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ABSTRACT 

It is obvious that information is becoming increasingly important in today’s society.  This 

can be seen by the widespread availability of high-speed Internet in homes and the 

ubiquity of smart phones.  This new information centric paradigm is possible because of 

a large supporting infrastructure without which the Internet, the volumes of information, 

and the speed we can access them would not exist.  The military has recognized the 

potential value of this trend because the greatest hindrance that any commander has is the 

fog of war—the absence of the information necessary to make critical decisions.  On a 

battlefield, a commander would like to know the status and location of all of his soldiers, 

the same for enemy troops, and optimal strategies to accomplish their mission.  

Unfortunately this needed information is currently impossible to obtain in a timely 

manner.  This thesis addresses these problems by presenting an architecture for ad-hoc 

distributed computing among mobile devices.  Our results show that our system does 

indeed, as devices are added, speed up a distributed calculation and does it in a way that 

does not rely on the presence of a routable network.  We also show that the speedup 

obtained nears optimal as the size of the computation necessary to calculate an update 

increases.  Additionally, we have shown that we can chain distributed computations 

together resulting in a decreased amount of time needed to perform an SVD, an important 

step in many data-mining algorithms. 
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I. INTRODUCTION 

It is obvious that information is becoming increasingly important in today’s 

society.  This can be seen by the widespread availability of high-speed Internet in homes 

and the ubiquity of smart phones.  This new information centric paradigm is possible 

because of a large supporting infrastructure without which the Internet, the volumes of 

information, and the speed we can access them would not exist.   

The military has recognized the potential value of this trend because the greatest 

hindrance that any commander has is the fog of war—the absence of the information 

necessary to make critical decisions.  On a battlefield, a commander would like to know 

the status and location of all of his soldiers, the same for enemy troops, and optimal 

strategies to accomplish their mission.  Unfortunately, this needed information is 

currently impossible to obtain in a timely manner.  This thesis addresses these problems 

by presenting an architecture for ad-hoc distributed computing among mobile devices. 

A. RESEARCH APPLICATION 

The chaos of a battlefield has many hurdles that must be overcome in order to 

provide information to the commander.  A device that tries to provide this information 

must be lightweight so it does not hinder the soldier carrying it.  This means that the 

device will necessarily have to be small like smart phones or tablets; and thus will have 

limited battery power and a limited processing capability.  Other hurdles include the 

possibility of a device being destroyed and lack of an infrastructure that will allow these 

devices to efficiently communicate.  The plus side is that data gathering tools (cameras, 

microphones, accelerometers, GPS, Wi-Fi, 3G, magnetometer, gyroscopes, etc.) are 

compact and use little power so they can easily be integrated into these devices. 

Having every soldier carry a small data collecting device would result in an 

overflow of data that must be processed into meaningful information in order to be used.  

Unfortunately, this large amount of data cannot be processed because mobile devices 

currently do not have the necessary processing capacity.  In situations like this, where 

large amounts of data needs to be processed, there are two techniques that are typically 
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used to accomplish the task; use of supercomputers and distributed computing.  Both of 

these solutions, in their current form, have several drawbacks that prevent them from 

being deployed in a highly mobile battlefield environment. 

Disadvantages that a supercomputer would suffer if deployed on a battlefield 

would be lack of a large power source needed to power the device, vulnerability to enemy 

attacks, and lack of mobility.  An alternative to bringing a supercomputer to a battlefield 

would be to send the data to a processing facility, but unfortunately battlefields do not 

have the robust networks necessary to accomplish this.  Even satellite transmissions, 

which require no local infrastructure, would be marred by low and very expensive 

bandwidth that would not be capable of sending and receiving the large amounts of data 

generated. 

Distributed computing systems would be a much better fit for the battlefield but 

they too in their current state would be unable to process large amounts of data.  

Normally, a distributed computing environment is connected by a robust network that 

allows control information and results to flow quickly between nodes in the system.  In a 

battlefield environment, this network would not exist and current ad-hoc network 

technology would not be able to cope with the amounts of data that can be generated [1], 

[2], [3].  Another problem would be master node redundancy, which is necessary in the 

event the master node becomes unavailable.  To achieve redundancy in these systems 

requires a large amount of data being passed between the master node and the backup 

nodes, which exacerbates the network bandwidth problem stated above.  

The aim of the current research is to develop a new form of distributed computing 

that has the following two properties: 

 The system must not rely on a single master. 

 The system must function in the absence of a robust network. 

B. RESEARCH QUESTION 

The questions this research will answer are, “Can we construct a masterless 

distributed computing system that does not rely on network routing?  And, if so, can the 

system be used for solving computationally expensive linear algebra problems, which are 
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commonly used to analyze large amounts of information?”  We answer this question by 

modifying Google’s well-known MapReduce system to have every device act as its own 

master, instead of incorporating only one master.  In this way, the removal of any device, 

whether through loss of network connectivity or the complete destruction of the device, 

would not impair a computation in progress.  This new system is then used to distribute 

the calculation of a singular value decomposition (SVD) of a large matrix, which is the 

building block of data mining processes such as principle component analysis, latent 

semantic analysis, and least squares parameter estimation.   

C. RESULTS 

Our results show that our system does indeed, as devices are added, speed up a 

distributed calculation and does it in a way that does not rely on the presence of a 

routable network.  We also show that the speedup obtained nears optimal as the size of 

the computation necessary to calculate an update increases.  Additionally, we have shown 

that we can chain distributed computations together resulting in a decreased amount of 

time needed to perform an SVD, an important step in many data-mining algorithms. 

D. ORGANIZATION OF THESIS 

The remainder of this thesis is organized as follows: 

 Chapter II discusses prior and related work in the fields of distributed 
computing and provides background for the possible capabilities this 
system could have. 

 Chapter III contains a description of the methods used to conduct the 
experiments. 

 Chapter IV contains the results of the experiments and analysis. 

 Chapter V contains the conclusion and areas for future work. 
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II. BACKGROUND, EXISTING TOOLS AND METHODOLOGIES  

A. PARALLEL COMPUTING LAWS 

There are two basic laws that govern the speed up achievable by parallel 

computing; Amdahl’s Law and Gustafson’s law.  These laws are used in this research to 

provide a theoretical baseline for the conducted experiments. 

1. Amdahl’s Law 

In the late 1960s, Dr. Gene Amdahl hypothesized that advances in multiprocessor 

machines and parallelism must be accompanied by increases in sequential processing 

rates to achieve any meaningful speed increase for any given computation.  His reason 

for this assertion was that the sequential portion of computations had remained steady at 

about 40% of executed instructions in the 10 years prior to his writing the landmark 

paper, Validity of the Single Processor Approach to Achieving Large Scale Computing 

Capabilities.  So, given N processors, the expected time, T, to perform a given 

computation is  

p
T s

N
   

where s is the time needed to perform the serial portion of the computation and p is the 

time needed for the parallel portion of the computation.  With this model, large scale 

parallel computing was thought to be prohibitively expensive because each additional 

machine decreased the computing time less and less [4].  And as the 
p

N
 term in the 

equation approached zero, T approached s, which was 40% of the overall time so the best 

speedup that you could hope to obtain was the inverse of the fraction of s,
1

.40
, or 2.5 

times faster than when N was 1 [4].  

The system described in this thesis consists of N devices that will each perform 

the serial and parallel portion of a given calculation so the T for a given calculation is 
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Ns p p

T s
N N N

     

This shows that even though the serial portion of every calculation is performed N times 

the speed up achieved will be equivalent to an optimal parallel computation.  

2. Gustafson’s Law 

After two decades of debate over Amdahl’s Law, Dr. John Gustafson, a 

researcher at Sandia National Laboratories, showed that although the law 
p

T s
N

  was 

correct, one of Amdahl’s premises was wrong.  Amdahl assumed that the serial portion of 

a computation grew at the same rate that the parallel portion grew.  So, if the parallel 

portion doubled, the serial portion would also double, thereby maintaining the 40% of 

executed code.  Dr. Gustafson’s research showed that there are many practical 

applications where s grows linearly as p grows exponentially, which makes large scale 

parallel computing highly efficient [5].  He then reformulated Amdahl’s Law by setting T 

equal to 1 and making s a constant, which is summarized using the following formula 

  1p s N   

And since p is the time taken performing a parallel computation it can then be broken 

down into  

 
d

p
t

  

where d is the size of the data in the parallel portion that needs to be processed and t is 

the speed at which the data can be processed.  Now, by substituting for p and multiplying 

both sides by t gives us 

  1d s Nt   

the amount of data that can be processed in one time unit given N processors running at 

speed t.  This will be used to determine the theoretical time that processing data should 

take.  Given a baseline d and keeping s constant will provide a t that will then be used to 

determine the amount of data that can be processed for a given amount of time. 
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B. ANDROID 

1. Overview 

Android is an open source software stack for mobile devices that includes an 

operating system, middleware and key applications.  The operating system relies on 

Linux version 2.6 for core system services such as security, memory management, 

process management, network stack, and driver model.  The kernel also acts as an 

abstraction layer between the hardware and the rest of the software stack.  A set of C/C++ 

libraries is included and is used by various components of the Android system.  These 

libraries are available for use by developers through the Android application framework 

and include a system C library that is the standard C system library tuned for embedded 

Linux-based devices, several 3D libraries that can take advantage of hardware 3D 

acceleration if available, and multiple core libraries that provides most of the 

functionality available in the core libraries of the Java programming language [6]. 

2. Dalvik 

The Java Virtual Machine (VM), developed by Sun Microsystems, is software 

that executes Java bytecode.  It was developed to allow the same bytecode to be run on 

any hardware and operating system that has implemented the Java VM, which gives Java 

its tag line of “write once, run anywhere.”  Dalvik is a VM based on the Java VM but 

designed with mobile devices in mind [7].  In particular, Dalvik was designed to work 

with limited processor speed, limited RAM, no swap space, and low  power consumption.  

Every Android application runs in its own process, with its own instance of the Dalvik 

virtual machine. 

3. Android Limitations 

Android was designed to run on mobile devices that have limited processor speed 

and limited RAM.  The developers of Android decided that the user interface (UI) was 

the most important aspect of the Android platform and took several precautions to ensure 

a good user experience.  First, it is recommended that the thread controlling the UI should 

not perform any lengthy tasks, which prevents the screen from seemingly freezing.  
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Second, the allowable heap space per application is set by the device developer to 

between 24 and 48 megabytes; for comparison, the normal Java VM of a desktop 

computer allows 1 gigabyte of heap space per application. 

Another big limitation of mobile devices, and thus Android, is the reliance on 

battery power.  CPU intensive computations and large amounts of I/O will quickly drain 

the power from mobile devices.  Dalvik was designed to optimize the bytecode to reduce 

power consumption but large computations can still quickly drain a battery of its power. 

4. Research Applicability 

Android’s open nature and its use of portable code make it a good choice for use 

in field environments but unfortunately its limitations prevent large amounts of data from 

being analyzed on the device.  Given a robust network it would be possible to offload any 

CPU intensive computation to a backend server with an unlimited power source and lots 

of resources.  This thesis provides a means of performing these large computations in the 

field where access to a robust network does not exist. 

C. MAPREDUCE 

1. Overview 

MapReduce is a programming framework that distributes computations across a 

heterogeneous mixture of machines in a manner that hides the complexities inherent in 

this distribution from the programmers [8].  This abstraction is based on the map and 

reduce primitives present in functional programming languages.  The map function is a 

function that is performed on each of a set of inputs and the reduce function is a function 

that takes the outputs of the map function and combines them into a smaller number of 

outputs.  The output of the map function is a key/value pair that is used as the input of the 

reduce function. 

2. Execution 

The inventors of the MapReduce framework describe seven steps in the execution 

of a MapReduce program [8]. 
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1.  The MapReduce library in the user program first splits the input files 
into M pieces of typically 16-64MB per piece (controllable by the user via 
an optional parameter). It then starts up many copies of the program on a 
cluster of machines. 

2.  One of the copies of the program—the master— is special. The rest are 
workers that are assigned work by the master. There are M map tasks and 
R reduce tasks to assign. The master picks idle workers and assigns each 
one a map task or a reduce task. 

3.  A worker who is assigned a map task reads the contents of the 
corresponding input split. It parses key/value pairs out of the input data 
and passes each pair to the user-defined map function. The intermediate 
key/value pairs produced by the map function are buffered in memory. 

4.  Periodically, the buffered pairs are written to local disk, partitioned into 
R regions by the partitioning function. The locations of these buffered 
pairs on the local disk are passed back to the master who is responsible for 
forwarding these locations to the reduce workers. 

5.  When a reduce worker is notified by the master about these locations, it 
uses remote procedure calls to read the buffered data from the local disks 
of the map workers. When a reduce worker has read all intermediate data 
for its partition, it sorts it by the intermediate keys so that all occurrences 
of the same key are grouped together. The sorting is needed because 
typically many different keys map to the same reduce task. If the amount 
of intermediate data is too large to fit in memory, an external sort is used. 

6.  The reduce worker iterates over the sorted intermediate data and for 
each unique intermediate key encountered, it passes the key and the 
corresponding set of intermediate values to the user’s reduce function. The 
output of the reduce function is appended to a final output file for this 
reduce partition.  

7.  When all map tasks and reduce tasks have been completed, the master 
wakes up the user program. At this point, the MapReduce call in the user 
program returns back to the user code. 

3. Handling Failures 

There are two major types of failures that can happen in a MapReduce cluster: 

master failure and worker failure.  In Google’s implementation of MapReduce, there is 

no master node redundancy; if the master fails the program would return with an error 

[8].  The thought was that there was only a small chance that the master node would have 

problems during the execution of the process so planning for it was unnecessary.  
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Although a periodic checkpoint was discussed as a possible remedy to the failure of a 

master but it is not implemented in any of the major MapReduce distributions.  Worker 

node failure is handled much more elegantly, the master periodically pings all worker 

nodes and if no response is received the work tasked to the failed node is reassigned to 

another machine. 

4. Research Applicability 

The MapReduce framework has been shown to work with a wide range of data 

analysis algorithms using loosely coupled heterogeneous devices.  This research uses this 

framework as a basis, using its fundamental map and reduce tenets, to produce a system 

that potentially works on a wide range of data analysis algorithms, uses loosely coupled 

heterogeneous devices, but handles failures in a fashion amenable to an unreliable 

network. 

D. AD-HOC NETWORKS 

An ad-hoc network is a collection of devices that communicate without the use of 

a fixed infrastructure.  Whereas the networks that we commonly use are composed of 

reliable links to high capacity networking equipment organized in a mesh creating 

redundant paths allowing fast communication between devices, ad-hoc networks rely on 

unreliable wireless links between devices and rely on the passing of data between these 

devices in an attempt to reach a given destination.  Ad-hoc networks show up in a variety 

of settings, from military to disasters to the developing world to deep space; anywhere  

 

 

that fixed infrastructure is either unavailable or expensive.  Computing over these 

networks is not trivial because network disconnections are common and persist over 

many time scales [9]. 

The theoretical bandwidth of an ad-hoc network scales with the number of nodes 

n as  
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 

1

nLog n
 

when assuming multiple source-destination pairs as normally seen in peer-to-peer type 

applications [10].  It was shown that non-local traffic patterns, in which the average 

source-destination distance grows with the network size, result in a rapid decrease of per 

node capacity [11].  So, in client-server type applications we can expect a low per node 

capacity unless the server is forced to remain in a centralized location, thereby 

minimizing the average source-destination distance within the network. 

 An ad-hoc network is the type of environment that the system developed in this 

thesis would be used in.  The unreliability of these networks was the driving factor in 

choosing to have multiple masters to track the progress of a computation, but this 

reliability also precluded the use of mirrored masters.  It was for these reasons that a 

system where each machine is its own master was developed; and since all the machines 

are equal peers there is no true master and hence the system is masterless. 

E. SINGULAR VALUE DECOMPOSITION 

The SVD of a real matrix, m nA  ( m n ), is an important matrix factorization that 

is commonly used for such tasks as Principal Component Analysis, Latent Semantic 

Analysis, and least squares parameter estimation.  The factorization consists of a diagonal 

matrix m n , and orthogonal matrices m mU   and n nV   such that  

 TA U V   

where   is a diagonal matrix with main diagonal consisting of the singular values 

1 2, ,..., n    where 1 2 ... n     . 

1. Truncated SVD 

When A is rank deficient with numeric rank equal to r, r n m ,  is a diagonal 

matrix with  

 1 2 1 2... ... 0r r n             
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Because the last n r  singular values of A are near 0 there is no need to keep the 

last m r  columns of U or the last n r  columns of V that would get multiplied by these 

eigenvalues as we reconstruct A*, the approximation of matrix A.  This gives the 

truncated SVD of A, as 

  *
Tm n m r r r n rA U V      

 Depending on the relative sizes of r, n, and m; computing the truncated SVD can 

be much more efficient than computing the complete SVD.  This truncated SVD is all 

that is required for most data analysis techniques since the matrix A* is the closest to A 

(compared to any other matrices of numeric rank r) with respect to the Frobenius 

norm[12].  When using highly correlated data, r can be smaller than 1% of n, making the 

storage and processing of A much faster with less use of space [13]. 

There are many techniques to compute the truncated SVD of a matrix.  The 

algorithm used in this thesis was developed by Halko, Martinsson, and Tropp in their 

journal article, Finding Structure with Randomness: Stochastic Algorithms for 

Constructing Approximate matrix Decompositions, and was chosen for its reliance on 

matrix to matrix multiplications; an operation easily implemented in the masterless 

distributed computing system we propose in this thesis [14]. 

2. Rank Revealing QR (RRQR) Factorization 

The QR factorization of a real matrix  m nA m n   is the decomposition of A into 

the product of a matrix m nQ  with orthonormal columns and an upper triangular matrix 

n nR  .  If 

 11 12

220

R R
R

R

 
  
 

 

where 11R is an r r matrix with minimum singular value min and if min
22 F

R  then A 

has numeric rank r [15]. 
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If there exists a permutation matrix   such that A  has a QR factorization 

A QR  , with R in the same form as above, where 11R is an r r matrix with minimum 

singular value min and min
22 F

R  then the factorization A QR  is called an RRQR 

factorization of A. 

The most common algorithm used to compute a partial QR decomposition that 

reveals the numeric rank of A is the Businger Golub QR decomposition with column 

pivoting [15].  This algorithm performs successive orthogonalizations with pivoting on 

the columns of the matrix A and halts when the Frobenius norm of the remaining columns 

is less than a computational tolerance, (i.e., 0 ). The process results in a partial 

factorization  

 m n m k k nA Q R    

where Q is an orthonormal matrix, R is a weakly upper-triangular matrix, and k, whether 

less than or greater than the numeric rank, is close to the minimal numeric rank of A for 

which precision is achievable [12].  A weakly upper triangular matrix is a matrix where at 

least one permutation of its columns results in an upper triangular matrix.  

3. RRQR Using Randomness 

Instead of finding the permutation matrix,  , that reveals the rank of A it is 

possible instead to use a matrix  , whose values are random and follow a Gaussian 

distribution with mean 0 and standard deviation 1, to form a matrix Y that captures most 

of the activity of A, where Y A  .  By activity it is meant that every column in Y has a 

non-zero contribution from every eigendirection in A, so all of the range of A is 

represented in the resulting matrix Y [15].    is an  n k p   matrix where k is the 

target rank of A and p is a small oversampling parameter.  An RRQR algorithm is then 

performed on the matrix Y to determine the rank of Y, which is easier than finding the 

rank of A because Y is a smaller matrix.  Failure to terminate before all rows are 

orthonormalized means that   was not large enough to capture all of the activity of A, in 

which case columns can be added to  , thereby adding columns to Y.  If the steps taken 
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to perform the orthogonalizations were stored then it is possible to continue the RRQR 

process without restarting the entire algorithm from the beginning [12]. 

4. Low-Rank Matrix Approximation 

A standard task in scientific computing is to determine for a given matrix A, an 

approximate factorization 

 m n m r r nA C B    

where the inner dimension r is the numeric rank of A.  Similarly to the truncated SVD, 

when the numeric rank is much smaller than m and n, this factorization allows A to be 

stored inexpensively, and to be multiplied to vectors or other matrices quickly. This 

factorization can also easily be converted to other factorizations including the SVD. 

Only three steps are needed to compute the SVD of A from a partial factorization 

such as A CB [14]: 

 Compute a QR factorization of C so that C QR . 

 Form the product D RB , and compute the SVD of the much smaller 
matrix D, which results in 2

TD U V  . 

 Form the product 2U QU . 

This results in the following chain of equations leading to the SVD of A 

 A CB  

Performing a QR factorization on C gives 

 A QRB  

Multiplying the matrices R and B together gives 

 A QD  

Now finding the SVD of D gives  

 2
TA QU V   

 

And, finally, multiplying Q and 2U  gives us the final SVD of A as 
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 TA U V   

 

Notice, if C is an m r  matrix and B is an r n  matrix the resulting SVD has the 

following dimensions 

  Tm n m r r r n rA U V      

This is a truncated SVD. 

5. Calculating the Truncated SVD 

The first step in calculating the truncated SVD is to compute an approximate basis 

for the range of the input matrix A. In other words, we require a matrix Q that has  

orthonormal columns and TA QQ A . We would like the basis matrix Q to contain as 

few columns as possible, but it is even more important to have an accurate approximation 

of the input matrix.  The randomized algorithm for this task is to draw a random matrix 

 n k p  , where k is the approximate numeric rank of A and p is a small (p<10) 

oversampling parameter, and form the matrix product Y A  .  Then using an RRQR 

algorithm on Y, we compute an orthonormal matrix m rQ   that should satisfy 

T

F
A QQ A e  , where e is machine error. 

Using the computed Q we can now easily form matrix D from step two of the low 

rank matrix approximation SVD conversion  

 TQ A D  

multiplying this equation by Q on the left gives  

 TQQ A QD , 

which reduces to the following equation, with dimensions added,  

 m n m r r nA Q D    
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Notice, this is a partial factorization necessary for the technique described in section 

II.E.4.  Now using the smaller matrix D, we compute its SVD giving us  

 2
TD U V   

where is a diagonal matrix made up of the nonzero singular values of D, which are also 

the nonzero singular values of A, and the matrix V is made up of the corresponding right 

eigenvectors of D, which are also the corresponding right eigenvectors of A.  If the left 

eigenvectors of A are also needed they can easily be computed by the matrix 

multiplication of 2U on the left by Q. 

6. Businger Golub QR Matrix Factorization with Column Pivoting 
Algorithm 

The most commonly used QR Factorization with Column Pivoting algorithm is 

the Businger and Golub algorithm (Figure 1) [16], [17].  This algorithm can be broken 

into two parts with the second part being further divided into 4 subparts and will produce, 

given a matrix m nA  , the Π, Q, and R matrices described in Section 2.E.2. 
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Setup: 

     Permutation vector: perm(j) = j,   j = 1 : n 

     Column norm vector: colnorms(j) =  
2

:,A j ,   j = 1 : n 

Reduction Steps: 

For j = 1 : n 

1. Pivoting: Choose p such that colnorms(p) = max (colnorms(j : n) 

   If (colnorms(p) == 0) STOP 

   If (j ≠ p) then 

      Perm([j, p]) = perm([p, j]),   A(: , [j,p]) = A(: ,  [p,j]) 

      Colnorms([j,p]) = colnorms([p,j]) 

   Endif 

2. Reduction: Determine a Householder matrix Hj such that 

    12
: , : ,jH A j m j A j m j e   

3. Matrix Update: 

   : , 1: : , 1:jA j m j n H A j m j n       

4. Norm Downdate: 

   colnorms  1:j n  colnorms  1: ( , 1: )j n A j j n    

Endfor 

Figure 1.   Businger and Golub QR factorization with column pivoting algorithm. 
From [16] 

The permutation matrix, Π, is found by permuting the columns of the identity 

matrix of the appropriate size according to the permutation vector.  Q is found by 

multiplying the householder matrices, found in Figure 1 step 2, together then subtracting 

them from the identity matrix and R is what remains in the modified A matrix. 
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In this chapter, we discussed many of the technologies, algorithms, and previous 

works that were used in the development of our masterless distributed computation 

system.  In the next chapter, we discuss the tools and the experiments that will be used to 

show the efficacy of our system. 
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III. EXPERIMENTAL SETUP 

A. COMPUTING ENVIRONMENT 

1. Devices 

Two types of devices were used for these experiments: the Samsung Galaxy 

Tablet and the Motorola Xoom Tablet.  The Xoom is running the Google Android 4.0 

operating system and the Galaxy is running the Google Android 3.2 operating System.  

Both devices have a 1 GHz dual-core NVIDIA Tegra 2 processor, are Wi-Fi enabled, and 

have 1GB RAM.  Both devices are limited to 48 MB of heap space per application. 

2. Network 

A Linksys WRT54G router was used as an access point to allow each of the 

devices to communicate with each other via the 802.11G networking protocol.  All of the 

devices’ IP addresses are in the same network, allowing each of the devices to receive all 

datagrams sent to the network’s broadcast IP address.  This is a simple way to mimic an 

ad-hoc network where all devices are within range of all other devices. 

3. Data Storage 

The data used for each of the experiments outlined in III.C and III.D were stored 

in text files on the SD card of each of the devices.  Accessing each of the files is 

performed by mapping the file into memory which reduces access time to the file and 

allows for manipulation of the file as if it were stored in memory.  This technique was 

chosen because portable devices generally have lower amounts of RAM, as described in 

II.B.3, and memory mapping files is a good method to mitigate the performance drop of 

working with large amounts of data with limited memory.  In this case, the devices allow 

only 48 megabytes of memory per application, which was more memory than was needed 

for most of the experiments performed, but not for all of them.  
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B. MASTERLESS DISTRIBUTED COMPUTATION PROCESS 

1. Overview 

This masterless distributed computing system is comprised of any number of 

devices all of which have similar processing capabilities, i.e., similar amounts of RAM 

and CPU speed, and all having exact copies of the distributed computing system running.  

When the devices are given a task to perform they each begin processing the task.  When 

a portion of the task is embarrassingly parallelizable, this must be recognized by the 

developer and coded as such, each individual device starts working on the data, even 

though they are not initially aware the other devices exist, nor do they track the existence 

of other devices.  When the parallelizable portion is completed the devices return to 

processing the task individually until another parallelizable portion is reached or the 

process completes. 

2. Execution 

Each device starts each task from the beginning.  Nonparallelizable portions of a 

task are done on each device until a parallelizable portion of a task is reached, at which 

time cooperation amongst the devices begin.  First the parallelizable portion of the task is 

split into as many independent pieces as possible.  Each device chooses a random piece 

of the split task and begins processing the piece.  Note, it is possible that devices will 

choose the same task to begin with but the likelihood of this happening decreases as the 

number of tasks increases.  When the piece is completed the device can, depending on 

how the programmer chooses, either broadcast the output of the computation or process 

more pieces, reducing multiple outputs into a single output, and broadcasting this reduced 

output.  Each broadcast will also specify to which portion of the computation these 

outputs correspond. 

Each device listens for the broadcasts from other devices and when received, 

these broadcasts are incorporated into the local processing of the task and the pieces 

designated in the broadcast are marked as completed.  Devices process pieces 

sequentially to make tracking progress and determining redundancies less 

computationally expensive.  When it is determined that an overlap will occur, the device 
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processes pieces up to the piece that has already been processed by another machine.  At 

this point, since an overlap has been detected, all unbroadcasted answers are reduced and 

broadcasted out and a new starting position is randomly chosen.  When a device 

determines that all pieces of its parallelizable task have been processed it immediately 

begins its next task.  If that task is not parallelizable then it is processed normally, 

otherwise the parallelization process begins again. This process is outlined in Figure 2. 

 

1. The program is running on each device and knows how to split the input into M 

pieces.  

2. The program running on each device knows that there are M tasks and picks a 

random starting position, S, between 0 and M-1.  That program will then compute 

task S. 

3. When the program is finished with task S it will store the answer in memory, 

update its list of completed tasks, and will immediately start computing task S+1 

mod M.   

4. Periodically, the stored answers will be sent via UDP to the network’s broadcast 

IP address.  If possible the stored answers will be reduced into a smaller answer.  

All devices will receive this set of answers and will both store the answer locally 

and update their list of completed tasks. 

5. When task S+n is reached and it is already marked as completed, the program will 

randomly choose a new S from the list of uncompleted tasks and the process 

repeats from step 2 above. 

6. The overall task is complete when all M tasks are completed. 

Figure 2.   Breakdown of steps involved in processing a parallelizable portion  

of a task. 

3. Handling Failures 

Unlike in the MapReduce system, the failure of nodes is not tested for and will 

not affect the outcome of the overall parallelizable portion of the task.  Because each 
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device is running its own copy of the computation and will ensure that all portions of its 

computations are complete, the failure of a device will just mean that the remaining 

devices will have to process a portion, inversely proportional to the total number of 

devices, of the pieces the failed node would have processed. 

C. PRELIMINARY COMPUTATIONS 

Several preliminary experiments were performed to show the efficacy of the 

system in purely distributable computations.  The first experiment consisted of the 

multiplication of matrices.  In this experiment, both the size of the matrices and the 

number of devices used for the computation were varied; this was done in order to show 

the speedup gained by adding devices and the efficiency gained by performing longer 

computations.  The next experiment was the multiplication of a chain of 10 matrices 

which is intended to show that computations can be chained together resulting in benefits 

similar to the previous experiment.  Again, in this experiment the size and the number of 

devices used for the computations were varied. 

D. SINGULAR VALUE DECOMPOSITION COMPUTATION 

The decomposition of a matrix into its Singular Value Decomposition (SVD) is 

performed to show that meaningful applications can be performed using this masterless 

distributed computing system.  The method used to perform this calculation is described 

in II.E.5, the steps of which are reiterated here with annotations of where the algorithm is 

distributed. 

1. Calculation of Y=AΩ 

This is the most computationally expensive operation for the entire decomposition 

and this is the step where distribution of the calculation helps the most.  In this step, 

every device constructs  , a randomly generated matrix, in a deterministic way, i.e., 

generating the matrix using the same seed for the random number generator.  The size of 

  is  n k p  , where n is A’s smaller dimension, k is A’s expected numeric rank, and 

10p   is a small oversampling parameter.  An approximate value of k should be found in 
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advance of performing the calculations on a mobile device.  Foreknowledge of a matrix’s 

attributes can assist with future manipulations of similar matrices [18], accordingly in this 

work we assign an approximate value to k, the rank of A, in advance.  Each device 

already has A stored locally, so it is known that Y should have  m k p  entries, each of 

which is considered a task that must be computed as outlined in Figure 2.  This task is 

outlined in Figure 3. 

 

1. Determine the number of elements that make up the answer matrix, Y.  This is the 

larger dimension of A, m, times the rank of A, k, plus the oversampling parameter, 

p;  m k p . 

2. Randomly choose a starting element, S, between 0 and  m k p  and calculate its 

value by multiplying row 1
S

k p

 
  

of A by column   mod 1S k p   of  . 

3. Increment S and calculate its new value as done in step 2.  If  S m k p   then 

calculate element   modS m k p . 

4. Repeat step 3 until 50 answers have been accumulated, then broadcast the batch 

of answers to the other devices.  If S+1 has already been calculated then broadcast 

out the answers that have been calculated thus far in the batch and randomly 

choose a new S from the pool of uncompleted elements. 

5. While calculating and sending answers, continually monitor for answers that are 

being broadcast from other devices.  When answers are received from the other 

devices mark the elements as complete and transfer the answers into the answer 

matrix, Y.  

6. When all elements in the answer matrix have been calculated the task is finished. 

Figure 3.   Steps needed to distribute the calculation of matrix Y. 

2. Calculation of the Q Portion of the QR Decomposition of Y 

To calculate Q the Businger and Golub QR factorization algorithm was used, 

Figure 1.  There is no need to save R or   after the computation of Q is complete. 



24 

3. Calculation of D=QTA  

Matrix D is calculated by multiplying A on the left by TQ .  This step is 

completely distributable and is outlined in Figure 4. 

 

1. Determine the number of elements that make up the answer matrix, D.  This 
works out to be the smaller dimension of A, n, times the rank of A, k, which is the 
smaller dimension of the Q calculated in Section 3.D.2; nk . 

2. Randomly choose a starting element, S, between 0 and nk  and calculate its value 

by multiplying row 1
k

S
    

of TQ  by column   mod 1S nk   of A. 

3. Increment S and calculate its new value as done in step 2.  If S nk  then 

calculate element modS nk . 

4. Repeat step 3 until 50 answers have been accumulated, then broadcast the batch 

of answers to the other devices.  If S+1 has already been calculated then 

broadcast out the answers that have been calculated thus far in the batch and 

randomly choose a new S from the pool of uncompleted elements. 

5. While calculating and sending answers, continually monitor for answers that are 

being broadcast from other devices.  When answers are received from the other 

devices mark the elements as complete and transfer the answers into the answer 

matrix, D.  

6. When all elements in the answer matrix have been calculated the task is finished. 

Figure 4.   Steps needed to distribute the calculation of matrix D. 

4. Decomposition of D into its SVD 

The SVD of D is found using the Efficient Java Matrix Library (EJML).  This is 

only possible if D fits into memory because EJML will not use memory mapped files.  

The size of D varies depending on the size and rank of A, but when the rank, k, is less 

than the smaller dimension of A, n, then D is guaranteed to be smaller than A increasing 

its chances of fitting into main memory.  In our experiments,  k is at most 30% of n so the 

number of elements in D is much smaller than the number in A. 
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5. Calculation of U 

With the SVD of D already calculated to be  

 2
TD U V   

the remaining step is to find U in the SVD of A.  This is found by multiplying 2U on the 

left by Q giving us the final factorization of A as  

 2
T TA QU V U V     

This step is also completely distributable and is outlined in Figure 5. 

 

1. Determine the number of elements that make up the answer matrix, U.  This 
works out to be the larger dimension of A, m times the rank of A, k, which is the 
smaller dimension of the Q calculated in Section 3.D.2; nk . 

2. Randomly choose a starting element, S, between 0 and mk  and calculate its value 

by multiplying row 1
k

S
    

of TQ  by column   mod 1S mk   of 2U . 

3. Increment S and calculate its new value as done in step 2.  If S mk  then 

calculate element modS mk . 

4. Repeat step 3 until 50 answers have been accumulated, then broadcast the batch 

of answers to the other devices.  If S+1 has already been calculated then 

broadcast out the answers that have been calculated thus far in the batch and 

randomly choose a new S from the pool of uncompleted elements. 

5. While calculating and sending answers, continually monitor for answers that are 

being broadcast from other devices.  When answers are received from the other 

devices mark the elements as complete and transfer the answers into the answer 

matrix, U.  

6. When all elements in the answer matrix have been calculated the task is finished. 

Figure 5.   Steps needed to distribute the calculation of matrix U. 

In this chapter, we described the experiments that we have conducted to show the 

efficacy of our masterless distributed computation system and the tools that we used.  In 

the next chapter, we will provide the results of these experiments. 
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IV. RESULTS AND ANALYSIS 

A. OVERVIEW 

Four data points were collected from each run of the experiments; time taken, data 

received, number of tablets used, and CPU usage.  The time taken, along with number of 

devices in this experiment, was used to calculate the speed up achieved by adding devices 

as 

1_
N

T
speed up

T
 , 

where 1T  is the time taken when using one device and 
NT  is the time taken when using N 

devices.  The data received was compared to the calculated amount of data that should 

have been received.  This allowed for the calculation of the redundancy of the run as 

_
100 1

_

data received
redundancy

data calculated

 
  

  .
 

The redundancy is equivalent to the percentage of extra work that was done during the 

experimental run due to overlapped work.  In addition to the redundancy, the received 

data is also used to calculate the average bit rate used by the network during the run.  

Finally, the CPU usage of each of the runs remained at 100% for each of the runs. 

B. MATRIX MULTIPLICATION 

Experiments were performed on square matrices of size M from 50 to 800 being 

multiplied by matrices of like size.  At each size M , each answer matrix consists of 

2M elements each of which is the result of 2M operations (M multiply operations and M 

addition operations).  The speed up of each of the runs is summarized in Figure 6. 
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Figure 6.   Speed up achieved at each matrix size. 

The trend that can be seen emerging in Figure 6 is clear: as matrix size increases 

the speed up obtained nears the ideal theoretic speed up, proposed by Ahmdal and 

Gustafson when the time needed to perform the serial portion of the calculation is zero. 

There are two possible phenomena that each can explain why multiplication of the 

larger matrices nears the ideal speed up whereas multiplication of smaller matrices 

benefits little from the distributed system.  First, the time needed to perform the serial 

portion of the calculation, s, is a larger percentage of the overall computation when the 

matrices are small.  This can be seen from Ahmdal’s equation  

p
T s

N
  , 

where p is the time needed to perform the parallelizable portion of the calculation and N 

is the number of devices.  The speed up is then calculated as  

 1_
N

T s p
speed up

pT s
N


 


. 
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In the ideal case,  s is zero making the speed up equal to N.  In the worst case,  p is zero 

making the speed up equal to one, independent of the value of N.  In the situation that 

occurs here, s starts closer to p when p is small and becomes proportionally smaller than 

p as the size of the matrices increases.  As p increases the contribution of s becomes 

negligible, allowing the computations to near the ideal speed up. 

The second phenomenon that helps explain the trends of Figure 6 is the amount of 

duplicated work done during the experimental runs.  Figure 7 shows the duplication seen 

during each of the runs. 

 

 

Figure 7.   The redundancy observed during the experimental runs. 

It can be seen from Figure 7 that there is a much larger percentage of duplicated 

work done with smaller size matrix multiplications.  The source of duplication observed 

during the experimentation was due to the random starting positions, which are necessary 

because we did not allow point to point communication between the devices.  

Unfortunately, this did not explain the reduction in redundancy occasionally observed 
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when increasing the device number.  One possible explanation is that the thread 

responsible for removing incoming data from the socket queue is underutilized at the 

beginning of a distributed operation.  So, increasing the number of devices possibly 

reduces this wasted time and allows collisions to be detected earlier.  To understand this 

better one would need to analyze the socket queue usage during a distributed operation. 

Starting positions can overlap at any time during a run but the probability of 

overlap increases as the pool of remaining element’s size decreases.  The starting size of 

every answer pool is 2M elements, where M  is the number of rows (or columns) of the 

square matrix, and as elements are processed the pool becomes smaller and smaller 

thereby increasing the likelihood of duplication.  Duplication becomes more and more 

likely as the pool size decreases, becoming unavoidable when the pool gets too small.  

This means that the chance of overlap at any time is determined by the elements 

remaining in the pool to be processed and the number of devices performing the 

processing. 

 

 

Figure 8.   Network usage during matrix multiplication. 
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The two trends that appear in Figure 8 are that as the number of devices increases 

so does the KB/s and that as the matrix size increases the network usage decreases.  As 

the updates are received on the devices they are put in a receive buffer, from which they 

are pulled then integrated into the computation.  As was stated in IV.A, the CPU usage is 

a consistent 100% throughout the entirety of the computation which causes the receive 

buffer to fill faster than updates can be pulled off of it.  When the buffer is full all new 

updates are discarded until updates are pulled, thereby freeing space. 

C. CHAIN OF TEN MATRIX MULTIPLICATIONS  

In Section III.C, we decided  this was performed to show that computations could 

be performed without signaling either the beginning of or end of an operation.  The 

results found show that a speed up similar to the single matrix multiplication could be 

achieved and are summarized in Figure 9. 

 

 

Figure 9.   Speed up obtained by performing ten matrix multiplications.   
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These results differ little from those reported in Chapter IV.B and the same trends 

are still apparent.  It is noticeable though that the speed up obtained in the chain of matrix 

multiplications is lower than the single matrix multiplication, but not by much.  Similar 

results were found for the redundancy, Figure 10, and the network speed, Figure 11. 

 

 

Figure 10.   Redundancy observed in Chain of 10 Matrix Multiplications. 
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Figure 11.   Network usage during chain of multiplications. 

It was expected that the chain of multiplications would be worse with respect to 

speed up and redundancy but it was not expected that the network usage would 

noticeably change.  The increase of redundancy was expected because it was thought that 

the receive buffers would remain full at the end of an operation and would have to be 

emptied before new data could be received.  During the time that the buffers would be 

full with updates from previous multiplications they would be dropping the needed 

updates from the current operation.  So, whereas a single computation would start with an 

empty buffer, nine of the ten multiplications would begin with full buffers.  It is this 

increase of redundancy that led us to believe that speed up would suffer accordingly. 

It is also noticeable that as the matrix size increases each of the comparable trends 

tend to converge.  This is particularly noticeable in the network usage where the two 

200x200 trends are nearly equal.  This overall trend can be seen in Figure 12. 



34 

 

Figure 12.   Difference between single and chain of multiplications.  The percentage 
difference between the values measured during the single matrix 

multiplication and the chain of multiplications is clearly decreasing as the 
matrix size increases. 

D. DISTRIBUTED SVD 

When performing the SVD over this distributed system the size of the matrix, A, 

was varied between 500 and 1500 and its rank was varied between 50 and 150.  This 

experiment shows that both complex linear algebra operations can benefit from this 

system and that this system is effective even when large serial operations are performed 

between the parallelizable operations.  The speed up obtained performing the SVD on 

matrices of size 500x500 are shown in Figure 13. 
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Figure 13.   Speed up of the SVD obtained on the 500x500 matrix. 

The range of the ranks chosen has very little affect on the speedup obtained when 

computing the SVD of a 500x500 matrix.  Similarly, when computing the SVD of a 

1000x1000 and 1500x1500 it is shown that the range of ranks chosen has little affect on 

the overall speed up.  But, as the matrix size increases, it can be seen that the speed up 

does improve as shown in Figure 14. 
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Figure 14.   Average speed up of varying size SVD computations. 

It is assumed that the rank of the matrices has little effect on the speed up of the 

SVD computations only for such small values.  As the rank approaches N, the smaller 

dimension of the matrix A, the speed up goes to 1 because the computation becomes more 

and more unparallelizable.  This was not able to be shown using these devices due to the 

limited amount of RAM available.  In addition, it is recognized that if the rank of a 

matrix is near N then performing the extra steps of determining the rank of A actually 

increases the time that would be needed to compute A’s SVD [12].  This point is moot for 

this experiment because the mobile devices were unable to compute the SVD of a large 

matrix thus necessitating the need to determine A’s rank. 

In this chapter, we showed that masterless distributed computing is feasible for 

computations of various sizes and as the size of the computation increases, the speed up 

obtained by adding devices nears the theoretic possible speed up.  In addition, through the 

decomposition of a matrix we showed that these operations can be chained together in 

useful ways. In the next chapter, we will conclude our discussion on this masterless 

computing system and provide ways that this research can be continued. 
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V. CONCLUSION AND FUTURE WORK 

A. SUMMARY 

There is a need to analyze large amounts of data in hostile environments that 

might not have a robust network infrastructure and in this work we described a system 

that can perform distributed computations in such an environment.  The previous works 

that we used to create our system were presented along with the works used to develop 

our method to test the system.  Normally, the singular value decomposition is not easily 

distributable, especially without tight synchronization.  In this work, we described and 

used a method to decrease the complexity of the decomposition while minimizing the 

resulting error in the decomposition.  We also showed the results of our various 

experiments that illustrated the efficacy of our system.  

B. FUTURE WORK 

1. Implement Masterless Distributed Computing System in an Ad-hoc 
Networking Environment 

Our system was designed to use broadcasts to overcome a lack of infrastructure.  

This was possible because our system was masterless, whereas if our system did contain 

a master than devices would require an infrastructure to ensure efficient communication 

between a master and the workers.  Although our system was designed with these 

deficiencies in mind, we still implemented the system using a wireless accesspoint in 

order to make sure that there was network connectivity.  This system should be 

reimplemented in an ad-hoc network environment and reanalyzed to ensure its efficacy in 

such an environment. 

2. Analyze the Socket Layer Receive Buffers 

In Section IV.B, we described an unexpected result where increasing the number 

of devices actually reduced the amount of duplicated work.  Our original intuition was 

that increasing devices would increase the amount of work duplicated but this was not 

always the case.  One possible explanation is that the thread responsible for removing  
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data from the socket layer receive buffers was being underutilized.  An analysis of the 

buffer during a distributed computation should be done to better understand this 

phenomenon. 

3. Test Efficacy of the System when Devices are Both Entering the 
System and Leaving the System 

We designed our system to continue working in the event of a device, or multiple 

devices, being removed from the system.  Although this ability is inherent in our system 

we did not test the affect a device leaving will have on completion times or network 

usage.  In addition, a “catch-up” mechanism can be implemented to allow devices 

entering the system to aide in the distributed computation.  In addition, the affect a device 

entering the system has on the overall system should be analyzed. 

4. Analyze the System’s Abilities to Work with Other Types of 
Computations 

This system was designed with Google’s MapReduce in mind and should work 

with most algorithms implemented in MapReduce.  One large difference is that each 

individual device must be able to reduce the results of its mapping stage so as to 

efficiently broadcast to the other devices.  This decreases the amount of MapReduce 

algorithms that will work in this system but there are still many that should work.  

Additionally, analysis may show that some algorithms work particularly well in this 

system; for instance algorithms with extensive mapping phases that reduce to binary 

answers. 

C. CONCLUSION 

Our research goal was to see if we could construct a masterless distributed 

computing system that does not rely on network routing, and if we could determine 

whether the system could be used for solving computationally expensive linear algebra 

problems.  Our results showed that our system does indeed speed up a distributed 

calculation and does it in a way that does not rely on the presence of a routable network.  

We also showed that the speedup obtained nears optimal as the size of the computation 

necessary to calculate an update increases.  Additionally, we have shown that we can 
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chain distributed computations together resulting in a decreased amount of time needed to 

perform a useful calculation, the singular value decomposition of a matrix. 

The implications of these results is that masterless distributed computing in an 

infrastructureless environment is feasible.  This research may one day aid in a 

commanders ability to analyze battlefield conditions and develop optimal strategies to 

accomplish their mission.   
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