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EXECUTIVE SUMMARY 
 
 
  There is a need for rapid prediction of the physico-chemical properties of 
chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) on environmentally 
relevant materials, personal protective equipment, and human tissue.  While in the past it was 
possible to concentrate laboratory characterization efforts on a limited number of known, 
traditional CWAs and TICs, there is the possibility that state and non-state actors may use CWAs 
outside of the traditional CWAs that have distinctly different physical and chemical properties.  
Rapid, reliable hazard assessments for the persistence and spread of non-traditional agents may 
be necessary for the benefit of first responders and clean up teams before laboratory 
measurements can be done.  Predictive tools also serve as screening tools that help identify 
compounds that may be particularly difficult to decontaminate.  It is the objective of this report 
to survey the reliability and error spread from several available in-silico tools for a set of 
physico-chemical properties that impact prediction of environmental fate of a set of traditional 
CWAs and simulants.  Except for ADF COSMO-RS, the tools are based on quantitative 
structure-activity/property relationship (QSAR/QSPR) methods using molecular fragments 
(group-contribution) approaches, which make predictions based on a regression of laboratory 
measurements performed on similar chemicals and the underlying statistical correlations that 
describe the property variations resulting from specific groups of atoms within each compound.   
 
  EPI Suite, ACD Labs, Marvin, Vega, and COSMO-RS were used to predict 
properties such as the boiling point, vapor pressure, log of the water/octanol partitioning 
coefficient (Kow), water solubility, and pKa.  For boiling point, both ACD Labs and EPI Suite 
were accurate to within 20o C and 29o C.  EPI Suite, ACD Labs, and ADF COSMO-RS 
performed quite well for vapor pressure predictions, except that ACD Labs could not generate 
predictions for vapor pressures of less than 0.1 Pa.  For Kow, EPI Suite, ACD Labs, ChemAxon’s 
Marvin, Vega, and ADF COSMO-RS were evaluated, and except for COSMO-RS, the difference 
between estimation values and measurement were less than one log unit.  With respect to water 
solubility, EPI Suite’s Kow estimation method of solubility yielded the smallest average 
difference of 0.87 log units between experiment and measurement, although ACD Labs could 
give predictions over a range of temperatures and pH.  The greatest difference between 
prediction and experimental measurement occurred for ADF COSMO-RS presumably because, 
although it is partially based on accurate Density Functional Theory (DFT) calculations, its 
overall prediction employs an empirical fit based on an insufficiently small training set size of 
only 642 compounds.  For pKa estimations, experimental data for only three of the compounds 
examined was readily available in the literature, and so the accuracy of ACD Labs and 
ChemAxon’s Marvin towards the traditional agents could not be adequately evaluated.    
 
  Based on the brief survey of estimation methods, both EPI Suite and ACD Labs 
gave excellent results for boiling point and vapor pressure.  For Kow estimations, EPI Suite, ACD 
Labs, Marvin, and Vega gave estimations that were reasonable and on average less than one log 
unit off the published measurement.  Larger errors were encountered with water solubility and 
pKa estimations.  We reason that two issues contribute to the difference between experimental 
measurements and estimations from fragment based methods.  First, as would be expected, 
compounds containing elements or functional groups outside of the method’s training set 
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contributed to the average error.  The second issue that seems apparent in examination of the 
data is that molecules that tend to produce the largest differences between model prediction and 
experimental measurement have molecular symmetry.  For properties highly dependent on 
molecular structure and polarity, such as water solubility, a fragment based method can 
contribute significantly to the error, since the fragment contributions are treated additively.  It is 
possible symmetry may cancel out the contributions from a given fragment, so that a property is 
overestimated.  We recommend caution with respect to estimations from fragment based 
methods for molecules that possess symmetry, or possess unusual functional groups or atomic 
linkages (e.g. N-P bond).  We expect that estimation methods based on descriptors of the entire 
molecule rather than fragments should be more robust with respect to symmetry and functional 
groups outside of the method training set of data.  
 

Examples of Property Predictions That Differ the Most From Experiment  
Water Solubility (mg/L)             

   EPI Kow  EPI Frag  ACD  EXP 

HN1 (nitrogen mustard)  4.0E+04  7.3E+03  1.5E+04  1.6E+02 

diisopropyl methyl phosphonate  7.3E+03  2.2E+05  3.4E+04  1.5E+03 

GA  3.2E+04  1.0E+06  3.5E+05  9.8E+04 

GB  4.6E+04  1.0E+06  4.2E+05  1.0E+06 

GD  1.6E+03  3.4E+05  5.0E+04  2.1E+04 

GF  2.1E+03  5.4E+05  6.2E+04  3.7E+03 

L1  2.6E+02  4.7E+03  n/a  5.0E+02 

VX  3.2E+03  9.1E+04  4.8E+03  3.0E+04 

disperse red‐9  6.8E‐01  8.6E+00  4.5E‐04  1.2E‐01 

 
pKow                

   EPI  ACD  MARVIN  Vega  EXP 

HD (sulfur)  2.4  2.1  2.0  3.2  1.37 

VG  1.7  2.9  1.8  1.7  1.7 

disperse red‐9  4.1  3.0  3.0  3.0  4.1 

 
pKa 

ACD  ADF/COSMO  Marvin  EXP 

VX  9.8  7.9  10.6  8.6 

Illustrative Tables:  Compounds and predicted measurements highlighted in italics show 
predicted values of water solubility (mg/L), pKow  and pKa that differ from experimental 
measurements by more than an order of magnitude or 1.0 pK units.  These molecules (some 
shown below) tend to have a high degree of symmetry or unusual elements or combinations of 
atoms. 

                         
          HN1                 GA             GB             GF                L1         disperse red-9       VX
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A COMPARISON OF QSAR BASED THERMO AND WATER SOLVATION 
PROPERTY PREDICTION TOOLS AND EXPERIMENTAL DATA FOR SELECTED 

TRADITIONAL CHEMICAL WARFARE AGENTS AND SIMULANTS 
 
 

1. INTRODUCTION  
 
1.1 The Need for a Rapid Prediction Capability  

 
There is a need for rapid prediction of the physico-chemical properties of 

chemical warfare agents (CWAs)  and toxic industrial chemicals (TICs) on 
environmentally relevant materials, personal protective equipment, and human tissue.  
While in the past it was possible to concentrate laboratory characterization efforts on a 
limited number of known, traditional CWAs and TICs, there is the possibility that state and 
non-state actors may use CWAs outside of the traditional CWAs that have distinctly 
different physical and chemical properties.  Due to the toxicity of many potential 
compounds not within the list of traditional agents, and because of the difference in 
behavior on different environmental media, it is not feasible to perform laboratory 
measurements of all compounds of interest on all possible environmental media.1  A 
similar issue confronts government regulatory agencies such as the Environmental 
Protection Agency (EPA),2 where the vast  number of compounds produced by industry 
exceeds their laboratory capacity to characterize every possible compound. However, 
predictive tools help prioritize3 compounds of interest and target compounds that may have 
properties that contribute to persistence in the environment or properties that impede 
decontamination.  First responders and clean-up teams may require rapid, reliable 
estimations of contamination area and penetration into materials before any laboratory 
property measurements can be done, as well.  

 
The CWA physico-chemical properties contribute to complex but critical 

processes such as environmental fate,4-10 pathways into the body,5, 11-12 as well as the innate 
toxicity of the compound, and all of these factors contribute to the overall threat.  Some 
examples of physico-chemical properties of importance13 include solubility in water,14-16 
ionizability in water (pKa),

17-20 vapor pressure,21-23 boiling point, and partitioning 
coefficients,5 such as Kow, the partitioning coefficient between octanol and water.  
Solubility in water can affect environmental transport of a given CWA, and whether the 
compound can undergo degradation by hydrolysis.  Ionizability in water is related, and also 
contributes to whether a compound can degrade in the environment.  Vapor pressure and 
boiling point affect persistence.  Sarin has a relatively high vapor pressure and lower 
boiling point, and tends to evaporate from an affected area within hours.  In contrast, VX 
and sulfur mustard have low vapor pressures and can persist for long periods of time. In 
addition, low vapor pressure increases the difficulty of detection.  Kow has been known to 
be an indicator for the pathway into the body, where a high value shows a cutaneous threat.  
Such properties are also indicators of whether the compound penetrates personal protective 
equipment.  Furthur complicating matters, the interaction of CWAs and common materials 
in the environment such as concrete, sand, and soil, affect the fate of the CWAs and 
whether the threat from that agent persists over time.  As a result, it is not feasible to 
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experimentally measure all possible combinations of threatening materials and 
environmental substrates, and there is an acute need for predictive in-silico tools.  In other 
words, reasonably accurate in-silicopredictive tools can augment cost limited laboratory 
resources by identifying the compounds most likely to have threatening properties.  

 
1.2  Inputs for Tools for Predicting Environmental Fate 
 

Because of the need for in-silico tools that predict environmental fate of 
toxic compounds, the focus of this study is to examine a number of existing tools that 
predict physico-chemical properties.  The  property prediction in turn can be used as inputs 
into larger scale models that predict environmental fate.  There are a number of methods 
and models for predicting environmental fate of toxic chemicals, particularly pesticides. 
Because of the similarity of many CWAs to common pesticides, it is possible to leverage 
these tools.  Modeling tools such as PEARL24 and HYDRUS,25 make predictions of 
environmental transport and degradation using the physico-chemical properties of a target 
compound as inputs.  These tools predict the persistence of a compound in the 
environment, whether it can contaminate ground water, or its behavior in various types of 
soil, etc.  Such predictions are essential for assessing the long term threat, but these tools 
rely on accurate predictions of physico-chemical properties to obtain reliable 
environmental fate predictions.   

 
A number of Quantitative Structure-Activity Relationship (QSAR) based 

software tools currently exist, such as EPI Suite, VEGA (a component of CAESAR), ACD 
Labs Suite, ChemAxon MARVIN, and SPARC, that utilize geometric/functional group-
contribution descriptors to predict physical properties that feed into the fate models.  Some 
are freely available, such as EPI Suite, while others are commercially licensed.  Given the 
variety of predictive tools, an assessment of how these tools perform compared to 
experimental data is desirable. 

.   
1.3 Objective 
 

It is the objective of this report to survey the reliability and error spread 
from several available in-silico tools for a set of physico-chemical properties that impact 
prediction of environmental fate.  We specifically hope to examine performance against a 
set of traditional CWAs and simulants.  Because the environmental fates of other organic 
compounds are also relevant, such as industrial dyes and pharmaceuticals, we include  
Disperse Red 9 and cocaine.  Some of the tools, as mentioned above are based on fragment 
based, that is, group-contribution QSAR approach, which makes predictions based on a 
regression of laboratory measurements performed on similar chemicals.  This QSAR 
approach has been well established for predicting general physico-chemical properties,26-30 
especially in the pharmaceutical industry.31  A method exists that makes predictions from a 
descriptor calculated from density functional theory (DFT), which is an electronic structure 
method, and we include results from the COnductor-like Screening MOdel for Real 
Solvents32-33 (COSMO-RS) for comparison.  We do not intend to fully analyze the results 
of COSMO-RS since such a detailed examination of the electron density around the 
molecule is outside the scope of this study.  Although typical performance studies involve 
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hundreds or thousands of compounds, we wish to limit the scope to a set of traditional 
CWAs and simulants, and perhaps provide a guide for usage of existing predictive tools in 
the study of compounds related to traditional CWAs. 
 
  
2. BACKGROUND 
 
2.1 Overview of QSAR Methods Used 
 

Four of the physico-chemical predicting tools examined in this report are 
QSAR based tools and a DFT electronic structure based tool.  QSARs are a well 
established method of property prediction first demonstrated for petroleum components.  
QSARs are simple mathematical regression models of the form 

 
௣ܻ௥௘ௗ ൌ ܿ଴ ൅ ܿଵ ଵܺ ൅ ܿଶܺଶ ൅ ⋯൅ ܿଵ,ଶ ଵܺ

௠ܺଶ
௡ ൅ ⋯                    Equation (1) 

 
where Ypred is the predicted property, c0 is a constant, c1 to cn are coefficients from the 
regression to the training set of measurements, X1 to Xn represent molecular or fragment or 
field-based descriptors, and the final term in Equation 1 represent higher order terms.  The 
descriptors are some property or characteristic of the molecular structure.  Table 1 shows 
some of the classes of descriptors as well as some examples of those descriptors.  The 
training set is a subset of compounds that have had the property of interest measured in the 
laboratory.  A regression fit is performed to relate the laboratory measurements of these 
compounds to the coefficients in the model.  Validation and error assessment of the QSAR 
model is performed with the remaining laboratory measurements that were not included in 
the original training set.  The model is generally valid for chemical compounds that are 
similar to those used in the training set.  
 

The properties examined in the present study include 1) Boiling Point at 1 
atm (101325 Pa), 2) Vapor Pressure at standard ambient temperature (25o C), 3) solubility 
in water (mg/L), 4) –log(acid/base dissociation constant) in water (pKa), and 5) the –
log(octanol/water partitioning coefficient) (Kow).  For properties 1 to 3, EPI Suite version 
4.11, and ACD/Labs/PhysChem 12.0 were used.  For property 4 (pKa), ACD Labs, and 
ChemAxon’s MARVIN pKa and Kow calculators were used to make predictions.  For 
property 5, the Kow, predictions were available from EPI Suite, ACD/Labs, MARVIN, and 
VEGA.  These estimation models are based on group-contribution methods.  An additional 
method called ADF COSMO-RS that is based on DFT methods was also used for 
comparison.  Certain molecular fragments or functional groups tend to add to the 
magnitude of given properties.  More frequent occurrences of these groups result in greater 
magnitudes for those properties, and some of the methods include correction factors that 
are summed into the property value based on the occurrence of certain atoms or other 
functional groups.  For example, with pKa estimations, certain functional groups are 
known to be ionizable, such as amines. Occurances of these functional groups are known 
to be proportional to the experimental pKa, and as a result, these can be used to generate a 
knowledgeable guess. 
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Table 1:  Molecular Descriptor Classes and Examples 
Constitutional Electronic/geometric Physico-

chemical 
Fragment/Structure Topological 

# H-bonds dipole moment lipophilicity functional groups atomic 
branching 

Hammett 
constants 

molecular volume polarizability  bonds to 
atom 

# double 
bonds 

bonds to atom   molecular 
shape index 

molecular 
weight 

   polar surface 
area 

# Rings    electrostatic 
field 

   
  

2.1.1  Differences between EPI Suite/Mbbpvpwin and ACD Labs 
 

The Mbbpvpwin component of EPI Suite utilizes the method of Stein & 
Brown34 to estimate the boiling points.  Using the standard QSAR approach, a linear model 
is used to estimate boiling point.  Using the same 41 groups used by Joback35 and Reid,36 
an additional 85 groups are added to the method.  It should be noted that some of the 
additional groups are subgroups of the original 41.  The training set consisted of 4426 
different organic compounds, with an additional set of 6584 measurements for validation 
of the method. 

 
In contrast to the method used in EPI Suite, the boiling point is not 

calculated directly using a QSAR approach, but rather the value of a function K.  The ACD 
Labs User’s Guide states that the boiling point follows a nonlinear form similar to the 
Antoine equation: 

	݊௜ ൌ ܽ଴ ൅
௔భ

௕௣ି௔మ
                                      Equation (2) 

 
where ni corresponds to the number of occurrences of group i, bp corresponds to the 
boiling point, a0, a1, and a2 are empirically determined constants.  However, they 
determined that the value of K, a function of the molecular volume (MV) and the boiling 
point (BP), is linearly dependent on the occurrences of given groups: 

 
ܭ ൌ ݂ሺܸܯ, ሻܲܤ ൌ ܿ଴ ൅ ∑ ܿଵ,௜௜ ݊௜                      Equation (3) 

 
where ni is the number of occurrences of a given group within a molecular structure, c1,i a 
weighting factor for that group that is determined by a regression of data,  c0 is a constant 
factor also determined from a regression fit of data.  Because the algorithm is proprietary 
to ACD Labs, the form of the function relating the boiling point to K could not be found.  
 
  For vapor pressure, the most reliable method within EPI Suite is the 
modified Grain method shown in Lyman, which relates vapor pressure to the boiling point 
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as calculated above via a simple equation.  This equation calculates vapor pressure from 
both solid and liquid materials. 
 
2.1.2  Calculations Methods for the Octanol/Water Partition Coefficient   
 
  For this survey of predictive tools, a total of five software packages were 
available, including EPI Suite, ACD Labs, ChemAxon’s Marvin, Vega, and ADF 
COSMO-RS.  EPI Suite’s KOWWIN is a QSAR based model with two regressions.37-38  
First, the molecule is divided into fragments based on core, non-hydrogen atoms.  For 1120 
different compounds with good experimentally determined Kow, an initial regression yields 
weighting coefficients for the different fragments.  A residue of errors remain, so 
correction factors are determined from more detailed grouping of the molecular fragments, 
taking into account structures such as rings or specific functional groups.  The weighting 
for the correction factors are determined by a second regression with the full set of 2447 
compounds with experimentally determined partition coefficients.  The model within Vega 
is based on the same approach.  The description of ACD Labs Log(P) algorithm in the 
User Guide is similar in that it is a QSAR based approach, but correction factors are not 
supplied.  This algorithm assigns molecular fragments based on an internal database of 500 
different functional groups as well as increments for different hybridizations of carbon 
atoms.  Additional increments for 2000 intramolecular interactions such as ring structures 
and proximity to given functional groups are included.  A relatively large training set of 
18,412 chemical compounds is used.  Chem Axon’s log(P) (Kow) calculator is QSAR 
based, utilizing a regression molecular fragment descriptors approach as described in 
Viswandhan.39  This approach is augmented by including atomic partial charges, electron 
delocalization, ionic forms, and molecular polarizability. The model is also refined by 
additional molecular fragments.  The model used in the Vega tool relies on the same 
approach by Viswandhan, and uses a training set of 2524 compounds. 
 
2.1.3  Approaches for Calculating Water Solubilities 
 
  Two separate methods are available within EPI Suite.  One method uses 
either an experimental or estimated Kow to generate an estimate, and the second method 
uses the fragment based approach to get its estimate.  In the first approach, an equation 
relating the water solubility to the Kow and a fragment determined correction factor in 
Meylan & Howard40 is used.  If a reliable melting point temperature is available, then a 
second, similar equation is used that includes that quantity.  The correction factors depend 
on the appearance of 15 different chemical functional groups, and a dataset of 1450 
measurements of Kow was used in the regression.  The results of both approaches are 
shown here.  ACD Labs references Meylan & Howard for its method as well, but no 
additional information could be located in the documentation.   
 
2.1.4  Approaches for Calculating pKa 
 
  As described in the software documentation, ACD Labs uses a fragment 
approach for calculating pKa, and it relies on the presence of heteroatoms in the 
hydrocarbon structure for estimation.  Hammett41 first observed a simple equation to 
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describe the dependence of the pKa of substituted compounds to the pKa of the 
unsubstituted compound.  ACD Labs uses parameterized Hammett-type equations to 
describe 1500 possible combinations of more than 650 ionizable functional groups.  The 
change in pKa encountered when substituting different functional groups on the original 
ionizable fragment is encapsulated within the electronic substitutent constant, which is 
determined for over 1200 possible substituents.  Additional corrections are added to 
account for the effect of distance through the hydrocarbon backbone between the ionizable 
center and a substituent, as well as through aliphatic and aromatic rings.  ChemAxon’s 
Marvin pKa calculator uses a fragment based approach as well,42-43 where pKa depends 
linearly on fragment partial charge increments, polarizability increments, and structure 
specific increments, such as rings.  Predictions are based on a regression relating these 
increments to the experimental data.  Information on the data training set could not be 
located for the Marvin pKa prediction tool.  
 
2.2  Principle of Operation of COSMO-RS 
 

The properties (boiling point, vapor pressure, Kow, etc.) examined in this 
report are a reflection of the molecular solvation properties.  For example, Kow reflects the 
different energetics of solvation for a solute molecule in water and in octanol.  Calculation 
of these energetics using an electronic structure method for both the solute molecule and 
sufficient solvent molecules to simulate solvation is still prohibitively computationally 
expensive.  Fortunately, polarizable continuum models for solvents are proven to be 
reliable yet computationally tractable.  As a result, it is possible to calculate solvation 
properties of a given molecule from the calculated chemical potential of the molecule in 
solution and the gas phase..  ADF COSMO-RS relies on the difference between the charge 
density on the molecular surface in vacuum and the charge density of the molecular surface 
within a polarizable continuum model.  

 
Polarizable continuum models treat the solvent around a solute molecule as 

an infinite continuum with some dielectric constant.  A cavity is carved out of this 
continuum to make way for the solute molecule.  The solute molecule has some 
distribution of electrostatic charge contributing to a dipole moment.  The polarizable 
continuum responds to this electrostatic charge resulting in an image charge that “screens” 
the charges in the solute molecule.  While the solvent continuum will affect the electronic 
structure of the solvent molecule, the electronic structure can be refined until self 
consistency is obtained with the solvent continuum.  There is an energy associated with 
this screening charge, and that screening charge serves as a descriptor for models of 
boiling point, vapor pressure, solubility, pKa, miscibility, etc.  Because the molecular 
descriptor is the result of a quantum mechanical calculation of a molecule, rather than from 
a group contribution method, we expect the approach to be more robust towards molecules 
containing groups not included in the original training set.32-33     

 
For COSMO-RS, the cavity geometry is related to the radii of the atoms in 

the solute molecule. COSMO-RS is not a first principles method, because the atomic radii 
are fitted by a regression of 642 data points for a variety of properties, such as partition 
coefficients, and vapor pressure.  The result is approximately 120% of the van der Waals 
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atomic radii.  In the respect that certain degrees of freedom are fixed by a regression fit to 
experimental data, the COSMO-RS method some similarity to existing QSAR methods.  A 
key difference is that instead of relying on the structure alone to make predictions, 
COSMO-RS calculates a molecular descriptor based on the charge distribution on the 
molecule within a polarizable continuum and the molecule in vacuum. 

 
  According to the ADF COSMO-RS Tutorial 
(http://www.scm.com/Doc/Doc2010/CRS/CRSGUI_tutorial/page48.html), pKa estimates 
can be made from four ADF calculations: 1) DFT gas-phase geometry optimization of the 
compound of interest, 2) COSMO-RS calculation of this optimized structure in an implicit 
water polarizable continuum solvent, 3) DFT gas-phase geometry optimization of the 
conjugate acid or base of the compound of interest, and 4) COSMO-RS calculation of the 
optimized conjugate structure in the continuum solvent.  For multiprotic compounds, this 
four-step process can be repeated to individually calculate the pKa of each protonatable 
site, although the COSMO-RS parameterization was limited to monoprotic molecules only, 
so multiprotic results are expected to be inaccurate due to the large charges of the 
unparameterized ions. 
 
At T = 298.15 K, ADF COSMO-RS uses the following equations when the compound of 
interest is an acid (deprotonation of acid -> conjugate base): 
 

,ݍሺܽ	࡭ࡴ ሻܯ1 	൅	ܪଶܱ	ሺ݈ሻ 	→ ሻݍሺܽ	ଷܱାܪ	 	൅	ିܣ	ሺܽݍሻ          Equation (4) 
 

ܽܭ݌ ൌ 	0.62 ∗ 0.733 ∗ ܩ߂ ∗ ݈ܽܿ݇/݈݋݉ ൅ 2.10               Equation (5) 
 

	ܩ߂ ൌ –	ሻ݁ݏܾܽ_݁ݐܽ݃ݑ݆݊݋ሺܿܩ	 ሺܽܿ݅݀ሻܩ	 	൅ –	ሻ݉ݑ݅݊݋ݎ݀ݕሺ݄ܩ	  ሻݎ݁ݐܽݓሺܩ	
Equation (6) 

 
ADF COSMO-RS uses the following equations when the compound is a base 
(deprotonation of conjugate acid -> base): 
 

,ݍሺܽ	ାܤܪ ሺ݈ሻ	ଶܱܪ	൅	ሻܯ1 	→ ሻݍሺܽ	ଷܱାܪ	 	൅  ሻ          Equation (7)ݍሺܽ	࡮	
 

ܽܭ݌ ൌ 	0.67 ∗ 0.733 ∗ ܩ߂ ∗ ݈ܽܿ݇/݈݋݉ െ 2.00                Equation (8) 
 

	ܩ߂ ൌ ሻ݁ݏሺܾܽܩ	 	െ ሻ݀݅ܿܽ_݁ݐܽ݃ݑ݆݊݋ሺܿܩ	 	൅ െ	ሻ݉ݑ݅݊݋ݎ݀ݕሺ݄ܩ	  ሻݎ݁ݐܽݓሺܩ	
Equation (9) 

Where, 
G(hydronium) = -310.737 kcal/mol (ADF COSMO-RS calculation result) 

 
G(water) = -332.353 kcal/mol (ADF COSMO-RS calculation result) 

 
  The ADF COSMO-RS calculations output the Gibbs free energy (G) values.  
Using the equations above and the G values obtained from ADF COSMO-RS, pKa values 
were calculated for each compound and conjugate pair.  The acid set of equations gave the 
best (highest) pKa values, even when the compound of interest was a base.  For example, 
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in the case of an amine species, the ammonium ion form (acid) was treated as the 
compound of interest, the amine form (base) was treated as the conjugate, and the acid 
parameter values above were used to calculate pKa.  However, the reverse of this 
approach, ie, treating the amine as the compound and the ammonium as the conjugate and 
using the base parameter values, should have matched the ion charges better (HB+ -> B 
rather than HA -> A-), according to the parameterization.  For glycerol, the middle OH 
group had a lower pKa value and was assumed to deprotonate before either of the two end 
OH groups. 

 
2.3    Overview of Traditional Chemical Warfare Agents and Simulants 
 

Chemical warfare agents were initially used in the First World War.  
Compounds arising from that time period include sulfur mustard (HD) and the Lewisite 
compounds (L1, L2, and L3).  Due to the similarities of its physical properties, glycerol is 
typically used as a simulant for mustard agents.  Compounds representative of the Second 
World War time period include the nitrogen mustards, e.g. HN1, and organophosphate 
nerve agents tabun (GA), sarin (GB), soman (GD), and cyclosarin (GF).  The V series 
agents (VG and VX) are representative of Cold War agents.  Because of their similarity to 
organophosphate pesticides, common pesticides can serve as simulants for the G and V 
agents, such as DMMP, DIMP, metamidophos, and malathion.  These compounds were 
considered to be somewhat representative of the chemical warfare agent threat and their 
chemical structures were used in the present study.   Also, for most of the chemical 
properties of interest, e.g. solubility and Kow, laboratory data was readily available.11, 44-45 
Because the fate of pharmaceuticals and dyes in the environment were also of interest, 
Disperse Red 9 and the cocaine molecule were considered.  

 
3.  METHODS 
 

EPI Suite version 4.11 (KOWWIN v1.68, Mpbpwin v1.48, WaterNT v1.0, 
and WSKOWWIN v1.42), ACD Labs version 12.0, ChemAxon’s pKa and Kow online 
calculators, and the VEGA Non-interactive Client for LogP (Kow) predictions. To 
accommodate calculations of large numbers of compounds in a batch format, all predictive 
tools accept input files containing the structures in Simplified Molecular-Input Line Entry 
System (SMILES) notation, or the CAS numbers.  Table 2 shows the list of traditional 
chemical warfare agents and simulants, as well as Disperse Red 9, a smoke grenade dye, 
along with their CAS numbers and structure in SMILES format that were used as input 
into the predictive tools.  For ADF COSMO-RS, two quantum mechanical DFT 
calculations were necessary, one calculation simulating vacuum, the other simulating the 
molecule of interest embedded in a polarizable continuum (COSMO).  The Becke ’88 
Perdew ’86 (BP86) functional with the triple zeta TZP basis set were used for the quantum 
mechanical calculation.   

 
Table 2:  Compound Names, SMILES Structures, and CAS Numbers 

Compound SMILES structure CAS # 
glycerol C(O)(CO)CO 56-81-5 
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HD (sulfur) C(Cl)CsCCCl 505-60-2 
HN1 (nitrogen 
mustard) 

C(Cl)CN(CCCl)CC 000538-
07-8 

metamidophos COP(N)(=O)SC 65960-
97-6 

malathion C(=O)(C(CC(=O)OCC)SP(=S)(OC)OC)OCC 121-75-5 
DMMP COP(C)(=O)OC 756-79-6 
DIMP C(C)(C)OP(C)(=O)OC(C)C 169301-

54-6 
GA C(#N)P(=O)(N(C)C)OCC 77-81-6 
GB CP(=O)(F)OC(C)C 107-44-8 
GD C(C)(C)(C)C(C)OP(C)(=O)F 96-64-0 
GF C1(OP(C)(=O)F)CCCCC1 329-99-7 
L1 C(=CCl)[As](Cl)Cl 541-25-3 
L2 C(=CCl)[As](Cl)C=CCl 40334-

69-8 
L3 C(=CCl)[As](C=CCl)C=CCl 40334-

70-1 
VX C(C)(C)N(C(C)C)CCSP(C)(=O)OCC 50782-

69-9 
VG C(CN(CC)CC)SP(=O)(OCC)OCC 78-53-5 
Disperse Red 9 O=C2c1ccccc1C(=O)c3c2cccc3NC 82-38-2 
cocaine CN1[C@H]2CC[C@@H]1[C@H]([C@H](C2)OC(=O)C

3=CC=CC=C3)C(=O)OC 
50-36-2 

 
 
 

4.  RESULTS 
 
4.1  Boiling Point 
 
Table 3:  Table of Predicted Boiling Points and Experimental44-46 Measurements in degrees 
Celsius. 

Compound EPI ACD COSMO-RS Experiment
glycerol 231 290 325 290 
HD (sulfur) 210 216 265 216 
HN1 (nitrogen mustard) 212 136 301 194 
metamidophos 223 209 324 high* 
malathion 351 385 701 high* 
Dimethylmethylphosphonate 152 181 283 181 
diisopropyl methyl phosphonate 210 214 394 high* 
GA 267 240 324 240 
GB 140 147 218 147 
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GD 183 201 306 198 
GF 223 237 278 239 
L1 156 203 215 196.6 
L2 204 229 290 n/a 
L3 247 215 318 n/a 
VX 321 319 550 298 
VG 337 315 613 vacuum* 
disperse red-9 397 463 382 n/a 
Cocaine 363 395 505 n/a 
RMSE 29 20 107  
*Measurement performed under vacuum rather than 101 kPa or 760 mm/Hg, and as a result can’t be 
compared to the prediction. 
n/a.  Experimental not available due to lack of measurement or decomposition or sublimation upon heating. 
 

  Table 3 compares predicted boiling points of the set of chemicals to 
available experimental measurements.  For some experimental measurements, either the 
compounds of interest decomposed before reaching the boiling point, or the measurements 
were performed under vacuum and the boiling point was evaluated at low pressure (~0.2 
mm/Hg).  As a result, experimental measurements were unavailable for a number 
compounds, such as metamidophos, malathion, DIMP, and VG.  For other compounds, 
such as Lewisite L2 and Lewisite L3, a measurement could not be located. 

 
Using the available experimental measurements, it was possible to quantify 

the percent error of the predictions relative to the available experimental measurements.  
ACD/Labs method showed the lowest average RMSE error of 20o C, compared to that of 
EPI Suite (29 RMSE error), and the ADF-COSMO-RS method (average error of 107o C).  
For glycerol, HD (sulfur mustard), DMMP, GA, GB, GD, GF, and L1, the ACD Labs 
software almost exactly predicts the boiling point.  ACD Labs overestimates the boiling 
point of VX by 7%.  Given that ACD Labs takes into account the nonlinear dependence of 
the boiling point on number of occurrences of molecular fragments/groups, it does not 
seem surprising that it robustly predicts boiling points for the tradtional agents.  Given the 
accuracy of ACD Labs predictions for the traditional agents, we conclude the traditional 
agents lie within the span of the models used by ACD Labs.  EPI Suite also performs well, 
where the greatest error, underestimating the boiling point by 20%, is for Lewisite L1.  
This is to be expected given that the Lewisites contain the semi-metal Arsenic, which is 
outside the training set of EPI Suite.   

 
 The predictions obtained from ADF COSMO-RS deviated from the 

experimental measurements the most.  For compounds containing a tertiary amine such as 
VX or nitrogen mustard (HN1), the predictions overestimated by more than 100o C.  
Predictions for the organophosphates also differed from experiment by more than 100o C, 
except for GA and GF, which differed from experiment by 80o C and 40o C, respectively.  
Although ADF COSMO-RS is not a traditional QSAR in the sense that a regression is 
performed to relate the occurrences of some descriptor to the property of interest, there is 
still an empirical fit of the atomic radii used to define the molecular cavity within the 
polarizable continuum.  It is quite possible the training set used in the regression is 
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insufficient and the traditional agents are outside of the domain of applicability.  On the 
other hand, it is possible the degrees of freedom afforded by the atomic radii fit do not 
result in a sufficiently expansive applicability domain.  Lastly, although Disperse Red 9 
and cocaine have secondary amine functional groups and can exist in a salt form, neither 
EPI Suite nor ACD Labs can make predictions for the ionic form.   

 
 
4.2  Vapor Pressure 
 
 
Table 4:  Vapor Pressures in Pa at 25o C 

 EPI ACD COSMO-RS Experiment
glycerol 1.1E‐02 <1.0E‐01 1.0E‐03  2.2E‐02

HD (sulfur) 2.1E+01 2.7E+01 3.0E+01  1.5E+01

HN1 (nitrogen mustard) 2.6E+01 1.1E+03 1.3E+01  3.3E+01

metamidophos 9.1E+00 2.7E+01 2.6E‐02  4.7E‐03

malathion 1.7E‐02 <1.0E‐01 0.0E+00  4.5E‐04

Dimethylmethylphosphonate 1.2E+02 1.3E+02 1.3E+01  1.3E+02

diisopropyl methyl 
phosphonate 3.0E+01 2.7E+01 4.6E‐01  3.7E+00

GA 6.2E+00 5.3E+00 3.3E+00  9.3E+00

GB 6.1E+02 8.0E+02 1.4E+02  3.8E+02

GD 5.3E+01 6.7E+01 9.2E+00  5.3E+01

GF 6.5E+00 9.3E+00 2.3E+01  5.9E+00

L1 7.9E+01 5.3E+01 2.0E+02  7.7E+01

L2 3.9E+01 1.3E+01 1.6E+01    

L3 3.6E+00 2.7E+01 8.8E+00    

VX 2.9E‐01 <1.0E‐01 4.0E‐03  9.3E‐02

VG 3.6E‐02 <1.0E‐01 5.0E‐03  3.5E‐02

disperse Red-9 4.1E‐05 <1.0E‐01 7.1E‐01  9.3E‐07

cocaine 1.7E‐03 <1.0E‐01 1.2E‐02  3.9E‐05

 
 
 
  The values within Table 4 compare vapor pressure predictions to 
experimental values.  Unlike the predictions for boiling point, the deviations from 
measurements vary from factors of 2 to many orders of magnitude.  For most of the 
predictions, the large magnitude of error is not significant.  This is especially true when 
both the prediction and the measurement are very small, as in the comparison between 
prediction and experiment for glycerol, malathion, VG, and Disperse Red 9.  Many of the 
predictions for all three tools are reasonably close to the experimental measurement, such 
as for HD (all within a factor of 2 or less), HN1, GA, GB, and L1.  On the other hand, 
some of the deviations between prediction and measurement are significant, and could 
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drastically affect the output of fate models using the predicted vapor pressures.  The most 
significant deviation on the order of two to four orders of magnitude occured for both EPI 
Suite and ACD Labs with metamidophos.  For EPI Suite, the –NH2 fragment in 
metamidophos is treated the same as a typical amine group, and the P-N linkage is not 
recognized.  Most likely, the amine group in metamidophos is much different than a 
typical amine.  For GA, although there is an N-P linkage, it is possible the effect of that 
linkage is limited by the fact that the nitrogen atom is joined to two ethyl groups.  A fate 
model may predict rapid dissipation for this compound using the predicted vapor pressures, 
when in fact they are persistent.  There is also a limit to the predictive range of ACD Labs.  
A vapor pressure lower than 0.1 Pa is outside of the predictive range of ACD Labs.  Thus, 
ACD Labs can provide a lower bound for vapor pressure, but only for vapor pressures 
higher than 0.1 Pa.   
 
  ADF COSMO-RS performed reasonable well against all compounds in the 
set.  Except for DMMP and DIMP, the predictions were well within an order of magnitude 
of the measurements.  Measurements for low vapor pressure compounds such as VX, VG, 
and disperse Red 9, were orders of magnitude different from the predictions, but for these 
compounds, both the prediction and measurement were very small, impacting a fate model 
minimally.  Given that for several organophosphorous compounds, ADF COSMO-RS 
predictions matched experiment well (G and V agents, and the pesticides malathion and 
metamidophos), it is surprising that this method should encounter difficulty with DIMP 
and DMMP where the prediction varies by more than a factor of ten with respect to the 
experimental measurement. It should be noted that DMMP and DIMP are very symmetric 
molecules.  As a result, we expect polarity and polarizability to depend strongly on the 
molecular conformation.  For ADF COSMO-RS, properties are calculated at the lowest 
energy conformation, where at typical laboratory ambient temperatures, the molecules may 
be sampling many more conformations.  As a result, predictions of properties that depend 
on polarity and polarizability may differ greatly from laboratory measurements.  At the 
same time, ADF COSMO-RS does not seem to deviate much more than an order of 
magnitude in its vapor pressure estimate, where for a number of instances, both EPI Suite 
and ACD Labs deviate for up to 4 orders of magnitude in vapor pressure.  Deviations of 
that magnitude can cause serious errors in predictions of the fate and transport of these 
materials in the environment. 
 
4.3  Log Water/Octanol Partition coefficient (Kow) 
 
Table 5:  Comparison of Kow (-log(P)) predictions from EPI Suite, ACD Labs, Marvin 
Kow Calculator, Vega, COSMO-RS, and experimental values for the selected traditional 
chemical warfare agents and simulants. 

Compound EPI ACD MARVIN Vega COSMO EXP 
glycerol ‐1.7 ‐1.9 ‐1.8 ‐2.3 ‐1.7  ‐1.76

HD (sulfur) 2.4 2.1 2.0 3.2 2.8  1.37

HN1 (nitrogen mustard) 1.4 1.4 1.9 2.0 3.6  2.02

metamidophos ‐0.9 ‐0.8 ‐0.3 ‐0.9 0.1  ‐0.8

malathion 2.3 2.4 1.5 3.0 3.6  2.36
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Dimethylmethylphosphonate ‐0.6 ‐0.9 ‐0.1 ‐0.6 ‐0.5  ‐0.61

diisopropyl methyl 
phosphonate 1.2 0.8 1.4 1.2 1.4  1.03

GA 0.3 0.1 ‐0.1 ‐0.2 1.6  0.38

GB 0.3 0.5 0.8 ‐0.2 1.1  0.3

GD 1.7 1.8 2.1 1.2 2.3  1.78

GF 1.6 1.6 1.7 1.2 2.2  na 

L1 2.6 n/a  2.5 1.9 2.7  2.56

L2 3.5 n/a  3.5 3.2 3.5    

L3 4.5 n/a  3.7 4.5 4.5    

VX 2.1 2.1 2.0 2.1 4.2  2.09

VG 1.7 2.9 1.8 1.7 4.8  1.7

disperse red-9 4.1 3.0 3.0 3.0 3.6  4.1

cocaine 2.2 2.3 2.3 2.5 3.9  2.3

RMSE 0.3 0.5 0.5 0.7 1.3 

 
 
  Table 5 shows a comparison of the predictions of octanol/water partition 
coefficients from various available QSAR tools compared to reported laboratory 
measurements in –log units.  Laboratory measurements could not be found by the authors 
for cyclosarin (GF) or two of the Lewisite agents L2 and L3.  When taking the square root 
of the average of the squares of differences between the predictions and the experimental 
measurements in –log units, one is able to perform a rough ranking of the different tools.  
EPI Suite had the lowest average error (in –log units) of 0.33.  ChemAxon’s Marvin –
log(P) Calculator ranked next with an average error of 0.50.  The average error for the 
predictions from ACD Labs was close with a value of 0.54.  The average error for the 
Vega –log(P) Java based calculator was 0.7.  The largest deviation from experimental 
value is obtained between the predictions from ADF COSMO-RS for this particular set of 
compounds. 
 
  For EPI Suite, ACD Labs, Marvin, and Vega, sulfur mustard (HD) yields 
the largest error, followed by the prediction for nitrogen mustard (HN1) for EPI Suite.  
Examining the EPI Suite output, it appears only basic atomic fragments of Cl, thio-ether, 
and methylene carbon groups are recognized.  The proximity of the chlorine atoms to the 
sulfur are not accounted for in the available model.  The error for HN1 is a factor of 3 less, 
and an additional correction factor for the ClCCNCCCl fragment appears.  Clearly, the 
correction factors arising from the second regression of data and deviations from data from 
the initial QSAR prediction in EPI Suite’s KOWWIN tool is quite effective.  Another point 
to make is the molecular symmetry of HD and HN1.  The symmetry is not recognized in 
the fragment output of EPI Suite, or any of the other fragment based methods, where the 
fragment values are blindly summed into the property prediction.  Kow should be affected 
by molecular polarity, and the contribution of polar groups to the molecular polarity can be 
cancelled out by symmetry.  As a result, a failure to account for molecular symmetry may 
result in inaccuracy. 
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  ChemAxon’s Marvin Log(P) Calculator also uses additional correction 
factors derived from molecular descriptors such as atomic partial charges and 
polarizability.  HD and HN1 also exhibit error for ACD Labs, but this error is less than the 
predictions from EPI Suite (0.593 and 0.36, respectively).  The reduced error for these two 
compounds could be attributed to the large training set used for the ACD Labs algorithm.  
However, for VG and Disperse Red 9, errors greater than a log unit are obtained, so that 
for the limited set of compounds considered, ACD Labs exhibits slightly more error than 
EPI Suite and ACD Labs.  Although Vega is based on the same approach as that used in 
EPI Suite’s KOWWIN program, the average error exhibited is greater than the predictions 
from EPI Suite.  An examination of the greatest errors show HD gives the largest 
magnitude error on the order of nearly two log units, and Disperse Red 9 an error of 1 log 
unit.  The output of Vega does indicate that HD and Disperse Red 9 are well outside of the 
applicability range.  Interestingly, the prediction from Vega is identical to the output from 
EPI Suite with the correction factor of 1.1000 subtracted.  Most likely the difference 
between Vega and EPI Suite is the implementation of the correction factors.  The greatest 
error is consistently obtained with the predictions of ADF COSMO-RS on the limited data 
set studied here.  We conjecture the error can be attributed to the fact that empirical 
regression of the ADF COSMO-RS method is performed on the COSMO atomic radii 
rather than quantum mechanically calculated molecular descriptors, such as charge 
distribution, HOMO-LUMO difference, etc.    
 
4.4  Water Solubility 
 
  The predictions from EPI Suite, ACD Labs, and ADF/COSMO are 
compared to experimental values in Table 6.  To estimate error, the root mean squares of 
the difference between the log of the predicted solubility  and the log of the experimental 
solubility were used to rank the different methods.  Both of the methods within EPI Suite 
(Kow and fragment based) and ACD Labs had nearly equivalent errors of 0.87, 1.1, and 1.0, 
respectively, although the method within EPI Suite that relied on Kow appeared to have the 
least error.  ADF COSMO-RS had a slightly larger error with an average of the difference 
between the logarithm of the prediction and the logarithm of the measurement of 1.3.   
 
  For EPI Suite’s Kow method, the four compounds that result in the greatest 
deviation from experiment is HN1, sarin (GB), soman (GD), and VX.  For the greatest 
magnitude error, with HN1, solubility was overestimated by nearly six orders of 
magnitude.  For triethylamine, an analog of HN1 without the two chlorine atoms, EPI 
Suite’s prediction of 6.82 x 104 mg/L is very close to the experimental measurement of 
6.86 x 104 mg/L.47  Clearly, the chlorine atoms in HN1 have a drastic effect on solubility 
that is not accounted for in EPI Suite’s model.  This is surprising since the prediction of 
Kow from EPI Suite is less than 0.5 log units different than experiment.  One thing to be 
noted in the EPI Suite output is that only one correction factor is applied due to the 
aliphatic amine group.  No correction factors for chlorine are included.  Another issue to 
mention is that molecular symmetry can play a role.  Although chlorine atoms within 
hydrocarbon molecules tend to be locally polar, if the arrangement of chlorine atoms is 
symmetric, that polarity may cancel out resulting in a nonpolar molecule overall.  In 
contrast to HN1, the GB, GD, and VX solubilities are underestimated by about an order of 
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magnitude.  Within the output, it appears no correction factors are available for the unique 
structures around the phosphorus in the G and V agents, and so the closeness between 
measurement and prediction for GA may be fortuitous. 
 
  For the fragment based method in EPI Suite, the method seems to 
consistently overestimate solubility in water.  DIMP, GF, Disperse Red 9, and HN1 yield 
the greatest differences between experiment and prediction.  As with the Kow method in 
EPI Suite, the structure around phosphorus atom seems to be unique for GF.  Although all 
portions of DIMP appear to be represented in the chosen fragments for property 
estimation, the predicted solubility for DIMP is still orders of magnitude greater than the 
experiment.  It is possible that the discrepancy arises from the fact that the methyl group 
attached to the phosphorus is counted in the same way as the methyl and methylene groups 
in isopropyl fragments.  However, there is a similar methyl group in GB, and both 
experiment and prediction show GB highly soluble in water.  Molecular symmetry may be 
an explanation for less than expected water solubility, where symmetry cancels out 
molecular polarity.  For GF, the large difference between prediction and experiment is not 
clear either.  All portions in the GF molecule also have corresponding fragments in the 
model, yet there is poor agreement.  At first guess, the unsaturated ring would reduce the 
solubility, but those aliphatic carbons are accounted for within the model.  An evaluation 
of the solubility of cyclohexanol shows good agreement between experiment and 
prediction (4.2 x 104 vs. 4.7 x 104 mg/L, respectively).  Again, the substitutents around the 
phosphorus atom are not unique, and molecular symmetry is not an issue.  Perhaps there is 
some interaction between the aliphatic carbons and the substituents around the phosphorus 
atom.  The predictions for Disperse Red 9 and HN1 also overestimate the solubility by 
about an order of magnitude.  Both of these molecules have few polar or ionizable 
functional groups.  Molecular symmetry that cancels the effect of polar fragments may 
reduce the overall polarity of the molecules in water, leading to errors in the prediction. 
 
  For the ACD Labs predictions, Disperse Red 9, HN1, DIMP, and GF also 
had the greatest differences between prediction and measurement.  However, unlike EPI 
Suite, the version of ACD Labs we possess did not report the details of the fragment 
contribution.  Since ACD Labs uses the same approach as the EPI Suite Fragment method, 
we can assume some of the same issues affect this software package.                
 
Table 6:  Water Solubility (mg/L) 

Compound Solubility (mg/L)    
 EPI Kow EPI Frag ACD COSMO-RS Experiment
glycerol 1.0E+06  1.0E+06 7.1E+05 1.0E+06  1.0E+06

HD (sulfur) 6.1E+02  4.3E+02 4.2E+03 3.7E+02  6.8E+02

HN1 (nitrogen 
mustard) 4.0E+04  7.3E+03 1.6E+04 1.3E+02  1.6E+02

metamidophos 4.0E+05  1.0E+06 1.0E+06 1.0E+06  1.0E+06

malathion 7.8E+01  4.3E+02 3.0E+02 6.6E+01  1.4E+02

DMMP 3.2E+05  1.0E+06 6.3E+05 1.0E+06  1.0E+06

DIMP 7.3E+03  2.2E+05 3.4E+04 1.0E+06  1.5E+03
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GA 3.2E+04  1.0E+06 3.5E+05 1.6E+04  9.8E+04

GB 4.6E+04  1.0E+06 4.2E+05 1.0E+06  1.0E+06

GD 1.6E+03  3.4E+05 5.0E+04 1.1E+04  2.1E+04

GF 2.1E+03  5.4E+05 6.2E+04 1.3E+04  3.7E+03

L1 2.6E+02  4.7E+03 n/a  1.8E+03  5.0E+02

L2 2.9E+01  5.0E+02 n/a  2.0E+02    

L3 3.3E+00  5.2E+01 n/a  1.9E+01    

VX 3.2E+03  9.1E+04 4.8E+03 5.0E+02  3.0E+04

VG 6.6E+03  4.7E+04 1.6E+04 1.0E+02  3.0E+04

disperse red-9 6.8E‐01  8.6E+00 4.5E‐04 1.7E+02  1.2E‐01

cocaine 1.3E+03  1.0E+03 5.3E+02 3.5E+02  1.8E+03

RMSE* 0.87  1.1 1.0 1.3 

    *Root Mean Square of the differences between log(predicted) and log(experiment). 
 
  
4.5  pKa Predictions 
 
  Table 7 contains a comparison of pKa predictions  from ACD Labs, 
ADF/COSMO-RS and Marvin.  Unfortunately, for many of the compounds, we could not 
locate most of the pKa values for the compounds except for glycerol, HN1 nitrogen 
mustard, and VX.  For glycerol, only the first proton dissociation constant was reported at 
14.15 log units.  There was less than 0.5 log units difference between ACD Labs, Marvin, 
and the experimental measurement.  ADF/COSMO was two log units off.  The same was 
true for HN1 with both Marvin and ACD Labs less than 0.2 log units off, and 
ADF/COSMO-RS was 0.83 log units off.  For VX, the errors were greater, with 
ADF/COSMO-RS 0.7 log units off, ACD Labs 1.2 log units off, and Marvin 2.0 log units 
off.  Good agreement was determined for glycerol, where the R-OH functional group is 
contained within the ACD Labs library of ionizable functional groups.  A similar degree of 
accuracy is found with Marvin, although a slightly different approach is used.  ACD Labs 
applies an empirical correction factor, and perhaps the contribution from partial atomic 
charge and polarizability in Marvin acts in the same way as the correction factor within 
ACD Labs.  Although the predictions from ADF/COSMO-RS were somewhat close to the 
experimental values, the difference between the predictions from this method and 
experimental results were consistently greater than the results from ACD Labs or Marvin.  
It should also be noted that Marvin was unable to make a prediction for GA and 
metamidophos.  Most likely it could not recognize the N-P linkage in either GA or 
metamidophos.   
 
Table 7:  Comparison of pKa predictions and available experimental data. 

 

ACD 
  
  

ADF 
COSMO-RS 
  

Marvin 
  

EXP   

  H1 H2 H3 H1 H2 H3       
glycerol  13.7 14.8 15.9 12.3 14.4 21.9 13.6 15.2 14.15   
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HD (sulfur)  n/a      n/a      
HN1 (nitrogen mustard)  6.5   7.4   6.3  6.57   
metamidophos  -0.6   3.2   na      
malathion  n/a      n/a      
DMMP  n/a      n/a      
diisopropyl methyl 
phosphonate 

n/a      n/a      

GA  -4.7   -2.4   n/a      
GB  n/a      n/a      
GD  n/a      n/a      
GF  n/a      n/a      
L1  n/a      n/a      
L2         n/a      
L3         n/a      
VX  9.8   7.9   10.6  8.6 9.4
VG  9.4   6.2   9.9      
disperse red‐9  2.3   2.3   2.2      
cocaine  9.0   9.9   8.9      
     
 
  For most of the compounds, such as HD, malathion, DMMP, DIMP, GB, 
GD, GF, L1, L2, and L3, a readily ionizable atom center was not found within the 
molecule, and a pKa could not be determined for these compounds.  The rest of the 
molecules possessed either an amine functional group, or an oxygen atom with a proton.  
Although ADF/COSMO-RS is not based on the fragment QSAR method, this approach did 
not determine a pKa.    
 
 
5.  CONCLUSIONS. 
 
  A number of in-silico tools were used to predict physico-chemical 
properties that are relevant to modeling of environmental fate of a number of traditional 
agents and simulants, and these results were compared to available experimental data.  
Specifically, the boiling point, vapor pressure, log of the water/octanol partitioning 
coefficient (Kow), water solubility, and pKa were the properties surveyed.  For boiling 
point, both ACD Labs and EPI Suite were highly accurate to within 20o C and 29o C.  EPI 
Suite, ACD Labs, and ADF COSMO-RS performed quite well for vapor pressure 
predictions, except that ACD Labs could not generate predictions for vapor pressures of 
less than 0.1 Pa.  For Kow, EPI Suite, ACD Labs, ChemAxon’s Marvin, Vega, and ADF 
COSMO-RS were evaluated.  When considering the RMSE for the Kow values, EPI Suite, 
ACD Labs, Marvin, Vega, and ADF COSMO-RS resulted in 0.3, 0.5, 0.5, 0.7, and 1.3 log 
units, respectively.  ACD Labs was unable to give a prediction for any of the Lewisite 
compounds. EPI Suite’s Kow estimation method proved to have the smallest difference 
between experiment and measurement.  When considering the root mean square 
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differences between the logs of the predictions and measurements, EPI Suite’s Kow 
method, EPI Suite’s Fragment based estimation method, ACD Labs, and ADF COSMO-
RS had values of 0.87, 1.1, 1.0, and 1.4, respectively.  We hypothesize that the greatest 
difference between prediction and experimental measurement occurred for ADF COSMO-
RS because although it is based on DFT calculations, there is still an empirical fit that is 
based on only 642 compounds.  There is not enough information to comment on the 
applicability domain for ADF COSMO-RS.  Also, ADF COSMO-RS depends on a single 
molecular descriptor, i.e. the difference in charge density  between gas phase and 
condensed phase calculations.  We would expect a regression on a larger training set 
including additional molecular descriptors to greatly improve performance of this 
approach.  For pKa estimations, experimental data for only three of the compounds 
examined could be located, and so the accuracy of ACD Labs and ChemAxon’s Marvin 
towards the traditional agents could not be evaluated.    
 
  We reason that two issues contribute to the difference between experimental 
measurements and estimations from fragment based methods.  First, as would be expected, 
compounds containing elements or functional groups outside of the method’s training set 
contributed to the average error, such as the element arsenic in L1.  The same issue is true 
for vapor pressure, Kow, and solubility calculations, where unique functional groups around 
the phosphorus atoms, such as the P-N chemical link to a primary amine in metamidophos 
results in error.  For a property such as boiling point or vapor pressure, where 
constitutional descriptors such as the elemental constituents or molecular mass, details of 
the molecular structure are not important.  For properties involving behavior in water, 
where molecular interactions are important, descriptors such as polarity or polarizability 
intuitively also become important.  Yet, the fragment based methods treat each fragment 
the same regardless if it is attached to an aliphatic carbon atom or a phosphorus atom.  
 
  The second issue that seems apparent in examination of the data is that 
molecules that tend to produce the largest differences between model prediction and 
experimental measurement have molecular symmetry.  For example, HN1 is highly 
symmetric around the nitrogen atom, and the carbonyl groups in Disperse Red 9 are 
arranged on opposite sides of a ring.  For properties highly dependent on molecular 
structure and polarity, such as water solubility, a fragment based method can contribute 
significantly to the error, since the fragment contributions are treated additively.  It is 
possible symmetry may cancel out the contributions from a given fragment, so that a 
property is overestimated, as occurs for EPI Suite’s fragment method for solubility in 
water on HN1, DIMP, and Disperse Red 9. 
 
  Overall, EPI Suite and ACD Labs gave reasonable property predictions 
when the compound of interest was contained within the model applicability domains and 
were asymmetric.  We project that a model based on quantum mechanical descriptors 
would be insensitive to these effects since 1) any unique fragment or functional group 
could be “translated” into a more universal property descriptor such as dipole moment, and 
2) symmetry would be automatically accounted for.   
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ACRONYMS 
 
 

ACD  Advanced Chemistry Development (Labs) 
ADF  Amsterdam Density Functional Code 
CAS  Chemical Abstracts Service 
CWA  Chemical Warfare Agents 
COSMO  COnductor-like Screening Model 
DIMP  diisopropyl methyl phosphonate 
DMMP  dimethyl methyl phosphonate 
DFT  Density Functional Theory 
EPA  Environmental Protection Agency 
GA  Tabun 
GB  Sarin 
GD  Soman  
GF  Cyclosarin 
HD  Sulfur mustard agent 
HN1  Nitrogen mustard agent (ClC2H4)2N(C2H5)) 
HOMO  Highest Occupied Molecular Orbital 
LUMO  Lowest Unoccupied Molecular Orbital 
L1  Lewisite (AsC2H2Cl3) 
L2  Lewisite (As(C2H2Cl)2Cl 
L3  Lewisite (As(C2H2Cl)3) 
QSAR  Quantitative Structure Activity Relationship 
RMSE  Root Mean Square Error 
SMILES  Simplified Moleclar-Input Line-Entry System 
TIC  Toxic Industrial Chemical 
VG  Amiton/Tetram, (C10H24O3PS) 
VX  Cold War Agent, (C11H26NO2PS) 
  



 

 
 



 

 
 



 

 
 

 
 

 


