing platform as measured by the visual sensor.

The method used is a nonlinear estimator that combines the visual sensor measurements
with those of an inertial measurement unit (IMU) on-board the aerial vehicle. In addition
to the original work, this same estimation method has also been applied to the estimation
of the relative position and velocity of an AUV with respect to a USV for the application
of oceanographic research. In a dissertation by P. Oliveira [80], this estimation algorithm
along with visual sensing of a strobe light attached to the submerged AUV is proposed as
the method by which the USV can track and maintain station above the AUV so that a
vertical acoustic communication link can be used between the two vehicles. The original
application of tracking of a moving target on the surface by an aircraft equipped with a
visual sensor was extended by Hespanha [81], who extended the method to handle the case
in which the target was located outside the field of regard of the visual sensor for short
periods of time. Finally, this nonlinear estimation was again used by Dobrokhodov [82]
for a UAS with a visual sensor mounted in a turret. In this case, the UAS was tasked with
calculating a trajectory such that a ground moving target could always be kept centered in
the turret-mounted camera’s field of regard.

2.7 Relationship to Research in this Dissertation
The contributions of this dissertation detailed in Section 1.3 are similar to, yet go beyond,
the related research surveyed in this chapter. The target estimation algorithm developed
in Chapter 3 has some aspects in common with the air-to-air EKF estimation algorithm of
Johnson [77] and the air-to-ground nonlinear estimation algorithm of Dobrokhodov [82].
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The estimation algorithm in Chapter 3 relies on the Unscented Transform to characterize
nonlinear measurement errors, whereas the other two works use Jacobian matrices. Also,
the algorithm in Chapter 3 uses the epipolar constraint with the last-in-view and first-in-
view measurement samples; therefore, it is able to tolerate long periods of time during
which the target is out of view.

The wind profile modeling algorithm described in Chapter 4 builds on the previous work
of Hewgley and Yakimenko [18] concerning the logarithmic wind model. The algorithm
described in Chapter 4 will determine when to activate an optimal final turn algorithm
such as that described by Yakimenko and Slegers [9]; the work in this dissertation does
not replace the optimal final turn algorithm. The work in this dissertation does improve
on the constant and simple linear horizontal wind profiles used in the AccuGlide [47] and
ParaLander [49].
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CHAPTER 3:
Visual Sensing for Terminal Guidance

This chapter contains the method of estimating the target’s position and speed using mea-
surements of a two-dimensional image. The explanation of this method begins with a
review of the geometry of projection, and the homogeneous coordinate system that un-
derpins the calculations. Next, a state-space formulation is developed for estimating the
target’s motion. The model is first developed using a simple set of state variables. Later, a
more realistic set of state variables is substituted, and a method for dealing with the out-of-
frame condition is introduced. The chapter concludes with results of a simulation designed
to measure estimator performance.

3.1 Projecting a 3D Scene on a 2D Image Plane
The ease with which the human brain grasps three-dimensional structure from the two-
dimensional images provided by the human visual system belies the difficulty of the 3D to
2D transformation. A machine that attempts this same task needs a working mathemati-
cal relationship between each object point location in the three-dimensional scene, and the
corresponding image point location on the two-dimensional image plane. This relation-
ship, known as the perspective-projective transformation, is presented clearly in the text
by Schalkoff [83]. The perspective-projective transformation, then, is a mapping of object
coordinates xo ∈ R3 to image coordinates xi ∈ R2. Critical to this transformation is the
selection of a coordinate system.

3.1.1 Using Homogeneous Coordinates
An effective technique for using matrix multiplication to calculate this transformation is the
use of homogeneous coordinates, also explained by Schalkoff in his thorough introduction
to this topic [83, ch. 2]. To convert object coordinates xo ∈ R3 and image coordinates
xi ∈ R2 to homogeneous coordinates, multiply the coordinate vectors by scale factors wo

and wi, respectively, and also append these scale factors as an additional element to each of
these vectors. An overbar denotes the homogeneous versions of the coordinate vectors, as
x̄o ∈ R4 and x̄i ∈ R3.
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Thus, let x̄o be the four-dimensional vector describing the coordinates of an object in the
3D world, and let x̄i be the three-dimensional vector describing the coordinates of an image
of that object on the two-dimensional image plane:

x̄i =

wiu

wiv

wi

 x̄o =


wox

woy

woz

wo

 , (3.1)

where (u,v) are the coordinates of the image of the object on the 2D image plane.

Assuming that the coordinates of both image and object are defined with respect to the same
coordinate axes, and using homogeneous coordinates, the perspective-projective transfor-
mation can then be represented by matrix P ∈ R3×4, such that

x̄i = Px̄o. (3.2)

Matrix P from Equation (3.2) is known as the projection matrix, and it is the next topic.

3.1.2 Perspective-Projective Transformation
Consider a coordinate frame with origin Oi located in the image plane, and with mutually
orthogonal axes Xi, Yi, and Zi as shown in Figure 3.1. The subscript “i” emphasizes the
fact that this coordinate frame is anchored in the image frame. This is the front-projection
pinhole-camera model described by Schalkoff [83], whose origin is the center of the image
plane, and whose Xi axis is pointed down the optical axis of the sensor. The focal point in
Figure 3.1 (the actual pinhole in a real pinhole camera) is located behind the image plane
(opposite from the direction of the object) at coordinates (− f ,0,0). In the front-projection
model, the image plane is located between the focal point and the object; therefore, the
image of the object is not inverted as it is in a real pinhole camera. The coordinates of
the object in this frame are (xo,yo,zo). The coordinates of the object’s image on the image
plane are as follows: coordinate u is the measure of the image position along the image
plane Yi axis, and coordinate v is the measure of the image position along the image plane
Zi axis.
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Figure 3.1: Geometry of the perspective-projective transformation. The object with coordinates
(x,y,z) in the 3D world is projected on to a 2D image plane. The coordinates of the image are
(u,v).

The geometry of similar triangles leads to expressions for the image plane coordinates (u,v)
in terms of the object coordinates (xo,yo,zo):

u =
f yo

xo + f
v =

f zo

xo + f
. (3.3)

In homogeneous coordinates, these relationships can be written in matrix form:

wiu

wiv

wi

=

0 f 0 0
0 0 f 0
1 0 0 f




woxo

woyo

wozo

wo

 . (3.4)

The fourth row of this matrix equation sets the ratio between scale factors wo and wi:

wi = wo(xo + f )⇒ wo

wi
=

1
xo + f

. (3.5)
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The assumption that xo� f is known as the far-field assumption; applied to Equation (3.3),
it leads to the following approximations:

u≈ f yo

xo
v≈ f zo

xo
. (3.6)

The approximation in Equation (3.6) allows the lower-right element of the projection matrix
in Equation (3.4) to be set to zero, resulting in the revised projection relationship:

wiu

wiv

wi

=

0 f 0 0
0 0 f 0
1 0 0 0




woxo

woyo

wozo

wo

 . (3.7)

Then, the first and second rows of Equation (3.7) yield equations that mimic the approxi-
mations of Equation (3.6). Thus, Equation (3.7) represents the same equation as (3.2) but
written in expanded form. In practice, both sides of (3.7) may be divided by a scale factor
wi, so that the homogeneous coordinates for the image are normalized to unity, and the
scale factor for the homogeneous coordinates of the object becomes w′ = wo/wi, yielding:

u

v

1

=

0 f 0 0
0 0 f 0
1 0 0 0




w′xo

w′yo

w′zo

w′

 . (3.8)

3.1.3 Frames of Reference

Next come the specifics of how the coordinates for the 3D scene and the 2D image are
defined; in general, the global coordinate frame used to describe objects in the 3D scene
will have a different origin and orientation from the image coordinate frame that is aligned
with the image plane. The goal of this section is to describe the transformation between
one set of coordinates and another.

Both global and image coordinate frames are shown together in Figure 3.2. The global
coordinate frame has axes xg, yg, and zg, and its origin is Og at the lower left of Figure 3.2.
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Figure 3.2: Overview of the geometry of the global and image reference frames. The locations
of the observer and the target are each measured with respect to a global reference coordinate
frame. An image reference frame is associated with the observer.

Two vectors are defined with respect to this coordinate frame: gpT is the position vector
of the target, and gd is the displacement, or position, vector of the observer. The leading
superscript g denotes that both of these vectors are defined with respect to the global coor-
dinate frame. The image coordinate frame has axes xi, yi, and zi and it has its origin Oi at
the head of vector gd. The arrangement of the three axes of the image frame {i} is the same
as shown in Figure 3.1, and follows the convention set by earlier work on vision-based
navigation for UASs conducted at NPS [84], [85]. One vector ipT is defined in the image
frame {i}: this is the position in 3D of the target relative to the observer; this is different
from the 2D coordinates (u,v) of the image in the image plane.

Next, let the set of three angles, (φ ,θ ,ψ), called Euler angles, represent a rotation from the
global coordinate frame {g} to the image coordinate frame {i}. Let the overall rotation be
composed of a set of three sequential elementary rotations; therefore, the order in which
the three elementary rotations are performed is significant. The conventional sequence is:
first, rotate by angle ψ around Zg, then by angle θ around Yg, finally by angle φ around
Xg. This sequence mirrors the standard convention for rotating from a global frame {g}
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to an aircraft body-fixed frame {b} used in aircraft flight dynamics as described in the
standard reference by Schmidt [86]. In this case, these elementary rotations transform a set
of coordinates from {g} to {i}.

For this problem, let ΛΛΛ represent the triplet of Euler angles (φ ,θ ,ψ); therefore, the rota-
tion matrix needed to rotate frame {g} to align with frame {i} is a function of ΛΛΛ. The
reverse relationship is also needed: a matrix that rotates frame {i} to align with frame {g},
which is simply the inverse of the matrix described in the previous sentence. Between two
orthogonal coordinate systems so defined, such rotation matrices are orthonormal, such that

R−1 = RT. (3.9)

Therefore, let R(ΛΛΛ) represent a rotation matrix that rotates {i} to align with frame {g}.
The vector relationship shown in Figure 3.2 can now be expressed mathematically as:

gpT = gd+R(ΛΛΛ)ipT . (3.10)

The two reference frames so described, the global reference frame {g} and the image refer-
ence frame {i}, have different origins and different orientations. Equation (3.10) indicates
that both rotation and translation (vector addition) are required to convert the coordinates of
the target with respect to the observer, ipT to position coordinates with respect to the global
frame, gpT . A position vector such as ipT is therefore known as a bound vector, since its
magnitude, direction, and its end points must be known for the vector to have meaning.
The use of homogeneous coordinates, as introduced in Section 3.1.1, allows the necessary
rotation and translation for a bound vector to be completed as one matrix multiplication.

It can be shown (for example in Schalkoff [83]) that a single affine transformation T con-
sisting of a rotation and a translation can be accomplished on vector x̄ (recall the overbar
denotes homogeneous coordinates) using the following relationship:

x̄′ =

[
R d
0 1

]
︸ ︷︷ ︸

T

x̄ (3.11)
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where x̄′ denotes the transformed vector in homogeneous coordinates, R ∈ R3×3 is a rota-
tion matrix, and d ∈ R3×1 is the displacement (translation) vector.

Therefore, the transformation needed both to rotate {i} to align with {g} and also to trans-
late the origin of {i} to coincide with the origin of {g} would be:

T(ΛΛΛ,gd) =

[
R(ΛΛΛ) gd

0 1

]
(3.12)

where the vector gd once again is the displacement vector of the observer from the origin
of {g} expressed in global coordinates.

Equation (3.12) provides the matrix needed to multiply a bound vector with homogeneous
coordinates in {i} to transform it to a bound vector in {g}. The inverse relationship is also
required: transformation from {g} to {i}. This inverse relationship is:

T−1(ΛΛΛ,gd) =

[
RT(ΛΛΛ) −RT(ΛΛΛ)gd

0 1

]
(3.13)

which can be verified by computing T(ΛΛΛ,gd)T−1(ΛΛΛ,gd) = I.

Thus, the result of employing the the transformation in Equation (3.13) is:
ixT
iyT
izT

1

=

[
RT(ΛΛΛ) −RT(ΛΛΛ)gd

0 1

]
gxT
gyT
gzT

1

 . (3.14)

The vector on the left-hand side is expressed in homogeneous coordinates in the image
plane reference frame, but it expresses the coordinates of the target itself and not of the
target’s image on the image plane. Therefore, the vector on the left-hand side of Equa-
tion (3.14) is analogous to the vector on the right-hand side of Equation (3.4), although
expressed without a scale factor because the projection operation has not been applied to
Equation (3.14). The image coordinates (u,v) will be the result of a projection of coordi-
nates (ixT ,

iyT ,
izT ) on to the image plane.
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3.1.4 Transformation of an Object’s Global Coordinates

Now, in preparation for combining the transformation matrix developed in Section 3.1.3
with the projection matrix developed here, use of the labels image and object will be dis-
continued in favor of the labels observer and target.

In the next expression, the coordinates of the image of the target on the image plane are
labeled u and v, where u = iy and v = iz. The full transformation takes the vector of the
3D coordinates of the target on the world’s surface as input, then rotates, translates, and
projects this vector resulting in a vector of the 2D coordinates of the image of the target in
the image plane:

u

v

1


︸︷︷︸

img. coords

=

0 f 0 0
0 0 f 0
1 0 0 0


︸ ︷︷ ︸

projection

[
RT(ΛΛΛ) −RT(ΛΛΛ)gd

0 1

]
︸ ︷︷ ︸

rotation and translation


w′gxT

w′gyT

w′gzT

w′


︸ ︷︷ ︸

target position

. (3.15)

The expression in Equation (3.15) is almost, but not quite, the one that is needed for the
measurement equation of the estimation algorithm developed in Section 3.2. That mea-
surement equation of the estimation algorithm takes as input measurements of the image
location in the image plane, and produces as output the coordinates of the target in the
global coordinate frame. In other words, the inverse of Equation (3.15) is needed; however,
the dimensions of the matrix multiplication on the right-hand side result in a matrix that is
not square, and therefore not invertible.

The geometry of the overall problem can be invoked once again to realize that the z coordi-
nate of the target must be zero if the following assumptions are made: first, that the target
is a ship on the sea; second, that the origin of the global coordinate system is at sea level;
and third, that the effects of vertical wave motion and the height of the ship’s landing area
above the sea surface are neglected. The assumption that the target remains at zero height
(gzT = 0) allows the third column of the rotation and translation matrix to be eliminated,
along with the third element of the target coordinate vector.
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Let the product of the 3×4 projection matrix and the 4×3 (reduced column) rotation and
translation matrix be called M. Then, the global coordinates of the target can be computed
from the image plane measurements by:

u

v

1

=

0 f 0 0
0 0 f 0
1 0 0 0


3rd column removed︷ ︸︸ ︷ RT(ΛΛΛ) −RT(ΛΛΛ)gdo

0 0 1


︸ ︷︷ ︸

M

w′gxT

w′gyT

w′

 (3.16)

w′gxT

w′gyT

w′

= M−1

u

v

1

 . (3.17)

The scale factor can be subsequently removed in the 3× 1 vector on the left-hand side of
Equation (3.17) by dividing the first two elements of the vector by the third element. It is
necessary to have the scale factor on the left-hand side of Equation (3.17) because the scale
factor is not known a priori, so it cannot be inserted into the image plane coordinate vector.

Equation (3.17) indicates a noteworthy result: because the target is constrained to a 2D
plane, a reverse projection is possible. Given coordinates of the target’s image on the image
plane, the target’s physical location on a 2D world surface can be computed. Such reverse
projections are not in general possible because the perspective-projective transformation is
not in general reversible. For example, given a photograph of a statue in a plaza, an observer
cannot, without additional information, determine whether the statue is 2 m tall and located
10 m from the camera, or whether the statue is 4 m tall and located 20 m from the camera. In
this case, the 2D-to-2D mapping of world surface to image plane is reversible, considering
the constraints on the target’s position. Note that the invertibility of matrix M is not assured;
however, in the typical geometry of an observer looking down at a significant angle to the
target, matrix M will likely not be ill-conditioned.

For the remainder of this chapter, let us assume that the image coordinates u and v are
readily available. In other words, let us assume that the computer vision tasks of target
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detection and segmentation from the background have been completed without error. Using
this image information for estimating the state of the target is the focus of the subsequent
sections.

3.2 Method for Target Motion Estimation
Now that the stage has been set, the motion estimation problem can be addressed directly.
From this point on, the term observer will refer to the airborne visual sensor and the term
target will refer to the landing platform, which is assumed to be moving on the world sur-
face at a constant velocity. Simply put, the problem is the following: given measurements
available to the observer, estimate the state of the target. Target state is defined to include
the target’s position and velocity; more precise definitions of these state qualities will be
developed in Section 3.2.1. The wording of this problem naturally implies a state space
mathematical formulation. Consequently, Kalman estimation techniques represent a very
logical approach.

In formulating the state space equations, the choice of state variables and their associated
coordinate systems is of prime importance. In this section, two sets of state variables will
be introduced. The first set of state variables will include velocity components in Cartesian
coordinates so that the nonlinearities inherent in the problem are obvious. There are many
excellent classical primers on Kalman estimation theory, such as those by Gelb, Maybeck,
and Zarchan and Musoff [87]–[89], but one thought from the fine textbook by Grewal and
Andrews [90] succinctly states the necessary approach to forming these equations: “Think
continuously. Act discretely.”

3.2.1 State Equation
The state of the target will be defined first as the target’s coordinates with respect to a global
Cartesian coordinate system, and the components of the target’s velocity with respect to
each coordinate direction.

A fundamental assumption for this problem is that the target’s motion is constrained to a
two-dimensional surface in the world; therefore, two coordinate variables, x and y only,
will be used most often to describe the target’s position, with ẋ and ẏ denoting the first
derivatives with respect to time of each coordinate variable. A further assumption is that
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the target’s acceleration values in the x and y directions are random values that fluctuate
around zero. The continuous-time state equation for a target under these conditions is:

ẋ

ẏ

ẍ

ÿ


︸︷︷︸

ẋ

=


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

F


x

y

ẋ

ẏ


︸︷︷︸

x

+


0 0
0 0
1 0
0 1


︸ ︷︷ ︸

G

[
wẍ

wÿ

]
︸ ︷︷ ︸

w

(3.18)

where ẍ and ÿ denote second derivatives with respect to time in the respective directions.
In this model, the process noise is represented by a random perturbation to the target’s
acceleration, with components wẍ and wÿ. The quantities wẍ(t) and wÿ(t) are therefore
random processes, and can be described mathematically as white noise with zero mean;
Brown and Hwang in their book [91, ch. 2] offer a very clear explanation of a random
process defined in this manner. After condensing Equation (3.18) into vector-matrix form,

ẋ(t) = Fx(t)+Gw(t) (3.19)

let the vector x be the state vector and the vector w be the process noise vector.

So that it can be usable in a discrete-time estimation algorithm, the continuous-time state
equation (3.18) must be transformed into a discrete-time difference equation:

x[n+1] = ΦΦΦx[n]+Gw[n] (3.20)

where matrix G is identical to that in Equation (3.18), and vectors x[n] and w[n] are sam-
pled versions of their counterparts in Equation (3.18). The two quantities that must be
derived from this new discrete-time form are the discrete-time state transition matrix ΦΦΦ[n],
and the discrete-time process noise covariance matrix Q[n]. The former is calculated in a
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straightforward manner using the matrix exponential, yielding

ΦΦΦ = eFTs =


1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1

 (3.21)

where Ts is the fundamental sampling interval of the discrete-time system.

Before calculating the process noise covariance, one must reconcile the fact that the theoret-
ical continuous-time white-noise model has an infinite variance. The assumption that this
theoretical continuous-time white noise is band-limited and also a stationary process results
in the noise having a finite and constant variance, labeled σ2

w. For this first four-state case
where the state vector is constructed of positions and velocities of the target with respect
to orthogonal coordinates in the world plane, a simplifying assumption was made that the
random processes representing acceleration perturbations in the two directions were uncor-
related, and that the noise power for noise in each direction was equal, each with value σ2

w.
Note that models with a different set of state variables will be developed in Section 3.2.4
that are more realistically representative of a nonholonomic vehicle such as a ship moving
on a surface.

Let the continuous-time process noise covariance matrix be denoted by Qc, and conform to
the following definition:

Qc = E
{

Gw(t)wT(t)GT} (3.22)

which turns out to be a 4×4 diagonal matrix with σ2
w on the last two diagonal entries:

Qc =


0 0 0 0
0 0 0 0
0 0 σ2

w 0
0 0 0 σ2

w

 , (3.23)

where, again, σ2
w represents the noise power, also variance, of band-limited noise that is

also a stationary process; therefore it has a finite and constant variance.
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Assuming that Qc is a constant matrix leads to an integral expression for computing discrete-
time process noise covariance matrix Q[n]. This matrix Q is computed as follows:

Q =

Ts∫
0

ΦΦΦ(τ)QcΦΦΦ
T(τ) dτ = σ

2
w


T 3

s
3 0 T 2

s
2 0

0 T 3
s
3 0 T 2

s
2

T 2
s
2 0 Ts 0

0 T 2
s
2 0 Ts

 . (3.24)

In practice, both matrices ΦΦΦ[n] and Q[n] can be calculated simultaneously using an efficient
algorithm developed by Van Loan [92]. For the simulations described in Section 3.4, the
Van Loan algorithm is implemented in the MATLAB language using intermediate matrices
M and N to calculate square matrices ΦΦΦ and Q. Each dimension of matrices ΦΦΦ and Q is
of a size equal to the number of states of the system. Practitioners of estimation theory
commonly use a lowercase letter n to represent this number of states; for example, see
Gelb [87]. This usage is not to be confused with the use of lowercase n in this dissertation
to represent the time index. The full code listing for this algorithm is shown in Appendix A.

3.2.2 Measurement Equation
The development of the measurement equation is somewhat less involved than the preced-
ing derivation of the state equation because the measurement is inherently a discrete-time
process. The actual quantities measured by the observer include its own position and ori-
entation relative to a global coordinate system, as well as measurements of the image of the
target in the image plane. For this first derivation, measurements of the image will consist
only of the coordinates of the centroid of the image in the image plane. For subsequent
derivations, measurements of image orientation and size will be added.

The measurement equation must relate the gathered measurements to the target state; how-
ever, for this problem, the relationship is nonlinear. The nonlinearity arises from the pro-
jection of a three-dimensional target on to a two-dimensional image plane. One method by
which a linear relationship can be preserved between the measurements and the state vector
is by using pseudomeasurements. The method of using pseudomeasurements and another
method using a nonlinear transformation appear in the following example.
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For this example, let there be a linear measurement equation involving a measurement
vector z, state vector x, and measurement noise vector v:

z = Hx+v (3.25)

where H is the measurement matrix. In this case, there is a simple linear relationship
between the state vector and the measurement vector. If instead the relationship between
state vector and measurement is nonlinear, then one of the two methods mentioned must
be used.

In order to adapt Equation (3.25) to account for a nonlinear relationship between available
measurements and target state, one approach is to develop some nonlinear transformation
of the state vector, h(x), such that a nonlinear measurement equation can be formed thus:

z = h(x)+v (3.26)

where v is a vector of additive measurement noise. In this case, a widely-used assumption
is that the elements of v are normally distributed with zero mean.

In contrast to using a nonlinear transformation on the state vector, the term pseudomeasure-

ment is used in the literature, for instance in the book by Zarchan and Musoff [89]. Another
usage of this term is in the paper by Song [93], in which the term is used to indicate the
result of an algebraic transformation on measurement vector z. The transformation is per-
formed to ensure that the right-hand side of Equation (3.26) is the sum of a linear function
of x and a noise vector; for example:

g(z) = Hx+ γγγ. (3.27)

In this case, the vector g(z) is called the pseudomeasurement vector and γγγ is called the
vector of pseudomeasurement noise. A different symbol has been chosen here to emphasize
the difference between measurement noise v and pseudomeasurement noise γγγ .

The advantage of Equation (3.27) over Equation (3.26) is that, by forming the pseudomea-
surement in Equation (3.27), the nonlinearity is isolated on the left side of the equation.
On the other hand, when the measurement equation of (3.27) is implemented, the probabil-
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ity distribution function of the random variables in the pseudomeasurement noise vector γγγ

most likely is no longer Gaussian as is the (assumed to be) zero-mean, normally-distributed
perturbations of additive measurement noise vector v. Having to use a measurement noise
vector γγγ that is not Gaussian in the Kalman estimation equations is a disadvantage, since
the Kalman estimation algorithm assumes that the distribution of measurement noise is
Gaussian. One method to mitigate this disadvantage is explored in Section 3.2.7.

The Kalman estimation algorithm requires that the measurement noise covariance matrix
R = E

{
vvT}, or, in the case of pseudomeasurements, R = E

{
γγγγγγT} be calculated. In

general, some characteristics of actual additive sensor noise v can be surmised from the
estimated accuracy of on-board sensors, whereas pseudomeasurement noise γγγ cannot be
deduced directly from on board sensor specifications. Therefore, measurement noise co-
variance matrix R = E

{
γγγγγγT} can be difficult to compute.

Amplifying this point, let z? represent the perfect, or uncorrupted measurement vector that
corresponds to state x exactly, as

g(z?) = Hx (3.28)

related to actual measurement vector z by

z = z?+v. (3.29)

Subtracting Equation (3.28) from Equation (3.27) yields

γγγ(z?,v) = g(z)−g(z?)

= g(z?+v)−g(z?).
(3.30)

The pseudomeasurement noise vector has now been written explicitly as a function of the
uncorrupted measurement and the additive measurement noise.

Returning to the calculation of measurement noise covariance matrix R, there are derivative-
based and sampling-based methods to calculate this matrix. The derivative-based method
will be discussed first, and the sampling-based method will be discussed in Section 3.2.7.

The first step in derivative-based approach to calculating the pseudomeasurement noise
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covariance matrix (which will be given the symbol Cγγγ ) is to view the additive measurement
noise vector v ∈ R`×1 as a small perturbation to the uncorrupted measurement vector z? ∈
R`×1. Using the definition of the derivative for nonlinear transformation g(z?) ∈ Rm×1

yields
∂g(z?)

∂z?
v = g(z?+v)−g(z?) (3.31)

where the partial derivative has dimension m× `.

Therefore, comparing the right-hand-side of Equation (3.30) with the right-hand-side of
Equation (3.31), it is evident that the pseudomeasurement noise vector γγγ(z?,v) is equal to
the partial derivative multiplied by the additive noise vector, as:

γγγ(z?,v) =
∂g(z?)

∂z?
v. (3.32)

Because the uncorrupted measurement vector z? is unknown to the observer, the partial
derivative can be approximated by evaluating it using the actual measurement vector z
(assuming that the additive measurement noise vector v is small):

γγγ(z?,v)∼=
∂g
∂z

∣∣∣∣
z
v. (3.33)

To compute the covariance matrix Cγγγ , one may start with the assumption that γγγ(z?,v)
is a random vector with zero mean. Indeed, the assumption has already been stated that
the additive measurement noise vector v is presumed to have zero mean, and using Equa-
tion (3.30):

γγγ(z?,0) = 0. (3.34)

This last finding does not prove that pseudomeasurement noise vector γγγ(z?,v) has zero
mean, but does show that it has a value of zero whenever the value of the additive measure-
ment noise vector v is zero. Using the definition for the covariance matrix, and for a given
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measurement vector z, the covariance matrix Cγγγ can be computed as follows:

Cγγγ = E

{(
∂g
∂z

∣∣∣∣
z
v
)(

∂g
∂z

∣∣∣∣
z
v
)T
}

= E

{(
∂g
∂z

∣∣∣∣
z

)
vvT

(
∂g
∂z

∣∣∣∣
z

)T
}

=

(
∂g
∂z

∣∣∣∣
z

)
E {vv}T

(
∂g
∂z

∣∣∣∣
z

)T

=

(
∂g
∂z

∣∣∣∣
z

)
︸ ︷︷ ︸

m×`

Cv︸︷︷︸
`×`

(
∂g
∂z

∣∣∣∣
z

)T

︸ ︷︷ ︸
`×m

.

(3.35)

A suitable measurement error covariance matrix Cv can be determined by analyzing the
accuracy specification for the various on-board sensors. The matrix used in the Kalman
estimation equations for the measurement noise covariance (traditionally labeled R) is the
pseudomeasurement noise covariance matrix just calculated, namely Cγγγ .

3.2.3 Sources of Uncertainty
Sections 3.2.1 and 3.2.2 have introduced the state and measurement equations, along with
their associated noise covariance matrices Q and R. This section will take a closer look at
how the values for these two matrices are determined. Additionally, the significance of the
state estimate error covariance matrix P will be examined.

Measurement uncertainty will be addressed first. Equation (3.17) contains the relationship
that is fundamental in the examination of measurement uncertainty. The right-hand side
actually contains all the measurements. Image plane measurements (u,v) are listed ex-
plicitly, and the other measurements of observer position and visual sensor orientation are
contained in the matrix M−1. To address this last point, the definition of M is explicitly
given from Equation (3.15):

M =

0 f 0 0
0 0 f 0
1 0 0 0


 RT(ΛΛΛ) −RT(ΛΛΛ)gdo

0 0 1


︸ ︷︷ ︸

3rd column removed

(3.36)
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where gdo is the position of the observer in global coordinates, in other words the observer’s
GPS position, and ΛΛΛ is the triplet of Euler angles of the observer’s visual sensor. The
relationship between the orientations of the visual sensor and observer’s body is assumed
to be fixed; for example, a camera at a fixed downward look angle from the observer’s
longitudinal axis.

The central problem, then, is to determine the effect of uncertainties in the variables on the
right-hand side of Equation (3.17) on the resulting estimate of the target’s position on the
left-hand side of Equation (3.17). Section 3.2.2 described the derivative-based method for
determining the effect of measurement uncertainties on the estimate of the target, and Sec-
tion 3.2.7 will present a sampling-based method to do the same. In either case, some basic
assumptions need to be made about the uncertainty in each individual measured quantity.
Assumed values for one standard deviation of uncertainty for various measured quanti-
ties are listed in Table 3.1. The values listed in Table 3.1 represent an attempt to model
complex sensor error dynamics of GPS and of micro-electro-mechanical systems (MEMS)
accelerometers using simple Gaussian random variables. The following paragraph will
explore this idea in more detail.

In particular, much research has been done on error models for GPS receivers. The author-
itative volume from Parkinson and Spilker [94] contains extensive information on various
error models. Overall, the horizontal error from GPS is usually represented by a non-
stationary stochastic process. To keep the GPS error model fairly simple for the simulation
in this chapter, values for GPS uncertainty using a stationary Gaussian random process
were chosen after reviewing nominal values from Biezad [95, Tab. 6.1, p. 112]. Biezad
listed one standard deviation of horizontal error to be 40 m, and one standard deviation of
vertical error to be 50 m for the standard positioning service (SPS), assuming that the SPS
was activated and degrading the navigation calculations on the user equipment. Because
the Selective Availability function of GPS was disabled by U.S. President Bill Clinton’s
executive order in 2000, and has not since been reactivated, the values for one standard de-
viation of horizontal and vertical error were reduced to 10 m horizontal, and 20 m vertical,
respectively. These modified values are the ones listed in Table 3.1.

Modern MEMS sensors that are found in devices ranging from automobiles to cellular
telephones also have sensor noise characteristics that have been widely studied. One recent
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survey paper consulted for this work was Mohd-Yasin [96], which offered an overview of
electronic, mechanical, and thermal noise models for MEMS sensors. Instead of using a
complex noise model, simple values to use for Euler angle uncertainty for the simulation
were chosen after consulting datasheets of various MEMS-based angular rate sensors.

The last sensor to be considered was the visual sensor itself, and the values for uncertainty
in the image position coordinates was based on the size of one pixel on the image plane
of a common miniature video recording system, the GoPro camera. For all sensors being
considered, the uncertainty values thus chosen were assigned as the value of one standard
deviation (1σ ) of the random variables that would be used to represent the uncertainty in
the vector of measurement noise v as discussed in Section 3.2.2.

Table 3.1: Presumed values of sensor estimation errors. In this case, errors are assumed to be
normally-distributed random variables having standard deviations equal to the values shown.

Parameter Value of 1σ

GPS error North/East 10 m
GPS error Down 20 m
Euler angle error 2°
image position ix 9 µm
image position iy 8.94 µm

In particular, for the derivative-based method, the standard deviations so chosen could then
be used to construct the measurement error covariance matrix, Cv, in Equation (3.35).
More difficult to calculate are the vector gradients of Equation (3.35), ∂g

∂z , where the vector
function g represents the nonlinear transformation embodied in multiplication by matrix
M−1 in Equation (3.17). In practice, these derivatives were calculated using a symbolic
differentiation algorithm, for example the symbolic mathematics package in MATLAB.

One last thought on measurement uncertainty: some combinations of position and orien-
tation of the observer relative to the target may cause the transformation represented by
(3.17) to become ill-conditioned; in other words, small errors in the measurements may
cause large errors in the estimates.

Process uncertainty addresses errors in the state-space model incorporated in the Kalman
estimator as described in Section 3.2.1. The fundamental assumptions made when for-
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mulating the state-space model were that the target’s position was constrained to a 2D
plane in the global coordinate system (gzT = 0), and that the target’s motion was along a
straight-line course at constant speed. The first assumption would be violated slightly if
the wave-motion effects on a vessel on the sea surface were taken into account. The sec-
ond assumption is more likely to be violated in a live flight test scenario simply due to the
difficulty in maintaining precisely constant course and speed for a vessel underway.

For this reason, some a priori estimate of the process uncertainty must be provided to the
estimator. Table 3.2 contains the values that were used for the simulations described in Sec-
tion 3.4. The values chosen for the process uncertainty were selected to be representative
of a vessel attempting to maintain constant course and speed.

Table 3.2: Presumed values of process model errors. Errors are assumed to be normally-
distributed random variables having standard deviations equal to the values shown.

Parameter Value of 1σ

Target turn rate uncertainty 0.4 °/s
Target acceleration uncertainty 0.05 m/s2

State estimate uncertainty, which is the final category of uncertainty, is primarily a result
of the estimation process, although it does depend on an a priori initial value. In the
case of an airborne ADS seeking a moving surface target, the initial uncertainty in the
target’s position may be rather high—on the order of kilometers—if the target has not
been sighted immediately prior to ADS deployment. Initial uncertainty in target speed
is naturally limited by the range of realistic ship speeds. Initial uncertainty in course is
bounded by the very nature of the angular measure used. The amounts of presumed error
in the initial estimates of the target are shown in Table 3.3.

Table 3.3: Errors in the initial state estimates. These are assumed to be normally-distributed
random variables having standard deviations equal to the values shown.

Parameter Value of 1σ

North/East position error 500 m
Speed error 2.57 m/s
Course error 20°
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Once the estimator is operating, a state estimation error covariance matrix P is computed at
every time step. Because the first two elements of the state vector are the estimated North
and East coordinates of the target, one very useful aspect of this matrix P is that the upper-
left 2×2 submatrix can be used to generate an elliptical two-dimensional contour in global
coordinates representing uncertainty in the target position estimate. The eigenvalues of this
2×2 submatrix represent the directions of the principal axes of the ellipse, and the square
roots of the eigenvalues can be scaled to represent the length of one standard deviation
along these principal axes.

3.2.4 Alternate State Formulation and Nonlinear State Update
The original formulation of the state vector described in Section 3.2.1 consisting of two
coordinates each of position and velocity was chosen simply for convenience and ease of
rapid prototyping with some initial algorithms. The state-space model of the surface target
is more naturally described in terms of its 2D position and its speed and course. As will
be shown, this new state vector formulation in terms of (x,y,V,ψT ) allows an additional
measurement from the image plane to be incorporated.

To adapt the state equation for this new state vector, the vector-matrix expression must be
changed from Equation (3.19) to one in which the state derivatives are calculated using a
nonlinear function:

ẋ(t) = f(x(t))+Gw(t). (3.37)

The nonlinear vector function f(x) used to compute the state derivatives is fairly straight-
forward and is shown here in terms of the derivatives of the individual states:

ẋ =V cosψT (3.38)

ẏ =V sinψT (3.39)

V̇ = 0 (3.40)

ψ̇T = 0. (3.41)

For what is commonly known as the EKF (herein called the extended Kalman estimator),
there is still a need to use a discrete-time transition matrix ΦΦΦ, which is formed from a
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continuous-time state transition matrix F. In this case of the extended Kalman estimator,
the Jacobian of nonlinear vector function f(x) must be used, as:

F =
∂ f(x)

∂x

∣∣∣∣
x=x̂

=


∂ ẋ
∂x

∂ ẋ
∂y

∂ ẋ
∂V

∂ ẋ
∂ψT

∂ ẏ
∂x

∂ ẏ
∂y

∂ ẏ
∂V

∂ ẏ
∂ψT

∂V̇
∂x

∂V̇
∂y

∂V̇
∂V

∂V̇
∂ψT

∂ψ̇T
∂x

∂ψ̇T
∂y

∂ψ̇T
∂V

∂ψ̇T
∂ψT


x=x̂

(3.42)

where x̂ is the current estimate of the state vector, and the partial derivatives in the Jacobian
matrix are calculated from the state derivatives of Equations (3.38) to (3.41):

∂ ẋ
∂V

= sinψT
∂ ẋ

∂ψT
=V cosψT (3.43)

∂ ẏ
∂V

= cosψT
∂ ẏ

∂ψT
=−V sinψT . (3.44)

The remaining partial derivatives in the Jacobian matrix (3.42) not specified in Equations
(3.43) and (3.44) are zero.

With this change, process noise is now assumed to enter to the model on the derivative of
target speed V , which is target acceleration V̇ , and on the derivative of target course ψT ,
which is target turn rate ψ̇T . The continuous-time process noise covariance matrix Qc is
a 4× 4 diagonal matrix with acceleration noise and target turn-rate noise as the last two
entries:

Qc =


0

0
σ2

V̇
σ2

ψ̇T

 . (3.45)

The Van Loan algorithm first mentioned in Section 3.2.1 is then employed to calculate the
discrete-time state transition and process noise covariance matrices ΦΦΦ and Q that are in
turn used to calculate state estimation error covariance matrix P.

The change to the measurement equation that is caused by using this alternate formulation
of the vector is the introduction of an additional possible measurement from the image
plane information. The assumption that the target’s motion is constrained to a 2D surface
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∆gxTf

∆gyTf

ψt

(a) Actual target in global coordinate
frame.

∆v

∆u

(b) Image of target in image
plane.

Figure 3.3: Target features in global frame (a) and image features on image plane (b). Bow and
stern features on the target in the global coordinate frame are related to these same features on
the image of the target in the image plane.

in the world must be again refined to become an assumption that the target itself is an
elongated object constrained to lie horizontally on the world’s surface and that the target’s
motion is in the direction of its own longitudinal axis. The target’s longitudinal axis would,
of course, be constrained to the 2D surface within the global coordinate system. These
assumptions are followed to a first order of approximation by a vessel underway on calm
seas.

Under these conditions, the orientation of the target on a 2D surface in the world (hence
its course, ψT ), may be inferred by the orientation ψi of the elongated image on the image
plane. In the following, it will be assumed that the ends of the target’s image, the bow and
stern features, are able to be extracted flawlessly from the target’s image. The additional
measurements from the image will then be the horizontal and vertical differences on the
image plane between the bow and stern features.

Consider the depiction in Figure 3.3 of the target with bow and stern points identified in
the global frame (Figure 3.3a). Let ∆gxTf and ∆gyTf be the difference in global coordinates
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between the bow and stern features of the target. Therefore, there are two positions of
interest for the target that are contained in the following vectors:

gpT1 =


gxTf
gyTf

0
1

 and gpT2 =


gxTf +∆gxTf
gyTf +∆gyTf

0
1

 (3.46)

where (gxTf ,
gyTf ) are the coordinates of one feature, such as the bow of the target ship.

The third coordinate of each vector is zero because the entire target ship, including bow
and stern, must line on the world surface plane. Each of the vectors in Equation (3.46) thus
loses its third element, and then each serves as input to Equation (3.16) to compute image
plane coordinates (u1,v1) and (u2,v2) corresponding to the bow and stern locations of the
image. w1u1

w1v1

w1

= M(ΛΛΛ,gd)


gxTf
gyTf

1

 (3.47)

w2u2

w2v2

w2

= M(ΛΛΛ,gd)


gxTf +∆gxTf
gyTf +∆gyTf

1

 . (3.48)

In Equations (3.47) and (3.48), the notation M(ΛΛΛ,gd) emphasizes that M depends only
on the location and orientation of the observer, not the target. Also, notice that the scale
factors w1 and w2 have been applied to the image plane coordinates instead of the global
coordinates. These scale factors depend on the distance between the target and the focal
point. Consequently, w1 and w2 have different values, because, in the majority of cases, the
target’s bow and stern will be at different distances from the observer.

The coordinate vector for the stern feature consists of two components, which are the bow
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feature position, and the differences between bow and stern:w2u2

w2v2

w2

= M(ΛΛΛ,gd)




gxTf
gyTf

1

+
∆gxTf

∆gyTf

0


 (3.49)

where the first term on the right-hand side is simply the set of coordinates for the bow
feature: w2u2

w2v2

w2

=

w1u1

w1v1

w1

+M(ΛΛΛ,gd)

∆gxTf

∆gyTf

0

 . (3.50)

The third row of vector-matrix Equation (3.50) indicates that scale factor w2 is equal to w1

plus a linear combination of coordinate difference values ∆gxTf and ∆gyTf . The scale factor
and also the image plane coordinates can then be handled in the same manner as the global
coordinates of target features: by using an anchor value, which is the bow feature image,
and then computing the differences in coordinates as follows:

w2 = w1 +∆w (3.51)

u2 = u1 +∆u (3.52)

v2 = v1 +∆v. (3.53)

The differences in image plane coordinates between the bow and stern features will be
labeled ∆u and ∆v. Note that differences ∆u and ∆v can be expressed in units of pixels or
units of length; however, in the following expressions, ∆u and ∆v will be assumed to be in
units of length.

The substitution of Equations (3.51), (3.52), and (3.53) into Equation (3.48) leads to a
single expression in terms of the anchor coordinates and differences:(w1 +∆w)(u1 +∆u)

(w1 +∆w)(v1 +∆v)

w1 +∆w

= M(ΛΛΛ,gd)


gxTf +∆gxTf
gyTf +∆gyTf

1

 (3.54)

The left-hand side of Equation (3.54) expands, and the terms containing only incremental
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difference values such as ∆w∆u subsequently vanish:w1u1

w1v1

w1

+
w1∆u+∆wu1 +∆w∆u

w1∆v+∆wv1 +∆w∆v

∆w

= M(ΛΛΛ,gd)


gxTf
gyTf

1

+M(ΛΛΛ,gd)

∆gxTf

∆gyTf

0

 (3.55)

The first term on both the left and right sides are equal to each other according to Equa-
tion (3.47), and thus also vanish.

The third row of Equation (3.55) yields a solution for the change in scale factor:

∆w = M(3,1)∆gxTf +M(3,2)∆gyTf (3.56)

where a MATLAB-like notation indicates that the first term on the right-hand side is the
third row, first column scalar value in the matrix M multiplied by the global coordinate
difference in the x direction. Equation (3.56) supplies the definition for ∆w for the first
two rows of Equation (3.55), leading to an expression relating the horizontal and vertical
differences on the image plane between bow and stern features, and the corresponding
differences on a plane in global coordinates for the target’s actual bow and stern. The
resulting expression is:[

w∆u

w∆v

]
=

{
M(1 : 2,1 : 2)−

[
u

v

][
M(3,1)M(3,2)

]}
︸ ︷︷ ︸

S

[
∆gxTf

∆gyTf

]
. (3.57)

In Equation (3.57), again, a MATLAB-like notation is used to indicate a submatrix of
M consisting of the first two rows and first two columns (M(1 : 2,1 : 2)), and also the
individual scalar elements of the matrix M, such as the third row, first column (M(3,1)).
Also in Equation (3.57), w is a scale factor for homogeneous coordinates, and ∆gxTf and
∆gyTf are meant to convey changes in global coordinates of target features, namely the
difference between bow and stern positions.

As was the case for Equation (3.15), this expression is again almost, but not quite, the one
that is needed. The measurements available to the estimator are the image plane differences,
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(∆u,∆v), so what is needed are the global coordinate differences in terms of the image plane
differences. The 2×2 matrix indicated as S in Equation (3.57) must be inverted to obtain:

[
∆gxTf

∆gyTf

]
= S−1

[
w∆u

w∆v

]
. (3.58)

The target’s computed course in the global coordinate system then is simply

ψT = arctan

(
∆gxTf

∆gyTf

)
. (3.59)

Putting it all together under this alternate state vector formulation, the measurement equa-
tion becomes

g(z) = Hx+ γγγ (3.60)

where

H =

1 0 0 0
0 1 0 0
0 0 0 1

 x =


x

y

V

ψT

 . (3.61)

Under this new formulation, the full 10× 1 measurement vector z now consists of three
coordinates of observer position, three Euler angles of the observer’s visual sensor, coor-
dinates (u,v) of the target centroid on the image plane, and (∆u,∆v) measurements of the
slope of the elongated target image in the image plane. The nonlinear transformation g(z)
transforms the 10×1 measurement vector z into a 3×1 vector of estimates of the target’s
two position coordinates and course. This nonlinear transformation is comprised of Equa-
tion (3.17) for the first two (position) elements of the 3× 1 vector, and Equations (3.58)
and (3.59) for the third element of the 3×1 vector, target course.

This additional measurement necessitates an additional step in the calculation of measure-
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Plant

Switching
Signal

s(t)

Figure 3.4: Motion estimation subsystem switching diagram. This block diagram of a switching
scheme between two target motion estimators is reproduced from the work of L. Ma [97].

ment error. For the derivative-based method described in Section 3.2.2, the vector gradient
of Equation (3.35), ∂g

∂z , still needs to be calculated; however, in this case the first two rows
are taken from the computation of the gradient of matrix M, and the last row is taken from
the computation of the gradient of matrix S.

3.2.5 Epipolar Geometry and the Out-of-Frame Condition
Several research teams conducting target tracking experiments with UASs, for example,
those at BYU and at NPS, have addressed the problem of an airborne observer tracking
a surface moving target for the case that the target is not always in the field of view of
the observer. Along these lines, the works of Hespanha [81] and of Dobrokhodov [82]
were mentioned in Section 2.6.3. This work was continued by L. Ma [97] in the context
of an airborne observer tracking a target on the surface moving along a road. While the
application of Ma’s work is different than the problem at hand, which is an airborne ADS
tracking a target on the surface as a landing platform, Ma’s treatment of the out-of-frame
condition deserves special attention. In that work, the Boolean switching signal s(t) is
true if the target is in frame, false if the target is out of frame. This switching signal is
used to choose between two target motion estimators. A conceptual block diagram of this
switching scheme is shown in Figure 3.4.

One reason that a different approach was taken for the problem at hand was that Ma’s al-
gorithm, designed for a fixed-wing aircraft as the observer, depended on an upper bound of
the duration of the brief instability, which is the duration that the target is out of frame. Un-
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fortunately, the term brief instability does not quite describe the situation when the observer
is mounted on the payload of a swinging parafoil in flight, and the question is whether a
moving surface target remains in its field of view. Data and video from the flight tests de-
scribed in Appendix B suggest that, in the case of an airborne, parafoil-mounted observer
tracking a moving target on the Earth’s surface, that the target would exit and re-enter the
field of view many times and remain out-of-frame for significant durations of time.

Interestingly, an advantage is gained from casting this situation in terms of multiple-view
geometry. Under this formulation, the instants when the target exits the field of view, and
when it re-enters the field of view can be characterized as two views of the same scene. Of
course, the target has moved between these two instants of time, but with the help of the
assumption that the target’s motion has constant course and speed (along with one other
assumption), the second view of the target (entering frame) can be properly shifted in time
so that it coincides with the first view. This method is similar to what a ship’s navigator
would call a running fix: sighting two lines of position (LOPs) at different times, then
advancing or retarding in time one LOP so that it coincides with the other.

The second assumption mentioned above that is needed is the assumption that the target
image can be condensed to a single point, for example the centroid of the target, so that the
two views are of the very same point. Consider two views of the same point target depicted
in Figures 3.5a and 3.5b. This depiction is of two separate time instants at which the
observer positions and orientations with respect to global reference frame {g} are (d1,Λ1)

and (d2,Λ2). The target is out of the field of view of the observer between these two
time instants, and the distance that the target has traveled over this duration is ∆gpT . In
Figure 3.5b, the second observation has been shifted by the movement ∆gpT of the target
during the time that the target was out of view. This calculation is equivalent to retarding
the second observation in time because the velocity of the target is assumed to be constant.
Thus, Figure 3.5b depicts a situation where there are effectively two views of the same

target.

Once the two-view geometry is characterized as in Figure 3.5, the so-called epipolar con-

straint can be invoked; a thorough and rigorous treatment of which can be found in Y.
Ma [98]. The epipolar constraint stipulates that the lines of sight v1 and v2 must be co-
planar with a line joining the two viewpoints. In Figure 3.5b, vector c lies along the line
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Λ1

Λ2

gd2

gd1

∆gpT

{g}

(a)

Λ1

Λ2

gd2−∆gpT

gd1

{g}

c

(b)

Figure 3.5: Two views of the target. Actual observations of the target are separated in time and
space (a). Assuming constant target motion, the two views can be brought together (b).

joining the two viewpoints (focal points); therefore, the constraint is

v1 · (c×v2) = 0 (3.62)

where v1 and v2 are vectors representing lines of sight from each of the two focal points
and pointing at the target. A mathematical statement of the condition that all three vectors
in Equation (3.62) are co-planar is that their scalar triple product is zero.
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f1

f2

P P′P′

eR

c

Figure 3.6: Epipolar geometry. Two views of the object at point P are made from focal points
f1 and f2. Given the known line of sight from f1 to P, other possible locations P′ of the object
are shown in red with associated image locations on the right-hand image plane.

Figure 3.6 contains an illustration of the geometry of the epipolar constraint. Two observers
at focal points f1 and f2 observe an object located at point P. Baseline vector c connects the
focal points. Given that the image location shown on the left-hand image plane is correct,
then, from the view point of the observer on the left, the object must lie along the line of
sight from f1 through the image. Alternative object locations P′ are shown. From the view
point of the observer on the right, given the known line of sight from the left-hand observer,
then all possible object locations are constrained to lie along a line through point eR, which
is called an epipole, and which is depicted in the right-hand image plane.

Returning to the two-view problem at hand, the epipolar constraint provides a novel method
to measure the image on the image frame at the instant that the target returns to view. In
Figure 3.7, the image plane is shown at the instant that the target returns to view, with the
ship symbol representing the centroid of the target. An epipolar line in this image plane
has been established by the last in-view image on a previous image plane, just prior to the
instant when the target exited view. A scalar measurement can be made whose value is the
distance between the target centroid, at the instant that the target returns to view, and the
epipolar line. Let this measurement be called s′.

In Figure 3.8, both image planes are shown together, with the left-hand image plane rep-
resenting last-in-view (target exiting frame), and the right-hand image plane representing
first-in-view, or target returning to the frame. The geometry has been contrived to be simple
in Figure 3.8, where f1 and f2 are the focal points of the two image planes, and c is the
vector along the line joining the two focal points. Point P is the target’s centroid position
at the instant of leaving the frame, and it is co-planar with line c in a perfectly horizontal
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epipolar
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line
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s′

Figure 3.7: Epipolar constraint scalar distance. The distance between the return-to-view image
and the epipolar constraint line of the two views is used to formulate additional measurement.

plane in this depiction. Point P′ represents the target’s centroid position at the instant of
re-entering the frame. Ideally, because the returning-to-frame view has been shifted in time
to coincide with the leaving frame view, points P and P′ should also be coincident. Fig-
ure 3.8 depicts the case where P and P′ are not coincident, and scalar distance s′ is shown
as the distance in the image plane between the aforementioned epipolar constraint line, and
the intersection point of the image plane itself and the line of sight between f2 to P′. Note
that c× v2 is normal to the horizontal plane mentioned above; therefore, v1 · (c× v2) is a
projection on this normal.

In practice, vector c that connects f1 and f2, the focal points of the two image planes,
contains components due to both the observer’s motion and also due to the target’s motion;
specifically:

gc = gd1− (gd2−∆
gpT ) (3.63)

where ∆gpT is a vector representing the change in position of the target during the time
interval between the first image and the second image, and gc denotes explicitly that the
baseline vector is expressed in global coordinates. The vector ∆gpT is subtracted from the
position vector gd2 of the observer at the time at which the target returns to view because
this second observation is being retarded to coincide with the first observation. For imple-
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f2 f1P

P′

distance s′

vector c

Figure 3.8: Epipolar constraint with both image planes. When the target reappears at location
P′, distance s′ is the distance between the location of the image of P′ and the epipolar constraint
line.

mentation, the scalar distance s′ is split into two components by splitting the baseline vector
c into two components: one depending only on observer motion, and the other depending
only on target motion, as in the following expression:

gc = gd1− gd2︸ ︷︷ ︸
gc1

+∆
gpT︸ ︷︷ ︸
gc2

, (3.64)

which, following from the definition of the epipolar constraint, Equation (3.62), allows:

v1 · (c×v2) = 0 = s′ (3.65)

v1 · [(c1 + c2)×v2] = 0 (3.66)

v1 · (c1×v2)︸ ︷︷ ︸
s

= v1 · (v2× c2)︸ ︷︷ ︸
ŝ

(3.67)

Thus, the predicted scalar measurement ŝ is calculated based on the component containing
the target’s motion, and the scalar measurement s itself is calculated from component c1
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that depends on the observer’s motion. The vector equation in Equation (3.67) requires that
all vectors be expressed in the same coordinate system; however, the baseline vector c and
the lines of sight, vectors v1 and v2, are defined with respect to three different coordinate
frames. Both components of baseline vector c come most naturally in the global coordinate
frame as the differences in the two observer positions, c1, and the assumed motion of the
target, which is c2. Line of sight vectors v1 and v2 are actually defined in reference frames
slightly different from the image plane reference frame defined in Section 3.1.3.

3.2.6 Derivation of the Epipolar Constraint Measurement
Consider the depiction in Figure 3.9 of two observers viewing the same target; however,
in this case, the two image coordinate frames are centered at their respective focal points.
The origins of image plane reference frames {i1} and {i2} are now coincident with the
respective focal points f1, and f2, but have the same orientation with each x axis aligned
with the optical axis and passing through the center of the image plane. Each line of sight is
a ray originating at the focal point, and passing through both the image and the target. The
coordinates of the target are not known with certainty in this frame, but the coordinates of
the image are known, because the image is located exactly one focal length f from the new
origin of this frame. Thus, components [ f uv]T constitute the line of sight vector in each
image plane reference frame.

The vector cross-products in Equation (3.67) must have both operands expressed in the
same coordinate frame. To this end, rotation matrices serve to transform vectors from one
coordinate frame to another. Note that the baseline vector c and the lines-of-sight vectors
v1 and v2 are all free vectors, so locations of the coordinate frame origins do not matter, and
no translations are required. A derivation of the epipolar constraint scalar measurement s

starts with the epipolar constraint, which is repeated here as Equation (3.65):

v1 · (c×v2) = 0 (3.68)

First, replace the baseline vector c with the equivalent vector expressed in global coordi-
nates contained in Equation (3.64). Also, include a rotation matrix that rotates the vector c
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Figure 3.9: Two line-of-sight vectors to the target. The origin of each image plane reference
frame has been moved to its respective focal point.

from frame {g} to frame {i2} as detailed in Section 3.1.3 and Equation (3.9):

v1 ·
{

RT(ΛΛΛ2)(
gd1− gd2 +∆

gpT )×v2
}
= 0 (3.69)

with the caveat that, at this point, v1 is still expressed in frame {i1}. Next, use the distribu-
tive property of the vector cross product to separate the component of the vector c that is
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due to target motion:

v1 ·
{

RT(ΛΛΛ2)(
gd1− gd2)×v2 +RT(ΛΛΛ2)∆

gpT ×v2
}
= 0. (3.70)

The next step is to move the term associated with the target’s motion to the right-hand side,
and also reverse the order of the cross product, yielding a positive term:

v1 ·
{

RT(ΛΛΛ2)(
gd1− gd2)×v2

}
= v1 ·

{
v2×RT(ΛΛΛ2)∆

gpT
}
. (3.71)

For the final step, recall that the cross product within the braces on each side of Equa-
tion (3.71) is computed with vectors expressed in frame {i2}. For the dot product to be
computed, the resultant vector inside the braces must be expressed in frame {i1}, which
can be accomplished by two successive rotations, first from {i2} to {g}, then from {g} to
{i1}, yielding:

vT
1 RT(ΛΛΛ1)R(ΛΛΛ2)

{
RT(ΛΛΛ2)(

gd1− gd2)×v2
}

= vT
1 RT(ΛΛΛ1)R(ΛΛΛ2)

{
v2×RT(ΛΛΛ2)∆

gpT
}
. (3.72)

The full expressions for scalar measurement s and predicted scalar value ŝ that include
these rotation matrices are:

s = vT
1 RT(ΛΛΛ1)R(ΛΛΛ2)

{
RT(ΛΛΛ2)(

gd1− gd2)×v2
}

(3.73)

ŝ = vT
1 RT(ΛΛΛ1)R(ΛΛΛ2)

{
v2×RT(ΛΛΛ2)∆

gpT
}
. (3.74)

Note that Equation (3.73) contains only the component of the baseline vector due to the ob-
server motion, gd1−gd2, and Equation (3.74) contains only the components of the baseline
vector due to the target motion ∆gpT .

Knowledge of the target’s speed V as an element of the state vector simplifies the calcula-
tion of predicted scalar value ŝ. For this method, the target’s velocity vector is assumed to
be composed of a constant speed V multiplied by a unit vector u(ψ) in the direction ψ of
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the target’s course:
∆

gpT = ∆t ·V u(ψ) (3.75)

where ∆t is the time elapsed between the two observations. This formulation allows a
calculation of predicted scalar value ŝ based only on the values of state variables V and
ψ and not on two recorded positions. The unit vector u(ψ) is aligned with the target’s
course in the global frame. An elementary rotation matrix Rt(ψ) can rotate a vector from
a target-fixed coordinate frame, such as that depicted in Figure 3.10, to the global frame.
For example, the rotation matrix:

Rt(ψ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (3.76)

can rotate a vector representing the target’s velocity along course as:

Rt(ψ)

V

0
0

=

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


V

0
0

=


gVx
gVy

0

 . (3.77)

where, in this expression, gVx and gVy are two components of the target’s velocity vector
expressed in the global coordinate frame. In this case, the three-element velocity vector on
the left-hand side is defined such that the first element represents velocity directly along
the target’s longitudinal axis. This formulation relies on the assumption that the target’s
longitudinal axis is exactly aligned with its course. In maritime navigation terms, this
assumption is equivalent to assuming that the target has no set and drift due to currents or
winds. The developing expression for predicted scalar measurement ŝ is, so far:

ŝ = vT
1 RT(ΛΛΛ1)R(ΛΛΛ2)

v2×RT(ΛΛΛ2)Rt(ψ)∆t

V

0
0


 . (3.78)

In Equation (3.78), the vector cross-product is actually accomplished by incorporating the
elements of vector v2 into a skew-symmetric matrix S(v2) according to the following ex-
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Figure 3.10: Target-centered coordinate reference frame. This reference frame is used to convert
the target’s velocity vector to the global reference frame.

ample:

v× c = S(v)c =

 0 −v3 v2

v3 0 −v1

−v2 v1 0


c1

c2

c3

 . (3.79)

Furthermore, a matrix multiplication of the state vector produces the velocity vector on the
right-hand side of Equation (3.78):

0 0 1 0
0 0 0 0
0 0 0 0




x

y

V

ψ

=

V

0
0

 . (3.80)

The modifications in Equations (3.79) and (3.80) incorporated into Equation (3.78) allow
predicted scalar value ŝ to be defined as the multiplication of row vector hT and the target
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velocity extracted from estimated state vector x̂:

ŝ = vT
1 RT(ΛΛΛ1)R(ΛΛΛ2)S(v2)RT(ΛΛΛ2)︸ ︷︷ ︸

hT

Rt(ψ)

0 0 1 0
0 0 0 0
0 0 0 0

∆tx̂ (3.81)

where time interval ∆t is defined as a multiple of the fundamental sampling rate: N ·Ts. A
compact expression for predicted scalar value ŝ follows from Equations (3.77), (3.80), and
(3.81):

ŝ = hTNTs


gVx
gVy

0

 , (3.82)

recalling that gVx and gVy represent two components of the target’s velocity vector expressed
in the global coordinate frame. Implementation of the full set of estimator equations is
easier if the computations can be done such that the measurement vector and measurement
matrix have the same dimensions for both in-view and out-of-view modes. Therefore, a
predicted scalar measurement ŝ is computed using a modified measurement matrix:

ŝ = hTNTsRt(ψ)
[
0 0 1 0

]
︸ ︷︷ ︸

H′

x̂. (3.83)

For the implementation of this expression in Simulink, the predicted scalar measurement
ŝ is actually included as the first element of an m× 1 vector with all other elements being
zero. In vector form with the extra padding zeros, the predicted pseudomeasurement vector
on the left-hand side of Equation (3.83) keeps its dimension m×1, just as it would be if the
regular, in-frame tracking pseudomeasurement were taken. Having the dimension of this
vector remain the same for the two modes made the Simulink implementation easier, and
made it unnecessary to change the dimension of a signal dynamically in the middle of the
simulation. The full summary of all estimator equations is listed in Section 3.3.

In contrast to the conventional Kalman estimation algorithm introduced in Section 3.2.2,
this additional measurement using the epipolar constraint uses additional information at
the time the target returns to view. The conventional Kalman estimation algorithm does
not use this additional information, but instead must set the measurement error covariance
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matrix R to infinity when the target is not in view. This point deserves some special at-
tention. The conventional Kalman estimator, by setting matrix R to infinity, is ignoring all
measurements for the duration that the target is out of view. The conventional estimator is
instead using only the most recently-computed position, course, and speed of the target to
predict its future position while running the estimation algorithm with no new data. This
process is also known as dead-reckoning the target position.

Once the target returns to view, matrix R is returned to its nominal value. At this point, the
conventional Kalman estimator is once again incorporating measurements, but it is using
no information from before the time the target left the field of view.

The estimator using the epipolar measurement is also not using measurements when the
target is out of view, because the estimator is extending its sampling interval forward in
time until the target returns to view. The algorithm will not make any more computations
until that time. When the target returns to view, the error signal in the Kalman state update
equation using this epipolar measurement is actually:

e = s− ŝ = s−hTNTs


gVx
gVy

0

 (3.84)

instead of
e = g(z)−Hx̂ (3.85)

as it would be during normal, target-in-view processing. Another difference between the
epipolar estimator and the traditional estimator is that the epipolar estimator uses in its state
update equation at the back-in-view instant a multiple of the fundamental sampling interval
as defined in Equation (3.81).

The overall benefit of using the epipolar constraint measurement at the return-to-view in-
stant stems from the structure of the row vector hT. Recall that this row vector is used in
the measurement equation for the individual time-step at which the target is first visible
having been out of view. Equations (3.67) and (3.81) reviewed together indicate that row
vector hT has a particular structure that incorporates the epipolar constraint into the mea-
surement equation. According to Kalman estimation theory, this additional information
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included in the measurement calculations has the potential to make the overall calculation
of the estimate more accurate.

The topic of the epipolar constraint is also mentioned at later points in this chapter. Sec-
tion 3.3 contains a summary of the Kalman estimation algorithm, including the steps of the
epipolar constraint calculation. Furthermore, Section 3.4.2 contains a description of a set
of simulations that were designed to evaluate the performance difference between a con-
ventional estimator that uses dead-reckoning (DR), and an estimator that uses the epipolar
constraint measurement.

In this case, the number of raw measurements ` is 16 because there are two sets of 8 mea-
surements each: one set from the instant of leaving from view, and one set from the instant
of returning to view. The dimension m of the transformed raw measurements is unity be-
cause the measurement ŝ is a scalar; therefore, ∂ s

∂z has dimension 16×1. In implementation,
the 16×1 vector gradient ∂ s

∂z was calculated by running a symbolic differentiation routine
on Equation (3.35) and the resulting expression implemented in the simulation. Also for the
simulation, it was convenient for measurement error covariance matrix R always to have
the same dimensions, and not switch from a matrix to a scalar for the intermittent measure-
ments. Therefore, for epipolar measurements, the measurement error covariance matrix R
remained an m×m matrix; however, it was constructed as an m×m identity matrix with
the upper-left value replaced by the scalar measurement variance value.

3.2.7 Unscented Transform for Measurement Uncertainty
As mentioned in Section 3.2.2, when constructing the measurement equation as in Equa-
tion (3.27), while isolating the nonlinearities to the left-hand-side, the consequence is that
the elements of the pseudomeasurement noise vector γγγ are no longer normally-distributed
random variables. The derivative-based method presented in Section 3.2.2 ignored this po-
tential problem. The potential problem is that the pseudomeasurement noise covariance
calculated using Equation (3.35), and based on the covariance of normally distributed vari-
ables in measurement noise vector v, may not be accurate if the distribution of elements
of γγγ are much different than Gaussian. One technique designed to cope with non-normal
distributions is based on the Unscented Transform and its application to estimation is com-
monly known in the literature as the Unscented Kalman filter (UKF) [99].
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To illustrate this point, recall the development of the measurement equation in Section 3.2.2.
Combining equations (3.28), (3.29), and (3.30) yields a form of the measurement equation

g(z?+v) = Hx+ γγγ(z?,v) (3.86)

in which it should be recalled that z? is the perfect, or uncorrupted measurement vector,
v is a vector of assumed zero-mean, normally-distributed measurement noise, and γγγ is the
vector of pseudomeasurement noise. After the measurement noise v is transformed by
using the nonlinear transformation g, the resulting pseudomeasurement noise vector γγγ is
most likely no longer normally-distributed, yet the autocovariance matrix constructed from
γγγ still needs to be computed for the Kalman estimation equations.

The derivative-based approach to this calculation introduced in Section 3.2.2 sought to
compute the autocovariance matrix Cγγγ analytically using a first-order Taylor series expan-
sion, resulting in Equation (3.35). The UKF relies on a sampling-based approach, explained
clearly in Wan and van der Merwe [99], in which a set of sample vectors is transformed
by the nonlinear transformation, and the autocovariance matrix is then computed based on
that sample set.

For the problem at hand, the setup of the UKF for the computation of the pseudomea-
surement autocovariance matrix Cγγγ will be examined first, then the case for the epipolar
(returning to view) measurement will be examined. For the measurement equation, let Z be
a set of samples chosen to be distributed around a particular noisy raw measurement vector
z, then let the result of the transformation of each member zi ∈ Z of this set be:

ζζζ i ≡ g(zi). (3.87)

Let the random vector y represent the generalized population of transformed noisy mea-
surement vectors

y = g(z) (3.88)

as opposed to the specific transformed samples ζζζ i. Then, the samples are used to compute

86



the sample mean ŷ and sample covariance Ĉy of the population:

ŷ = E {y}= ∑
i

Wiζζζ i (3.89)

Ĉy = ∑
i

Wi(ζζζ i− ŷ)(ζζζ i− ŷ)T. (3.90)

For these equations, each term Wi is a weighting factor designed to ensure that the set
Z of raw measurement sample vectors has a probability distribution that has the desired
mean and variance. In essence, weights Wi can be seen as probabilities such that, when
computing a vector-valued probability mass function using sample values zi ∈ Z, each with
probability Wi, the mean will be equal to the desired value of the real raw measurement
vector z. The probability mass function will also have a diagonal autocovariance matrix
with entries equal to the presumed variances of the individual measurements comprising
vector z.

The values of the weights depend on dimension ` of the raw measurement vector. In the
simplest case for the symmetric weighting for the UKF, the sample set Z contains 2`+ 1
members: one member is the raw measurement vector actually recorded, which will end
up being the sample mean, and 2` other members for which only one element of vector z
is perturbed, both higher and lower, than that element’s mean value.

A reduced-order example will illustrate this concept. Note that this example will not in-
clude a nonlinear transformation, but merely serves to demonstrate the arrangement of the
sample set. Suppose two measurements are available, which are North and East coordi-
nates from GPS. In this case, `= 2, and the system records (noisy) measurement vector z
with values:

z =

[
N

E

]
. (3.91)

A set Z of vectors will be chosen such that the mean value of the set is the recorded vector
in Equation (3.91), and the autocovariance of the set of samples is

Cz =

[
σ2

N 0
0 σ2

E

]
(3.92)
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where the assumption is made that the errors in the North coordinate, and errors in the East
coordinate are uncorrelated. The values of the weights are:

W0 =
1

`+1
and Wi =

1
2`+2

for 1≤ i≤ 2` (3.93)

The values of the 2`+ 1 = 5 members of the sample set are constructed from recorded
vector z such that:

z0 = z and zi =

z+
√
`+1σ for 1≤ i≤ `

z−
√
`+1σ for ` < i≤ 2`

(3.94)

where the value σ is the variance for that element of the raw measurement vector. Thus,
for this example:

Z =

{
z0 =

[
N

E

]
,z1 =

[
N +
√

3σN

E

]
,z2 =

[
N

E +
√

3σE

]
,

z3 =

[
N−
√

3σN

E

]
,z4 =

[
N

E−
√

3σE

]}
. (3.95)

It can be verified that with weights according to Equation (3.93)

W0 =
1
3

and W1 =W2 =W3 =W4 =
1
6

(3.96)

then the sample mean ẑ and sample autocovariance matrix Ĉz are

ẑ =
2`

∑
j=0

Wjz j =

[
N

E

]
(3.97)

Ĉz =
2`

∑
j=0

Wj(z j− ẑ)(z j− ẑ)T =

[
σ2

N 0
0 σ2

E

]
. (3.98)

Equations (3.97) and (3.98) indicate that the set of samples was constructed to have a
sample mean and sample covariance consistent with a priori knowledge of the noisy mea-
surement vector.
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For the full estimation problem in the case in which the target is in the field of view, the
dimension of the measurement vector ` = 10; in other words, z ∈ R10×1, as mentioned in
Section 3.2.4. The nonlinear transformation g comprises both the matrix M−1 of Equa-
tion (3.17), and also the matrix S−1 of Equation (3.58). The result of nonlinear transfor-
mation g(z) is a 3×1 vector composed of two coordinates of target position in the global
coordinate frame, and the angular measure of the target’s course also in the global coordi-
nate frame.

The transformed samples are then

ζζζ i = g(zi) for 0≤ i≤ 2` (3.99)

and the sample mean value of the resultant set of 3×1 vectors is

ŷ =
2`

∑
j=0

Wjζζζ j. (3.100)

The autocovariance matrix has dimension 3×3, and it is computed by

Ĉy =
2`

∑
j=0

Wj(ζζζ j− ŷ)(ζζζ j− ŷ)T. (3.101)

Thus, the 3× 3 matrix Ĉy is used in the Kalman estimation equations for measurement
error covariance matrix R in the equation for the calculation of Kalman gain, and the 3×
1 vector ŷ is used as the vector of measurements in the equation that contains the state
estimate update. It may seem unusual that the mean vector of the transformed samples ŷ is
used in the Kalman estimation equations in place of the transformed version of the actual
measurement vector z that was recorded. In theory, the mean of the transformed samples ŷ,
is more likely to represent the true mean of the transformed measurement vector than the
recorded measurement vector z, even though the set of samples was constructed to have z
as their mean.

For the full estimation problem in the case in which the target has just returned to the field
of view, and the epipolar measurement is used, the dimension ` of the measurement vector
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is now 20 because there is a set of 10 values for the last in-view instant, and another 10
values for the first return-to-view instant. Slightly different symbols will be used in this
case in order to distinguish this case from that just mentioned for the previous in-view
measurement. For this case, the nonlinear transformation g that will be used is embodied
in Equation (3.73), in which a set of 20 raw measurements are transformed into one scalar
measurement ŝ. The transformed samples used to calculate s are:

ςςς i = g(zi) for 0≤ i≤ 2`. (3.102)

The transformed versions of the 2`+ 1 = 41 samples have the symbol ςi and these are all
scalar values. The symbol ς is a variation of the Greek letter sigma known as the lunate
sigma, and is slightly different than the Greek letter zeta, ζ , used in Equation (3.99). The
mean and variance of the transformed samples are given by:

ŷ =
2`

∑
j=0

Wjς j (3.103)

Ĉy =
2`

∑
j=0

Wj(ς j− ŷ)(ς j− ŷ)T. (3.104)

Thus, the scalar value ŷ is used as the value for measurement ŝ, and scalar value Ĉ is in-
corporated into a measurement error covariance matrix R. As in the in-view case, the value
actually used in the Kalman estimation equations the mean of the transformed samples ŷ,
and not the value of s that results from performing the nonlinear transformation on the
recorded measurement vector z.

3.3 Summary of the Dual-rate Estimation Algorithm
As the descending ADS uses its visual estimation algorithm in flight to compute the target’s
position, course, and speed, much of the challenge in doing these computations stems from
the swinging motion of the parafoil that causes the target to be out of view for significant
durations of time. When the target is out of view, there are no measurements for the visual
estimation algorithm to use in its computations. A traditional Kalman estimator in this case
would set its measurement error covariance matrix to have extremely high values, allowing
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the estimation algorithm to ignore missing measurements and to compute estimates based
only on the underlying state-space model. As explained in Section 3.2.6, the traditional
Kalman estimator is therefore computing only the DR target position when the target is out
of view.

The algorithm described in this chapter follows a different approach. This algorithm has
two different models, or modes: one mode for the target in view, and one for the target
out of view. A traditional Kalman estimator is likely to maintain the same sampling rate
whether the target is in view, or the target is out of view and measurements are being
ignored. For the algorithm described in this chapter, the mode for which the target is out
of view has a variable sampling rate. The out-of-view mode takes one sample at the instant
that the target is leaving the image frame, and another sample at the instant that the target
returns to the image frame. For the time interval between these two instants, the estimator is
neither taking samples nor performing computations. Because these intervals are variable,
the estimator in this mode is considered to have a variable sampling rate, different from the
constant rate of the in-frame mode. For this reason, the estimator described in this chapter
is a dual-rate estimator. Both modes, or models, are represented below:

x[n+1] = ΦΦΦ(Ts)x[n]+Gw[n] in view

x[n+1] = ΦΦΦ(NTs)x[n]+Gw[n] returning to view

g(z[n]) = Hx[n]+ γγγ[n] in view

s[n] = hTNTs


gVx
gVy

0

+ γγγ[n] returning to view

(3.105)

Note that the state equations were written in terms of discrete-time state transition matrix
ΦΦΦ, even though in practice, the state update is calculated using the nonlinear state update
function f. Furthermore, the state transition matrix is written with the sampling interval as
an explicit argument so that the two rates of the two modes are clearly shown.

In this dual-mode setup, the estimator does not operate during the interval that the target
is out of view; therefore, the state vector at the returning-to-view instant would be x[n+1]
if at the out-of-view instant it were x[n]. For the in-view mode, processing is done in the
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Figure 3.11: Two estimation modes. Target images on the image plane are shown for the in-view
tracking mode (a) and the returning-to-view mode (b).

conventional manner: times n and n+1 represent sequential processing cycles, each within
duration Ts. Figure 3.11 contains a representation of the target image on the image plane
for both the in-view and returning-to-view modes along with notations for the target image
locations at times t[n] and t[n+1].

The portion of the estimation algorithm that handles the constant-sampling-rate in-frame
view condition is straightforward and has been detailed in Sections 3.2.1 and 3.2.2. This
section describes the implementation of the discrete-time estimation algorithm for the out-
of-frame mode and provides details regarding computation of scalar measurement ŝ using
sampling-based methods (the Unscented Transform). The convention for the notation be-
low is that a priori values, which are those made before the latest measurement has been
incorporated, are denoted by a superscript− symbol, and the a posteriori values, those cal-
culated after incorporating the latest measurement, are denoted by a superscript + symbol.
The complete algorithm is listed below; and, in particular, the discussion of the compu-
tations of the measurement error covariance matrix R, and the a posteriori state vector
estimate, x+, should further clarify the material in Sections 3.2.6 and 3.2.7. A list of the
variables used in the algorithm is included in the nomenclature list on page xix. Notice that
in that list, a symbol can have more than one meaning. For a particular usage of a symbol,
the desired meaning should be apparent from the context.
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1. Calculate the a priori error covariance matrix:

P−[n] = ΦΦΦ[n−1]P+[n−1]ΦΦΦT[n−1]+Q[n−1]. (3.106)

The discrete-time state transition matrix is only used in this step, and is computed
using the matrix exponential:

ΦΦΦ = eFTs. (3.107)

2. Calculate the a priori state estimate for the alternate state formulation in Section 3.2.4
using nonlinear function f:{

x̂−[n] = x̂+[n−1]+ f(x̂+[n−1])Ts in view

x̂−[n] = x̂+[n−1]+ f(x̂+[n−1])NTs returning to view
(3.108)

The method used to compute the a priori state estimate in Equation (3.108) is one-
step Euler integration. The difference in the computation between the in-view target
tracking mode and the return-to-view epipolar mode is that for the epipolar mode, the
sampling interval is extended as a multiple N of the fundamental sampling interval
Ts. Also note that an additional difference between the two modes is that, when
considering the state equation (see the first two lines of Equation (3.105)), for the
return-to-view mode, the process noise covariance matrix Q must be computed taking
into account the longer sampling interval NTs. This longer sampling interval could
be used in Equation (3.24) to compute the return-to-view process noise covariance
matrix Q; however, in practice, the longer sampling interval is used with the Van
Loan algorithm for this computation as described in Section 3.2.1.

3. Calculate the Kalman gain. As a prerequisite, measurement error covariance matrix
R is calculated using sampling-based (UKF, Section 3.2.7) methods, according to
the following procedure.

(a) Select sigma points for the Unscented Transform. If the target is in view, then
measurement vector z has length `= 10, and set of sigma points Z has 2`+1 =

21 members. If the target is returning to view, then measurement vector z has
length `= 20, and set of sigma points Z has 2`+1 = 41 members.

(b) Compute the transformed samples using the individual members z of set Z: If
the target is in view, then the transformed samples have the symbol ζ . If the
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target is returning to view, then the transformed samples have the symbol ς .{
ζζζ i = g(zi) g(·) : R10×1→ R3×1 for 0≤ i≤ 2` target in view

ςςς i = g(zi) g(·) : R20×1→ R for 0≤ i≤ 2` target returning to view
(3.109)

(c) Compute the mean of transformed samples (vector or scalar) represented by
random variable Y using weighting values W .

ŷ =
2`

∑
j=0

Wjζζζ j target in view

ŷ =
2`

∑
j=0

Wjς j target returning to view

(3.110)

(d) Compute the covariance of transformed samples (vector or scalar) represented
by random variable Y using weighting values W .

Ĉy =
2`

∑
j=0

Wj(ζζζ j− ŷ)(ζζζ j− ŷ)T target in view

Ĉy =
2`

∑
j=0

Wj(ς j− ŷ)(ς j− ŷ)T target returning to view

(3.111)

(e) Construct measurement error covariance matrix R ∈ Rm×m based on covari-
ance of transformed samples. Recall that for the returning-to-view case, the
measurement is a scalar, ŝ. For implementation in Simulink, though, value ŝ is
inserted as the first entry in an m× 1 vector with the other entries being zero.
As a consequence, the covariance value for the scalar measurement is inserted
as the top-left entry of an m×m identity matrix so that the matrix dimensions
are the same for both the in-view and the returning-to-view cases.
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R[n] =



Ĉy target in view


Ĉy 0 0

0 1 0

0 0 1

 target returning to view

(3.112)

(f) Use measurement error covariance matrix R to compute gain matrix K. For
the case of using scalar measurement with target returning to view, replace
measurement matrix H with modified measurement matrix H′ defined in Equa-
tion (3.83).

K[n] =


P−[n]HT[n]

[
H[n]P−[n]HT[n]+R[n]

]−1 target in view

P−[n]H′T[n]
[
H′[n]P−[n]H′T[n]+R[n]

]−1
target returning to view

(3.113)

4. Calculate the a posteriori state vector estimate using the computed sample mean (ŷ
or ŷ). For the case of the returning-to-view measurement, replace the measurement
matrix H with modified measurement matrix H′ defined in Equation (3.83), recalling
that the product of H′ and any vector results in a vector in which all but the first ele-
ment are zero. This was done so that the dimension n×m of gain matrix K in step 3f
would remain the same for both estimation modes. Therefore, scalar measurement
ŝ is the first and only non-zero element in an m× 1 vector. The mean of the trans-
formed samples, ŷ or ŷ, takes the place of the actual measurement, as described in
Section 3.2.7.
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x̂+[n] =



x̂−[n]+K[n] [ŷ[n]−H[n]x̂−[n]] target in view

x̂−[n]+K[n]




ŷ[n]

0

0

−H′[n]x̂−[n]

 target returning to view

(3.114)

5. Calculate the a posteriori error covariance matrix. For the case of using scalar mea-
surement with target returning to view, replace measurement matrix H with modified
measurement matrix H′ defined in Equation (3.83).

P+[n] =


[I−K[n]H[n]]P−[n] target in view

[I−K[n]H′[n]]P−[n] target returning to view

(3.115)

6. Compute state transition matrix using Equation (3.107); then, compute process noise
covariance matrix.

Q[n] =
Ts∫

0

ΦΦΦ(τ)QcΦΦΦ
T(τ) dτ (3.116)
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3.4 Simulation of the Kalman Estimator
Implementing the estimation algorithm described in Sections 3.2 and 3.3 in a simulation
environment such as MATLAB and Simulink facilitated checking the algorithm for proper
operation before any assessment of the algorithm’s performance was done. Furthermore,
implementation of the algorithm in a programming language such as MATLAB is a pre-
requisite to writing code in the C programming language for the microcontroller on the
autopilot itself.

The goal of the simulation effort of this portion of the research was to produce a numerical
model of the Kalman estimator that could ultimately be tested with recorded experimental
data. A necessary first step was proving that correct results could be achieved in a simula-
tion that included noise-free models of the ADS and the moving surface target. This initial
simulation also included a process model with the capability to calculate correctly the rel-
ative position between ADS and target in the image frame, and to compute the associated
image plane measurements available to the ADS. Once this model was proven, then the
next step was to replace the truth model for the ADS in the simulation with one contain-
ing look-up tables that implemented the actual recorded data from a flight test experiment
conducted at Camp Roberts, California, that included a moving ground target.

3.4.1 Estimation Algorithm Verification Model
The first simulation that was developed in Simulink included very simple artificial mod-
els of the observer’s true trajectory and of the surface target’s true trajectory which fa-
cilitated checking the correctness of the estimation algorithms. In this simulation, the
perspective-projective model was implemented that computed the true values of the im-
age plane measurements (u,v,ψi) available to the observer throughout the flight. The
perspective-projective model as described in Section 3.1.2 was used to calculate image
plane measurements in units of actual length of image features on the image plane. In this
simulation, the image plane measurements were converted from units of length to units of
number of picture elements (pixels) based on a representative image size of 640 columns of
pixels, and 480 rows of pixels, known as 640×480. The relationship between length and
numbers of pixels was established using the representative image plane size of the small
digital camera used in the flight tests as described in Appendix B. The image plane mea-
surements (u,v,ψi) were then converted from units of number of pixels back to units of
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Figure 3.12: Artificial trajectory simulation image plane and overhead. The image plane is on
the left, and the overhead depiction of the scene is on the right.

length before they were passed to the estimation algorithm. Therefore, some quantization
noise was introduced at this stage; however, no attempt was made to introduce any other
sources of measurement noise in this simulation because the purpose of this first effort was
only the validation of this simplest of models.

The geometry of this simple scenario is depicted in Figure 3.12. An instant with the target
in view is shown with the image plane view on the left, and an overhead depiction of
the scene on the right. The observer and target are both moving in simple, straight-line
trajectories, with the observer approaching the target from astern. Furthermore, the target’s
motion includes oscillations in yaw only so that the target’s image periodically swings out
of view.

3.4.2 Epipolar Versus DR Comparison Model
The second version of this simple simulation was designed to evaluate the benefit of the
epipolar constraint measurement over the method of simply using the target’s DR position
when it is not in view. A very convenient artificial motion was programmed for the observer
in this simulation to achieve a wide separation between the last-in-view and return-to-view
focal point positions. In Figure 3.13, the observer is moving North to South and crossing the
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Figure 3.13: Geometry of simulation to evaluate epipolar measurement. The observer moves
across the target’s course so that last-in-view and return-to-view locations are widely separated.

target’s course while its field of regard rotates in the horizontal plane. For this simulation,
the observer was programmed to turn away from the target after a 3 s period of observation,
then turn back toward the target after a time delay of 130 s, resulting in approximately two
minutes during which the target was out of view. This setup enabled a much larger out-
of-frame duration than was possible in the flight-test-based hybrid simulation described in
Section 3.4.4.

Beginning with this simulation and continuing through subsequent versions, there were
four different Kalman estimation algorithms executed separately on the data:

linear estimator uses the simple state vector described in Section 3.2.1, and it includes
the epipolar calculation;

extended with DR uses the alternate state vector described in Section 3.2.4, and it uses
the DR method when the target is out-of-frame;

extended with epipolar also uses the alternate state vector described in Section 3.2.4 and
it uses the epipolar constraint measurement described in Section 3.2.6 for the back-
in-frame instant;
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Unscented estimator algorithm is post-processed in MATLAB rather than included in the
Simulink model; it uses the sampling-based method of computing measurement error
detailed in Section 3.2.7.

The parameters that were adjusted in this model were measurement noise and measurement
error covariance matrix R. For the first two sets of simulations, actual added process noise
was kept at zero to discern the effect of the two varied parameters. The objective of this set
of simulations was to determine whether the use of the epipolar measurement at the back-
in-frame instant conferred any advantage over an estimator that simply ignored missing
measurements when the target was out of view, and resumed normal processing when the
target returned to view—the DR method. When process noise and measurement noise are
zero, the dead reckoning estimator would likely produce very accurate results; therefore
the three epipolar and one DR estimator mentioned above were compared under several
conditions of noise, and a-priori knowledge of noise (matrix R).

3.4.3 Demonstration Hybrid Model Using Flight Test Data
The simulations described in Section 3.4.1 and Section 3.4.2 contained very simple models
of observer motion that included translation and rotation about the observer’s yaw axis
only. To represent more realistic observer motion that included roll, pitch, and yaw, the
next simulation model calculated the truth data for the observer’s trajectory using a portion
of the recorded motion data from Snowflake’s autopilot from a flight test at Camp Roberts,
California in May 2011. Additional details about the setup of this experiment with an
actual moving target are contained in Appendix B. The portion of the flight test that was
modeled in the simulation is approximately 1.2 s near the end of the flight as Snowflake
approached the target vehicle on a curving flight path and the vehicle was visible in the
recorded video from a camera attached to Snowflake’s external casing. This simulation is
therefore a combination of flight test data and simulation; flight test data is used to create the
truth data for the simulation. The limitation in this case is that the portion of the recorded
flight during which there was a visible target whose location was know was very short in
duration.

The overhead view of observer and target in this simulation and the associated image plane
view are shown in the bottom two panels of Figure 3.14. In addition, the top two panels
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Figure 3.14: Hybrid demonstration simulation raw and processed video. The raw flight video is
in the upper-left panel, processed flight video is in the upper-right, the simulation image plane
is in the lower-left, and the simulation overhead view is in the lower-right panel.

of Figure 3.14 show raw and processed video that was collected during the flight test. The
upper-left panel contains a frame of the original raw video collected from the flight test, and
the upper-right panel contains a frame of video that has been processed in order to extract
the segment of the video frame containing the target and also to compute the location of
the centroid of the target image. For this simulation, the simulation parameters, such as
the starting relationship between observer and target, were adjusted so that the simulation
output (image plane) would resemble frames of the raw video. In this way, the simulation
was made to match, in an approximate manner, observer and target trajectories from the
flight test.

This first set of flight test data and simulation was not designed to produce analytical results
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due to the very short duration of time that the target appeared in frame, and the fact that the
target did not exit and re-enter the field of view for a long enough period of time to provide
a good evaluation of target estimator performance. Rather, this simulation was designed
to be an end-to-end demonstration showing the input video (upper-left), video processing
(upper-right), allowing target measurements (lower-left), leading to estimation of the target
(lower-right).

3.4.4 Trade Study of the Hybrid Model
The aforementioned hybrid of flight test data and simulation notwithstanding, a simulation
was needed that actually did allow for comprehensive analysis of the Kalman estimator.
The Snowflake ADS has had quite an active program of flight testing since its initial devel-
opment in 2008 [11], and the work described in this dissertation has relied heavily on these
tests, the pertinent details of which are contained in Appendix B. Therefore, it was a goal
that for the analysis of a visual sensing system for terminal guidance that, in the absence of
an actual operational prototype visual sensing system, the necessary simulations be made
as realistic as possible using flight test data. With this goal in mind, the hybrid simulation
introduced in this section was revised to model a geometry between the observer and target
that would enable meaningful analysis of estimator performance.

An example of the video output of this simulation is shown in Figure 3.15. This video
display was used as a check that the simulation was functioning properly; however, the real
quantitative output of this simulation error was estimation error versus time for various es-
timator configurations. The results that will be described from this simulation are derived
from a trade study analysis of these different estimator configurations. The different simu-
lation runs were conducted with the same random inputs (random number generator seeds
were not changed) and same flight geometry and trajectory so that a proper comparison
could be made of the estimator performance in the different cases. Three different sets of
estimator parameters used in this model are summarized in Table 3.4.

The nominal parameter set represented the current characteristics of the Snowflake ADS
using the UAH Advanced Autopilot System (AAS), which executes the main loop of the
software at a 4 Hz rate. While there is no integrated visual sensor currently in the Snowflake
hardware, the nominal image plane size was chosen to conform to the Video Graphics
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Figure 3.15: Hybrid simulation used for estimator performance analysis. The simulation image
plane is on the left and the overhead view is on the right.

Table 3.4: Nominal and improved sets of estimator parameters. The hybrid simulation for
performance analysis of the estimator calculated estimation errors using each of these parameter
sets.

parameter set estimator sampling rate image plane size/pixels

nominal 4 Hz 640×480
improved 20 Hz 1600×1200
fast 20 Hz 640×480

Array (VGA) display standard.

The improved parameters represent hardware and software modifications that could be
achieved in the near term. An overall estimator sampling rate of 20 Hz would require
an upgrade to the autopilot’s GPS receiver, whereas the autopilot’s angular rate gyroscopes
and the visual sensor’s frame rate both already have the capability to exceed 20 Hz. The fast
parameter set represents a compromise in which the estimator sampling rate in increased,
but the image plane resolution remains at the nominal value.

Even more important than the characteristics listed in Table 3.4 is the quantitative value
of measurement noise. Measurement noise was applied to the numerical data representing
GPS coordinates and autopilot angular orientation measurements. Error in GPS measure-
ments was addressed in Section 3.2.3, and a very basic measurement noise model was
developed there. In contrast to that simple error model, a more in-depth text on navigation
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systems, such as Rogers [100], explains that GPS errors are due to time-varying biases and
drift rates in the user clock. The more sophisticated error model presented in Rogers would
produce estimates of position error that are quite different from those produced by a simple
additive white noise model; however, the simple model was chosen to make implementa-
tion in the simulation easier. In the following, an alternative model of measurement error
is developed that relies on modeling the GPS measurement error and also on-board angular
orientation measurements using actual recorded flight test data.

A well-planned experiment enables comparison of measured values with known true val-
ues. Unfortunately, in the flight tests described in Appendix B, there was no external obser-
vation system that could provide more precise position information against which on-board
GPS measurements could be compared. In order to create the more realistic noise model,
the recorded flight test telemetry had to be used as a basis for both the truth and also the
measured data sets. Using data from one flight test conducted on 2 May 2011, the details of
which are contained in Appendix B, a long, straight segment of the flight was chosen that
contained several instances of the target moving in and out of the observer’s field of view
for durations long enough to make meaningful assessments of estimator performance. The
segment of the flight chosen for this simulation is shown in Figure 3.16, which corresponds
to phase 4 and phase 5 of the Snowflake ADS guidance algorithm.

In order to create the model for the true observer positions, the observer trajectory was
analyzed in terms of measured GPS coordinate values and measured angles, and a piece-
wise cubic spline was calculated to fit a subset of the data points from the telemetry series.
The spline was only fit to a subset because it was thought that, for example, a spline fit to
every seventh point would have the intervening six points distributed around it, some above,
some below. Figure 3.17 contains example segments of recorded flight data for the GPS
north coordinate and for the accelerometer sensor φ angle measurement with additional
plots of the subset of points used to calculate the spline fit, and the spline fit itself. All three
measured GPS coordinates and all three measured orientation angles were treated in this
fashion to calculate six piece-wise cubic spline polynomials that were used to represent the
true position of the observer.

The GPS data shown in Figure 3.17 is already very smooth, so that the recorded data points
are all close to the spline fit; however, the data for angle φ has more varied values above
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Figure 3.16: Portion of test flight used for hybrid simulation. This is an overhead view of the
recorded trajectory used to calculate the observer’s true trajectory for the hybrid simulation.

and below the spline fit. This result is due to the fact that the GPS data recorded during a
flight is not actually raw data, but instead calculated position data that has been processed
using an estimator, such as a Kalman filter, by the GPS receiver module.

The method for using MATLAB functions to compute the cubic spline was inspired by
the tutorial in the reference text by Yakimenko [101], and the script used to perform this
calculation is shown in Appendix A. In this manner, the smooth piece-wise polynomial
was used to calculate the true position of the observer for the simulation, while a look-
up table containing recorded times and positions from Snowflake telemetry was used to
provide measured positions for use by the estimation algorithm. Measurement noise is
thus introduced into this simulation due to the difference between the smooth piece-wise
polynomial used to calculate the true position of the observer, and the linear interpolation
operation of the look-up table used to determine the observer’s measured position. This
method was used not only for the three position coordinates of the observer, but also for the
three angular coordinates (Euler angles) of the observer. For sake of comparison, a separate
simulation modeled measurement noise as normally distributed random numbers explicitly
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Figure 3.17: Example of spline fitting to flight test data. One out of every seven recorded points
was used to calculate the splines. GPS data appears very smooth because it has already been
processed by a Kalman filter in the GPS module.

added to the values obtained from the look-up table. Simple additive Gaussian noise is
perhaps not realistic for GPS and the accelerometer angle sensors; however, this method
allowed fine control over the size of the measurement errors introduced. An example of
both the additive Gaussian noise, and the realistic measurement noise obtained from the
spline fit are shown in Figure 3.18.
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Figure 3.18: Two examples of noise modeling. These include: (a) simplistic additive Gaussian
noise, and (b) the more sophisticated model-based noise.
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3.4.5 Results from Algorithm Verification Model

As described in Section 3.4.1, the first simulation did not use flight test data and instead
relied upon completely artificial and simple trajectories for both observer and target. Nev-
ertheless, this simple model was used to realize some findings about the effect of estimator
initialization errors and process noise.

Initialization errors for the estimator occur when the assumed initial values of the estimated
quantities (position, speed, and course) differ from the true values of those quantities at
the beginning of the simulation. Recalling that this first model included no measurement
noise other than the pixelation of the target image, in the case of position, trial simulation
runs with initialization errors from tens of meters to thousands of meters resulted in no
appreciable difference in the estimate convergence time. Therefore, the coordinates of the
assumed initial position of the target were set arbitrarily to be 5 km different than the true
initial coordinates to represent worst-case uncertainty of the target’s initial position. For
initial speed, when the operational scenario is considered, there is very little reason to
assume that the target is moving at a very high speed; therefore, an initial assumption of
zero speed represents worst-case uncertainty of the target’s initial speed (negative speeds
are not considered). For the target’s initial course, worst-case initialization error is when the
difference between assumed initial course and true initial course is 180°. In this simulation,
initial target true course was due South (course 180°), so the assumed initial course was set
to be 0°.

The simulation used the initial conditions described above to produce output that is shown
as plots of estimation error versus time. Simulation output for the case of simple, straight-
line ADS trajectory with no additional sensor noise beside pixelation effects on imaging
sensor measurements, is shown in Figure 3.19 and Figure 3.20. These plots indicate that
the position and speed estimation errors, respectively, do converge to small values after
approximately five seconds during the second period of in-frame observation. The first
in-frame observation period of duration approximately seven seconds does not appear long
enough to allow convergence. Course estimation error is shown in Figure 3.21, in which it
can be seen that the extended Kalman estimation error converges during the first in-frame
period, whereas the unscented Kalman estimation error converges at the beginning of the
second in-frame period.
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Figure 3.19: Simple trajectory simulation position estimation errors. The norm of the position
estimation error vector is shown for three different Kalman estimation methods, along with
envelopes representing one σ estimation error.

This first simulation was also used to evaluate the effect of process noise on the Kalman
estimation algorithm. In this context, process noise means that the target’s motion does
not conform to the assumptions made in Sections 3.2.1 and 3.2.4; namely, that the target
violates the assumptions of constant speed and course. The system model included process
noise consisting of perturbations added to the target’s acceleration and turn rate. These
perturbations were normally distributed random variables with a zero mean and standard
deviations set to representative values: σV̇ = 0.05m/s2 and σψ̇T = 0.4°/s for acceleration
and turn rate perturbation, respectively.

The target’s true track, speed, and course is shown in Figure 3.22, along with estimates of
those quantities from the extended and unscented Kalman estimators. The longer conver-
gence time of the unscented estimator relative to the extended estimator is clearly visible
in this set of plots. Furthermore, it can be seen that even though the target did not maintain
constant course and speed, the estimation algorithms were still able to converge to small
values of estimation error. Figure 3.22 serves as evidence that the estimation algorithms
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Figure 3.20: Simple trajectory simulation speed estimation errors. Envelopes representing one σ

estimation error are shown for three different Kalman estimation methods.

have the capability to reject process noise.

3.4.6 Results from Epipolar Versus DR Comparison
Having gained basic evidence that the model’s estimators functioned at a basic level, the
next step was determining relative performance among the different estimation techniques.
The four separate estimation algorithms described in Section 3.4.2 were analyzed with par-
ticular focus on their performance at the instant the target returned to view and immediately
afterward. Of the four state variables pertaining to the target, only velocity is not associ-
ated with a direct measurement; therefore, special attention was given to how well the four
algorithms estimated velocity. To create a challenging test for the estimators, a test that
would differentiate their performance, the duration that the target remained out of view
was set to a high but realistic value. Test flights of the Snowflake ADS prototype each
lasted approximately three minutes, so an out-of-frame duration value of over two minutes
was chosen.
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Figure 3.21: Simple trajectory simulation course estimation errors. Envelopes representing one
σ estimation error are shown for three different Kalman estimation methods.

The parameter that was varied for this set of simulations was measurement noise. A nomi-
nal set of assumed measurement noise standard deviation values was chosen for the physi-
cal sensors on the autopilot such as the GPS and the attitude sensors, and the vector of these
values was labeled σ̄σσ . The elements of vector σ̄σσ correspond to the assumed standard devia-
tions of the individual noise elements of vector v from Equation (3.29) in Section 3.2.2. For
the simulation runs, both the measurement error covariance matrix R as well as the actual
added measurement noise, were calculated using multiples of the values of the elements of
σ̄σσ .

The first set of simulation runs in this section was conducted while varying the added and
assumed measurement noise from zero to 2σ̄σσ to 4σ̄σσ . For the first run with actual added
measurement noise set to zero, measurement error covariance matrix R was still computed
with values of 1σ̄σσ so that R would not be a zero matrix. For the first two sets of simu-
lations, actual added process noise was kept at zero to isolate the effect of measurement
noise. From the simulation output, position and velocity estimation errors are shown in
Tables 3.5 and 3.6, respectively, at the instant that the target returns to view. Along with the
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Table 3.5: Position estimation error with long out-of-view duration. The values of standard
deviation σ of the estimate uncertainty are from the P matrix at the instant at which the target
returned to view.

Position estimation error and standard deviation/m
estimator amount of measurement noise

none 2σ̄σσ 4σ̄σσ

linear 25.125 377.923 250.234
σ = 202.712 288.253 348.773

extended/DR 16.264 11.768 32.313
σ = 27.525 56.608 97.779

extended/epi 14.023 26.938 14.501
σ = 59.808 92.540 151.764

UKF 36.084 64.555 39.958
σ = 245.103 315.239 344.008

estimation error value, the standard deviation of the estimate is represented as the square
root of the value in the appropriate element of the state estimation error covariance matrix
P. Of the estimators compared, one version of the EKF used DR processing as described
in Section 3.2.6, while the other three estimators used the epipolar constraint measurement
at the back-in-frame instant. The most useful comparisons presented in Tables 3.5 and 3.6
are between the two versions of the EKF and the UKF; the linear estimator is much simpler
than the others and therefore was not expected to perform as well.

In Table 3.6, the velocity estimation error of the EKF estimator using the epipolar mea-
surement is lower in all three cases than that of the EKF using DR; however, the computed
state estimation error values are higher in two cases than those of the EKF DR estimator.
One unexpected feature of the data in Table 3.6 is that the velocity estimation errors of the
EKF, epipolar version, did not consistently decrease with increasing measurement noise.
This observed behavior could have been due to the specific nature of the random sequences
used for measurement noise in the simulation.

To explore further the effect of increasing measurement noise on velocity estimation error,
another set of simulations was executed, this time with matrix R computed with 1σ̄σσ values,
but actual added measurement noise ranging from 5σ̄σσ to 20σ̄σσ . Velocity estimation errors
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Table 3.6: Velocity estimation error with long out-of-view duration. The values of standard
deviation σ of the estimate uncertainty are from the P matrix at the instant at which the target
returned to view.

Velocity estimation error and standard deviation/m/s
estimator amount of measurement noise

none 2σ̄σσ 4σ̄σσ

linear 0.128 −2.451 −1.455
σ = 1.525 2.139 2.578

extended/DR −0.113 0.125 0.312
σ = 0.394 0.534 0.805

extended/epi −0.086 −0.115 −0.016
σ = 0.304 0.585 1.074

UKF 0.243 −0.454 0.350
σ = 1.850 2.352 2.558

for these cases are shown in Table 3.7. The velocity estimation errors shown therein for
the EKF epipolar estimator are generally increasing with increasing measurement noise,
although not monotonically. Considering Tables 3.6 and 3.7 together, it is apparent that the
EKF using the epipolar measurement has a smaller velocity estimation error in four of the
six cases presented. Clearly, the use of the epipolar measurement conveys some advantage
over an estimator that uses only DR.

Judging from the numbers contained in Tables 3.5, 3.6, and 3.7, the UKF seems at first
glance to produce inferior estimates to those of the EKF; however, the tables show estimates
only at one instant in time, not a history of estimates. A history of estimates from the back-
in-view instant to the end of the simulation is shown in Figure 3.23; this figure depicts the
velocity estimation error from the same simulation run whose data was used to construct
Table 3.6. In Figure 3.23, only the end of the simulation is shown, with the back-in-
view instant occurring at 139.5 s of simulation time. The time history of the UKF velocity
estimates in this figure suggests that, while the UKF may have higher estimation error at
the back-in-frame instant than the EKF estimators, the UKF may converge more quickly
than the others. A new set of simulation runs was designed to test this hypothesis.

To isolate the convergence characteristic of the UKF, another simulation was executed, this
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Table 3.7: Velocity estimation error with high measurement noise. The values of standard
deviation σ of the estimate uncertainty are from the P matrix at the instant at which the target
returned to view.

Velocity estimation error and standard deviation/m/s
estimator amount of measurement noise

5σ̄σσ 10σ̄σσ 20σ̄σσ

linear −13.769 −28.814 −62.764
σ = 1.507 1.494 1.496

extended/DR 0.185 0.393 0.942
σ = 0.438 0.434 0.419

extended/epi −0.322 −0.631 −0.609
σ = 0.306 0.333 0.372

UKF −6.376 −11.643 −16.456
σ = 1.848 1.841 1.785

time with the actual added measurement noise set to zero. The time history of velocity
estimation errors for this case is shown in Figure 3.24. In this figure, it is clear that the first
back-in-view UKF velocity estimate error at simulation time 139.5 s is larger than those
of the other estimators; however, the UKF estimation error converges quickly toward zero.
This convergence occurs more quickly than the convergence of the estimation errors from
the EKF estimators. A repeat of this simulation run was conducted, this time with process
noise added with the same values as described in Section 3.4.5, and the resulting velocity
estimation errors are shown in Figure 3.25.

The superior convergence characteristic of the UKF over the EKF for these simulations
is evident when considering Figures 3.23, 3.24, and 3.25 together. Clearly, the use of the
UKF, along with the use of the epipolar constraint, confers an advantage to an estimator in
the cases represented by the aforementioned simulations.

114



-120

-100

-80

-60

-40

-20

0

20

40

60

80

-100 -50 0 50 100 150 200

no
rt

hi
ng

/m

easting/m

target truth
EKF estimate
UKF estimate

-2
-1
0
1
2
3
4
5
6

0 10 20 30 40 50 60

ta
rg

et
sp

ee
d ⁄

m
/s

simulation time/s

-2
-1
0
1
2
3
4
5
6

0 10 20 30 40 50 60ta
rg

et
co

ur
se

/r
ad

simulation time/s

Figure 3.22: Simple trajectory simulation estimated target track. These estimates were computed
using two different Kalman estimation methods: the EKF and UKF.
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Figure 3.23: Velocity estimation error after target returns to view. For this simulation, the target
was out of view until 139.5 s of simulation time.
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Figure 3.24: Velocity estimation error with no noise. Both process noise and measurement noise
are set to zero in this simulation run.
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Figure 3.25: Velocity estimation error with process noise. Process noise is set to σV̇ = 0.05m/s2

and σψ̇T = 0.4°/s in this simulation run.
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3.4.7 Results from the Trade Study
All further simulations were conducted using the hybrid model described in Section 3.4.4.
These simulations comprise the trade study. The first runs of the revised hybrid simu-
lation were made to validate that the estimation algorithm was functioning properly. To
validate correct operation, simulation parameters were set so that there was no external
measurement noise injected into the algorithm. Aside from pixelation noise described
in Section 3.4.1, the observer had perfect knowledge of its own position and orientation
throughout the simulation. The estimator parameters for this run were from the nominal

parameter set from Table 3.4.

The estimation error for target position, speed, and course for the case without external
measurement noise are shown in Figure 3.26. Examining Figure 3.26a, it was concluded
that the estimator was functioning correctly, and that convergence to 1 m estimation error
in position occurred within 25 s. Convergence to within 1 m/s estimation error in speed oc-
curred within 15 s, as shown in Figure 3.26b. In this plot, the initial speed estimation error
was approximately 1.5 m/s, a fairly small value, due to the worst-case initial assumption
of zero speed as explained at the beginning of this section. The estimation error in target
course converged to less than 0.05 rad in 8 s, as shown in Figure 3.26c.
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Figure 3.26: Model validation estimation error plots. These include: (a) position, (b), velocity,
and (c) target course versus simulation time.
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The next simulations included additive white noise to represent measurement noise for
observer position and orientation data. The estimator parameters were those from the im-
proved values listed in Table 3.4. The goal of this simulation run was to demonstrate the
effect of the incorporation of measurement noise given the best available estimator perfor-
mance.

The estimation error for target position, speed, and course are shown in Figure 3.27. From
these plots, it was concluded that the estimation errors still converge to small values; how-
ever, the effect of the measurement noise can be clearly seen, especially after 35 s of simu-
lation time in the position error plot, Figure 3.27a, and after 20 s of simulation time in the
speed error plot, Figure 3.27b. The improvement from the estimation algorithm over the
raw measurements in the course estimation plot shown in Figure 3.27c is striking.
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Figure 3.27: Best parameter set simulation estimation errors. These include estimation errors
in (a) target position, (b) speed, and (c) target course, all plotted versus simulation time.
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The next step was to return the estimator parameters to the nominal values while maintain-
ing the same type and level of measurement noise.

In comparing the plots of Figure 3.28 with the previous set in Figure 3.27, it is apparent that
the most significant differences in performance are seen in estimation of target position.
Comparing the position estimation error plots in Figure 3.27a and in Figure 3.28a, the
estimation error between 20 s to 30 s is below 5 m for the improved estimator parameters,
and the estimation error is almost 10 m during the same span of time using the nominal
estimator parameters. It is also very interesting to notice that in both sets of plots, those of
Figure 3.27 and of Figure 3.28, the Kalman estimator using the Unscented Transformation,
or the UKF, had very similar performance to the extended Kalman estimators that used
derivative-based techniques to calculate measurement error covariance.
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Figure 3.28: Nominal parameter set simulation estimation errors. These include estimation errors
in (a) target position, (b) speed, and (c) target course, all plotted versus simulation time.
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Given the differences in performance between the previous two simulation runs with iden-
tical measurement noise, the next step was to determine which of the estimator parameters,
estimator sampling rate, or image plane size, had the greater effect on estimator perfor-
mance. For the next simulation run, the image plane size was not changed, but the estimator
sampling rate was increased to 20 Hz.

In comparing the set with the 20 Hz sampling rate only, known as the fast parameter set
of Figure 3.29, to that which had both the higher sampling rate and also better image
plane resolution, known as the improved parameter set of Figure 3.27, there is not much
difference between the two sets of plots except for the estimation of target course, shown in
Figure 3.29c, compared to Figure 3.27c. The estimation error for target course converged
to small values about 10 s faster for the estimator with the improved parameter set that
had both the faster sampling time and finer image plane resolution and whose performance
is shown in Figure 3.27c. A logical inference is that the majority of the improvement of
estimator performance over the case with nominal parameters (Figure 3.28) came from
increasing the sampling time, and that the increase in image plane resolution mainly led
to improved performance in target course estimation. Therefore, it was concluded that the
first, most effective improvement that should be made to the estimation algorithm is an
increase to its sampling rate.

The last step in the trade study was to examine the effect of a more realistic model of
measurement noise. For this simulation, the additive Gaussian noise was replaced by a
noise model that generated measurement noise using the piece-wise polynomial (cubic
spline) method described in Section 3.4.4. This simulation was based on the fast parameter
set of Table 3.4 because the fast set represents the next likely improvement in Snowflake
avionics.
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Figure 3.29: Fast parameter set simulation estimation errors. These include estimation errors
in (a) target position, (b) speed, and (c) target course, all plotted versus simulation time.
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When analyzing the plots of Figure 3.30, the fact to keep in mind about the revised noise
model is that it does contain time-varying biases, and therefore violates one of the prime
underlying assumptions of Kalman estimation. This assumption is that process noise and
measurement noise each have zero mean. Increased estimation error is indeed observed in
this set of plots with this realistic noise model in Figure 3.30, relative to the set of plots
with the Gaussian noise model and the same fast parameter set in Figure 3.29.

Errors in the estimate of target position shown in Figure 3.30a decrease from their initial
errors to a minimum at around 18 s of simulation time, but then start to increase before the
target leaves the field of view at a simulation time of 37 s. Errors in the estimate of target
speed shown in Figure 3.30b show some initial oscillation, then reach a minimum at 18 s
to 19 s of estimation time, then increase. Of all the plots in Figure 3.30, the estimation of
target course in Figure 3.30c displays a consistent convergence to small values of error and
represents an improvement over the raw measurements alone.

Two issues arise when analyzing this last set of simulation results. First, the hybrid simu-
lation run in this case does not have a long enough time duration to give a more accurate
picture of the performance of the estimation scheme in the presence of non-Gaussian mea-
surement noise. Second, the investigation of what is realistic measurement noise for GPS
and MEMS accelerometer and turn rate sensors is an entire topic itself. The simulation
performed here is just an initial look at how the estimator might perform if the measure-
ment noise is not Gaussian, and the results that the simulation provides do not constitute a
conclusive answer to the question of performance in the presence of non-Gaussian noise.
Overall, the estimation errors plotted in Figure 3.30, suggest that the estimator generally
displays convergent rather than divergent error behavior; therefore, it is concluded that this
estimation method should be further studied in flight test.
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Figure 3.30: Simulation estimation errors with realistic noise. These include estimation errors
in (a) target position, (b) speed, and (c) target course, all plotted versus simulation time.
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CHAPTER 4:
Wind Estimation and Wind Profile Modeling

Because this research is focused on enabling an ADS to land on a moving platform, landing
accuracy is even more vital as a performance goal. In the previous chapters, methods have
been considered for an ADS to estimate the position and velocity of the moving landing
platform on the surface. As important as estimating the target’s state is, perhaps even more
important is estimating the wind environment through which the ADS must fly to the target.
In this chapter, a new method will be presented for developing a model of the wind profile
that, while it is more complex than those models used currently in the field of ADS GN&C,
it more closely matches the observed characteristics of wind profiles in nature. Through
simulation and flight test, it will be demonstrated that this improved wind modeling method
enhances the accuracy of an ADS attempting to land on a moving platform.

4.1 Understanding the Wind Environment
Chapter 1 introduced the importance of wind knowledge to the task of performing an aerial
delivery. Now, it is time to analyze in detail various ways that an ADS in flight can learn
about the wind environment through which it is flying. First, though, a review of terminol-
ogy is helpful. Section 1.1.3 introduced the concept of a functional relationship between
the average horizontal wind velocity and height about the earth’s surface. This relationship
is called the wind profile model. Section 2.5.2 mentioned methods of measuring the wind
velocity with dedicated sensors and also discussed the current simple methods that ADSs
use to incorporate wind profiles into their guidance. In that short discussion in Chapter 2,
an important distinction was introduced between the computation of wind at the ADSs cur-
rent altitude, and the prediction of wind magnitudes at altitudes below the ADS. The term
wind profile modeling was introduced and defined in Section 1.1.3, and that term will be
used in the same way. Introducing the term wind estimation, the terminology that will be
used in this chapter is:

wind estimation using on-board sensors, and possibly also performing specific maneu-
vers, the ADS constructs a value for the horizontal, and possibly vertical, wind ve-
locity at the current altitude
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wind profile modeling constructing a mathematical functional relationship W (z) for wind
velocity in the air mass at all altitudes between the surface target and the airborne
vehicle.

4.1.1 Methods of Wind Estimation
With the terms wind estimation and wind profile modeling now defined, a quick review of
Sections 1.1.3 and 2.5.2 will confirm that these two previous sections covered wind profile
modeling but not wind estimation. Wind estimation has been a topic of study not only in
the field of autonomous aerial delivery systems (ADSs), but also in the field of small, fixed-
wing UASs. Typical formulations of the wind estimation problem for ADSs are given by
Carter [38] and Bergeron [48]. For fixed-wing UASs, Petrich and Subbarao [102] describe
a straightforward Kalman estimation approach.

To formulate the wind estimation problem here, the development in a recent article by
Ward, Costello, and Slegers [103] will be used as a guide. Consider the wind triangle
depicted in Figure 4.1. The origin of the coordinate system in Figure 4.1 is located at
the center of gravity of the ADS which is viewed from directly above. Assuming that
the ADS flies with constant velocity relative to the air-mass (constant airspeed) and that
this airspeed velocity vector is aligned perfectly with the longitudinal axis of the ADS (no
sideslip), then one side of the triangle, the air vector, is defined by the ADS’s true heading
ψ and its true airspeed. The wind vector, here representing the horizontal velocity of the
air-mass with respect to an earth-fixed reference frame, is added to the air vector to yield
the ground vector. The ground vector is the velocity of the ADS with respect to the earth-
fixed reference plane. It is defined by the ADS’s track and ground-speed and is commonly
measured by an on-board GPS receiver.

The wind estimation problem is this: given a measurement of the ground vector, and some-
times partial knowledge of the air vector as well, such as knowledge of the true heading
angle only, compute an estimate of the wind vector. Without full knowledge of both the
ground vector and the air vector, this is an under-determined problem. To solve the prob-
lem, the ADS must gain information so that the air vector is known. Carter achieves this
by assuming prior knowledge of the glide ratio of the ADS, then computing airspeed from
the measured vertical velocity [38]. This algorithm assumes that the ADS’s true heading is
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air vector

wind vector

ground vector
N ψ

Figure 4.1: The wind triangle. The air vector is shown originating from an overhead view of an
ADS.

available for measurement. The algorithm of Ward, Costello, and Slegers, by contrast, re-
lies on having multiple measurements of the ground vector along multiple different tracks,
then solving a linear regression problem to compute the two orthogonal components of the
wind vector [103]. Using this method, the true heading of the airspeed vector is not needed;
however, it is necessary that the tracks used in the computation be enough in number and
wide enough in span to ensure that the linear regression is well-conditioned.

These two wind estimation methods each estimate the wind vector in a two-dimensional
plane. A much simpler version of the method by Ward, Costello, and Slegers allows com-
putation of the magnitude of the wind vector in one dimension. In the one-dimensional
algorithm, the ADS flies two tracks in opposite directions and computes the mean of the
measured ground-speeds. This mean value is the airspeed which can be used to compute
the wind speed along the axis of the flown segments. This method is the one used by the
Snowflake prototype ADS and is discussed in detail in Section 4.3.

4.1.2 External Sources of Wind Information
Of course, the wind estimates obtained by the methods outlined in Section 4.1.1 are valid
only for the current altitude of the ADS. More precisely, when an ADS is using a method
that requires multiple measurements, the ADS is descending while taking the successive
measurements so that the resultant computed wind vector should be associated with the
range of altitudes traversed.

For effective trajectory planning, the ADS needs a wind profile, which is a family of wind
estimates over a range of altitudes. The ADS could receive this wind profile information
from a dropsonde or a balloon as described in Section 2.5.2; these devices are merely per-
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forming wind estimation at successive altitudes as they either float down or float up. An
ADS that had completed its flight could also organize its recorded wind estimates into a
wind profile and transmit that to a following ADS still in flight. As an alternative, re-
cent work by Hermann proposed using a dedicated sensor such as a light detection and
ranging (LIDAR) to take direct measurements of the horizontal wind velocity at various
altitudes and transmit them to a descending ADS. One recent initiative from Air Force
Research Laboratory (AFRL) combines these two ideas by proposing to drop a palletized
LIDAR wind profile measurement system from an aircraft over the delivery area. Dur-
ing its descent, the LIDAR would then measure and transmit the wind profile back to the
aircraft [104].

4.1.3 Methods of Wind Profile Modeling
The operational situation in which the ADS will be employed may not be conducive to
using an external source of wind profile information; therefore, having an on-board means
of determining this profile is prudent. This on-board wind profile is really just a guess about
how the magnitude and direction of the wind vector would change over a range of altitudes
from the ADS to the surface. As mentioned in Section 1.1.3, these models take the form
of a functional relationship of horizontal wind speed versus height above the surface of the
earth. A simplistic assumption, but one that is easy to use in computations, is that the wind
does not change with height: this is the constant wind profile assumption. A variation of
this profile is one in which there are several sections, each one a constant profile, but each
with a different horizontal wind magnitude. This is the piece-wise constant wind profile.
Examples of a constant and a piece-wise constant wind profile are shown in Figure 4.2.
Note that for these plots of wind profile, the independent variable, height above the surface,
is plotted on the vertical axis.

There are many other possible wind profile models, including linear, logarithmic, and
power law profiles; two of these examples are illustrated in Figure 1.5 in Section 1.1.3.
Next, we should examine the basis upon which a particular wind profile should be chosen
over others.
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Figure 4.2: Constant (a) and piece-wise-constant (b) wind profiles. Wind profiles are traditionally
plotted with the independent variable, height above the surface, plotted on the vertical axis.

4.1.4 Implications of Atmospheric Boundary Layer Theory

The field of meteorology contains a theory that offers insight into the shapes of horizontal
wind profiles under different conditions. A basic text by Salby introduces the atmospheric
boundary layer (ABL) theory, also called the planetary boundary layer theory, which con-
tains methods for predicting smooth and turbulent airflow in the layer of atmosphere closest
to the earth’s surface [12]. According to this theory, the ABL is defined as the lower-most
portion of the troposphere extending from the surface to as high as 4 km in height. Within
the ABL, there exists a lower layer within which heat and moisture interactions between
the atmosphere and the Earth’s surface cause significant changes in wind speed with height.
Another basic text by Stull names this lower layer the surface layer and describes it as ex-
tending from the surface of the earth up to approximately 5 % of the boundary layer height;
therefore the surface layer height is typically in the range 20 m to 200 m [13].
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When an ADS makes an assumption that the wind profile from its current altitude to the sur-
face is constant, this assumption yields a mathematical problem for trajectory planning that
is much more tractable; however, this assumption has no basis in meteorological boundary
layer theory. In fact, constant wind profile assumptions used by ADSs violate one of the
fundamental assumptions of ABL theory: the no-slip condition. This condition stipulates
that the horizontal wind velocity at the earth’s surface is zero [12]. In further contrast to the
constant wind profile assumption, fundamental atmospheric boundary layer theory predicts
a logarithmic increase of wind speed with height in the surface layer as in the following
relation:

W2 =W1
ln z2

z0

ln z1
z0

(4.1)

where W1 and W2 are wind speeds at heights z1 and z2, and parameter z0 is known as an
aerodynamic roughness length. The value for the aerodynamic roughness length at the
surface is estimated empirically based on the ground terrain. In particular, this parameter
has a very small value over the sea surface, and is fairly constant, and therefore easy to
estimate [13].

The work by Stull [13] presents several cases of overall atmospheric conditions, with cor-
responding mathematical models for the general wind profiles under these conditions. The
simplest wind profile, the logarithmic model, corresponds to the case of neutral atmospheric
stability. Neutral stability refers to the tendency of a parcel of air, once displaced vertically
from its original position, to remain in its new position, neither continuing vertical motion,
nor returning to its original position. It will be assumed in this chapter that the logarithmic
model corresponding to neutral surface layer atmospheric stability, prevalent on overcast
and windy days, is the appropriate wind profile model to use in conjunction with aerial de-
livery. Thus, according to this theory, the functional dependence of wind speed on height
can be plotted as a straight line only on a plot with a logarithmic scale on the axis on which
height is plotted. Figure 4.3 contains a plot of the logarithmic wind profile that illustrates
this relationship graphically.

In this chapter, it will be shown that the use of a logarithmic model of near-surface bound-
ary layer winds enables a trajectory planning algorithm to create trajectories that result in
more accurate landings. The price paid for improved accuracy is increased computational
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Figure 4.3: Logarithmic wind profile. Atmospheric boundary layer theory predicts a logarithmic
increase of wind speed with height 4.3a. This yields a straight line plot when a logarithmic scale
is used for height 4.3b.

complexity. The goal is to improve accuracy to a point at which shipboard landings are
possible.

4.2 Wind Estimation and Profile Modeling for Shipboard
Landing

Section 1.1.4 listed some of the existing challenges for landing vehicles onto the decks
of ships. This section will explore additional issues that arise from the shipboard landing
scenario that are specific to wind estimation and profile modeling.

4.2.1 Considerations for Shipboard Landing
The first main difference between traditional ADS employment to a land target and ship-
board landing to be considered is the landing target’s height above the earth’s surface. In
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the case of shipboard landing, the height of interest is the height of the ship’s landing deck
above sea level. When the logarithmic wind profile model as described in Section 4.1.4
is used, the no slip condition stipulates that the horizontal wind velocity at the sea surface
should be zero. More precisely, the wind velocity becomes zero at a height above the sea
surface equal to the aerodynamic roughness length (which is a very small value over the
ocean’s surface). For the shipboard landing case, the ADS should still compute the logarith-
mic wind profile down to the sea surface; however, the wind velocity at the landing height
will be the one that the guidance algorithm will use to compute the landing trajectory.

The second consideration is the actual value of the wind at the landing height relative to
the ship’s deck, which is moving. In the context of shipboard helicopter operations, this
value is called wind-over-deck (WOD). For landing helicopters, the ship maneuvers so
that the WOD comes from either the port or starboard bow. In this way, the helicopter is
able to maintain a higher airspeed, and thus lift on the rotor blades, while having a lower
speed with respect to the landing deck. For a landing ADS, it is likely, in the case of a
cooperative target, that the ship would maneuver so that the parafoil were flying downwind
to the landing target. In this way, the ADS would not have to struggle upwind to land, and
its downwind speed relative to the ship’s deck could be controlled using the ship’s throttle.

The third challenge inherent to landing on a moving platform at sea is turbulent airflow
caused by the ship’s superstructure. Characterization and visualization of the air wake of
a ship underway as been the subject of some research, particularly for the application of
helicopter operations; the article by Lee contains a survey [105]. These studies often rely
on computational fluid dynamics (CFD) in order to predict the flow field around the ship’s
superstructure; however, an ongoing research project at the U.S. Naval Academy is corre-
lating CFD results with flow field data gathered in situ on a 33 m training vessel that has
been modified to include a scale model flight deck aft of the superstructure [106]–[108].
Figure 4.4 shows one example of correlation between CFD and in situ data, where black
vectors represent the in situ data, and white vectors and the background color scale repre-
sent the CFD flow field. One prominent feature of Figure 4.4 is the region of recirculating
flow immediately aft of the superstructure. This region of disturbed flow, sometimes called
a burble by pilots, presents a challenge to the helicopter pilot upon landing.

For a landing ADS, the downward airflow over the landing area immediately aft of the
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Figure 4.4: A research project at the U.S. Naval Academy has collected normalized in situ data
(black vectors) along with 7 knots time-averaged CFD data (white vectors and color scale)
concerning airflow aft of the superstructure (courtesy of M. Snyder [108]).

ship’s superstructure will increase the vehicle’s descent rate at the time of touchdown. Ex-
amining U.S. Naval Academy (USNA) experimental results published by Snyder, a down-
draft velocity of 0.8 m/s appears to be approximately the average downdraft over the land-
ing are for the ship making way at 7 knots. One technique that the ADS may employ to
mitigate the effect of the burble is to add a small (1 m to 2 m) vertical offset to the target
aim point. In effect, the ADS would be flying to a spot 1 m to 2 m above the center of the
landing area.

4.2.2 Link between Profile Modeling and Trajectory Planning
Section 4.2.1 dealt with winds at a couple of specific points in the shipboard landing sce-
nario. Additionally, the entire wind profile itself is a necessary input to an ADS guidance
algorithm that strives for accurate landings. Implicit in this requirement is the need to
determine exactly what the guidance algorithm will do with the wind profile information.
Presumably, the ADS will alter its trajectory somehow based on the wind profile informa-
tion; the AccuGlide and ParaLander systems mentioned in Chapter 2, Section 2.5.2 both
initiate final maneuvers based on wind profile calculations [48], [49]. Even though these
systems use simplistic wind models such as the constant wind profile to plan their trajec-
tories, the fact that they do use this information demonstrates the linkage between wind
modeling and trajectory planning. Therefore, a study of the use of wind models for an
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ADS must be done in the context of a specific guidance algorithm. In the next section,
the Snowflake ADS’s guidance algorithm and its linkage to wind estimation and profile
modeling will be examined in detail.

4.3 Description of the Snowflake ADS Guidance Algorithm
Understanding how an ADS’s guidance algorithm uses wind information is fundamental to
understanding the benefit of an accurate wind profile, as noted in Section 4.2.2. A detailed
description of the Snowflake ADS guidance algorithm follows, which highlights two key
decisions that must be made during flight involving the wind profile.

4.3.1 Aerial Delivery System Trajectory Planning Overview
Snowflake’s guidance algorithm depends on a preflight wind estimate so that a desired
release point relative to the ground target can be computed. The CARP represents the
beginning point of Snowflake’s flight trajectory. Due to the possibly overpowering effect
of strong winds on the flight path of the ADS, the CARP is most often located upwind
of the ground target so that the ADS has an easier downwind flight to the target. The
Snowflake ADS plans its trajectory from the CARP to the target in two stages, an energy
management, or loitering stage and an approach stage. An overview of different schemes
for energy management can be found in a survey of autonomous parafoil GN&C algorithms
in an article by Kaminer and Yakimenko [4].

During the loitering stage, the Snowflake ADS flies a holding pattern upwind of the target,
performing wind estimation and calculating the moment when it should begin its approach.
During the approach stage, the Snowflake flies downwind to a point offset from the ground
target, then completes a 180° final approach turn, as detailed in the work by Slegers and
Yakimenko [7]. The upwind landing enables a more accurate landing, and reduces the
Snowflake’s velocity relative to the ground upon impact. A diagram of the overview of the
guidance strategy including the loitering pattern is shown in Figure 4.5. The loiter pattern
is defined by four waypoints at the corners of the box pattern, labeled A, B, C, and D. The
start of the final 180° turn is known as the Turn Initiation Point (TIP), and the distances
away and cycle define, respectively, the proximity of the loiter pattern to the target, and the
major dimension of the loiter pattern.
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Figure 4.5: Snowflake ADS Guidance strategy overview. Depicted are the loiter pattern (solid
arrows), loiter exit (dotted line), and the approach turn (dashed line).

For analysis and testing, the guidance strategy is divided into phases as summarized below
[7].

Phase 0 After parafoil canopy first opens, no guidance commands are given for a few
seconds while the Snowflake’s flight path becomes steady.

Phase 1 Snowflake follows heading command to point A.
Phase 2 Snowflake executes waypoint navigation in the loiter pattern A–B–C–D.
Phase 3 Snowflake executes a turn out of the loiter pattern toward the TIP.
Phase 4 Snowflake lines up to fly directly downwind to the TIP.
Phase 5 Snowflake tracks the optimal turn trajectory towards the target.
Phase 6 Snowflake flies directly upwind along the target line until landing.

4.3.2 Wind Estimation in the Snowflake Guidance Algorithm
Any sophisticated ADS that uses a two-stage trajectory plan as described in Section 4.3.1
must decide when to switch from the loitering stage to the approach stage. For Snowflake,
this decision is made based on a threshold altitude known as zstart, and it is the first of
two key decisions that Snowflake makes during its approach. In Figure 4.5, the transition
from the loitering stage to the approach stage is shown by the dotted-line flight path from
the loiter pattern towards the TIP. Furthermore, Snowflake must make a second decision
about when to begin the final 180° turn: either before or after it has reached abeam the
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target. The distance from the abeam position to the TIP is given the label Dswitch; a positive
value indicates that the TIP is after the abeam position, and a negative value of Dswitch

indicates that the TIP is before the abeam position. The computation of where to locate the
TIP is the second of the two key decisions that Snowflake makes during its approach. An
overview diagram of the terminal guidance maneuver is shown in Figure 4.6. Note that the
beginning of the flight path in this diagram labeled tstart corresponds to the altitude zstart at
which Snowflake changed from the loitering stage to the approach stage of flight.

In summary, the two major decision milestones that the Snowflake ADS guidance algorithm
must compute in flight are zstart and Dswitch, in that order. The computation of Dswitch is the
final and most critical decision milestone and is the focus of Section 4.4.1.

Following the derivation by Slegers and Yakimenko [7], a three-dimensional, orthogonal
coordinate frame is defined with its origin at the target, and axes as depicted in Figure 4.6.
Note that in Figure 4.6, the representation of the coordinate axes is offset from the target
symbol only to make the diagram less cluttered. The x axis is in the ground plane, and
directed into the direction of the wind, with the wind direction assumed to be constant.
The z axis is pointed down, perpendicular to the ground plane, and the y axis completes
the triad according to the right-hand rule. One point about this convention is especially
important with respect to the value of wind magnitude. If, for example, wind were blowing
from the north, then the x axis would point north from the origin, and the magnitude of the
wind would be assigned a positive value. Alternatively, if the wind were blowing from the
south, then the x axis could still be directed north from the origin; but, in this case, the wind
would be assigned a negative value. In fact, this second case is the one most often used
when arranging for an upwind landing.

Expressions are then developed for the changes in Snowflake’s position in the x and z

directions, given known coordinates of the starting and ending positions. In the xz plane,
the starting coordinates are (−L,zstart), with L being defined as a positive number, and
zstart as a negative number. The ending coordinates at the target are (0,0). Summing the
starting value with the change in coordinate to equal the ending value both in x and in z,
two equations are obtained, thus:
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tstart time of Snowflake commenc-
ing Phase 4 (downwind to
TIP)

t0 time of Snowflake arriving at
TIP and commencing Phase 5

texit time of Snowflake commenc-
ing Phase 6 (steer to target)

t1 time of Snowflake intercept-
ing final approach course

t2 time of Snowflake touchdown
Tdownwind duration t0− tstart
Tturn final turn duration t1− t0
Tapp final approach duration t2− t1
Dswitch optimal distance to pass the

target before commencing fi-
nal turn

D̃ displacement during final turn
due to wind; positive value
when point t1 x coordinate
less than that of t0

L distance from target line at
tstart

Lapp straight approach distance
from point t1 to target

R final turn radius
W x component of wind ve-

locity; positive value when
blowing toward the origin

ψ(t) reference raw function that is
tracked in final turn

ψ(t)

texit

x

yz

D̃

Lapp

R

W

t0 : TIP

t1

tstart

L

Dswitch

target

t2

Figure 4.6: Snowflake ADS terminal guidance maneuver overview. The reference coordinate axes
are actually centered on the target, but are shown offset here for clarity.

−L+L+Dswitch +
∫ t1

t0
ẋ dt︸ ︷︷ ︸
−D̃

+
∫ t2

t1
ẋ dt︸ ︷︷ ︸

−Lapp

= 0 (4.2)
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zstart +
∫ t0

tstart

ż dt +
∫ t1

t0
ż dt +

∫ t2

t1
ż dt = 0. (4.3)

Note that Equation (4.2) is the same equation as that presented in Ref. 7, which is the defini-
tive description of the Snowflake guidance algorithm by Slegers and Yakimenko. Also, in
Equation (4.3), zstart is a negative number; therefore, all ż terms are positive (assuming the
ADS only descends and never ascends).

In the work of Slegers and Yakimenko [7], a set of simplifying assumptions is made that
enables explicit expressions to be derived for Dswitch and zstart. One of these simplifying
assumptions is that the wind profile, or the wind speed over a range of altitudes, is constant
or piece-wise constant. The method used by the Snowflake ADS in flight to estimate wind
speed is very simple and does not require the use of a pitot-static airspeed sensor. An
a priori estimate of the wind direction is used to align the loiter pattern so that the long
dimension of the rectangle ABCD is in the direction of the wind estimate. The result is
that the two long segments of the rectangular loiter pattern should be aligned very nearly
directly downwind and upwind. Referring to Figure 4.5, the forward velocity that will be
measured by the on-board GPS receiver as the Snowflake travels in the direction of A to B

on the downwind segment will be:

Vf =V ?
h +W (4.4)

and, similarly, the reverse velocity measured as the Snowflake travels in the direction of C

to D on the upwind segment will be:

Vr =V ?
h −W. (4.5)

Using Equation (4.4) and Equation (4.5), including speed measurements from both the
downwind and upwind segments, an estimate of the wind Ŵ can be computed with:

Ŵ =
Vf−Vr

2
. (4.6)
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In practice, for each execution of the Snowflake main program loop, an estimate of the wind
is calculated using Equation (4.6) and the most recently measured values of the velocities
Vf and Vr.

4.4 Computing Dswitch using a Logarithmic Wind Profile
Now that the wind profile models have been discussed in Section 4.2, and a specific exam-
ple of an ADS guidance algorithm has been described in Section 4.3, this section will focus
on using the logarithmic wind profile to calculate the important parameter Dswitch that is
used in the Snowflake guidance algorithm. There are two important assumptions necessary
for the development in the rest of this section. The first assumption is that the shape of the
wind profile is known. The logarithmic wind profile is defined by two parameters α and β

as will be discussed in Section 4.4.1. The second assumption is that there is one constant
prevailing wind direction throughout the entire vertical extent of the wind profile.

It is a well-established part of atmospheric boundary layer theory as presented by Stull [13]
that the prevailing horizontal wind direction does vary with height due to the Coriolis ef-
fect and friction with the earth’s surface; however, accounting for this effect causes the
estimation problem to be very much more complex. Therefore, only wind profiles in one
dimension will be considered. With these two assumptions in place, the geometry of Fig-
ure 4.6 again applies to this problem, with the difference that wind magnitude W (z) now
varies with height.

4.4.1 Iterative Calculation for Dswitch
In the following derivation, the assumption of a constant or piece-wise constant wind profile
will be replaced by the assumption that wind speed W varies logarithmically with altitude
z as:

W (z) = α ln(−z)+β (4.7)

where α and β are constants. Note that, since altitude z is represented as a negative num-
ber according to the sign convention in use, an additional factor of −1 is included in the
argument of the logarithm. The derivation uses this assumption for the wind profile, along
with the assumptions that the steady-state, no-wind values of the ADS horizontal and ver-
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tical velocities are known and labeled V ?
h and V ?

v . Furthermore, it is assumed that the wind
vector lies only in the horizontal plane, and is parallel with the x axis of the coordinate
system depicted in Figure 4.6. Using the assumptions of constant steady-state, no-wind
vertical velocity, and no vertical wind component, the time derivative of the z coordinate,
ż, is just equal to V ?

v , where downward change has a positive sign. Thus, the integral terms
in Equation (4.3) can be simplified to:

zstart +V ?
v Tdownwind +V ?

v Tturn +V ?
v Tapp = 0 (4.8)

where Tdownwind represents the time duration required to travel the sum of distances L and
Dswitch. Again, recall that under the sign convention being used here, zstart is a negative
number and that V ?

v and all time durations are positive. Assuming that the Snowflake’s turn
rate is constant, and that the turn will encompass 180° of a circle of known radius R, the
time duration for the turn Tturn is a known constant in terms of R and V ?

h . Therefore, this
equation has only two unknowns: Tdownwind and Tapp.

Under the assumption of a constant wind profile, a simple expression for Tdownwind could be
written in terms of unknown value Dswitch. Also using the constant wind profile assumption,
Equation (4.2) could be simplified into an equation containing two unknowns: Dswitch and
Tapp; therefore, the two linear equations in two unknowns could easily be solved. Under
the assumption of a logarithmic wind profile as in Equation (4.7), Tdownwind cannot be
replaced by a simple expression containing Dswitch. Instead, an iterative computation will
be described that uses both Equations (4.2) and (4.8) to solve for Dswitch. An initial value
for Dswitch will be chosen that will be used to calculate several intermediate parameters.
These intermediate parameters are used in turn to calculate an updated value of Dswitch that
is then used as the starting value for the next iteration. The iteration is complete when
the difference between successive updated values of Dswitch falls below a predetermined
threshold value. The sequence of computations is illustrated graphically in Figure 4.7. In
the following subsections, derivations will be presented for the individual computations
shown in Figure 4.7.

144



Dswitch

z0

Tdownwind z1

Tapp D̃

Lapp Dswitch

step 1

step 2a

step 2b

step 3

step 4

step 5

step 6 step 7

step 8
(iterate)

Figure 4.7: Sequence of iterative computations for Dswitch. The steps in the figure refer to the
computation summary in Section 4.4.5.

4.4.2 Derivation of Altitude at TIP z0

Referring to Figure 4.6, z0 is the ADS’s altitude at the TIP. Note that the symbol z0 here,
and in the following sections, is used to refer to a particular Snowflake altitude instead of
aerodynamic roughness length. As the ADS flies toward this point, it is affected by wind
that changes with altitude. The computation of z0 starts with the fundamental expression
for movement along the a priori assumed wind direction between times tstart and t0. The
distance traveled, x, is resolved into a component that is due to no-wind velocity, and a
component due to the wind. The resulting expression contains an unknown value of time,
called t0, instead of the corresponding altitude at that time, z0. There exists a simple variable
transformation from time to altitude based on the assumption of constant descent rate, as
follows: ∫ t0

tstart

ẋ dt = L+Dswitch (4.9)

V ?
h (t0− tstart)−

∫ t0

tstart

W (z) dt = L+Dswitch. (4.10)

A variable transformation is performed on both terms, converting from time to altitude as
the independent variable. Altitudes corresponding to tstart and t0 are labeled zstart and z0

respectively, thus:
z(t) =V ?

v (t− tstart)+ zstart (4.11)
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where the change in altitude is expressed in terms of time using the simple expression:

dz =V ?
v dt. (4.12)

Using the relationship in Equation (4.12) in Equation (4.10) yields:

V ?
h

V ?
v
(z0− zstart)−

1
V ?

v

∫ z0

zstart

W (z) dz = L+Dswitch. (4.13)

Moving known quantity involving zstart to the right side, and substituting in Equation (4.7)
for logarithmic wind profile, yields:

V ?
h

V ?
v

z0−
1

V ?
v

∫ z0

zstart

α ln(−z)+β dz = L+Dswitch +
V ?

h
V ?

v
zstart. (4.14)

Next, a variable substitution is performed to account for the fact that altitude is represented
as a negative number in the sign convention in use:

z′ =−z

dz′ =−dz
(4.15)

V ?
h

V ?
v

z0 +
1

V ?
v

∫ −z0

−zstart

α lnz′+β dz′ = L+Dswitch +
V ?

h
V ?

v
zstart (4.16)

and the definite integral is then evaluated as follows:

V ?
h

V ?
v

z0 +
β

V ?
v
(−z0 + zstart)+

α

V ?
v

[
z′ lnz′− z′

]−z0

−zstart

= L+Dswitch +
V ?

h
V ?

v
zstart. (4.17)

Evaluating the limits of integration, and moving all known quantities to the right side,
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assuming Dswitch is a known quantity, results in the following expressions:(
V ?

h −β

V ?
v

)
z0 +

α

V ?
v

[
−z0 ln(−z0)+ z0+zstart ln(−zstart)− zstart

]
=

L+Dswitch +

(
V ?

h −β

V ?
v

)
zstart

(4.18)

(
V ?

h +α−β

V ?
v

)
︸ ︷︷ ︸

a

z0−
α

V ?
v︸︷︷︸
b

z0 ln(−z0) =

L+Dswitch +

(
V ?

h +α−β

V ?
v

)
zstart−

α

V ?
v

zstart ln(−zstart)︸ ︷︷ ︸
c

.

(4.19)

Equation Equation (4.19) is an equation in only one unknown, z0, and has the form

az0 +bz0 ln(−z0) = c. (4.20)

The Lambert W function is described in detail in the work by Corless [109], and it can be
used to solve equations of the form of Equation (4.20). The Lambert W function is defined
as the function that satisfies:

W (z)eW (z) = z. (4.21)

Note here that the symbol W (z) is traditionally used in the literature to represent the Lam-
bert W function and its argument z. Elsewhere in this chapter, W (z) can also refer to wind
magnitude W at altitude z. The context of the usage should indicate which meaning the
symbol represents.

Equation (4.20) can be manipulated into a form to which the Lambert W can be applied:

ln(−z0)+
a
b
=

c
bz0

(4.22)

−cea/b

b
=

c
bz0

e
c

bz0 (4.23)

W

(
−cea/b

b

)
=

c
bz0

. (4.24)
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The solution for altitude z0 in terms of the Lambert W function is:

z0 =
c

bW
(
−cea/b

b

) . (4.25)

Constants a, b, and c are can be expressed in terms of known quantities V ?
h , V ?

v , α , β , L,
zstart, and assumed quantity Dswitch.

4.4.3 Derivation of Displacement During Final Turn D̃
The computation of the displacement due to wind during the final turn, D̃, starts with an
expression for movement in the x direction between times t0 and t1. The sign convention
established by Slegers and Yakimenko [7] is that the distance D̃ is measured in the negative
x direction from point t1. In other words, if point t1 has an x coordinate that is less than
that of point t0, then distance D̃ is said to have a positive value. Put in yet another way,
if, during the turn from point t0 to point t1, the wind pushes Snowflake closer to the target,
then D̃ is said to have a positive value; conversely, if the wind pushes Snowflake further
away from the target during the turn, then D̃ is said to have a negative value. Therefore, D̃

has the opposite sign of the change in x coordinate between times t0 and t1:

D̃ =−
∫ t1

t0
ẋ dt. (4.26)

For the next step, it is assumed that the turn trajectory from t0 to t1 is planned in such a way
that, if there were no wind, that point t1 would have the same x coordinate value as point t0.
Therefore, any deviation, measured as D̃, is a result of the wind alone. Noting that the sign
convention for wind in Figure 4.6 is such that positive values of wind speed W correspond
to negative values of resultant movement in the x direction, or ẋ, Equation (4.26) is restated
as:

D̃ =
∫ t1

t0
W (z) dt. (4.27)

A variable transformation is performed, as in Equation (4.12), on the integral term, con-
verting from time to altitude as the independent variable. Altitudes corresponding to t0 and
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t1 are labeled z0 and z1, respectively:

D̃ =
1

V ?
v

∫ z1

z0

W (z) dz. (4.28)

The logarithmic wind profile in Equation (4.7) is then applied to yield:

D̃ =
1

V ?
v

∫ z1

z0

α ln(−z)+β dz. (4.29)

A variable substitution as in Equation (4.15) is performed to account for the fact that alti-
tude is represented as a negative number in the sign convention in use:

D̃ =− 1
V ?

v

∫ −z1

−z0

α lnz′+β dz′. (4.30)

The definite integral and the limits of integration are then evaluated, and terms are grouped:

D̃ =
β

V ?
v
(z1− z0)−

α

V ?
v

[
z′ lnz′− z′

]−z1

−z0

(4.31)

D̃ =
β

V ?
v
(z1− z0)−

α

V ?
v

[
−z1 ln(−z1)+ z1 + z0 ln(−z0)− z0

]
(4.32)

D̃ =
β

V ?
v
(z1− z0)−

α

V ?
v
(z1− z0)−

α

V ?
v

[
z0 ln(−z0)− z1 ln(−z1)

]
. (4.33)

Altitude is again related to time using Equation (4.11), yielding the following relations:

z(t1)≡ z1 =V ?
v (t1− tstart)+ zstart (4.34)

z1− z0 =V ?
v (t1− t0)≡V ?

v Tturn. (4.35)

Using Equation (4.35), a final expression is obtained that includes values that are known
a priori: α , β , Tturn, and V ?

v . This expression also includes altitude values z0 and z1 at
the beginning and the end of the turning maneuver. Once one of these altitude values is
determined or estimated, the other is easily found using the known time for the turning
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maneuver, Tturn and the assumed constant descent rate V ?
v :

D̃ = (β −α)Tturn−
α

V ?
v

[
z0 ln(−z0)− z1 ln(−z1)

]
. (4.36)

4.4.4 Derivation of Approach Distance Lapp

The distance Lapp of the last, straight-in approach leg, is computed starting with the funda-
mental expression for movement in the x direction between times t1 and t2. Time t2 is the
time of landing. The distance Lapp is defined as a positive distance; however, the change
in x coordinate between times t1 and t2 is negative. Therefore, Lapp will have the opposite
sign from the integral of ẋ:

Lapp =−1 ·
∫ t2

t1
ẋ dt. (4.37)

The motion is then resolved into a component that is due to no-wind velocity, and a com-
ponent due to the wind. During this segment of the flight path, the no-wind velocity V ?

h and
motion due to positive values of wind W are both assumed to be aligned in the opposite
direction of positive values of ẋ; therefore a negative sign is inserted into the integrand:

Lapp =−1 ·
∫ t2

t1
−(V ?

h +W (z)) dt. (4.38)

Next, the logarithmic wind profile in Equation (4.7) is applied, and the times t1 and t2 are
transformed into their corresponding altitudes, which are labeled z1 and z2 respectively, to
yield:

Lapp =
1

V ?
v

∫ z2

z1

V ?
h +W (z) dz. (4.39)

At this point, an additional feature of the wind model must be incorporated. The value of the
wind magnitude W (z) is assumed not to change sign with changing altitude; in other words,
the output values of the function W (z) should be either all positive or all negative over the
range of altitude from zstart to the surface. The complication is that at values of altitude z

close to zero, the sign of the natural logarithm function does change sign. Therefore, for
this wind model, the value of the wind magnitude W (z) shall be considered to be zero for
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values of altitude z close to zero. It can be verified that for z =−e−β/α , the value of wind
magnitude W (z) = α ln(−z)+β = 0; therefore, W (z) = 0 for |z|< |e−β/α |. The integral in
Equation (4.39) can then be separated into two components: one with a non-zero value of
W (z) for −e−β/α > z > z1 and one with a zero value for W (z) for 0 > z > −e−β/α . Note
that z2 is the touchdown point, so that its altitude is zero:

Lapp =
1

V ?
v

{∫ −e−β/α

z1

V ?
h +α ln(−z)+β dz

}
+

1
V ?

v

∫ 0

−e−β/α

V ?
h dz. (4.40)

For both integrals, the variable substitution is performed as in Equation (4.15) to account
for the fact that altitude is represented as a negative number in the sign convention in use:

Lapp =
−1
V ?

v

{∫ e−β/α

−z1

V ?
h +α lnz′+β dz′

}
− 1

V ?
v

∫ 0

e−β/α

V ?
h dz′. (4.41)

The definite integrals and the limits of integration are evaluated, and terms are grouped in
the following manner:

Lapp =
V ?

h
V ?

v

(
−e−β/α − z1 + e−β/α

)
− β

V ?
v

(
e−β/α + z1

)
− α

V ?
v

[
z′ lnz′− z′

]e−β/α

−z1

(4.42)

Lapp =

(
−V ?

h −β

V ?
v

)
z1−

βe−β/α

V ?
v
− α

V ?
v

[
e−β/α lne−β/α − e−β/α + z1 ln(−z1)− z1

]
(4.43)

Lapp =

(
−V ?

h +α−β

V ?
v

)
z1 +

αe−β/α

V ?
v
− α

V ?
v

[
z1 ln(−z1)

]
. (4.44)

Using the assumption of constant descent rate V ?
v , the altitude z1 at the beginning of the ap-

proach segment is just the time duration of the approach segment multiplied by the vertical
velocity, expressed as a negative number:

z1 =−TappV ?
v . (4.45)
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Substituting Equation (4.45) into Equation (4.44), a final expression is obtained in terms
of values α , β , V ?

v , and V ?
h that are known a priori, and value Tapp that is easily computed

using the known value Tturn and an estimated value for Tdownwind:

Lapp = (V ?
h −α +β )Tapp +

αe−β/α

V ?
v

+αTapp ln(TappV ?
v ). (4.46)

4.4.5 Summary of Iterative Calculation for Dswitch

The iteration procedure to calculate Dswitch is summarized below:

1. Select an initial guess value for Dswitch.
2. Using the initial guess value for Dswitch:

(a) Calculate z0 using the Lambert W function as shown in Equation (4.25).
(b) Calculate Tdownwind from:

Tdownwind =
z0− zstart

V ?
v

. (4.47)

3. Using Tdownwind, calculate Tapp using Equation (4.8):

Tapp =
−zstart

V ?
v
−Tturn−Tdownwind. (4.48)

4. Compute z1 using the assumption of constant vertical velocity:

z1 = z0 +V ?
v Tturn. (4.49)

5. Compute D̃ from known quantities:

D̃ = (β −α)Tturn−
α

V ?
v

[
−z0 ln(−z0)− z1 ln(−z1)

]
. (4.50)

6. Compute Lapp using Tapp using:

Lapp = (V ?
h −α +β )Tapp +

αe−β/α

V ?
v

+αTapp ln(TappV ?
v ). (4.51)
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7. Compute Dswitch from:
Dswitch = D̃+Lapp. (4.52)

8. Use the value of Dswitch computed in step 7 as the next iteration estimate of Dswitch to
be used in step 1. Repeat the iterations until differences between subsequent values
of Dswitch are below a specified threshold value.

4.5 Adaptive Filtering for Parameter Estimation
In Section 4.4.1, the parameters of the logarithmic wind profile, α and β , were treated as
known parameters. These two parameters are estimated from the output of an adaptive
filtering algorithm, which is shown in block diagram form in Figure 4.8. In this repre-
sentation, the logarithmic wind model is interpreted in a discrete-time form with desired
signal d[n] containing the sequential estimates of wind speed from the Snowflake guidance
algorithm. These sequential estimates are obtained using Equation (4.6) as described in
Section 4.3.2. When converting the logarithmic wind profile model in Equation (4.7) into
discrete-time form for the adaptive filtering algorithm, then measurement matrix H[n] con-
tains the natural logarithm of the current altitude measurement z[n]. The estimate of wind
speed d̂[n] at any altitude z[n] is given by the following product:

d̂[n] =
[
ln(−z[n]) 1

]
︸ ︷︷ ︸

H[n]

[
α

β

]
︸︷︷︸
Θ̂[n]

. (4.53)

The term on the right side of Equation (4.53) can be represented as the product of the
measurement matrix H[n] (a row vector in this case) and an estimated parameter vector
Θ̂[n]. Note that the true parameter vector Θ[n] remains unknown. In the adaptive filtering
model, the true output (desired signal d[n]) is known; however, the true logarithmic wind
profile parameters and the measurement noise signal v[n] that compose the true wind speed
are unknown.

The RLS adaptive filtering algorithm can be applied to this parameter estimation problem;
various digital signal processing textbooks contain the derivation of this algorithm [110],
[111]. In summary, this algorithm minimizes the total error given by the following sum of
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Θ

Θ̂

H[n]

unknown

v[n]

d[n]

d̂[n]

e[n] = d[n]− d̂[n]

+
+

−
+

Figure 4.8: RLS adaptive filtering algorithm block diagram. Estimated parameter vector Θ̂ is
adjusted to make the filter output d̂[n] match the desired signal d[n] as closely as possible.

weighted error squares:

Ξ[n] =
n

∑
i=1

λ
n−i|e[i]|2 =

n

∑
i=1

λ
n−i
∣∣∣d[i]−H[i]Θ̂[n]

∣∣∣2. (4.54)

where λ is known as the forgetting factor and typically has a value equal to or greater than
0.9 [110]. For the experiments described in this chapter, λ was set to 0.9. Therefore, the
few most recent values of the a posteriori error signal e[n] are the most influential in the
calculation of total error Ξ[n]. As each new value of the measurement matrix H[n] and
the desired output signal d[n] is obtained, the new values of the estimated parameters Θ̂[n]

are calculated by adding to the previous estimate Θ̂[n− 1] a quantity proportional to the
a priori error value ξ [n]. The a priori error is formed by using the previous parameter
estimate values Θ̂[n−1] with current measurement matrix H[n] and subtracting the product
from the current desired signal value d[n]. The constant of proportionality in this operation
is known as the adaptation gain vector K[n], which depends in turn on the measurement
matrix H[n] and a 2×2 matrix (for the current problem) known as the inverse correlation

matrix P[n]. The RLS adaptive filtering algorithm is summarized as follows:

1. Initialize the inverse correlation matrix P(0) using the identity matrix I and a small
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positive constant δ thus:
P(0) = δ I. (4.55)

2. Compute the adaptation gain vector K[n] by

K[n] =
λ−1P[n−1]HT[n]

1+λ−1H[n]P[n−1]HT[n]
. (4.56)

3. Compute the a priori error value ξ [n] using:

ξ [n] = y[n]−H[n]Θ̂[n−1]. (4.57)

4. Update the estimate of the parameters of the wind model Θ̂[n]:

Θ̂[n] = Θ̂[n−1]+K[n]ξ [n]. (4.58)

5. Update the value of the inverse correlation matrix P[n] using the relation:

P[n] = λ
−1P[n−1]−λ

−1K[n]H[n]P[n−1]. (4.59)

6. Increment discrete counter n, obtain new values of desired signal d[n], and altitude
z[n] (which is used in forming the one-dimensional measurement matrix H[n]) and
then repeat starting at step 2.

4.6 Wind Estimation Algorithm Implementation
Up to this point, a method for Snowflake to use a sequence of altitude and velocity measure-
ments in order to estimate the parameters of a logarithmic wind profile has been proposed
in Section 4.5, and a means to use those parameters in the calculation of decision mile-
stone Dswitch has been described in Section 4.4. In the sequel, the incorporation of these
new methods into the existing code for the Snowflake ADS guidance algorithm will be
described, along with the implications of these changes.

Section 4.3.2 listed the two major decision milestones to be computed in flight as transition
altitude zstart and transition distance Dswitch. As also mentioned in that section, of the two
decision milestones, Dswitch was the final and more critical of the two. In the following
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algorithm, the estimated parameters of the logarithmic wind profile are applied to the cal-
culation of only Dswitch for the additional reason that the transition altitude zstart is typically
at an altitude above the limit of where the surface layer logarithmic wind profile assump-
tion is considered to be valid (approximately up to a maximum of 200 m) [13]. Therefore,
it is assumed that the zstart computation, for the altitude at which to exit the loitering phase,
is made according to the derivation in Slegers and Yakimenko [7] using a constant wind
profile assumption.

4.6.1 Trajectory Planning to a Moving Target
Kinematic equations were introduced in Chapter 1 for the calculation of zstart when the
target is moving with constant velocity VT ( Equation (1.9) in Section 1.1.2). In this section,
the goal is to outline methods for using the procedure for calculating Dswitch derived in
Section 4.4 in the case of a moving target.

One method for computing Dswitch for a moving target is to do all calculations with respect
to a set of coordinate axes that are attached to the target itself. Because it is assumed that
the target is moving with a constant speed and direction during the time of flight of the
ADS (see Chapter 3), this target-fixed frame is also in inertial reference frame. To use the
target-fixed frame, the velocity of the ADS in the kinematic equations needs to be replaced
with the relative velocity between the ADS and the target.

Another method for computing Dswitch for a moving target is to use a fixed global reference
frame. This can be done using the assumption of constant speed and direction of the target
by computing the global coordinates at which the target will be when the ADS reaches the
surface. These coordinates, called the intercept point, can then be used in the same manner
as in the case of a stationary target.

When using the kinematic equations, the time remaining until intercept can be computed
using either a relative or a global reference frame; the two methods are mathematically
equivalent in this sense.

In Section 4.6.2, the advantages of the relative coordinate frame method will be examined
in greater detail. Notwithstanding these advantages, in Section 4.6.3 and beyond in this
chapter, the intercept point method using global coordinates will be used. The reason for
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the use of global coordinates in the simulations to be described in Section 4.7 is that the
optimal final turn algorithm used in the simulation (detailed in Ref. 7) was formulated for
a fixed target on land, and that part of the simulation was not changed.

4.6.2 Relative Coordinates for Trajectory Planning
The use of relative coordinates for planning the landing trajectory helps with two separate
issues at once. The first issue concerns the optimal final turn algorithm just mentioned.
The optimal turn algorithm implemented using IDVD as detailed in the article by Slegers
and Yakimenko [7] strives to have the ADS at a particular position and orientation (at the
target and heading upwind) at a particular time (the moment of touchdown). Using relative
coordinates, the final stage of the navigation algorithm must enable the ADS to arrive at
the final location at or before the time of touchdown.

Trajectories that bring the ADS to the final location before touchdown are effective if the
relative motion between the ADS and the target is suitable. Consider the case in which the
target is moving in a straight line with a constant speed equal to the ADS’s forward velocity
when it is in the landing phase. In a coordinate frame fixed to the target, the position of
the ADS is stationary when its forward speed matches that of the target. Figure 4.9 shows
successive positions of an ADS relative to the target. The target ship’s course is south, and
the ADS begins its trajectory on the ship’s port bow, and also flying south while completing
its final turn to a course of due south. The wind is from due south, so both ship and ADS
are traveling upwind. As the ADS descends, its ground speed increases to match that of the
target due to decreasing head winds; therefore, as shown in Figure 4.9, the successive lower
(darker) parafoil positions are not approaching the ship as quickly. If the final trajectory
is planned in relative coordinates to reach a stationary point above the landing area, then
the ADS and the target can continue moving together with the same velocity until the ADS
touches down.

A trajectory planned using relative coordinates also mitigates the problem of air wake tur-
bulence from the ship’s superstructure as the ADS is landing. During the landing phase, the
ADS and target are both moving with zero relative velocity between them. Therefore, any
downward flow affecting the ADS will simply force the ADS to land on the deck sooner.
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Figure 4.9: Landing motion of the ADS in a relative coordinate frame. This diagram shows the
positions over time of the landing ADS relative to the ship target as the ADS descends and while
completing its final turn.

4.6.3 Logarithmic Wind Profile with Snowflake Guidance Algorithm
The incorporation of the algorithm into the Snowflake ADS code would be as follows:

1. At each execution of the main loop, measure current altitude z[n] and, if on a down-
wind or upwind segment, measure Vf or Vr as appropriate.

2. If altitude is below a threshold value, for instance 200 m AGL, and Snowflake is in
phase 4, use adaptive filter algorithm as described in Section 4.5 in order to estimate
parameters α and β of logarithmic wind profile. If not yet in phase 4, return to step 1.

3. Use current values of parameters α and β in iterative computation as described in
Section 4.4.1 to compute Dswitch.

158



4. Compare Snowflake’s current x coordinate (as defined in Figure 4.6). If x < Dswitch,
return to step 1.

5. If x > Dswitch, then begin phase 5 and start final turn to target. Note that the compar-
ison of x to Dswitch is valid whether Dswitch is negative or positive.

It should be seen in simulation that a Snowflake relying on the logarithmic wind profile
should, all other aspects being equal, begin the final turn towards the target later than a
Snowflake relying on the assumption of a constant wind profile because the logarithmic
wind profile should predict smaller values of wind speed near the surface.
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4.7 Dynamic Parafoil Model Simulation
To test the assumption just stated about the later final turn for an algorithm using the log-
arithmic wind profile, a simulation was used that combined a dynamic model of an ADS
along with a wind profile based on recorded dropsonde data. The dynamic model used was
one that calculated the equations of motion for the parafoil and payload, which together
comprise the ADS, in six degrees of freedom (6DOF). These six degrees consist of a trans-
lation of the entire system in three dimensions, and a rotation of the entire system about
three orthogonal axes. In a 6DOF simulation, the payload and canopy together move and
rotate as a rigid body. For this work, two models were readily available: one written in
MATLAB by Slegers for the small Snowflake prototype ADS [7], and one by Mortaloni
and Yakimenko written in Simulink for the larger Pegasus 500 ADS [112]. For the simu-
lation in this section, the MATLAB model by Slegers was used. This model has also been
the basis of other work such as that by Ward, Montalvo, and Costello [51].

The recorded wind profiles were from a set of flight tests conducted at YPG in 2008 by
Yakimenko, Slegers, and Tiaden [11]. The profiles were derived from the data from drop-
sondes, which were introduced in Section 2.5.2. The data from the dropsondes indicated
that the prevailing wind direction did change with height; however, as discussed in Sec-
tion 4.4, the wind profile modeling algorithm assumes a constant direction. Therefore, the
simulation was programmed with the Snowflake ADS’s one-dimensional wind estimation
algorithm described in Section 4.3.2 to estimate wind along this direction.

4.7.1 6DOF Simulation Varied Parameters
Monte Carlo studies have been run before using this 6DOF model simulation. Slegers
and Yakimenko have run many instances of this 6DOF model while varying simulated
measurement noise in the ADS’s position and attitude sensors [7]. As part of the same
study, they also varied the direction and magnitude of a linear wind profile. The varied
wind profiles used in those simulations were varied in angle away from the algorithm’s
a priori direction; however, each profile contained horizontal wind vectors that were all
co-planar at the various altitudes. The recorded wind profiles for the simulation described
in this section featured different wind directions and different wind magnitudes at each
altitude.
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Slegers and Yakimenko determined that the sources of error they introduced in their simu-
lation resulted in landing errors that were mostly in the downrange direction, not the cross-
range direction [7]. For this current study, the 6DOF simulation was used to determine
whether a set of varied parameters effected cross-range or downrange error. This study
was not done in the Monte Carlo style, in which the parameters would be varied stochasti-
cally; rather, one deterministic instance of the simulation was run for each set of parameter
values.

For this set of simulations, the primary varied parameter was the wind profile model used:
constant or logarithmic. Landing error was then resolved into downrange and cross-range
directions. Two other parameters were also varied in this set of simulations: desired ap-
proach time and the cross-wind component of the simulated winds. For the moving target
scenario, it was thought that a longer straight-in approach to the target would be more ef-
fective; so, cases with a 20 s final approach, and a 60 s final approach were run. For the
cross-wind component, there were two cases: one with the existing cross-wind component
from the recorded wind profile, and one case with the cross-wind component set to zero.
The cross-wind component was eliminated by setting the directions of all recorded wind
vectors to the a priori direction.

One very important issue involving the desired final approach time is that it is used for
the calculation of the loiter exit altitude zstart, and that this computation always uses the
constant wind profile assumption. Furthermore, the estimated final approach time in flight,
Tapp, is also always computed using the constant wind profile assumption. A desired final
approach time of 20 s or 60 s will result in a higher computed value of zstart which will
subsequently magnify the landing errors due to an early turn to final. The algorithm using
the logarithmic wind profile compensates for the possibly inaccurate computed values of
zstart and Tapp by using a more accurate Dswitch calculation.

In these simulations, the wind is from the south and the ADS flies downwind to the target.
The target holds a constant course and speed upwind toward the ADS. The first compar-
ison set run consisted of no cross-wind and a short (20 s) final approach time. This first
comparison is described next.
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4.7.2 One-dimensional Wind Profile Results

In the 6DOF simulation, the simulated Snowflake has uncorrupted measurements of its own
position and ground-speed velocity with which to estimate the wind field through which it
is moving. A plot of the Snowflake horizontal wind magnitude estimates from a direction
of due south versus height is shown in Figure 4.10. Also on this plot, the horizontal wind
velocity measurements from the wind-pack are shown projected on to the direction of due
south. These recorded wind-pack measurements are used as the true wind field for the
simulation. In Figure 4.10, this true wind field is shown only from phase 4 onward. For
the Snowflake estimates, it can be seen that the estimate is not being updated during phase
4. This is due to a feature of the Snowflake algorithm called the wind timer that causes
the wind estimation algorithm to pause during and after the turn out of the loiter pattern.
The delay is to allow the Snowflake to reach a steady course downwind toward the target.
In this case, the duration of phase 4 is shorter than that of the wind timer; therefore, no
wind velocity updates are computed during phase 4. Furthermore, the Snowflake algorithm
in this 6DOF model does not perform wind estimation during phase 5, so the estimate
remains constant during that phase also. The wind-pack’s measured wind profile shown in
Figure 4.10 does decrease significantly with decreasing height; this recorded profile was
selected specifically for this characteristic. This choice was made to test the hypothesis in
Section 4.6.3 that the algorithm using the logarithmic wind profile would execute a later
final turn.

Figure 4.11 shows the simulated trajectory of the ADS for this run. The critical guidance
algorithm decision for initiating the final turn occurs at the transition between phase 4 and
phase 5. In Figure 4.11, this decision occurs before the Snowflake has reached the abeam
position during phase 4. Therefore, the simulated Snowflake turns before reaching the
abeam decision, and lands past the target, as expected. The × symbol represents the target
location at the time of the ADS landing.

The other simulation run in this first pair used the logarithmic wind profile. Figure 4.12
shows the wind estimates made by the Snowflake until phase 5; thereafter the plot con-
tains the shape of the logarithmic profile computed using parameters α and β . Compared
to Figure 4.10, the Snowflake in this simulation entered phase 5 at a lower altitude—
approximately 90 m versus 130 m in Figure 4.10. A later initiation of the phase 5 final
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Figure 4.10: Constant wind profile in 6DOF simulation. Horizontal wind velocity estimates
computed by the ADS are shown along with the true wind profile that was derived from windpack
data. The true wind profile is shown only from phase 4 onward.

turn is represented in the trajectory view in Figure 4.13. Notice that the phase 5 trajectory
in Figure 4.13 is the trajectory flown, not the trajectory planned.

A plot versus time of the computed values of Dswitch along with the distance Lx to the
abeam position allows a closer look at the critical final turn decision. Figure 4.14 is a
plot of these values versus time. This plot indicates that the Snowflake’s calculation of
Dswitch, done using the constant wind profile assumption, becomes negative and remains
negative at approximately 160 s of simulation time, prior to phase 3. A negative value of
Dswitch represents a planned turn prior to the abeam position. During phases 3 and 4, the
Snowflake is turning and flying downwind toward the target, so the distance Lx to the abeam
position is decreasing. When Lx has decreased to be less than −Dswitch, then the guidance
algorithm initiates the final turn.

In Figure 4.15, the same plot is shown for the simulation run using the logarithmic wind
profile. Until the beginning of phase 4, the guidance algorithm is computing Dswitch using
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Figure 4.11: Constant wind profile simulation trajectory. The wind vector is denoted with a
capital W and the target motion vector with a capital T. The × symbol represents the target
location at the time of the ADS landing.

the constant wind profile; therefore, the plot in Figure 4.14 matches that in Figure 4.15 dur-
ing the time up to the start of phase 4. In Figure 4.15, the guidance algorithm begins using
the logarithmic wind profile after the beginning of phase 4; this instant is evident when the
computed value of Dswitch suddenly jumps above the dotted line drawn at Dswitch = 0. A
positive value for Dswitch means that the ADS should fly past the abeam point; therefore,
and ADS using the logarithmic wind profile will fly further before starting the final turn
than one using the constant wind profile assumption.
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Figure 4.13: Logarithmic wind profile simulation trajectory. The wind vector is denoted with a
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Figure 4.14: Final turn parameters Lx and Dswitch plotted versus time. The guidance algorithm
initiates the final turn (marking the start of phase 5) when Lx < Dswitch.
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Figure 4.15: Final turn parameters Lx and Dswitch plotted versus time. The guidance algorithm
initiates the final turn (marking the start of phase 5) when Lx < Dswitch.
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4.7.3 Overall 6DOF Simulation Results
One simulation was run for each combination of the varied parameters discussed in Sec-
tion 4.7.1, and the downwind and cross-wind components of the final landing error are
shown in Table 4.1. The different performance of the algorithm using the constant wind
profile versus one using a logarithmic wind profile was analyzed in detail in Section 4.7.2.
Those results correspond to the case of no cross-wind and a short approach time in the
upper-left quadrant of Table 4.1. For those simulations that were run with a cross-wind
component, the recorded winds used as an input to the simulation varied from southeast
to southwest. Therefore, the wind profile modeling algorithm was programmed to use due
south as its a priori direction.

Table 4.1: Overall results of simulation trade study. Downwind and cross-wind components of
landing error are shown for each combination of parameters.

short approach long approach
simulation

winds
profile
model

downwind
error/m

cross-wind
error/m

downwind
error/m

cross-wind
error/m

no cross-wind
constant 107.4 0.1 150.3 0.0

logarithmic 5.5 3.8 12.3 0.0

cross-wind
constant 115.1 0.1 152.7 0.0

logarithmic 10.5 1.3 2.4 0.1

These results present more evidence that the use of a logarithmic wind profile can reduce
significantly the downwind landing error, as previously shown in the trajectory plots in
Figure 4.11 and Figure 4.13. Another observation is that the cross-wind landing error is
in all cases smaller than the downwind landing error. The optimal final turn algorithm
by Slegers and Yakimenko is designed to achieve this result [7]. When cross-wind error
did occur, it occurred more often in runs with the shorter approach time of 20 s. The
longer approaches gave the ADS more time to maintain the final approach track; however,
these longer approaches also increased the effect of an imperfect Dswitch calculation. The
algorithm using the logarithmic wind profile produced smaller values of landing error using
either the long or short landing approach in all cases compared to the algorithm using the
constant wind profile.

The wind profile estimation plot and the trajectory plot are shown in Figures 4.16 and 4.17

168



for the case of no cross-wind, logarithmic wind profile, and long final approach. With the
longer approach time, the ADS began the final turn sooner (at a higher altitude) as seen in
Figure 4.16 compared to Figure 4.12. From the trajectory plot in Figure 4.17, it can be seen
that the ADS is able to fly a straight final approach track with no cross-wind error.
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Figure 4.16: Logarithmic wind profile in 6DOF simulation. After the beginning of phase 5, the
plot contains the shape of the logarithmic profile computed using parameters α and β .

4.8 Post-processing Flight Test Data
After the 6DOF simulations were analyzed, the next step was to include actual Snowflake
recorded flight data in the simulation. The algorithm detailed in Section 4.6 for applying
a logarithmic wind model to horizontal wind estimates generated in flight was first applied
to recorded Snowflake telemetry data from previous flight tests.

4.8.1 Using Snowflake 1D Wind Estimates
The data set from flight tests at YPG, Yuma, Arizona, in October 2008 [11] was chosen
for processing first due to the existence of radiosonde data concurrent with the Snowflake
flights. The recorded Snowflake horizontal wind estimates were processed after the flight
using the RLS algorithm in order to determine what the logarithmic wind model parameters
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Figure 4.17: Logarithmic wind profile simulation trajectory. The wind vector is denoted with a
capital W and the target motion vector with a capital T. The × symbol represents the target
location at the time of the ADS landing.

α and β would have been had they been calculated in flight. Because Snowflake’s recorded
wind estimates are no longer updated once the Snowflake commences phase 5, the final turn
to target, the last values of α and β calculated were used to generate a logarithmic wind
profile that was then compared to the radiosonde data at altitudes corresponding to those of
the Snowflake during final approach. Figure 4.18 illustrates such a comparison.

In Figure 4.18, data is presented from drop number 4 on 20 October 2008 from a test
series conducted at YPG [11]. This particular drop happened to be the one with the largest
miss distance of the two-day test series, and it was the subject of a detailed analysis by
Yakimenko, Slegers, and Tiaden [11]. The original flown trajectory of this drop resulted in
overshoot, as is depicted in Figure 4.19. A later start to the final turn maneuver would have
reduced the miss distance of this drop.

The constant wind profile turn height depicted in Figure 4.18 was also computed by the
post-processing script, and it is the height at which the Snowflake would have commenced
the final turn after correction of a computation error in the 2008 version of the Snowflake’s
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Figure 4.18: Constant wind profile compared to logarithmic in simulation. Flight test data
from October 2008 from a guidance algorithm that used a constant wind profile is compared
to computations using a logarithmic wind profile calculated in simulation. Computed final turn
altitudes are shown for each algorithm.

flight software.1 The corrected constant wind profile turn height of 110 m is shown in
Figure 4.18.

The values of the RLS parameters α and β were used to calculate new values for Dswitch

using the logarithmic wind profile. The turn height that would correspond to this new value
of Dswitch is also shown as a horizontal line on Figure 4.18. The post-processed calculation
of Dswitch indicates that the Snowflake would have commenced the final turn later than was
done using the constant wind assumption, which would have been a correct decision in this
case.

4.8.2 Computing RLS Parameters in Flight
The next step in development was to have the RLS parameters computed in flight during
flight tests conducted at Camp Roberts, California, 21 to 24 February 2011. These trials are

1In the 2008 version of the Snowflake’s autopilot source code, Dswitch was computed with the incorrect
variable for steady-state forward velocity, which resulted in a later-than-normal turn to the final approach.
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Figure 4.19: Parafoil trajectory overview using constant wind profile. This trajectory is from a
flight test conducted in October 2008.

described as simulations, because, while the Snowflake was indeed generating horizontal
wind speed estimates in flight and using those to calculate logarithmic wind model param-
eters α and β , the Snowflakes were not using this information to determine a value for
Dswitch based on the logarithmic wind profile assumption. Rather, the final turn decision
for the Snowflakes in these trials was based upon the constant wind profile assumption, and
the value of Dswitch for the logarithmic wind profile was computed after the flight using a
MATLAB script.

The estimated logarithmic wind profile generated in post-flight simulation using the wind
estimates gathered in flight from drop number 6 on 24 February 2011 is shown in Fig-
ure 4.20. The value of Dswitch computed using the logarithmic wind profile is compared to
the actual turn start point computed assuming a constant wind profile, and the turn using
the logarithmic wind profile would have occurred later.
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Figure 4.20: Constant wind profile compared to logarithmic in flight test. From a February 2011
flight test, a Snowflake ADS computed a constant wind profile in flight, and a logarithmic wind
profile was calculated using afterward using RLS parameters determined in flight. Computed final
turn altitudes are shown for each algorithm.

4.9 Flight Test Comparison of Wind Profiling Methods
The full implementation of the adaptive filtering algorithm as described in Section 4.6,
including the calculation of Dswitch was subsequently incorporated into the source code
for the autopilot installed in the Snowflake ADS. The systems thus modified were tested
in flight after being dropped from an altitude between 762 m to 914 m (2500 to 3000 ft)
AGL by an Arcturus T-20 UAS over McMillan Airfield (identifier CA62) at Camp Roberts,
California, in a series of tests during 2 to 4 May 2011.

The in-flight wind estimate calculated by the Snowflake from drop number 2 on 3 May
2011, using the logarithmic wind profile model is plotted in Figure 4.21. As the Snowflake
begins phase 5 (final approach turn) and phase 6 (straight flight to target), the wind profile
estimate produced by the final calculated values of α and β is shown along with the actual
wind estimates produced during phase 6. From these two plots, it can be inferred that the
logarithmic model agrees reasonably well with the measured data.
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Figure 4.21: Logarithmic wind profile compared to constant profile in simulation. From a May
2011 flight test, the logarithmic wind profile was computed in flight, and a constant wind profile
was calculated in a post-flight simulation using the in-flight wind measurements. Computed final
turn altitudes are shown for each algorithm.

The estimates made by a Snowflake in flight of the two parameters Lx and Dswitch are
shown in Figure 4.22. Measured parameter Lx is similar to distance L illustrated in 4.6,
and is defined the current distance along the x-axis from the Snowflake to a position abeam
of the target. This value is updated during every iteration of the main guidance loop in
the Snowflake software. This parameter is defined as positive when the Snowflake has not
yet reached the abeam position, and negative after the Snowflake has flown past the abeam
position.

Because Dswitch is defined such that positive values represent a turn past the abeam position,
and negative values indicate a turn prior to the abeam position, the criterion upon which
the Snowflake algorithm commences the final turn is Lx <−Dswitch. In Figure 4.22, it can
be seen that at the start of phase 4, when the guidance algorithm began calculating Dswitch

using the logarithmic wind profile model, its Dswitch estimate went from negative (turn
prior to the target) to positive (turn after abeam the target). The third data series plotted in
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Figure 4.22: Final turn parameter estimates using logarithmic wind model. From a Snowflake
test flight in May 2011, values of Lx and Dswitch were estimated in flight and are plotted versus
time. Values of Dswitch assuming a constant wind profile were computed using a post-processing
algorithm, and are also plotted versus time.

Figure 4.22 is the post-flight computation of Dswitch using the constant wind profile. With
the constant wind profile, the value of Dswitch remained negative, indicating a turn prior to
the abeam position.

One additional opportunity for comparison was available from these flight tests. The
Snowflake drop 2, whose data were plotted in Figures 4.21 and 4.22, was actually dropped
simultaneously with a UAH Snowflake that was programmed to use a constant wind profile.
These two Snowflakes had the same target, and would fly through approximately the same
wind field. Flight trajectories of both of these Snowflakes are compared in Figure 4.23 and
Figure 4.24.

The Snowflake using the constant wind profile turned prior to the abeam point and ended
up flying downwind of the target. The Snowflake using the logarithmic wind profile turned
after the abeam point, and executed a typical final turn to the target, landing approximately
33 m upwind of the target. While the Snowflake that used the constant wind profile model
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Figure 4.23: Parafoil trajectory overview using logarithmic wind profile. This trajectory is from
a flight test conducted in May 2011.

did land closer to the target, its trajectory was less regular, since it had to enter an overhead
spiraling approach to the target after flying over the target too high due to its early turn. For
potential shipboard landing of an ADS, a predictable, non-spiraling approach trajectory is
better.
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Figure 4.24: Side-by-side trajectory comparison using constant wind profile. This trajectory
was flown in May 2011 by a Snowflake using a constant wind profile model that was released
simultaneously with the Snowflake that flew the trajectory depicted in Figure 4.23.

177



THIS PAGE INTENTIONALLY LEFT BLANK

178



CHAPTER 5:
Conclusions and Future Work

The technical material in Chapters 3 and 4 serves as an indication of just how challenging
is this problem of landing an ADS onto a moving target. Those chapters contained detailed
discussions of applicable experimental results. Higher level conclusions derived from the
preceding results are contained in this chapter.

5.1 Summary of Findings
The goal of this work was to identify and take the first steps on the development of tech-
nologies that will enable the landing of an autonomous ADS aboard a moving platform
at sea. The primary methods of this research were simulation and direct experimentation;
therefore, the findings follow from the experimental results detailed in Chapters 3 and 4.
Specific experimental results include:

1. The visual estimation algorithm with epipolar constraint processing detailed in Chap-
ter 3 was effective in simulation for estimating position and velocity of a target that
was intermittently visible. The use of the epipolar constrained reduced Kalman es-
timator re-initialization errors when the target returned to view. The use of an UKF
also led to faster convergence for the estimator.

2. The logarithmic wind model and its associated parameter estimation algorithm de-
tailed in Chapter 4, when used in a 6DOF simulation, demonstrated an improvement
in terminal guidance decisions and landing accuracy.

The simulations designed to evaluate the visual sensing algorithm demonstrated that esti-
mation errors in the target’s position, velocity, and heading all converged to small values in
times of the order of 30 s. For operational use, a properly deployed ADS is likely to have
at least 30 s during which the target is in view as the ADS approaches to land on a ship.
Further experiments will indicate whether this assumption is borne out.

Simulations, including a 6DOF model of the Snowflake ADS, provided the analytical re-
sults for the wind modeling portion of this work. These experiments demonstrated that,
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when the Snowflake guidance algorithm assumed a logarithmic wind profile, it made a
more advantageous decision of when to initiate the final turn to the target than did a similar
guidance algorithm that instead assumed a constant wind profile. Some flight testing of the
logarithmic wind profile algorithm was conducted using a fixed target on land because a
suitable experimental moving target was not yet available. These experiments reinforced
the idea that the improvement in decision-making that the logarithmic wind profile affords
should also benefit attempts to land on a moving platform at sea. Directly following this
point, all research in this dissertation was conducted with the aim of enabling an ADS to
land on a moving at-sea platform.

5.2 Contributions of this Work
The main contributions of this work was demonstration, through simulation and experimen-
tation, of signal processing and sensing methods that should ultimately provide the basis
for a moving target capability for autonomous parafoils. Specific contributions include:

1. Development of a target estimation algorithm featuring a novel, dual-rate estimation
scheme that enables an ADS equipped with a monocular vision sensor to maintain
track on a target that is intermittently out of view.

2. Development of a wind modeling algorithm that allows an ADS to incorporate its in-
flight wind measurements into an RLS estimation scheme that computes the shape
of a logarithmic wind profile which predicts horizontal wind velocities down to the
surface.

These contributions represent a significant first step toward the investigation of enabling
ADSs to land on moving platforms. To guide subsequent research into this topic, other
directions of research that might prove fruitful for further development of the capability to
land on a moving target are summarized in the following section.

5.3 Suggestions for Future Research
One exciting aspect of research involving aerial delivery systems is the immaturity of the
field. Basic, meaningful improvements remain to be accomplished in many areas. The
Snowflake ADS will continue to be a very valuable research tool with which to investigate
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these new ideas. The following subsections contain brief summaries of some possible lines
of research.

5.3.1 Conduct Additional Realistic Experimentation
Very preliminary moving target experiments conducted by Hewgley, Yakimenko, and Slegers
[10] have added encouraging evidence that shipboard landing of an ADS is an achievable
possibility. The coupling of small aerial delivery systems with unmanned aerial vehicles
will extend the possible uses of ADSs in the maritime domain even further. In a recent
description of research involving Snowflake and the Arcturus T-20 UAS, Yakimenko [39]
proposed many new avenues of further research involving these systems. Certainly, much
work remains to be done for modeling realistic shipboard landing platforms and charac-
terizing the wind environments around these vessels as they are underway. To this end,
an initial set of maritime experiments is being planned to be conducted at the U.S. Naval
Academy (USNA). The scale flight deck on the instrumented YP vessel based at USNA
described in research by Snyder [106] will provide an ideal maritime target for these ex-
periments.

5.3.2 Improve Capabilities of Sensors for GN&C
The Snowflake ADS is such an important research tool due to the advanced sensors in-
cluded in its autopilot; however, there are still many opportunities for improvement. Below
are some ideas for continued development.

Synchronization of Visual Sensor Data and Other GN&C Sensor Data
The hybrid of flight test and simulation presented in Chapter 3 required that the recorded
state information from Snowflake and the recorded video from the externally mounted cam-
era be synchronized. This process was completed manually by using the audio recording
from the camera and aligning sounds from the servo actuations with turn commands from
the recorded state information. The synchronization process would have been easier and
more accurate had the video and state information data streams both been referenced to a
common time base such as GPS time. Johansen from BYU addressed a very similar prob-
lem in his work with miniature UASs [76]; his work was discussed briefly in Section 2.6.3.
The next series of flight tests of the visual estimation algorithm on the Snowflake ADS
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should certainly include some method of synchronizing the video data with the data streams
from other on-board sensors.

Improved Sensing of Height Above Surface
Error in an ADS’s estimate of its height above the landing target is a leading contributor to
miss distance upon landing. This assertion as been borne out in flight tests of the Snowflake
ADS conducted by the NPS and UAH team [11]. Uncertainty in landing deck height is
likely to be especially troublesome in a maritime scenario when the landing target is a
small, moving platform at some height above the surface. The work of Barber at BYU
on visual height-above-touchdown estimation for miniature ADSs was briefly discussed
in Section 2.6.2 and highlights the interesting possibility of incorporating visual height-
above-touchdown sensing into Snowflake’s guidance algorithm.

Additional Input to the ADS’s Navigation Solution
The current version of the Snowflake ADS, like other current operational and prototype
ADSs, relies primarily on GPS signals to determine its own position; however, Snowflake
also uses barometric altimeter data to determine its height. For the scenario of shipboard
landing, especially when the landing platform is assumed to have constant velocity, meth-
ods investigated at NPS for measuring the relative position between an airborne observer
and a moving target on the surface may be applicable. These methods rely on using ac-
celerometer data aboard the airborne observer; they were briefly discussed in Section 2.6.3.
Future target estimation algorithm development for the Snowflake ADS should include an
investigation into how accelerometer data could be incorporated into the visual sensing
algorithm described in Chapter 3.

On-board Airspeed Sensing
The wind triangle was shown in Figure 4.1 in Section 4.1.1 wherein it was explained that
the Snowflake ADS measures directly both the magnitude and direction of the ground vec-
tor and the direction only of the air vector. Direct measurement of the magnitude of the
air vector (airspeed) would enable immediate computation of the third side of the wind
triangle, the wind vector. Pitot-static sensors are commonly used in fixed-wing aircraft to
measure airspeed; however, such sensors become unreliable at low airspeeds. Student re-
search projects have begun at USNA to determine whether such sensors would be suitable
for use aboard an ADS.
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5.3.3 Enable External Sources of Wind Information
Even with the more in-depth experimentation and upgraded sensors proposed in the previ-
ous two sections, the fact remains that a small ADS like Snowflake is still at the mercy of
the wind. The wind modeling algorithm described in Chapter 4 represents an improvement
over previous methods, but it is no substitute for having actual data of wind conditions
below the descending ADS provided by an external source. Previous NPS and UAH ex-
periments using a ground-based wind sensor [113] should be extended. One possibility is
wind sharing, in which, with more than one ADS in flight, the leading, lower ADS shares
its wind information with the following, higher ADS, allowing that system to have better
awareness of wind conditions between itself and the target.

5.3.4 Continue Development of Snowflake GN&C Algorithms
The final set of recommendations for future research are the most challenging and also
the most important. The Snowflake prototype ADS was designed primarily as a platform
for testing algorithms, and the main focus for future research should be in this area. Of
the many possible avenues for algorithm research, a few that have potential to produce
substantial improvements in landing performance are mentioned below.

Use Two-Dimensional Wind Estimation Algorithm
In Chapter 4, both processes of wind estimation and wind profile modeling were con-
strained to one dimension. The survey of wind estimation techniques presented in Sec-
tion 4.1.1 described methods by Carter [38] and by Ward, Costello, and Slegers [103] that
each solved the wind triangle for the wind vector in two dimensions. A two-dimensional
wind estimation algorithm similar to one of these should be implemented in the Snowflake
ADS.

Use Logarithmic Wind Profile for All Calculations
Section 4.4 and its subsequent subsections contained the derivation for the calculation of
Dswitch using the logarithmic wind profile. The next step should be to derive, using the
logarithmic wind profile, the expressions for the loiter exit altitude zstart and the estimated
final approach time Tapp.
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Use Processed Wind Estimates
There is another improvement that can be made in wind estimation. In Sections 4.6 and
4.7.1, it was explained that of the key guidance decisions, currently, the computation of the
loiter exit altitude zstart is done using the constant wind profile assumption only. Currently,
the wind value used for the constant profile assumption is that derived from the rudimentary
1D estimation algorithm described in Section 4.3.2 (actually, this value processed through
a simple low-pass filter). The previous recommendation stated in Section 5.3.4 of using
the logarithmic wind profile for this calculation is the best approach. As a prior step, it is
possible to use the RLS-filtered wind magnitude value as the input value for the constant
profile assumption.

Use IDVD in Target-Fixed Coordinates for Final Trajectory
The 6DOF simulation used in Chapter 4 was a modified version of one designed to evaluate
the landing performance for a fixed target on land. Both of the available 6DOF simulations
shared this characteristic. The next step in development should be to develop the optimal
final turn trajectory algorithm using IDVD in a coordinate frame attached to the moving
target. Section 1.1.1 contains a brief introduction to the IDVD technique. In this way, the
optimal final turn trajectory can be planned in two dimensions to the landing area. Recent
work of Yakimenko and Slegers [9] should be a guide in this effort. Instead of having a
hard constraint for the final time of the trajectory, the ADS should reach its goal point at
or before the instant that it descends to the landing platform height. Once the ADS has
reached this point and the forward speed of the landing platform has been matched to that
of the ADS, the ADS will simply glide straight down to achieve its shipboard landing.

With these suggestions for future research in mind, the conclusion of the work described in
this dissertation is really a starting point for other directions of research into aerial delivery
systems. It is my earnest hope that the target estimation and wind modeling methods de-
scribed in this dissertation are meaningful first steps toward a moving target capability for
autonomous parafoils.
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APPENDIX A:
Code Listings

A.1 Van Loan Method for Computing Φ and Q
The following code listing is adapted from a code listing in Grewal and Andrews [90]:

1M = Ts*[−F ,G*Qc*G’ ; z e r o s ( n ) , F ’ ] ; % Ts i s f u n d a m e n t a l s a m p l i n g t i m e
N = expm (M) ;
Ph i = N( n +1:2* n , n +1:2* n ) ’ ; % lower−r i g h t b l o c k o f N

4 Q = Phi *N( 1 : 2 , n +1:2* n ) ; % Phi t i m e s upper−r i g h t b l o c k o f N

A.2 Computing Dswitch Using Logarithmic Wind Profile
The following MATLAB script was used to calculate guidance parameter Dswitch after the
flight given a recorded series of in-flight parameters alpha and beta.
f u n c t i o n D_switch = ca lc_Dswi tch_log_W ( a l t i tude_AGL , v v e l e s t , v s s e s t , Lx , a lpha , beta , R , D_switch0 )

2 % D_SWITCH = CALC_DSWITCH_LOG_W( ALTITUDE_AGL , VVELEST , VSSEST , LX , ALPHA , BETA , R , D_SWITCH0 )
% T h i s f u n c t i o n p e r f o r m s t h e i t e r a t i v e c a l c u l a t i o n o f D_swi tch based on t h e
% a s s u m p t i o n o f a l o g a r i t h m i c wind p r o f i l e .

5 %
% *** NOTE: t h i s f u n c t i o n i s based on t h e * code * s i g n c o n v e n t i o n :
% v e r t i c a l v e l o c i t y i s n e g a t i v e

8 % a l t i t u d e i s p o s i t i v e
% wind i s p o s i t i v e ***
%

11 % I n p u t p a r a m e t e r s :
% a l t i t u d e _ A G L −− above−ground− l e v e l a l t i t u d e [m]
% v v e l e s t −− e s t i m a t e d v e r t i c a l v e l o c i t y [m/ s ]

14 % v s s e s t −− e s t i m a t e d h o r i z o n t a l v e l o c i t y [m/ s ]
% T_ t urn −− e s t i m a t e d d u r a t i o n o f f i n a l t u r n [ s ]
% Lx −− d i s t a n c e i n t h e ’ x ’ d i r e c t i o n from S n o w f l a k e t o abeam

17 % t a r g e t p o s i t i o n [m]
% alpha , b e t a −− l o g wind p r o f i l e p a r a m e t e r s c a l c u l a t e d u s i n g RLS
% a l g o r i t h m

20 % R −− f i n a l t u r n r a d i u s [m]
%
% Globa l v a r i a b l e s :

23 % D_SWITCH_ITER_TOL −− i t e r a t i o n t o l e r a n c e f o r D_swi tch c a l c u l a t i o n
% D_SWITCH_MAX_ITER −− maximum number o f i t e r a t i o n s f o r D_swi tch
% c a l c u l a t i o n

26 g l o b a l D_SWITCH_ITER_TOL D_SWITCH_MAX_ITER

%% i n i t i a l c o n d i t i o n s
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29 T_ tu rn = pi *R / v s s e s t ; % t i m e t o c o m p l e t e 180 deg t u r n [ s ]
%% i t e r a t i o n s e t u p
d e l t a = D_switch0 ; % d i f f e r e n c e v a l u e f o r compar i son

32 D_switch ( 1 ) = D_switch0 ; % f i r s t v a l u e i s t h e parame te r which i s c a l c u l a t e d
% u s i n g t h e a s s u m p t i o n o f c o n s t a n t wind p r o f i l e
i = 1 ; % i n i t i a l i z e loop c o u n t e r

35 whi le ( abs ( d e l t a ) > D_SWITCH_ITER_TOL ) && ( i < D_SWITCH_MAX_ITER)
%% i t e r a t i o n s t e p 1 : s e l e c t an i n i t i a l g u e s s v a l u e f o r D_swi tch
% t h i s i s done as an i n p u t parame te r

38 %% i t e r a t i o n s t e p s 2 and 3: compute z0 , T_app u s i n g D_swi tch
% compute c o n s t a n t s f o r p r o d u c t l o g e q u a t i o n
a = ( v s s e s t−a l p h a + beta ) / v v e l e s t ;

41 b = a l p h a / v v e l e s t ;
c = Lx+D_swi tch ( i ) + ( v s s e s t−a l p h a + beta ) / v v e l e s t * a l t i t u d e _ A G L +( a l p h a / v v e l e s t )* a l t i t u d e _ A G L * l o g ( a l t i t u d e _ A G L ) ;
z0 = c / ( b * lamber tw ( c * exp ( a / b ) / b ) ) ;

44 T_app = −a l t i t u d e _ A G L / v v e l e s t − T_ tu rn − ( z0 − a l t i t u d e _ A G L ) / v v e l e s t ;
%% i t e r a t i o n s t e p s 4 and 5: compute D t i l d e u s i n g z0
% compute z1 u s i n g c o n s t a n t v e r t i c a l v e l o c i t y

47 z1 = z0 + v v e l e s t * T_ tu rn ;
D t i l d e = ( a lpha−beta )* T_ tu rn + a l p h a / v v e l e s t * ( z0 * l o g ( z0 ) . . .
− z1 * l o g ( z1 ) ) ;

50 %% i t e r a t i o n s t e p 6 : compute L_app u s i n g T_app
% t h i s c a l c u l a t i o n i n c o r p o r a t e s t h e a s s u m p t i o n o f e s t i m a t e d wind e q u a l s
% z e r o a t a l t i t u d e s l e s s than t h e aerodynamic r o u g h n e s s l e n g t h

53 L_app = ( v s s e s t + a l p h a − beta )* T_app + a l p h a *exp(−beta / a l p h a ) / v v e l e s t . . .
− a l p h a *T_app* l o g (−T_app* v v e l e s t ) ;
%% i t e r a t i o n s t e p 7 : compute D_swi tch

56 % ** NOTE: under t h e code s i g n c o n v e n t i o n , t h e f u n d a m e n t a l e q u a t i o n i s :
% ( * ) D_swi tch + D t i l d e = L_app
D_switch ( i +1) = L_app − D t i l d e ; %#ok<AGROW>

59 %% up da te i t e r a t i o n s t e p
i = i + 1 ;
d e l t a = D_swi tch ( i ) − D_switch ( i −1);

62 end
% r e t u r n o n l y t h e l a s t v a l u e o f t h e i t e r a t i o n
D_switch = D_switch ( end ) ;

65 end

A.3 RLS Estimation of Wind Profile Parameters
The following MATLAB script was used to calculate the logarithmic wind profile values
α and β using recorded Snowflake flight data. The logarithm (base ten) of the recorded
altitude is used as the input sequence, and the sequence of in-flight horizontal wind speed
measurements is used as the desired sequence.

1 f u n c t i o n [ y_ha t , t h e t a _ h a t ] = myRLS( z , d , lambda , a lpha0 , b e t a 0 )
%% [Y_HAT , THETA_HAT] = MYRLS( Z , D, LAMBDA, ALPHA0 , BETA0 )
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% R e c u r s i v e L e a s t Squares a d a p t i v e f i l t e r a l g o r i t h m f o r wind e s t i m a t i o n
4 % based on n o t a t i o n from [ EC4440 C l a s s Notes , Pro f . M. Fargues ]

%
% based on o r i g i n a l code : c r l e s q u a . m, programmed by : D i m i t r i s Manolakis , 1999

7 % m o d i f i e d by : Chas Hewgley , Naval P o s t g r a d u a t e S cho o l
%
% VERSION 3 (2011−02−18): * change n o t a t i o n ( o n l y ) t o be i n accordance w i t h

10 % my n o t a t i o n , which ( r o u g h l y ) i s from
% Pro f . C r i s t i / [ Gelb ]
% * r e t a i n o r d e r o f c a l c u l a t i o n s ; b e l i e v e them

13 % t o be more e f f i c i e n t .
% VERSION 2 (2011−02−08): * change c a l c u l a t i o n s t o be i n accordance w i t h
% n o t a t i o n from [ EC4440 C l a s s Notes ,

16 % Pro f . M. Fargues ]
%
% I n p u t p a r a m e t e r s :

19 % z = i n p u t s e q u e n c e
% H’ = v e c t o r i n measurement e q u a t i o n
% d = d e s i r e d s e q u e n c e

22 % lambda = f o r g e t t i n g f a c t o r
% y _ h a t = f i l t e r e d s e q u e n c e
% t h e t a _ h a t = e s t i m a t e d p a r a m e t e r s o f wind model

25 % alpha0 , b e t a 0 are t h e i n i t i a l v a l u e s o f t h e s e p a r a m e t e r s
% x i = a p r i o r i e r r o r
%

28 % NOTE: t h i s f u n c t i o n assumes i n p u t z and d e s i r e d s i g n a l d are
% * r e a l−v a l u e d * s i g n a l s .

31 % l o c a l v a r i a b l e s
M = 2 ; % number o f computed p a r a m e t e r s f i x e d a t two
N = l e n g t h ( z ) ;

34 d e l t a = 1 − lambda ; % t h i s i s a s m a l l p o s i t i v e c o n s t a n t w i t h which t o
% i n i t i a l i z e t h e v a l u e o f P

37 % i n i t i a l i z a t i o n s t e p
P = d e l t a * eye (M) ; % f i r s t v a l u e o f P m a t r i x i s s m a l l p o s i t i v e c o n s t a n t

% t i m e s i d e n t i t y m a t r i x
40

% c o m p u t a t i o n s t e p
% c o m p l e t e t h e f i r s t i t e r a t i o n o f t h e loop

43 % compute t h e i n i t i a l v a l u e o f measurement m a t r i x H
H = [ z ( 1 ) 1 ] ;
% form t h e i n i t i a l parame te r e s t i m a t e v e c t o r

46 t h e t a _ h a t 0 = [ a l p h a 0 ; b e t a 0 ] ;
% compute t h e ’ a d a p t a t i o n ga in v e c t o r ’ k i n two s t e p s :
% PART 1

49 % f i r s t compute t h e numerator , g
g = P*H’ ;
% compute t h e a d a p t a t i o n ga in v e c t o r K
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52 K = g / ( lambda+H*g ) ;
% PART 2
% need t o i n c o r p o r a t e i n i t i a l v a l u e o f t h e t a _ h a t 0 = [ a lpha0 ; b e t a 0 ]

55 % T h e r e f o r e , c a l c u l a t e t h e f i r s t s e t o f p a r a m e t e r s
% t h e t a _ h a t t h u s :
% compute t h e a p r i o r i e r r o r

58 x i ( 1 ) = d ( 1 ) − H* t h e t a _ h a t 0 ;
% PART 3
% compute t h e f i r s t v a l u e o f t h e f i l t e r c o e f f i c i e n t s

61 % ** NOTE t h e t a _ h a t s t o r e d as a row v e c t o r v i c e column v e c t o r **
t h e t a _ h a t = t h e t a _ h a t 0 ’ + K’* x i ( 1 ) ;

% PART 4
64 % up da te t h e i n v e r s e o f d e t e r m i n i s t i c c o r r e l a t i o n m a t r i x P

P = P / lambda − (K*H*P ) / lambda ;
% t h e f o l l o w i n g c o m p u t a t i o n e n s u r e s t h a t t h e m a t r i x P

67 % s t a y s H e r m i t i a n
P=(P+P ’ ) / 2 ;
% PART 5

70 % f i n a l l y , compute t h e a p o s t e r i o r i v a l u e o f t h e f i r s t f i l t e r o u t p u t
% ** NOTE t h e t a _ h a t s t o r e d as a row v e c t o r v i c e column v e c t o r **
y _ h a t = H * t h e t a _ h a t ’ ;

73

% c o m p l e t e t h e r e m a i n i n g i t e r a t i o n s o f t h e loop
f o r n = 2 :N

76 % compute t h e measurement m a t r i x H
% *** NOTE *** measurement m a t r i x H here doesn ’ t c o n t a i n p r e s e n t and p a s t
% v a l u e s o f z , b u t i n s t e a d c o n t a i n s [ z [ n ] 1] f o r t h i s wind e s t i m a t i o n

79 % problem !
% *** NOTE *** H i s a row v e c t o r here
H = [ z ( n ) 1 ] ;

82 % compute t h e ’ a d a p t a t i o n ga in v e c t o r ’ K i n two s t e p s :
% PART 1
% f i r s t compute t h e numerator , g

85 g = P*H’ ;
% compute t h e a d a p t a t i o n ga in v e c t o r K
K = g / ( lambda+H*g ) ;

88 % PART 2
% compute t h e a p r i o r i e r r o r
% ** NOTE t h e t a _ h a t s t o r e d as a row v e c t o r v i c e column v e c t o r **

91 x i ( n ) = d ( n ) − H* t h e t a _ h a t ( n−1 , : ) ’ ; %#ok<AGROW>
% PART 3
% up da te f i l t e r c o e f f i c i e n t s

94 % *** NOTE *** g ’ i n s t e a d o f g because t h e t a _ h a t i s r e p r e s e n t e d as a
% row v e c t o r
t h e t a _ h a t ( n , : ) = t h e t a _ h a t ( n−1 , : ) + K’* x i ( n ) ;

97 % PART 4
% up da te t h e i n v e r s e o f d e t e r m i n i s t i c c o r r e l a t i o n m a t r i x P
P = P / lambda − (K*H*P ) / lambda ;

100 % t h e f o l l o w i n g c o m p u t a t i o n e n s u r e s t h a t t h e m a t r i x P
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% s t a y s H e r m i t i a n
P=(P+P ’ ) / 2 ;

103 % PART 5
% f i n a l l y , compute t h e a p o s t e r i o r i v a l u e o f f i l t e r o u t p u t
y _ h a t ( n ) = H * t h e t a _ h a t ( n , : ) ’ ;

106 end %f o r
end %f u n c t i o n

A.4 Processing Snowflake Recorded Data
This excerpt of the MATLAB script read_snowflake_data.m shows an example of how
the integers from the tab-delimited text file stored in non-volatile memory by the Snowflake
autopilot is re-scaled and converted to SI units.

453 %% Read and p r o c e s s raw da ta f o r o t h e r r e c o r d e d p a r a m e t e r s
f i x = Data ( range , 1 6 ) ;
hac = (2^8* Data ( range , 1 7 ) + Data ( range , 1 8 ) ) ;

456 speed = (2^8* Data ( range , 2 1 ) + Data ( range , 2 2 ) ) ;
A u t o f l a g = Data ( range , 3 0 ) ;
b r a k e = (2^8* Data ( range , 3 4 ) + Data ( range , 3 5 ) ) ;

459 Lxda ta = (2^8* Data ( range , 4 0 ) + Data ( range , 4 1 ) ) ;
r o l l = (2^8* Data ( range , 4 5 ) + Data ( range , 4 6 ) ) ;
p i t c h = (2^8* Data ( range , 4 7 ) + Data ( range , 4 8 ) ) ;

462 yaw = (2^8* Data ( range , 4 9 ) + Data ( range , 5 0 ) ) ;
ax = (2^8* Data ( range , 5 1 ) + Data ( range , 5 2 ) ) ;
ay = (2^8* Data ( range , 5 3 ) + Data ( range , 5 4 ) ) ;

465 az = (2^8* Data ( range , 5 5 ) + Data ( range , 5 6 ) ) ;
p = (2^8* Data ( range , 5 7 ) + Data ( range , 5 8 ) ) ;
q = (2^8* Data ( range , 5 9 ) + Data ( range , 6 0 ) ) ;

468 r = (2^8* Data ( range , 6 1 ) + Data ( range , 6 2 ) ) ;
a s w i t c h d a t a = (2^8* Data ( range , 6 5 ) + Data ( range , 6 6 ) ) ;
d s w i t c h d a t a = (2^8* Data ( range , 6 7 ) + Data ( range , 6 8 ) ) ;

471 T a r g e t I D = Data ( range , 7 1 ) ;
t a r g e t _ b a r o = (2^8* Data ( range , 8 4 ) + Data ( range , 8 5 ) ) ;

% a d j u s t range o f da ta p o i n t s u s i n g l o g i c a l a r r a y s ;
474 % data v a l u e s t h a t have a g r e a t e r p o s i t i v e v a l u e than t h e maximum v a l u e f o r

% a twos complement number f o r t h a t number o f b i t s are i n v a l i d . Conver t
% t h e s e v a l u e s back t o n e g a t i v e numbers .

477 b r a k e ( b r a k e > MAX_TWOS_16_BIT) = b r a k e ( b r a k e > MAX_TWOS_16_BIT) − MAX_16_BIT ;
Lxda ta ( Lxda ta > MAX_TWOS_16_BIT) = Lxda ta ( Lxda ta > MAX_TWOS_16_BIT) − MAX_16_BIT ;
r o l l ( r o l l > MAX_TWOS_16_BIT) = r o l l ( r o l l > MAX_TWOS_16_BIT) − MAX_16_BIT ;

480 p i t c h ( p i t c h > MAX_TWOS_16_BIT) = p i t c h ( p i t c h > MAX_TWOS_16_BIT) − MAX_16_BIT ;
yaw ( yaw > MAX_TWOS_16_BIT) = yaw ( yaw > MAX_TWOS_16_BIT) − MAX_16_BIT ;
ax ( ax > MAX_TWOS_16_BIT) = ax ( ax > MAX_TWOS_16_BIT) − MAX_16_BIT ;

483 ay ( ay > MAX_TWOS_16_BIT) = ay ( ay > MAX_TWOS_16_BIT) − MAX_16_BIT ;
az ( az > MAX_TWOS_16_BIT) = az ( az > MAX_TWOS_16_BIT) − MAX_16_BIT ;
p ( p > MAX_TWOS_16_BIT) = p ( p > MAX_TWOS_16_BIT) − MAX_16_BIT ;
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486 q ( q > MAX_TWOS_16_BIT) = q ( q > MAX_TWOS_16_BIT) − MAX_16_BIT ;
r ( r > MAX_TWOS_16_BIT) = r ( r > MAX_TWOS_16_BIT) − MAX_16_BIT ;
a s w i t c h d a t a ( a s w i t c h d a t a > MAX_TWOS_16_BIT) = a s w i t c h d a t a ( a s w i t c h d a t a > MAX_TWOS_16_BIT) − MAX_16_BIT ;

489 d s w i t c h d a t a ( d s w i t c h d a t a > MAX_TWOS_16_BIT) = d s w i t c h d a t a ( d s w i t c h d a t a > MAX_TWOS_16_BIT) − MAX_16_BIT ;
t a r g e t _ b a r o ( t a r g e t _ b a r o > MAX_TWOS_16_BIT) = t a r g e t _ b a r o ( t a r g e t _ b a r o > MAX_TWOS_16_BIT) − MAX_16_BIT ;

%% Apply s c a l e f a c t o r s and SI u n i t c o n v e r s i o n t o o t h e r r e c o r d e d p a r a m e t e r s
492 hac = CONVERT_FT_M* hac / 1 0 ; % [m]

speed = CONVERT_FT_M* speed / 1 0 ; % [m/ s ]
Lxda ta = CONVERT_FT_M* Lxda ta ; % [m]

495 r o l l = r o l l * pi / MAX_TWOS_16_BIT ; % [ rad ] maximum v a l u e = p i
p i t c h = p i t c h * pi / MAX_TWOS_16_BIT ; % [ rad ] maximum v a l u e = p i
yaw = yaw* pi / MAX_TWOS_16_BIT ; % [ rad ] maximum v a l u e = p i

498 ax = ax * 8 /MAX_TWOS_16_BIT ; % [ g ] maximum v a l u e = 8
ay = ay * 8 /MAX_TWOS_16_BIT ; % [ g ] maximum v a l u e = 8
az = az * 8 /MAX_TWOS_16_BIT ; % [ g ] maximum v a l u e = 8

501 p = p *10 /MAX_TWOS_16_BIT ; % [ rad / s ] maximum v a l u e = 10
q = q *10 /MAX_TWOS_16_BIT ; % [ rad / s ] maximum v a l u e = 10
r = r *10 /MAX_TWOS_16_BIT ; % [ rad / s ] maximum v a l u e = 10

504 a s w i t c h d a t a = CONVERT_FT_M* a s w i t c h d a t a ; % [m]
d s w i t c h d a t a = CONVERT_FT_M* d s w i t c h d a t a ; % [m]
t a r g e t _ b a r o = CONVERT_FT_M* t a r g e t _ b a r o ; % [m]

A.5 Archiving Snowflake Data as a MATLAB Structure
This excerpt of the MATLAB script read_snowflake_data.m shows an example of how
the the post-processed Snowflake data is stored as a structure variable in MATLAB.

%% T r a n s f e r v a r i a b l e s t o da ta s t r u c t u r e
s f d a t a . n o t e s = n o t e s ;

471 s f d a t a . d a t a . t ime = t ime ; % [ s ]
s f d a t a . d a t a . b a r o _ a l t i t u d e = ba ro ; % [m]
s f d a t a . d a t a . l a t i t u d e = l a t ; % [ deg ]

474 s f d a t a . d a t a . l o n g i t u d e = l o n ; % [ deg ]
s f d a t a . d a t a . h _ v e l o c i t y _ s s = v s s e s t ; % [m/ s ]
s f d a t a . d a t a . v _ v e l o c i t y _ s s = v v e l e s t ; % [m/ s ]

477 s f d a t a . d a t a . h o r i z _ m a g n i t u d e = w i n d e s t ; % [m/ s ]
s f d a t a . d a t a . v e r t _ m a g n i t u d e = v v e l e s t − v e r t v e l ; % [m/ s ]
s f d a t a . d a t a . f i x = f i x ;

480 s f d a t a . d a t a .HAC = hac ; % [m]
s f d a t a . d a t a . G P S _ v e l o c i t y = speed ; % [m/ s ]
s f d a t a . d a t a . a u t o f l a g = A u t o f l a g ;

483 i f v v e l e s t _ o v r w
s f d a t a . d a t a . i n t e g r a l e r r o r = i n t e g r a l e r r o r ;

end % i f v v e l e s t _ o v r w
486 s f d a t a . d a t a . b r a k e = b r a k e ;

s f d a t a . d a t a . Lx = Lxda ta ; % [m]
s f d a t a . d a t a . r o l l = r o l l ; % [ rad ]

489 s f d a t a . d a t a . p i t c h = p i t c h ; % [ rad ]
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s f d a t a . d a t a . yaw = yaw ; % [ rad ]
s f d a t a . d a t a . ax = ax ; % [ g ]

492 s f d a t a . d a t a . ay = ay ; % [ g ]
s f d a t a . d a t a . az = az ; % [ g ]
s f d a t a . d a t a . p = p ; % [ rad / s ]

495 s f d a t a . d a t a . q = q ; % [ rad / s ]
s f d a t a . d a t a . r = r ; % [ rad / s ]
s f d a t a . d a t a . a s w i t c h = a s w i t c h d a t a ; % [m]

498 s f d a t a . d a t a . d s w i t c h = d s w i t c h d a t a ; % [m]
s f d a t a . d a t a . t a r g e t I D _ c m d = T a r g e t I D ;
i f t g tw ind_ovrw

501 s f d a t a . d a t a . RLS_alpha = RLS_alpha ;
s f d a t a . d a t a . RLS_beta = RLS_beta ;

e l s e
504 s f d a t a . d a t a . t a r g e t w i n d s p e e d = t a r g e t w i n d s p e e d ; % [m/ s ]

s f d a t a . d a t a . t a r g e t w i n d d i r = t a r g e t w i n d d i r ; % [ deg t r u e ]
end % i f t g t w i n d _ o v r w

507 s f d a t a . d a t a . t a r g e t _ b a r o = t a r g e t _ b a r o ; % [m]
s f d a t a .GNC. phase1 = f i n d ( p a t h i n d e x ==1 ,1 , ’ f i r s t ’ ) ;
s f d a t a .GNC. phase2 = f i n d ( p a t h i n d e x ==2 ,1 , ’ f i r s t ’ ) ;

510 s f d a t a .GNC. phase3 = f i n d ( p a t h i n d e x ==3 ,1 , ’ f i r s t ’ ) ;
s f d a t a .GNC. phase4 = f i n d ( p a t h i n d e x ==4 ,1 , ’ f i r s t ’ ) ;
s f d a t a .GNC. phase5 = f i n d ( p a t h i n d e x ==5 ,1 , ’ f i r s t ’ ) ;

513 % Phase 6 and phase 7 can be e n t e r e d m u l t i p l e t i m e s . The f o l l o w i n g code
% p a r s e s t h e t r a n s i t i o n s be tween phase 6 and phase 7 , and s t o r e s t h e r e s u l t
% as v e c t o r s i n t h e phase6 and phase7 v a r i a b l e s . These v a r i a b l e s w i l l ho ld

516 % i n d i c e s o f t h e t r a n s i t i o n s * i n t o * t h o s e p ha se s .
%
% form a s i m p l e d i f f e r e n c e f i l t e r : y [ n ] = x [ n+1] − x [ n ]

519 p a t h _ f i l t = f i l t e r ( [ 1 −1] ,1 , p a t h i n d e x ) ;
% f i n d t h e t r a n s i t i o n p o i n t s where t h e f i l t e r o u t p u t i s non−z e r o
t r a n s i t i o n s = f i n d ( p a t h _ f i l t , NUM_TRANSITIONS , ’ l a s t ’ ) ;

522 % remove t h e f i r s t few t r a n s i t i o n s found i f t h e y are a t or b e f o r e t h e
% t r a n s i t i o n t o phase 5
n = 1 ;

525 whi le t r a n s i t i o n s ( n ) < s f d a t a .GNC. phase5
t r a n s i t i o n s = t r a n s i t i o n s ( n +1: end ) ;
n = n + 1 ;

528 end % w h i l e
% use l o g i c a l a r r a y s t o p u t t h e a p p r o p r i a t e t r a n s i t i o n s i n t o t h e p ro pe r
% v a r i a b l e s

531 s f d a t a .GNC. phase6 = t r a n s i t i o n s ( ( p a t h i n d e x ( t r a n s i t i o n s ) == 6 ) ) ;
s f d a t a .GNC. phase7 = t r a n s i t i o n s ( ( p a t h i n d e x ( t r a n s i t i o n s ) == 7 ) ) ;
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APPENDIX B:
System Development and Flight Test

Chapters 3 and 4 contain theoretical development and technical findings for the problems
of target motion estimation and wind profile estimation. This chapter contains details of
the flight testing that was performed between 2009 and 2011. The collection of flight test
data to support the investigations described in Chapters 3 and 4 was a vital element of this
research.

B.1 Snowflake System History
This section contains a brief summary of the origin and subsequent evolution of the Snowflake
prototype ADS. Later, as different development teams designed Snowflake versions to be
carried aloft by different vehicles, they created different sizes and shapes of Snowflake.
Issues arising from these changes will be discussed at the end of the section.

B.1.1 System Origination
Professor Nathan J. Slegers (UAH) and Professor Oleg A. Yakimenko (NPS) designed
the Snowflake ADS to be a small, easily deployable testbed for the development of ADS
GN&C algorithms, not necessarily specific data processing hardware or sensors. When
Slegers and Yakimenko began Snowflake development in late 2007, U.S. Army’s NSRDEC
was pursuing research into implementing simple control algorithms into a reliable system
that would be compatible with current military airdrop infrastructure. Draper Laboratory
developed a PID control algorithm for the system—see D. Carter et al. [36]–[38]. This
control algorithm was included in JPADS [1], [34], which comprises a guidance unit, flight
hardware, and a mission planning system. The result of this effort was a simple algorithm
controlling a complex system, and overall high reliability. With Snowflake, the NPS–UAH
team developed a complex algorithm for a simple system, and therefore was able to con-
centrate on developing the algorithm rather than on designing robust hardware.

B.1.2 System Evolution
The NPS–UAH team has developed Snowflake in an iterative fashion, with frequent flight
tests shaping subsequent stages of development. After the initial sets of flight tests in
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2008, Bourakov developed a ground-based networking and wind information system [113],
which was tested in 2009. In 2010, Yingling and Seigenthaler developed a two-stage rocket
that housed a cylindrical Snowflake ADS in the upper stage [114]. The work herein on
wind estimation and visual sensing used flight test data from 2011 [10], [18]. Also in 2011,
Benton at NASA Ames Research Center developed a Snowflake system designed to be
released from a high-altitude balloon [115]. These varied designs are all members of the
Snowflake family: simple systems that explore the frontier of possibility for aerial delivery.

B.1.3 Mass Properties
Even though the shapes and sizes of Snowflake systems vary, the guidance algorithm as-
sumes a certain set of aerodynamic coefficients and mass properties for the Snowflake ve-
hicle. These constants appear in the article by Slegers and Yakimenko [7]; refer to previous
work by Slegers and Costello [8] for the method of parameter estimation used. Subse-
quent Snowflake designs have maintained the same model parafoil canopy (from the same
vendor) in order to limit differences in aerodynamic and mass properties caused by the
differences in size and mass of the various Snowflake bodies.

B.2 Snowflake Data Recording
B.2.1 On-board Sensors
Autonomous parafoils typically have an on-board processor that uses sensor data to gen-
erate commands to the control actuators. For JPADS and other large systems designed to
deliver cargo pallets, the processor and sensors are housed in an AGU, which is an en-
closure suspended between the cargo and the parafoil canopy. Smaller systems, such as
Snowflake and the Mosquito system made by STARA Technologies, Inc. have an autopilot
incorporated within the vehicle body.

For early versions of JPADS, the only sensor housed in the AGU was GPS (see Carter [36]).
In contrast, the Snowflake prototype ADS was designed around a small autopilot unit that
contained various sensors, including a three-axis magnetometer, a three-axis accelerometer,
a three-axis angular rate sensor, and a barometric altimeter, in addition to having a GPS re-
ceiver (see Ref. 11 for details). Snowflake’s autopilot was designed and built by Dr. Nathan
Slegers of UAH, and is informally known as the Advanced Autopilot System (AAS). Other
versions of Snowflake, such as those designed for the rocket experiments of Yingling [114],

194



or the high-altitude balloon deployments of Benton [115] have used the Monkey Autopilot
from Ryan Mechatronics.

B.2.2 Data Post-processing
Data from the sensors on the AAS are recorded to non-volatile memory and then written
to a text file after the flight. The text file contains tab-delimited integer numbers on each
line, and each line is a separate record. Post-processing scripts written in MATLAB are
used to convert the integers to floating-point numbers; and, if necessary, to perform a unit
conversion from US Customary to SI units. An excerpt from this post-processing script is
shown in Section A.4.

B.2.3 Structures for Archived Data
For further analysis, the post-processed Snowflake data was saved as a MATLAB structure
variable. Subsequent analysis and plotting scripts would use the structure variable as an
input. An example of some of the fields in this data structure is shown in the code listing in
Section A.5.

B.3 Flight Test Chronology
Flight test has been the primary mode of system analysis for the Snowflake prototype ADS
and also the basis for design changes since the project’s inception in 2008. Table B.1
contains a chronological list of flight test events from 2008 to 2011. The three flight test
topics that will be discussed herein are: system development, the logarithmic wind profile
experiments, and the preliminary moving target experiments.

B.3.1 System Development
The flight test events in 2008 focused on verifying the procedures for preparing the system
for flight and for deploying it from an aircraft. The NPS and UAH research team conducted
flight tests to measure the landing accuracy to a fixed target on land. These tests were
also useful for determining whether two key algorithms were implemented properly in the
autopilot software code. The two algorithms were the MPC algorithm for following a
planned flight path, and the IDVD algorithm for planning an optimal final turn trajectory to
the target.
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B.3.2 Wind Profile Experiments
Development of the logarithmic wind profile algorithm began in October 2010. Subse-
quently, the first version of the algorithm was flight tested at McMillan Airfield, Camp
Roberts, California, in February 2011. At this stage of development, the autopilot program
used the RLS estimation algorithm in flight to estimate the logarithmic wind profile param-
eters α and β ; however, the program still used the constant wind profile assumption, and
not the logarithmic wind profile assumption, to calculate the important guidance parameter
Dswitch. Therefore, from the February series of tests, final turn initiation altitudes associ-
ated with the logarithmic wind profile were computed on the ground, after the flight, using
a MATLAB script (see listing in Section A.2).

For the subsequent set of flight tests in May 2011, the autopilot software was capable of
both using RLS estimation to calculate the logarithmic wind profile parameters, and using
these parameters to calculate Dswitch in flight. This development made possible the direct
comparison of the use of the constant wind profile versus the use of the logarithmic wind
profile by dropping two Snowflakes simultaneously, each programmed to use a different
wind profile assumption. In order to achieve a good comparison between the logarithmic
wind profile assumption and the constant wind profile assumption, on each flight of the
Arcturus T-20 UAS, the two Snowflakes were dropped, one from underneath each wing,
as quickly as the two under-wing release mechanisms could be opened. Usually, both
Snowflakes were dropped within one second of each other.

B.3.3 Moving Target Experiments
Another objective of the flight tests both in February and in May was to start preliminary
work toward the objective of landing on a moving target. In February 2011, the develop-
ment of the visual estimation algorithm described in Chapter 3 had not yet begun; therefore,
the test team decided to start with a very simple scenario in which the moving target trav-
eled slowly in a straight line along the runway at McMillan airfield. For both sets of flight
tests, the moving target was equipped with a GPS beacon that transmitted the vehicle’s po-
sition to the Snowflake once every two seconds. For the February tests, the moving target
was a four-wheeled robot approximately 1 m in length. For the May tests, one member of
the test team drove an automobile on the runway as a target.
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One weakness of these tests was that there was no source of external truth data for the
positions of the target vehicles other than GPS. The track of the target vehicle could have
been fixed quite accurately using reference marks along the runway, and recording the time
at which the target vehicle passed each mark.

To prepare for the development of the visual estimation algorithm, the test team decided
for the May flight tests to attach a small camera externally to the Snowflake case. This
camera was not connected in any way with the autopilot; its sole purpose was capturing
video in flight for later analysis. As described in Chapter 3, a pinhole camera model can
be used to form a relationship between the coordinates (x,y,z) of an object in space and
the coordinates (u,v) of the object’s image on the camera’s image plane. One aspect of
this relationship not often explicitly stated in published literature is that the image plane
coordinates (u,v) are in units of length, not pixels. Therefore, the size of the imaging
sensor itself must be known. For the GoPro camera used in the May 2011 tests, an estimate
of the size of the image plane was made based on a typical size for the charge-coupled
device (CCD) image sensor found in small, hand-held digital cameras.

Using the recorded video for useful analysis proved to be much more of a challenge. The
visual estimation algorithm described in Chapter 3 requires information about the camera’s
position and orientation at the time of the image. For the May 2011 flight tests, there
was no time information associated with the video stream; thus, there was no easy way to
synchronize the video with the recorded data stream from Snowflake’s other sensors. One
method I tried to synchronize the two data streams involved using the audio track that was
recorded by the camera and matching the sounds of the servomotor movements with the
servomotor control signals recorded with the Snowflake data. This method was difficult,
time-consuming, and inaccurate; as a result, the shortcomings of this method were the
impetus for the recommendation made in Chapter 5 for better sensor design.
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Table B.1: Chronological history of Snowflake flight tests. The Snowflake prototype ADS has been the centerpiece of a collaborative
NPS and UAH research effort spanning several years.

testing location dates
no. of
drops wind truth research objective tech. report publication

2008

McMillan Airfield (CA62) 15 May 4 radiosonde system development TNT 08-3
Yakimenko, Slegers,
Tiaden [11]

Sidewinder DZ, YPG 20–21 Oct. 16
wind tower
windpack system development

Yakimenko, Slegers,
Tiaden [11]

2009

McMillan Airfield (CA62) 24 Feb. 4 GSM system development TNT 09-2
Bourakov, Yakimenko,
Slegers [113]

Sidewinder DZ, YPG 18–19 May 11 windpack algorithm/GSM sys. devel. TNT 09-3
Red Lake DZ,
Kingman, AZ 20–21 May 3 dropsonde high-alt. drop from C-123 TNT 09-3

McMillan Airfield (CA62) 3–6, 12 Aug. 12
pod configuration
UAS integration TNT 09-4 Yakimenko et al. [39]

Marina Muni. (OAR) 10 Aug. 2 carbon-fiber case test TNT 09-4
McMillan Airfield (CA62) 7 Oct. 5 PATCAD preparation TNT 10-1
Robby DZ, YPG 20–22 Oct. 6 incl. 1 Rascal UAS drop PATCAD 09 Yakimenko et al. [39]

2010

McMillan Airfield (CA62) 4–6 May 17
GSM system testing
larger canopy, robot TNT 10-3

Koehn Lake Test Area, CA 17 Jul. 1 rocket deployment Yingling et al. [114]
McMillan Airfield (CA62) 9–10 Aug. 8 battlefield medic demo. TNT 10-4
Del Norte Launch Site, CA 16 Oct. 1 rocket deployment Yingling et al. [114]

2011

McMillan Airfield (CA62) 21–24 Feb. 28
log wind profile
canopy instrumentation

Hewgley,
Yakimenko [18]

McMillan Airfield (CA62) 2–4 May 16
log wind profile
moving target

Hewgley, Yakimenko,
Slegers [10]
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