

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

MASTERLESS DISTRIBUTED COMPUTING OVER
MOBILE DEVICES

by

James D. Browne

September 2012

 Thesis Co-Advisors: Craig Martell
 Ralucca Gera

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2012

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Masterless Distributed Computing Over Mobile
Devices

5. FUNDING NUMBERS

6. AUTHOR(S) James D. Browne

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ______N/A______.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
It is obvious that information is becoming increasingly important in today’s society. This can be seen by the
widespread availability of high-speed Internet in homes and the ubiquity of smart phones. This new information
centric paradigm is possible because of a large supporting infrastructure without which the Internet, the volumes of
information, and the speed we can access them would not exist. The military has recognized the potential value of
this trend because the greatest hindrance that any commander has is the fog of war—the absence of the information
necessary to make critical decisions. On a battlefield, a commander would like to know the status and location of all
of his soldiers, the same for enemy troops, and optimal strategies to accomplish their mission. Unfortunately this
needed information is currently impossible to obtain in a timely manner. This thesis addresses these problems by
presenting an architecture for ad-hoc distributed computing among mobile devices. Our results show that our system
does indeed, as devices are added, speed up a distributed calculation and does it in a way that does not rely on the
presence of a routable network. We also show that the speedup obtained nears optimal as the size of the computation
necessary to calculate an update increases. Additionally, we have shown that we can chain distributed computations
together resulting in a decreased amount of time needed to perform an SVD, an important step in many data-mining
algorithms.
14. SUBJECT TERMS Masterless, Distributed Computing, Android, Mobile Networking, Singular
Value Decomposition, Truncated SVD, Rank Revealing QR Factorization

15. NUMBER OF
PAGES

57

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

MASTERLESS DISTRIBUTED COMPUTING OVER MOBILE DEVICES

James D. Browne
Major, United States Army

B.S., United States Military Academy, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

and

MASTER OF SCIENCE IN APPLIED MATHEMATICS

from the

NAVAL POSTGRADUATE SCHOOL
September 2012

Author: James D. Browne

Approved by: Craig Martell

Thesis Co-Advisor

Ralucca Gera
Thesis Co-Advisor

Peter J. Denning
Chair, Department of Computer Science

Carlos Borges
Chair, Department of Applied Mathematics

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

It is obvious that information is becoming increasingly important in today’s society. This

can be seen by the widespread availability of high-speed Internet in homes and the

ubiquity of smart phones. This new information centric paradigm is possible because of

a large supporting infrastructure without which the Internet, the volumes of information,

and the speed we can access them would not exist. The military has recognized the

potential value of this trend because the greatest hindrance that any commander has is the

fog of war—the absence of the information necessary to make critical decisions. On a

battlefield, a commander would like to know the status and location of all of his soldiers,

the same for enemy troops, and optimal strategies to accomplish their mission.

Unfortunately this needed information is currently impossible to obtain in a timely

manner. This thesis addresses these problems by presenting an architecture for ad-hoc

distributed computing among mobile devices. Our results show that our system does

indeed, as devices are added, speed up a distributed calculation and does it in a way that

does not rely on the presence of a routable network. We also show that the speedup

obtained nears optimal as the size of the computation necessary to calculate an update

increases. Additionally, we have shown that we can chain distributed computations

together resulting in a decreased amount of time needed to perform an SVD, an important

step in many data-mining algorithms.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. RESEARCH APPLICATION ..1
B. RESEARCH QUESTION ...2
C. RESULTS ...3
D. ORGANIZATION OF THESIS ...3

II. BACKGROUND, EXISTING TOOLS AND METHODOLOGIES5
A. PARALLEL COMPUTING LAWS ...5

1. Amdahl’s Law ..5
2. Gustafson’s Law ...6

B. ANDROID ..7
1. Overview ...7
2. Dalvik ..7
3. Android Limitations ..7
4. Research Applicability...8

C. MAPREDUCE..8
1. Overview ...8
2. Execution ..8
3. Handling Failures ..9
4. Research Applicability...10

D. AD-HOC NETWORKS ...10
E. SINGULAR VALUE DECOMPOSITION..11

1. Truncated SVD...11
2. Rank Revealing QR (RRQR) Factorization12
3. RRQR Using Randomness ..13
4. Low-Rank Matrix Approximation ...14
5. Calculating the Truncated SVD ...15
6. Businger Golub QR Matrix Factorization with Column

Pivoting Algorithm...16

III. EXPERIMENTAL SETUP ...19
A. COMPUTING ENVIRONMENT ..19

1. Devices ...19
2. Network ...19
3. Data Storage ...19

B. MASTERLESS DISTRIBUTED COMPUTATION PROCESS20
1. Overview ...20
2. Execution ..20
3. Handling Failures ..21

C. PRELIMINARY COMPUTATIONS ..22
D. SINGULAR VALUE DECOMPOSITION COMPUTATION22

1. Calculation of Y=AΩ ...22
2. Calculation of the Q Portion of the QR Decomposition of Y..........23

 viii

3. Calculation of D=QTA ..24
4. Decomposition of D into its SVD ..24
5. Calculation of U..25

IV. RESULTS AND ANALYSIS ..27
A. OVERVIEW ...27
B. MATRIX MULTIPLICATION ..27
C. CHAIN OF TEN MATRIX MULTIPLICATIONS31
D. DISTRIBUTED SVD ...34

V. CONCLUSION AND FUTURE WORK ...37
A. SUMMARY ..37
B. FUTURE WORK ...37

1. Implement Masterless Distributed Computing System in an
Ad-hoc Networking Environment ..37

2. Analyze the Socket Layer Receive Buffers37
3. Test Efficacy of the System when Devices are Both Entering

the System and Leaving the System ...38
4. Analyze the System’s Abilities to Work with Other Types of

Computations ...38
C. CONCLUSION ..38

LIST OF REFERENCES ..41

INITIAL DISTRIBUTION LIST ...43

 ix

LIST OF FIGURES

Figure 1. Businger and Golub QR factorization with column pivoting algorithm.
From [16] ...17

Figure 2. Breakdown of steps involved in processing a parallelizable portion of a
task. ..21

Figure 3. Steps needed to distribute the calculation of matrix Y.23
Figure 4. Steps needed to distribute the calculation of matrix D.24
Figure 5. Steps needed to distribute the calculation of matrix U.25
Figure 6. Speed up achieved at each matrix size. ..28
Figure 7. The redundancy observed during the experimental runs.29
Figure 8. Network usage during matrix multiplication. ..30
Figure 9. Speed up obtained by performing ten matrix multiplications.31
Figure 10. Redundancy observed in Chain of 10 Matrix Multiplications.32
Figure 11. Network usage during chain of multiplications. ..33
Figure 12. Difference between single and chain of multiplications. The percentage

difference between the values measured during the single matrix
multiplication and the chain of multiplications is clearly decreasing as the
matrix size increases. ...34

Figure 13. Speed up of the SVD obtained on the 500x500 matrix.35
Figure 14. Average speed up of varying size SVD computations.36

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

ACKNOWLEDGMENTS

I would like to thank my wife and children for making our time here in Monterey

fun and memorable, our friends and family for helping take care of the kids, and my

thesis advisors, Drs. Gera and Martell, for their help keeping me focused on finishing my

thesis. Thank you all.

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

It is obvious that information is becoming increasingly important in today’s

society. This can be seen by the widespread availability of high-speed Internet in homes

and the ubiquity of smart phones. This new information centric paradigm is possible

because of a large supporting infrastructure without which the Internet, the volumes of

information, and the speed we can access them would not exist.

The military has recognized the potential value of this trend because the greatest

hindrance that any commander has is the fog of war—the absence of the information

necessary to make critical decisions. On a battlefield, a commander would like to know

the status and location of all of his soldiers, the same for enemy troops, and optimal

strategies to accomplish their mission. Unfortunately, this needed information is

currently impossible to obtain in a timely manner. This thesis addresses these problems

by presenting an architecture for ad-hoc distributed computing among mobile devices.

A. RESEARCH APPLICATION

The chaos of a battlefield has many hurdles that must be overcome in order to

provide information to the commander. A device that tries to provide this information

must be lightweight so it does not hinder the soldier carrying it. This means that the

device will necessarily have to be small like smart phones or tablets; and thus will have

limited battery power and a limited processing capability. Other hurdles include the

possibility of a device being destroyed and lack of an infrastructure that will allow these

devices to efficiently communicate. The plus side is that data gathering tools (cameras,

microphones, accelerometers, GPS, Wi-Fi, 3G, magnetometer, gyroscopes, etc.) are

compact and use little power so they can easily be integrated into these devices.

Having every soldier carry a small data collecting device would result in an

overflow of data that must be processed into meaningful information in order to be used.

Unfortunately, this large amount of data cannot be processed because mobile devices

currently do not have the necessary processing capacity. In situations like this, where

large amounts of data needs to be processed, there are two techniques that are typically

2

used to accomplish the task; use of supercomputers and distributed computing. Both of

these solutions, in their current form, have several drawbacks that prevent them from

being deployed in a highly mobile battlefield environment.

Disadvantages that a supercomputer would suffer if deployed on a battlefield

would be lack of a large power source needed to power the device, vulnerability to enemy

attacks, and lack of mobility. An alternative to bringing a supercomputer to a battlefield

would be to send the data to a processing facility, but unfortunately battlefields do not

have the robust networks necessary to accomplish this. Even satellite transmissions,

which require no local infrastructure, would be marred by low and very expensive

bandwidth that would not be capable of sending and receiving the large amounts of data

generated.

Distributed computing systems would be a much better fit for the battlefield but

they too in their current state would be unable to process large amounts of data.

Normally, a distributed computing environment is connected by a robust network that

allows control information and results to flow quickly between nodes in the system. In a

battlefield environment, this network would not exist and current ad-hoc network

technology would not be able to cope with the amounts of data that can be generated [1],

[2], [3]. Another problem would be master node redundancy, which is necessary in the

event the master node becomes unavailable. To achieve redundancy in these systems

requires a large amount of data being passed between the master node and the backup

nodes, which exacerbates the network bandwidth problem stated above.

The aim of the current research is to develop a new form of distributed computing

that has the following two properties:

 The system must not rely on a single master.

 The system must function in the absence of a robust network.

B. RESEARCH QUESTION

The questions this research will answer are, “Can we construct a masterless

distributed computing system that does not rely on network routing? And, if so, can the

system be used for solving computationally expensive linear algebra problems, which are

3

commonly used to analyze large amounts of information?” We answer this question by

modifying Google’s well-known MapReduce system to have every device act as its own

master, instead of incorporating only one master. In this way, the removal of any device,

whether through loss of network connectivity or the complete destruction of the device,

would not impair a computation in progress. This new system is then used to distribute

the calculation of a singular value decomposition (SVD) of a large matrix, which is the

building block of data mining processes such as principle component analysis, latent

semantic analysis, and least squares parameter estimation.

C. RESULTS

Our results show that our system does indeed, as devices are added, speed up a

distributed calculation and does it in a way that does not rely on the presence of a

routable network. We also show that the speedup obtained nears optimal as the size of

the computation necessary to calculate an update increases. Additionally, we have shown

that we can chain distributed computations together resulting in a decreased amount of

time needed to perform an SVD, an important step in many data-mining algorithms.

D. ORGANIZATION OF THESIS

The remainder of this thesis is organized as follows:

 Chapter II discusses prior and related work in the fields of distributed
computing and provides background for the possible capabilities this
system could have.

 Chapter III contains a description of the methods used to conduct the
experiments.

 Chapter IV contains the results of the experiments and analysis.

 Chapter V contains the conclusion and areas for future work.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. BACKGROUND, EXISTING TOOLS AND METHODOLOGIES

A. PARALLEL COMPUTING LAWS

There are two basic laws that govern the speed up achievable by parallel

computing; Amdahl’s Law and Gustafson’s law. These laws are used in this research to

provide a theoretical baseline for the conducted experiments.

1. Amdahl’s Law

In the late 1960s, Dr. Gene Amdahl hypothesized that advances in multiprocessor

machines and parallelism must be accompanied by increases in sequential processing

rates to achieve any meaningful speed increase for any given computation. His reason

for this assertion was that the sequential portion of computations had remained steady at

about 40% of executed instructions in the 10 years prior to his writing the landmark

paper, Validity of the Single Processor Approach to Achieving Large Scale Computing

Capabilities. So, given N processors, the expected time, T, to perform a given

computation is

p
T s

N
 

where s is the time needed to perform the serial portion of the computation and p is the

time needed for the parallel portion of the computation. With this model, large scale

parallel computing was thought to be prohibitively expensive because each additional

machine decreased the computing time less and less [4]. And as the
p

N
 term in the

equation approached zero, T approached s, which was 40% of the overall time so the best

speedup that you could hope to obtain was the inverse of the fraction of s,
1

.40
, or 2.5

times faster than when N was 1 [4].

The system described in this thesis consists of N devices that will each perform

the serial and parallel portion of a given calculation so the T for a given calculation is

6

Ns p p

T s
N N N

   

This shows that even though the serial portion of every calculation is performed N times

the speed up achieved will be equivalent to an optimal parallel computation.

2. Gustafson’s Law

After two decades of debate over Amdahl’s Law, Dr. John Gustafson, a

researcher at Sandia National Laboratories, showed that although the law
p

T s
N

  was

correct, one of Amdahl’s premises was wrong. Amdahl assumed that the serial portion of

a computation grew at the same rate that the parallel portion grew. So, if the parallel

portion doubled, the serial portion would also double, thereby maintaining the 40% of

executed code. Dr. Gustafson’s research showed that there are many practical

applications where s grows linearly as p grows exponentially, which makes large scale

parallel computing highly efficient [5]. He then reformulated Amdahl’s Law by setting T

equal to 1 and making s a constant, which is summarized using the following formula

  1p s N 

And since p is the time taken performing a parallel computation it can then be broken

down into

d

p
t



where d is the size of the data in the parallel portion that needs to be processed and t is

the speed at which the data can be processed. Now, by substituting for p and multiplying

both sides by t gives us

  1d s Nt 

the amount of data that can be processed in one time unit given N processors running at

speed t. This will be used to determine the theoretical time that processing data should

take. Given a baseline d and keeping s constant will provide a t that will then be used to

determine the amount of data that can be processed for a given amount of time.

7

B. ANDROID

1. Overview

Android is an open source software stack for mobile devices that includes an

operating system, middleware and key applications. The operating system relies on

Linux version 2.6 for core system services such as security, memory management,

process management, network stack, and driver model. The kernel also acts as an

abstraction layer between the hardware and the rest of the software stack. A set of C/C++

libraries is included and is used by various components of the Android system. These

libraries are available for use by developers through the Android application framework

and include a system C library that is the standard C system library tuned for embedded

Linux-based devices, several 3D libraries that can take advantage of hardware 3D

acceleration if available, and multiple core libraries that provides most of the

functionality available in the core libraries of the Java programming language [6].

2. Dalvik

The Java Virtual Machine (VM), developed by Sun Microsystems, is software

that executes Java bytecode. It was developed to allow the same bytecode to be run on

any hardware and operating system that has implemented the Java VM, which gives Java

its tag line of “write once, run anywhere.” Dalvik is a VM based on the Java VM but

designed with mobile devices in mind [7]. In particular, Dalvik was designed to work

with limited processor speed, limited RAM, no swap space, and low power consumption.

Every Android application runs in its own process, with its own instance of the Dalvik

virtual machine.

3. Android Limitations

Android was designed to run on mobile devices that have limited processor speed

and limited RAM. The developers of Android decided that the user interface (UI) was

the most important aspect of the Android platform and took several precautions to ensure

a good user experience. First, it is recommended that the thread controlling the UI should

not perform any lengthy tasks, which prevents the screen from seemingly freezing.

8

Second, the allowable heap space per application is set by the device developer to

between 24 and 48 megabytes; for comparison, the normal Java VM of a desktop

computer allows 1 gigabyte of heap space per application.

Another big limitation of mobile devices, and thus Android, is the reliance on

battery power. CPU intensive computations and large amounts of I/O will quickly drain

the power from mobile devices. Dalvik was designed to optimize the bytecode to reduce

power consumption but large computations can still quickly drain a battery of its power.

4. Research Applicability

Android’s open nature and its use of portable code make it a good choice for use

in field environments but unfortunately its limitations prevent large amounts of data from

being analyzed on the device. Given a robust network it would be possible to offload any

CPU intensive computation to a backend server with an unlimited power source and lots

of resources. This thesis provides a means of performing these large computations in the

field where access to a robust network does not exist.

C. MAPREDUCE

1. Overview

MapReduce is a programming framework that distributes computations across a

heterogeneous mixture of machines in a manner that hides the complexities inherent in

this distribution from the programmers [8]. This abstraction is based on the map and

reduce primitives present in functional programming languages. The map function is a

function that is performed on each of a set of inputs and the reduce function is a function

that takes the outputs of the map function and combines them into a smaller number of

outputs. The output of the map function is a key/value pair that is used as the input of the

reduce function.

2. Execution

The inventors of the MapReduce framework describe seven steps in the execution

of a MapReduce program [8].

9

1. The MapReduce library in the user program first splits the input files
into M pieces of typically 16-64MB per piece (controllable by the user via
an optional parameter). It then starts up many copies of the program on a
cluster of machines.

2. One of the copies of the program—the master— is special. The rest are
workers that are assigned work by the master. There are M map tasks and
R reduce tasks to assign. The master picks idle workers and assigns each
one a map task or a reduce task.

3. A worker who is assigned a map task reads the contents of the
corresponding input split. It parses key/value pairs out of the input data
and passes each pair to the user-defined map function. The intermediate
key/value pairs produced by the map function are buffered in memory.

4. Periodically, the buffered pairs are written to local disk, partitioned into
R regions by the partitioning function. The locations of these buffered
pairs on the local disk are passed back to the master who is responsible for
forwarding these locations to the reduce workers.

5. When a reduce worker is notified by the master about these locations, it
uses remote procedure calls to read the buffered data from the local disks
of the map workers. When a reduce worker has read all intermediate data
for its partition, it sorts it by the intermediate keys so that all occurrences
of the same key are grouped together. The sorting is needed because
typically many different keys map to the same reduce task. If the amount
of intermediate data is too large to fit in memory, an external sort is used.

6. The reduce worker iterates over the sorted intermediate data and for
each unique intermediate key encountered, it passes the key and the
corresponding set of intermediate values to the user’s reduce function. The
output of the reduce function is appended to a final output file for this
reduce partition.

7. When all map tasks and reduce tasks have been completed, the master
wakes up the user program. At this point, the MapReduce call in the user
program returns back to the user code.

3. Handling Failures

There are two major types of failures that can happen in a MapReduce cluster:

master failure and worker failure. In Google’s implementation of MapReduce, there is

no master node redundancy; if the master fails the program would return with an error

[8]. The thought was that there was only a small chance that the master node would have

problems during the execution of the process so planning for it was unnecessary.

10

Although a periodic checkpoint was discussed as a possible remedy to the failure of a

master but it is not implemented in any of the major MapReduce distributions. Worker

node failure is handled much more elegantly, the master periodically pings all worker

nodes and if no response is received the work tasked to the failed node is reassigned to

another machine.

4. Research Applicability

The MapReduce framework has been shown to work with a wide range of data

analysis algorithms using loosely coupled heterogeneous devices. This research uses this

framework as a basis, using its fundamental map and reduce tenets, to produce a system

that potentially works on a wide range of data analysis algorithms, uses loosely coupled

heterogeneous devices, but handles failures in a fashion amenable to an unreliable

network.

D. AD-HOC NETWORKS

An ad-hoc network is a collection of devices that communicate without the use of

a fixed infrastructure. Whereas the networks that we commonly use are composed of

reliable links to high capacity networking equipment organized in a mesh creating

redundant paths allowing fast communication between devices, ad-hoc networks rely on

unreliable wireless links between devices and rely on the passing of data between these

devices in an attempt to reach a given destination. Ad-hoc networks show up in a variety

of settings, from military to disasters to the developing world to deep space; anywhere

that fixed infrastructure is either unavailable or expensive. Computing over these

networks is not trivial because network disconnections are common and persist over

many time scales [9].

The theoretical bandwidth of an ad-hoc network scales with the number of nodes

n as

11

 

1

nLog n

when assuming multiple source-destination pairs as normally seen in peer-to-peer type

applications [10]. It was shown that non-local traffic patterns, in which the average

source-destination distance grows with the network size, result in a rapid decrease of per

node capacity [11]. So, in client-server type applications we can expect a low per node

capacity unless the server is forced to remain in a centralized location, thereby

minimizing the average source-destination distance within the network.

 An ad-hoc network is the type of environment that the system developed in this

thesis would be used in. The unreliability of these networks was the driving factor in

choosing to have multiple masters to track the progress of a computation, but this

reliability also precluded the use of mirrored masters. It was for these reasons that a

system where each machine is its own master was developed; and since all the machines

are equal peers there is no true master and hence the system is masterless.

E. SINGULAR VALUE DECOMPOSITION

The SVD of a real matrix, m nA  (m n), is an important matrix factorization that

is commonly used for such tasks as Principal Component Analysis, Latent Semantic

Analysis, and least squares parameter estimation. The factorization consists of a diagonal

matrix m n , and orthogonal matrices m mU  and n nV  such that

 TA U V 

where  is a diagonal matrix with main diagonal consisting of the singular values

1 2, ,..., n   where 1 2 ... n     .

1. Truncated SVD

When A is rank deficient with numeric rank equal to r, r n m ,  is a diagonal

matrix with

 1 2 1 2... ... 0r r n           

12

Because the last n r singular values of A are near 0 there is no need to keep the

last m r columns of U or the last n r columns of V that would get multiplied by these

eigenvalues as we reconstruct A*, the approximation of matrix A. This gives the

truncated SVD of A, as

  *
Tm n m r r r n rA U V    

 Depending on the relative sizes of r, n, and m; computing the truncated SVD can

be much more efficient than computing the complete SVD. This truncated SVD is all

that is required for most data analysis techniques since the matrix A* is the closest to A

(compared to any other matrices of numeric rank r) with respect to the Frobenius

norm[12]. When using highly correlated data, r can be smaller than 1% of n, making the

storage and processing of A much faster with less use of space [13].

There are many techniques to compute the truncated SVD of a matrix. The

algorithm used in this thesis was developed by Halko, Martinsson, and Tropp in their

journal article, Finding Structure with Randomness: Stochastic Algorithms for

Constructing Approximate matrix Decompositions, and was chosen for its reliance on

matrix to matrix multiplications; an operation easily implemented in the masterless

distributed computing system we propose in this thesis [14].

2. Rank Revealing QR (RRQR) Factorization

The QR factorization of a real matrix  m nA m n  is the decomposition of A into

the product of a matrix m nQ  with orthonormal columns and an upper triangular matrix

n nR  . If

 11 12

220

R R
R

R

 
  
 

where 11R is an r r matrix with minimum singular value min and if min
22 F

R  then A

has numeric rank r [15].

13

If there exists a permutation matrix  such that A has a QR factorization

A QR  , with R in the same form as above, where 11R is an r r matrix with minimum

singular value min and min
22 F

R  then the factorization A QR  is called an RRQR

factorization of A.

The most common algorithm used to compute a partial QR decomposition that

reveals the numeric rank of A is the Businger Golub QR decomposition with column

pivoting [15]. This algorithm performs successive orthogonalizations with pivoting on

the columns of the matrix A and halts when the Frobenius norm of the remaining columns

is less than a computational tolerance, (i.e., 0). The process results in a partial

factorization

 m n m k k nA Q R  

where Q is an orthonormal matrix, R is a weakly upper-triangular matrix, and k, whether

less than or greater than the numeric rank, is close to the minimal numeric rank of A for

which precision is achievable [12]. A weakly upper triangular matrix is a matrix where at

least one permutation of its columns results in an upper triangular matrix.

3. RRQR Using Randomness

Instead of finding the permutation matrix,  , that reveals the rank of A it is

possible instead to use a matrix  , whose values are random and follow a Gaussian

distribution with mean 0 and standard deviation 1, to form a matrix Y that captures most

of the activity of A, where Y A  . By activity it is meant that every column in Y has a

non-zero contribution from every eigendirection in A, so all of the range of A is

represented in the resulting matrix Y [15].  is an  n k p  matrix where k is the

target rank of A and p is a small oversampling parameter. An RRQR algorithm is then

performed on the matrix Y to determine the rank of Y, which is easier than finding the

rank of A because Y is a smaller matrix. Failure to terminate before all rows are

orthonormalized means that  was not large enough to capture all of the activity of A, in

which case columns can be added to  , thereby adding columns to Y. If the steps taken

14

to perform the orthogonalizations were stored then it is possible to continue the RRQR

process without restarting the entire algorithm from the beginning [12].

4. Low-Rank Matrix Approximation

A standard task in scientific computing is to determine for a given matrix A, an

approximate factorization

 m n m r r nA C B  

where the inner dimension r is the numeric rank of A. Similarly to the truncated SVD,

when the numeric rank is much smaller than m and n, this factorization allows A to be

stored inexpensively, and to be multiplied to vectors or other matrices quickly. This

factorization can also easily be converted to other factorizations including the SVD.

Only three steps are needed to compute the SVD of A from a partial factorization

such as A CB [14]:

 Compute a QR factorization of C so that C QR .

 Form the product D RB , and compute the SVD of the much smaller
matrix D, which results in 2

TD U V  .

 Form the product 2U QU .

This results in the following chain of equations leading to the SVD of A

 A CB

Performing a QR factorization on C gives

 A QRB

Multiplying the matrices R and B together gives

 A QD

Now finding the SVD of D gives

 2
TA QU V 

And, finally, multiplying Q and 2U gives us the final SVD of A as

15

 TA U V 

Notice, if C is an m r matrix and B is an r n matrix the resulting SVD has the

following dimensions

  Tm n m r r r n rA U V    

This is a truncated SVD.

5. Calculating the Truncated SVD

The first step in calculating the truncated SVD is to compute an approximate basis

for the range of the input matrix A. In other words, we require a matrix Q that has

orthonormal columns and TA QQ A . We would like the basis matrix Q to contain as

few columns as possible, but it is even more important to have an accurate approximation

of the input matrix. The randomized algorithm for this task is to draw a random matrix

 n k p  , where k is the approximate numeric rank of A and p is a small (p<10)

oversampling parameter, and form the matrix product Y A  . Then using an RRQR

algorithm on Y, we compute an orthonormal matrix m rQ  that should satisfy

T

F
A QQ A e  , where e is machine error.

Using the computed Q we can now easily form matrix D from step two of the low

rank matrix approximation SVD conversion

 TQ A D

multiplying this equation by Q on the left gives

 TQQ A QD ,

which reduces to the following equation, with dimensions added,

 m n m r r nA Q D  

16

Notice, this is a partial factorization necessary for the technique described in section

II.E.4. Now using the smaller matrix D, we compute its SVD giving us

 2
TD U V 

where is a diagonal matrix made up of the nonzero singular values of D, which are also

the nonzero singular values of A, and the matrix V is made up of the corresponding right

eigenvectors of D, which are also the corresponding right eigenvectors of A. If the left

eigenvectors of A are also needed they can easily be computed by the matrix

multiplication of 2U on the left by Q.

6. Businger Golub QR Matrix Factorization with Column Pivoting
Algorithm

The most commonly used QR Factorization with Column Pivoting algorithm is

the Businger and Golub algorithm (Figure 1) [16], [17]. This algorithm can be broken

into two parts with the second part being further divided into 4 subparts and will produce,

given a matrix m nA  , the Π, Q, and R matrices described in Section 2.E.2.

17

Setup:

 Permutation vector: perm(j) = j, j = 1 : n

 Column norm vector: colnorms(j) =  
2

:,A j , j = 1 : n

Reduction Steps:

For j = 1 : n

1. Pivoting: Choose p such that colnorms(p) = max (colnorms(j : n)

 If (colnorms(p) == 0) STOP

 If (j ≠ p) then

 Perm([j, p]) = perm([p, j]), A(: , [j,p]) = A(: , [p,j])

 Colnorms([j,p]) = colnorms([p,j])

 Endif

2. Reduction: Determine a Householder matrix Hj such that

    12
: , : ,jH A j m j A j m j e 

3. Matrix Update:

   : , 1: : , 1:jA j m j n H A j m j n  

4. Norm Downdate:

 colnorms  1:j n  colnorms  1: (, 1:)j n A j j n  

Endfor

Figure 1. Businger and Golub QR factorization with column pivoting algorithm.
From [16]

The permutation matrix, Π, is found by permuting the columns of the identity

matrix of the appropriate size according to the permutation vector. Q is found by

multiplying the householder matrices, found in Figure 1 step 2, together then subtracting

them from the identity matrix and R is what remains in the modified A matrix.

18

In this chapter, we discussed many of the technologies, algorithms, and previous

works that were used in the development of our masterless distributed computation

system. In the next chapter, we discuss the tools and the experiments that will be used to

show the efficacy of our system.

19

III. EXPERIMENTAL SETUP

A. COMPUTING ENVIRONMENT

1. Devices

Two types of devices were used for these experiments: the Samsung Galaxy

Tablet and the Motorola Xoom Tablet. The Xoom is running the Google Android 4.0

operating system and the Galaxy is running the Google Android 3.2 operating System.

Both devices have a 1 GHz dual-core NVIDIA Tegra 2 processor, are Wi-Fi enabled, and

have 1GB RAM. Both devices are limited to 48 MB of heap space per application.

2. Network

A Linksys WRT54G router was used as an access point to allow each of the

devices to communicate with each other via the 802.11G networking protocol. All of the

devices’ IP addresses are in the same network, allowing each of the devices to receive all

datagrams sent to the network’s broadcast IP address. This is a simple way to mimic an

ad-hoc network where all devices are within range of all other devices.

3. Data Storage

The data used for each of the experiments outlined in III.C and III.D were stored

in text files on the SD card of each of the devices. Accessing each of the files is

performed by mapping the file into memory which reduces access time to the file and

allows for manipulation of the file as if it were stored in memory. This technique was

chosen because portable devices generally have lower amounts of RAM, as described in

II.B.3, and memory mapping files is a good method to mitigate the performance drop of

working with large amounts of data with limited memory. In this case, the devices allow

only 48 megabytes of memory per application, which was more memory than was needed

for most of the experiments performed, but not for all of them.

20

B. MASTERLESS DISTRIBUTED COMPUTATION PROCESS

1. Overview

This masterless distributed computing system is comprised of any number of

devices all of which have similar processing capabilities, i.e., similar amounts of RAM

and CPU speed, and all having exact copies of the distributed computing system running.

When the devices are given a task to perform they each begin processing the task. When

a portion of the task is embarrassingly parallelizable, this must be recognized by the

developer and coded as such, each individual device starts working on the data, even

though they are not initially aware the other devices exist, nor do they track the existence

of other devices. When the parallelizable portion is completed the devices return to

processing the task individually until another parallelizable portion is reached or the

process completes.

2. Execution

Each device starts each task from the beginning. Nonparallelizable portions of a

task are done on each device until a parallelizable portion of a task is reached, at which

time cooperation amongst the devices begin. First the parallelizable portion of the task is

split into as many independent pieces as possible. Each device chooses a random piece

of the split task and begins processing the piece. Note, it is possible that devices will

choose the same task to begin with but the likelihood of this happening decreases as the

number of tasks increases. When the piece is completed the device can, depending on

how the programmer chooses, either broadcast the output of the computation or process

more pieces, reducing multiple outputs into a single output, and broadcasting this reduced

output. Each broadcast will also specify to which portion of the computation these

outputs correspond.

Each device listens for the broadcasts from other devices and when received,

these broadcasts are incorporated into the local processing of the task and the pieces

designated in the broadcast are marked as completed. Devices process pieces

sequentially to make tracking progress and determining redundancies less

computationally expensive. When it is determined that an overlap will occur, the device

21

processes pieces up to the piece that has already been processed by another machine. At

this point, since an overlap has been detected, all unbroadcasted answers are reduced and

broadcasted out and a new starting position is randomly chosen. When a device

determines that all pieces of its parallelizable task have been processed it immediately

begins its next task. If that task is not parallelizable then it is processed normally,

otherwise the parallelization process begins again. This process is outlined in Figure 2.

1. The program is running on each device and knows how to split the input into M

pieces.

2. The program running on each device knows that there are M tasks and picks a

random starting position, S, between 0 and M-1. That program will then compute

task S.

3. When the program is finished with task S it will store the answer in memory,

update its list of completed tasks, and will immediately start computing task S+1

mod M.

4. Periodically, the stored answers will be sent via UDP to the network’s broadcast

IP address. If possible the stored answers will be reduced into a smaller answer.

All devices will receive this set of answers and will both store the answer locally

and update their list of completed tasks.

5. When task S+n is reached and it is already marked as completed, the program will

randomly choose a new S from the list of uncompleted tasks and the process

repeats from step 2 above.

6. The overall task is complete when all M tasks are completed.

Figure 2. Breakdown of steps involved in processing a parallelizable portion

of a task.

3. Handling Failures

Unlike in the MapReduce system, the failure of nodes is not tested for and will

not affect the outcome of the overall parallelizable portion of the task. Because each

22

device is running its own copy of the computation and will ensure that all portions of its

computations are complete, the failure of a device will just mean that the remaining

devices will have to process a portion, inversely proportional to the total number of

devices, of the pieces the failed node would have processed.

C. PRELIMINARY COMPUTATIONS

Several preliminary experiments were performed to show the efficacy of the

system in purely distributable computations. The first experiment consisted of the

multiplication of matrices. In this experiment, both the size of the matrices and the

number of devices used for the computation were varied; this was done in order to show

the speedup gained by adding devices and the efficiency gained by performing longer

computations. The next experiment was the multiplication of a chain of 10 matrices

which is intended to show that computations can be chained together resulting in benefits

similar to the previous experiment. Again, in this experiment the size and the number of

devices used for the computations were varied.

D. SINGULAR VALUE DECOMPOSITION COMPUTATION

The decomposition of a matrix into its Singular Value Decomposition (SVD) is

performed to show that meaningful applications can be performed using this masterless

distributed computing system. The method used to perform this calculation is described

in II.E.5, the steps of which are reiterated here with annotations of where the algorithm is

distributed.

1. Calculation of Y=AΩ

This is the most computationally expensive operation for the entire decomposition

and this is the step where distribution of the calculation helps the most. In this step,

every device constructs  , a randomly generated matrix, in a deterministic way, i.e.,

generating the matrix using the same seed for the random number generator. The size of

 is  n k p  , where n is A’s smaller dimension, k is A’s expected numeric rank, and

10p  is a small oversampling parameter. An approximate value of k should be found in

23

advance of performing the calculations on a mobile device. Foreknowledge of a matrix’s

attributes can assist with future manipulations of similar matrices [18], accordingly in this

work we assign an approximate value to k, the rank of A, in advance. Each device

already has A stored locally, so it is known that Y should have  m k p entries, each of

which is considered a task that must be computed as outlined in Figure 2. This task is

outlined in Figure 3.

1. Determine the number of elements that make up the answer matrix, Y. This is the

larger dimension of A, m, times the rank of A, k, plus the oversampling parameter,

p;  m k p .

2. Randomly choose a starting element, S, between 0 and  m k p and calculate its

value by multiplying row 1
S

k p

 
  

of A by column   mod 1S k p  of  .

3. Increment S and calculate its new value as done in step 2. If  S m k p  then

calculate element   modS m k p .

4. Repeat step 3 until 50 answers have been accumulated, then broadcast the batch

of answers to the other devices. If S+1 has already been calculated then broadcast

out the answers that have been calculated thus far in the batch and randomly

choose a new S from the pool of uncompleted elements.

5. While calculating and sending answers, continually monitor for answers that are

being broadcast from other devices. When answers are received from the other

devices mark the elements as complete and transfer the answers into the answer

matrix, Y.

6. When all elements in the answer matrix have been calculated the task is finished.

Figure 3. Steps needed to distribute the calculation of matrix Y.

2. Calculation of the Q Portion of the QR Decomposition of Y

To calculate Q the Businger and Golub QR factorization algorithm was used,

Figure 1. There is no need to save R or  after the computation of Q is complete.

24

3. Calculation of D=QTA

Matrix D is calculated by multiplying A on the left by TQ . This step is

completely distributable and is outlined in Figure 4.

1. Determine the number of elements that make up the answer matrix, D. This
works out to be the smaller dimension of A, n, times the rank of A, k, which is the
smaller dimension of the Q calculated in Section 3.D.2; nk .

2. Randomly choose a starting element, S, between 0 and nk and calculate its value

by multiplying row 1
k

S
    

of TQ by column   mod 1S nk  of A.

3. Increment S and calculate its new value as done in step 2. If S nk then

calculate element modS nk .

4. Repeat step 3 until 50 answers have been accumulated, then broadcast the batch

of answers to the other devices. If S+1 has already been calculated then

broadcast out the answers that have been calculated thus far in the batch and

randomly choose a new S from the pool of uncompleted elements.

5. While calculating and sending answers, continually monitor for answers that are

being broadcast from other devices. When answers are received from the other

devices mark the elements as complete and transfer the answers into the answer

matrix, D.

6. When all elements in the answer matrix have been calculated the task is finished.

Figure 4. Steps needed to distribute the calculation of matrix D.

4. Decomposition of D into its SVD

The SVD of D is found using the Efficient Java Matrix Library (EJML). This is

only possible if D fits into memory because EJML will not use memory mapped files.

The size of D varies depending on the size and rank of A, but when the rank, k, is less

than the smaller dimension of A, n, then D is guaranteed to be smaller than A increasing

its chances of fitting into main memory. In our experiments, k is at most 30% of n so the

number of elements in D is much smaller than the number in A.

25

5. Calculation of U

With the SVD of D already calculated to be

 2
TD U V 

the remaining step is to find U in the SVD of A. This is found by multiplying 2U on the

left by Q giving us the final factorization of A as

 2
T TA QU V U V   

This step is also completely distributable and is outlined in Figure 5.

1. Determine the number of elements that make up the answer matrix, U. This
works out to be the larger dimension of A, m times the rank of A, k, which is the
smaller dimension of the Q calculated in Section 3.D.2; nk .

2. Randomly choose a starting element, S, between 0 and mk and calculate its value

by multiplying row 1
k

S
    

of TQ by column   mod 1S mk  of 2U .

3. Increment S and calculate its new value as done in step 2. If S mk then

calculate element modS mk .

4. Repeat step 3 until 50 answers have been accumulated, then broadcast the batch

of answers to the other devices. If S+1 has already been calculated then

broadcast out the answers that have been calculated thus far in the batch and

randomly choose a new S from the pool of uncompleted elements.

5. While calculating and sending answers, continually monitor for answers that are

being broadcast from other devices. When answers are received from the other

devices mark the elements as complete and transfer the answers into the answer

matrix, U.

6. When all elements in the answer matrix have been calculated the task is finished.

Figure 5. Steps needed to distribute the calculation of matrix U.

In this chapter, we described the experiments that we have conducted to show the

efficacy of our masterless distributed computation system and the tools that we used. In

the next chapter, we will provide the results of these experiments.

26

THIS PAGE INTENTIONALLY LEFT BLANK

27

IV. RESULTS AND ANALYSIS

A. OVERVIEW

Four data points were collected from each run of the experiments; time taken, data

received, number of tablets used, and CPU usage. The time taken, along with number of

devices in this experiment, was used to calculate the speed up achieved by adding devices

as

1_
N

T
speed up

T
 ,

where 1T is the time taken when using one device and
NT is the time taken when using N

devices. The data received was compared to the calculated amount of data that should

have been received. This allowed for the calculation of the redundancy of the run as

_
100 1

_

data received
redundancy

data calculated

 
  

  .

The redundancy is equivalent to the percentage of extra work that was done during the

experimental run due to overlapped work. In addition to the redundancy, the received

data is also used to calculate the average bit rate used by the network during the run.

Finally, the CPU usage of each of the runs remained at 100% for each of the runs.

B. MATRIX MULTIPLICATION

Experiments were performed on square matrices of size M from 50 to 800 being

multiplied by matrices of like size. At each size M , each answer matrix consists of

2M elements each of which is the result of 2M operations (M multiply operations and M

addition operations). The speed up of each of the runs is summarized in Figure 6.

28

Figure 6. Speed up achieved at each matrix size.

The trend that can be seen emerging in Figure 6 is clear: as matrix size increases

the speed up obtained nears the ideal theoretic speed up, proposed by Ahmdal and

Gustafson when the time needed to perform the serial portion of the calculation is zero.

There are two possible phenomena that each can explain why multiplication of the

larger matrices nears the ideal speed up whereas multiplication of smaller matrices

benefits little from the distributed system. First, the time needed to perform the serial

portion of the calculation, s, is a larger percentage of the overall computation when the

matrices are small. This can be seen from Ahmdal’s equation

p
T s

N
  ,

where p is the time needed to perform the parallelizable portion of the calculation and N

is the number of devices. The speed up is then calculated as

 1_
N

T s p
speed up

pT s
N


 


.

29

In the ideal case, s is zero making the speed up equal to N. In the worst case, p is zero

making the speed up equal to one, independent of the value of N. In the situation that

occurs here, s starts closer to p when p is small and becomes proportionally smaller than

p as the size of the matrices increases. As p increases the contribution of s becomes

negligible, allowing the computations to near the ideal speed up.

The second phenomenon that helps explain the trends of Figure 6 is the amount of

duplicated work done during the experimental runs. Figure 7 shows the duplication seen

during each of the runs.

Figure 7. The redundancy observed during the experimental runs.

It can be seen from Figure 7 that there is a much larger percentage of duplicated

work done with smaller size matrix multiplications. The source of duplication observed

during the experimentation was due to the random starting positions, which are necessary

because we did not allow point to point communication between the devices.

Unfortunately, this did not explain the reduction in redundancy occasionally observed

30

when increasing the device number. One possible explanation is that the thread

responsible for removing incoming data from the socket queue is underutilized at the

beginning of a distributed operation. So, increasing the number of devices possibly

reduces this wasted time and allows collisions to be detected earlier. To understand this

better one would need to analyze the socket queue usage during a distributed operation.

Starting positions can overlap at any time during a run but the probability of

overlap increases as the pool of remaining element’s size decreases. The starting size of

every answer pool is 2M elements, where M is the number of rows (or columns) of the

square matrix, and as elements are processed the pool becomes smaller and smaller

thereby increasing the likelihood of duplication. Duplication becomes more and more

likely as the pool size decreases, becoming unavoidable when the pool gets too small.

This means that the chance of overlap at any time is determined by the elements

remaining in the pool to be processed and the number of devices performing the

processing.

Figure 8. Network usage during matrix multiplication.

31

The two trends that appear in Figure 8 are that as the number of devices increases

so does the KB/s and that as the matrix size increases the network usage decreases. As

the updates are received on the devices they are put in a receive buffer, from which they

are pulled then integrated into the computation. As was stated in IV.A, the CPU usage is

a consistent 100% throughout the entirety of the computation which causes the receive

buffer to fill faster than updates can be pulled off of it. When the buffer is full all new

updates are discarded until updates are pulled, thereby freeing space.

C. CHAIN OF TEN MATRIX MULTIPLICATIONS

In Section III.C, we decided this was performed to show that computations could

be performed without signaling either the beginning of or end of an operation. The

results found show that a speed up similar to the single matrix multiplication could be

achieved and are summarized in Figure 9.

Figure 9. Speed up obtained by performing ten matrix multiplications.

32

These results differ little from those reported in Chapter IV.B and the same trends

are still apparent. It is noticeable though that the speed up obtained in the chain of matrix

multiplications is lower than the single matrix multiplication, but not by much. Similar

results were found for the redundancy, Figure 10, and the network speed, Figure 11.

Figure 10. Redundancy observed in Chain of 10 Matrix Multiplications.

33

Figure 11. Network usage during chain of multiplications.

It was expected that the chain of multiplications would be worse with respect to

speed up and redundancy but it was not expected that the network usage would

noticeably change. The increase of redundancy was expected because it was thought that

the receive buffers would remain full at the end of an operation and would have to be

emptied before new data could be received. During the time that the buffers would be

full with updates from previous multiplications they would be dropping the needed

updates from the current operation. So, whereas a single computation would start with an

empty buffer, nine of the ten multiplications would begin with full buffers. It is this

increase of redundancy that led us to believe that speed up would suffer accordingly.

It is also noticeable that as the matrix size increases each of the comparable trends

tend to converge. This is particularly noticeable in the network usage where the two

200x200 trends are nearly equal. This overall trend can be seen in Figure 12.

34

Figure 12. Difference between single and chain of multiplications. The percentage
difference between the values measured during the single matrix

multiplication and the chain of multiplications is clearly decreasing as the
matrix size increases.

D. DISTRIBUTED SVD

When performing the SVD over this distributed system the size of the matrix, A,

was varied between 500 and 1500 and its rank was varied between 50 and 150. This

experiment shows that both complex linear algebra operations can benefit from this

system and that this system is effective even when large serial operations are performed

between the parallelizable operations. The speed up obtained performing the SVD on

matrices of size 500x500 are shown in Figure 13.

35

Figure 13. Speed up of the SVD obtained on the 500x500 matrix.

The range of the ranks chosen has very little affect on the speedup obtained when

computing the SVD of a 500x500 matrix. Similarly, when computing the SVD of a

1000x1000 and 1500x1500 it is shown that the range of ranks chosen has little affect on

the overall speed up. But, as the matrix size increases, it can be seen that the speed up

does improve as shown in Figure 14.

36

Figure 14. Average speed up of varying size SVD computations.

It is assumed that the rank of the matrices has little effect on the speed up of the

SVD computations only for such small values. As the rank approaches N, the smaller

dimension of the matrix A, the speed up goes to 1 because the computation becomes more

and more unparallelizable. This was not able to be shown using these devices due to the

limited amount of RAM available. In addition, it is recognized that if the rank of a

matrix is near N then performing the extra steps of determining the rank of A actually

increases the time that would be needed to compute A’s SVD [12]. This point is moot for

this experiment because the mobile devices were unable to compute the SVD of a large

matrix thus necessitating the need to determine A’s rank.

In this chapter, we showed that masterless distributed computing is feasible for

computations of various sizes and as the size of the computation increases, the speed up

obtained by adding devices nears the theoretic possible speed up. In addition, through the

decomposition of a matrix we showed that these operations can be chained together in

useful ways. In the next chapter, we will conclude our discussion on this masterless

computing system and provide ways that this research can be continued.

37

V. CONCLUSION AND FUTURE WORK

A. SUMMARY

There is a need to analyze large amounts of data in hostile environments that

might not have a robust network infrastructure and in this work we described a system

that can perform distributed computations in such an environment. The previous works

that we used to create our system were presented along with the works used to develop

our method to test the system. Normally, the singular value decomposition is not easily

distributable, especially without tight synchronization. In this work, we described and

used a method to decrease the complexity of the decomposition while minimizing the

resulting error in the decomposition. We also showed the results of our various

experiments that illustrated the efficacy of our system.

B. FUTURE WORK

1. Implement Masterless Distributed Computing System in an Ad-hoc
Networking Environment

Our system was designed to use broadcasts to overcome a lack of infrastructure.

This was possible because our system was masterless, whereas if our system did contain

a master than devices would require an infrastructure to ensure efficient communication

between a master and the workers. Although our system was designed with these

deficiencies in mind, we still implemented the system using a wireless accesspoint in

order to make sure that there was network connectivity. This system should be

reimplemented in an ad-hoc network environment and reanalyzed to ensure its efficacy in

such an environment.

2. Analyze the Socket Layer Receive Buffers

In Section IV.B, we described an unexpected result where increasing the number

of devices actually reduced the amount of duplicated work. Our original intuition was

that increasing devices would increase the amount of work duplicated but this was not

always the case. One possible explanation is that the thread responsible for removing

38

data from the socket layer receive buffers was being underutilized. An analysis of the

buffer during a distributed computation should be done to better understand this

phenomenon.

3. Test Efficacy of the System when Devices are Both Entering the
System and Leaving the System

We designed our system to continue working in the event of a device, or multiple

devices, being removed from the system. Although this ability is inherent in our system

we did not test the affect a device leaving will have on completion times or network

usage. In addition, a “catch-up” mechanism can be implemented to allow devices

entering the system to aide in the distributed computation. In addition, the affect a device

entering the system has on the overall system should be analyzed.

4. Analyze the System’s Abilities to Work with Other Types of
Computations

This system was designed with Google’s MapReduce in mind and should work

with most algorithms implemented in MapReduce. One large difference is that each

individual device must be able to reduce the results of its mapping stage so as to

efficiently broadcast to the other devices. This decreases the amount of MapReduce

algorithms that will work in this system but there are still many that should work.

Additionally, analysis may show that some algorithms work particularly well in this

system; for instance algorithms with extensive mapping phases that reduce to binary

answers.

C. CONCLUSION

Our research goal was to see if we could construct a masterless distributed

computing system that does not rely on network routing, and if we could determine

whether the system could be used for solving computationally expensive linear algebra

problems. Our results showed that our system does indeed speed up a distributed

calculation and does it in a way that does not rely on the presence of a routable network.

We also showed that the speedup obtained nears optimal as the size of the computation

necessary to calculate an update increases. Additionally, we have shown that we can

39

chain distributed computations together resulting in a decreased amount of time needed to

perform a useful calculation, the singular value decomposition of a matrix.

The implications of these results is that masterless distributed computing in an

infrastructureless environment is feasible. This research may one day aid in a

commanders ability to analyze battlefield conditions and develop optimal strategies to

accomplish their mission.

40

THIS PAGE INTENTIONALLY LEFT BLANK

41

LIST OF REFERENCES

[1] P. Marshall, “DARPA progress towards affordable, dense, and content focused
tactical edge networks,” MILCOM 2008 - 2008 IEEE Military Communications
Conference, pp. 1–7, Nov. 2008.

[2] N. Suri and G. Benincasa, “Peer-to-peer communications for tactical
environments: Observations, requirements, and experiences,” IEEE
CommunicationsMagazine, October, pp. 60–69, 2010.

[3] P. Ewing, “Army begins mobile phone experiments,” dodbuzz.com, 2011.
[Online]. Available: http://www.dodbuzz.com/2011/06/06/army-begins-mobile-
phone-experiments/. [Accessed: 15-Feb-2012].

[4] G. Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” in Proceedings of the April 18–20, 1967, Spring Joint
Computer Conference, 1967, vol. 30, pp. 483–485.

[5] J. Gustafson, “Reevaluating Amdahl’s law,” Communications of the ACM, vol.
31, no. 5, pp. 532–533, 1988.

[6] Google, “Android - Discover Android,” Google Developers, 2012. [Online].
Available: http://developer.android.com/guide/basics/what-is-android.html.

[7] D Bornstein, “Dalvik VM internals,” 2008 Google I/O Session Videos and Slides.
[Online]. https://sites.google.com/site/io/dalvik-vm-internals

[8] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large
clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[9] C. Shi, V. Lakafosis, and M. Ammar, “Serendipity: A distributed computing
platform for disruption tolerant networks,” M.S. thesis, Georgia Tech, Atlanta,
Georgia, 2011.

[10] L.-L. Xie and P. R. Kumar, “A network information theory for wireless
communication: Scaling laws and optimal operation,” IEEE Transactions on
Information Theory, vol. 50, no. 5, pp. 748–767, May 2004.

[11] J. Li, C. Blake, D. S. J. De Couto, H. I. Lee, and R. Morris, “Capacity of Ad Hoc
wireless networks,” in Proceedings of the 7th annual international conference on
Mobile computing and networking - MobiCom ‘01, 2001, pp. 61–69.

[12] N. Halko, “Randomized methods for computing low-rank approximations of
matrices,” Ph.D. dissertation, University of Colorado, Boulder, Colorado, 2012.

42

[13] P. R. Peres-Neto, D. a. Jackson, and K. M. Somers, “How many principal
components? stopping rules for determining the number of non-trivial axes
revisited,” Computational Statistics & Data Analysis, vol. 49, no. 4, pp. 974–997,
Jun. 2005.

[14] N. Halko, P. G. Martinsson, and J. A. Tropp, “Finding structure with randomness:
probabilistic algorithms for constructing approximate matrix decompositions,”
SIAM Review, Vol. 53, No.2, pp. 217–288.

[15] Y. Hong, “Rank-revealing QR factorizations and the singular value
decomposition,” Mathematics of Computation, vol. 58, no. 197, pp. 213–232,
1992.

[16] G. Quintana-orti, X. Sun, and C. Bischof, “A BLAS-3 Version of the QR
Factorization with Column Pivoting,” SIAM Journal on Scientific Computing, vol
19, issue 5, pp. 1486–1494, 1998.

[17] C. Loan, “A Survey of Matrix Computations,” Handbooks in OR & MS, vol. 3,
pp. 247–321, 1990.

[18] R. Barrett et al., Templates for the Solution of Linear Systems: Building Blocks for
Iterative Methods. Philadelphia, PA: Society for Industrial and Applied
Mathematics, 1994.

43

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

