
1

TITLE: Quality of Security Service: Adaptive Security

AUTHORS:

Timothy E. Levin, Research Associate Professor, Naval Postgraduate School,

Monterey, California;

Cynthia E. Irvine, Professor, Naval Postgraduate School, Monterey,

California

Evdoxia Spyropoulou, Technical Vocational Educational School of

Computer Science of Halandri, Halandri, Greece

OUTLINE

21-1 Introduction 2

Motivation 2

Background 2

21-2 Quality of Security Service 3

Security Ranges 4

21-3 QoSS Model 6

Security Resources, Services and Requirements 6

Task Sequences 7

Security Limits and Choices 8

Security Range Relationships 8

21-4 QoSS Applied 10

Costing 10

Examination of Resource Modulation 11

21-5 QoSS and Application-Centric Security12

21-6 Related Work 13

KEY WORDS: security, quality of service, performance, quality of security service, adaptive

security.

ABSTRACT: The premise of Quality of Security Service is that system and network

management functions can be more effective if variable levels of security services and

requirements can be presented to users or network tasks. In this approach, the “level of service”

must be within an acceptable range, and can indicate degrees of security with respect to various

aspects of assurance, mechanistic strength, administrative diligence, etc. These ranges result in

additional latitude for management functions to meet overall user and system demands, as well

as to balance costs and projected benefits to specific users/clients. With a broader solution space

to work within the security realm, the underlying system and network management functions can

adapt more gracefully to resource shortages, and thereby do a better job at maintaining requested

or required levels of service in all dimensions, transforming security from a performance

obstacle into an adaptive, constructive network management tool.

2

INTRODUCTION

The purpose of this Chapter is to provide an overview, rationale and motivation for

understanding Quality of Security Service (QoSS). Just as with the Quality of Service (QoS)

mechanisms from which they are derived, QoSS mechanisms benefit both the user and the

overall distributed system. Users benefit by having reliable access to services, and the distributed

systems whose resources are QoSS-managed may benefit by having more predictable resource

utilization by users and more efficient resource allocation. Thus, the QoSS vision is to transform

security from a performance obstacle into an adaptive, constructive network management tool.

Motivation

Most of today’s distributed and highly populated computing environments, as

exemplified by the Internet, face challenges with security as well as the management and

availability of resources. Bandwidth in mobile and wireless environments is limited; batteries

have limited lifetimes; Internet service providers must be proactive to constrain high bandwidth

users; and many users struggle with download times and access to the network. Every day we

are reminded in our email as well as in various news media about the significant security

vulnerabilities in our computers and networks. Network administrators have a constant battle

with the configuration of firewalls, routers, and user workstations. Furthermore, resource usage

patterns and the security or threat environment of these general-purpose networks are in constant

flux. Intelligent, adaptive, automated mechanisms are needed to help manage network resources

for availability, performance and security.

Background

Historically, in a community of users with relatively homogeneous computing behaviors,

resource usage load on multi-user systems could be understood, simplistically, to be a linear

function of the number of users or the number of user terminals configured for the system.

Thus, a system administrator could govern the system resource usage load, to a large

degree, by controlling the number of allowed simultaneous user input terminals (e.g., interactive

terminals, modems and card readers). In a distributed and internetworked environment, system

administrators are often without recourse to such straightforward and simplistic resource-usage

control approaches, since the number and type of user “terminals” and associated tasks may not

be bounded by local (e.g., campus or enterprise) topographies, and the resource requirements of

different tasks may vary widely. In some cases, users of a given system resource may extend

across the Internet. The Quality of Service paradigm is designed to help address this problem by

providing to users and administrators certain tools for managing resource usage and service

levels.

Quality of Service refers to the ability of a distributed system to provide network and

computation services such that each user’s expectations for timeliness and performance quality

are met. There are several dimensions of Quality of Service described in the literature

(Chatterjee, Sabata, Sydir, 1998)(Vendatasubramanian and Nahrstedt, 1997), including:

accuracy, precision and performance. For a Quality of Service dimension to be supported means

that users can request or specify a level of service for one or more attributes of these dimensions,

and the underlying QoS control mechanism (QoSM) is capable of delivering those services at the

requested levels. Levels of service may be specified absolutely (e.g., megabytes of bandwidth) or

statistically (e.g., 90% availability). The control mechanism must be able to modulate the level

3

of the service to individual subscribers (e.g., users). For example, a network-based multimedia

application might be expected to deliver video frames so that the display is jitter-free to some

requested level.

In addition to meeting individual user requirements, a QoSM makes choices that permit it

to maximize overall benefit in accordance with its QoS policy. For example, one QoS policy

might require that benefit be equally shared among all tasks. This would mean that if network

resources were over subscribed, all tasks would have a reduction in service. Another policy

might be that no service is better than poor service, so that if resources were sufficiently

oversubscribed, some tasks would be postponed or terminated. This policy could be extended so

that certain tasks would be given priority for guaranteed service during times of resource

congestion.

Users present their expectations to the QoS mechanism by way of service level requests.

These requests can take the form of both hard and soft requirements (Stankovic, Supri,

Ramamritham, Buttazo, 1998). In essence, the system enters into a contract with the user to meet

the hard and soft requirements. Hard requirements mandate fixed service levels that the QoSM

must deliver if it is to accept the user’s task; whereas, a soft requirement can be considered to

define a range of acceptable service, for example, in terms of bandwidth, response time, or image

fidelity. Each soft requirement represents a variable that the QoSM can manipulate in balancing

the needs of multiple users. Given latitude in the user’s soft requirements, the more of these

variables that the control mechanism has to manipulate, the easier will be its job of adapting to

changing resource availability, and satisfying the set of current users. Conversely, the QoSM can

offer choices to the user (in response to which the user may enter hard or soft requests) only for

aspects of the system over which it controls, and is willing to provide, a range of service. For

aspects in which there is no such control, only a fixed level of service can be delivered, so

adaptive QoS concepts do not apply.

QUALITY OF SECURITY SERVICE

The purpose of this section is to provide an analysis of the role of security in a system

designed to provide QoS. Security has long been a gleam in the eye of the QoS community:

many QoS research and development “request for proposals” and QoS system-design

presentation slides have included a placeholder for security, without defining security as a true

QoS dimension (as above). Some of these presentations have provided access control

mechanisms within the QoS framework (Sabata, Chatterjee, Davis, Sydir, Lawrence, 1997)(Lee,

et al, 1998), but they have only touched on security as a QoS dimension.

Inherently, QoS involves user requests for (levels of) services that are related to

performance-sensitive variables in an underlying distributed system. For security to be a real part

of QoS, then, security choices must be presented to users, and the QoS mechanism must be able

to modulate related variables to provide predictable security service levels to those users. This

raises the question of whether it makes sense within the context of coherent system security

paradigms to provide such security choices to users. It is also of interest to understand how the

limits on these choices are defined, and how those limits relate to existing resource security

policies.

The premise of QoSS is that QoS mechanisms can be more effective if variable levels of

security services and requirements can be presented to users or network tasks. In this approach,

the “level of service” must be within an acceptable range, may be absolute or statistical, and can

indicate degrees of security with respect to assurance (integrity, confidentiality, privacy,

authentication, etc.), mechanistic strength, administrative diligence, etc. For example:

4

- security level of user >= security level of resource

- length of confidentiality encryption key >= 64 and <= 256

- % packets authenticated >= 50 and <=90

As described above for QoS, these ranges result in additional parameters with which the

QoSM can successfully meet overall user and system demands, as well as balance costs and

projected benefits to specific users/clients (see discussion of QoSS cost framework, below).

Furthermore, the broader solution space that the QoSM has to work with in the security realm

means that it can adapt more gracefully to dynamic changes in resource availability, and thereby

do a better job at maintaining requested or required levels of service in all of its dimensions. The

term Quality of Security Service refers to the use of security as a quality of service dimension.

To recap, the enabling technology for both QoSS and a security-adaptable infrastructure

is variant security, or the ability of security mechanisms and services to allow the amount, kind

or degree of security to vary, within predefined ranges. This notion of network Quality of

Security Service has the potential to provide administrators and users with more flexibility and

potentially better service, without compromise of network and system security policies.

Security Ranges

For many, security is thought to be binary: either you have it or you don’t. Without some

minimum level of security, a system will be considered inadequate for user requirements. Yet, if

a user’s as well as the system’s minimum requirements are met, can there not be some choice

with respect to what is adequate? The answer is “yes.” As an initial example, suppose that a user

requires medium assurance of policy enforcement at any end system where a distributed task will

be executed. If the assurance levels of potential target platforms range between medium and high

assurance, there is a choice. In fact, if the medium assurance system is over-subscribed while the

high assurance system is idle, the user may realize better overall service by electing to execute

the task on the high assurance processor.

As with multimedia image resolution, users will generally desire the greatest amount of

security (or image fidelity) available, but this desire is generally tempered by cost. The cost may

take the form of monetary charges (unlimited bandwidth but at a high cost per byte) or

performance degradation (for high resolution, processing and download times will be long), for

example. When the cost is very high (e.g., slow response time), users may be willing to accept

security that is less than their ideal level of service. Thus, the user/administrator’s acceptable

security would range from a minimum to an ideal. A system that is sufficiently flexible may be

able to impose performance degradations on others when an application that is willing to pay

enough or has the highest priority is introduced. By indicating a range within which they are

willing to operate, the lower priced or lower priority tasks will still be able to run rather than

being terminated or rejected. Yet, once a user (or security officer) decides on the minimum level

of security required for a given application or scenario, why would they ever agree to more

security, if it increases their cost? In general, the increase in cost will be acceptable to the user

only if it is accompanied by a commensurate increase in some other associated level of service,

such as:

• Likelihood of task completion

• Performance factors, such as latency and throughput

• Storage/output device features such as supported media, or format

• Data features such as color, accuracy and precision

5

In other words, more security and higher costs will be acceptable if it results in an

increase or stasis in the overall satisfaction with the task invocation (see discussion of “benefit

functions” in (Irvine and Levin, 2000)(Jensen, Locke, Tokuda, 1985)(Kim, et al, 2000)); thus,

users could be motivated to consider security ranges above their established minimums. For

example, an application may have variable data formats, which have correspondingly variable

security requirements and costs. Perhaps a degraded image requires less security, and conversely,

the enhanced image requires more security. So a user might prefer heightened security if it is

accompanied by greater image fidelity, even through the cost is higher.

An example taken from a popular military novel will help to illustrate our point. Suppose

that high, medium and low-resolution satellite images of enemy troop movements are available.

A different type of optical equipment produces each type of image. To help keep confidential the

optical technologies used to obtain the images, the images themselves are classified at high,

medium and low sensitivity levels, respectively. For analysis of enemy troops in tactical

planning, any resolution image will suffice, however, the low-resolution images are from old,

slow equipment, and use of high-resolution images is restricted to emergencies (here, part of the

cost of using the high-resolution is the need to justify its usage at a later date). Therefore, the

tactical commander issues a request for troop movement images with fidelity in the range of low

to high, in the following priority order: medium, low, high (such that high would be used only

when the other resolutions are not available). Thus, we have a situation in which the user would

prefer medium security but will also accept low or high security images, depending on what is

available.

An integrity example may also be useful. Suppose that a surgeon is performing a delicate

brain operation remotely. To ensure that only the precise brain locations are affected, high

fidelity is required. Additionally, there is a requirement for high integrity to ensure that the video

stream is not tampered with by malicious entities who might wish harm the patient. Secrecy is

not a requirement, yet if the only secure communication channel available provides both a high

level of secrecy and integrity, the operation is provided high secrecy as a bonus resulting from

fidelity and integrity requirements. The following are some more examples of the use of real and

hypothetical security ranges.

• Destination subnets could be classified by risk factor with respect to routing through,

execution on, or logging on to nodes in those subnets.(ISO, 1989) Users, applications or

enterprise-wide mechanisms could request of middleware control mechanisms that

communications or tasks executed on the user’s behalf utilize a specific risk range of

subnets.

• Some environments may offer the user choices of logon authentication technology. For

example, a user may log on with a standard password, a one-time password (crypto

challenge-response), a public-key smart card, a biometric device, or some combination of

these. In these environments, the user could be granted greater access to resources (e.g., a

higher classification of data) if he uses higher-assurance authentication (Juneman, 1997).

• Another example is that the underlying system supports different situational modes. For

some modes (e.g., normal, impacted, emergency), the user or administrator may be

willing to accept more (or less) security. A commander under attack at a foreign embassy

might require the highest communication security; whereas a commander under attack on

the battlefield might declare, “damn the security, full speed ahead!” The MSHN resource

management system is an example of a QoSM system in which the management of mode

vs. security requirements was designed to be handled automatically (Hensgen, et al,

1999)(Irvine and Levin, 1999a).

6

• The security policy for a hypothetical commercial subnetwork requires outgoing IP

packet encryption. In this environment, a multimedia application exports digital images

(e.g., high resolution fine art images). However, recognizing that the stake-holders in this

specific environment can tolerate a media stream which is partially or periodically

encrypted (viz, one yielding a suitably obscured image, which would render a stolen

image unusable by the vast majority of its target market), the policy may only require that

a range of from 80% to 100% of the packets should be encrypted. (Note that in some risk

models, such a periodic encryption method might require fortified protection against

cryptanalysis. In addition, care must be taken to ensure that the entire unencrypted image

is not revealed in repeated transmissions.)

• Variable packet authentication (Schneck and Schwan, 1998) is a corollary to the

preceding confidentiality scenario. In this case, the sender or recipient might be satisfied

if (only) a certain percentage of the packets in an image stream were authenticated (e.g.,

80% to 100%). Depending on the threat model and the packet-checking algorithm, to

detect attacks, attention may need to be paid to the ratio of good to bad packets: if all of

the packets were bogus, and only 80% were checked (and consequently dropped), it

might be possible for the display program to show a completely bogus image, utilizing

the remaining 20%.

• The number of “rounds” performed in a cryptographic transformation algorithm, such as

the Advanced Encryption Standard, could be used as a Quality of Security Service

variable, to the extent that more rounds consume more resources and provide more

security.

• An administrator may choose to run an intrusion detection system within an effectivity

range rather than at a fixed level. There would be a minimal level of IDS processing

below which the system would not be permitted to fall, but the IDS would be balanced

against performance requirements of the organization’s tasks. Thus the IDS might

perform more thoroughly (with deeper histories) when the system is lightly loaded than

during peak hours. The administrator might also choose to set an upper limit to IDS

processing, to conserve resources.

• Another variable packet authentication scheme (Xie, Irvine, Colwell, 1999), would be to

authenticate only a certain percentage of each packet. The higher percentage of

authentication could be used, for example, to protect against steganographic exfiltration

of sensitive data.

From these examples, it is apparent that the notion of security ranges is useful and, in

some cases, already evident in existing systems.

QOSS MODEL

This section presents some observations about how variant security can be viewed in a

distributed system that provides QoS support.

Security Resources, Services and Requirements

A network system is defined as the totality of network accessible resources. A security

service is a high-level abstract resource providing security functionality such as: authentication,

auditing, privacy, integrity, intrusion detection, non-repudiation, and traffic flow confidentiality

(Irvine and Levin, 1999b). A security service typically consumes other low-level system

resources such as CPU, memory, disk, and network bandwidth. For example, the Common Data

7

Security Architecture (CDSA) (Sargent, 1998) describes modules, each of which contain specific

security mechanisms to provide some of these services.

Each resource (including security services) may embody security requirements regarding

its use. A requirement may restrict the availability of a resource to an external entity. Some

restrictions might be the typical mandatory and discretionary requirements, or other security

constraints, e.g.: encryption available 9 P.M. to 5 A.M., range of available encryption algorithms,

and range of required key lengths. To be general, we state that all security requirements define a

range of permissible behavior. That is, a range may be unitary, or degenerate, in which case it

represents no choice. Where a range represents a choice, the requirement is called security

variant.

Task Sequences

Quality of service can be provided at several levels within the overall system. The notion

of translucence, by which components can adapt to changing conditions at other system or

network layers, results in a problem that is both horizontal, viz. distributed across the network;

and vertical, viz. distributed within the layers of programs within a given network node. In the

following discussion, the management of QoSS can be seen to have both horizontal and vertical

interactions, depending on the implementation of the various components.

A task is an application invoked by a user or another task. The task utilizes various

network system services and other resources. This utilization may be intermediated by different

QoS middleware mechanisms, such as: QoS-aware object request brokers and application

servers, distributed resource management systems, and various network traffic managers. In

these multiple-tiered environments, a task is invoked in a task invocation sequence:

• The user activates the application through some interface with an application manager

(OS, browser, etc.);

• The application is intermediated by the QoSM; and

• The QoSM submits the application to the system - Note that it is an implementation detail

whether the QoSM returns advisory parameters to the application and the application

invokes the system, or the QoSM submits the application with those parameters directly

to the system. For simplicity, we assume, here, that the QoSM submits the application to

the system.

More complex invocations are possible, such as chains of applications leading to the

intermediation by the QoSM, and chains of sequences, etc. However, the simplification of a

user/application/QoSM/system model appears general enough to address the security concerns of

the more complex cases.

Security requirements may be established or refined by any or all of: the user, the

application, the QoSM, and the system; we call these entities security requirement providers. As

an example of how a requirement can be refined within the task invocation sequence, consider

how a typical application offers the user a choice for some service. If the user does not indicate a

choice, the application may use a default value. If the user chooses a range, the application may

invoke itself with a particular value within that range. Similarly, the QoSM may refine the

application’s choice, for example, to optimize the overall system (user population) performance,

perform load balancing, etc.

8

Security Limits and Choices

In a task invocation sequence, the request is passed from a previous requirement provider

to the next provider. A security choice for each variant security requirement is logically included

with each request step. The choice may be implicit or explicit. For example, if no explicit choice

is made, then it may be implicit that the choice is to not limit or modify the security options

proffered at that step. As with requirements, all security choices define a choice range, which

may be unitary. Thus, each requirement provider specifies a choice range for each variant

requirement in a given task invocation. For example, the user selects a range of 50 - 80% for

packet authentication rate. This choice is passed to the next provider (viz., the application) in the

sequence.

For each variant security requirement, each requirement provider may also have an

explicit requirement limit range (again, unitary or variant) outside of which it will not accept a

request. The limit applies to the request choice from the previous provider, e.g., a given

application will not accept a range wider than 60 - 100% from the user.

Security Range Relationships

An important aspect of the notions of “range,” and the relationship between ranges is

how two elements of a range compare. In the packet authentication rate example, the “rate”

variable is measured on a linear scale, so one choice, or element, has a natural relationship to

another choice: one of greater than, less than, or equal. To be most general, we would also like

to allow two choices within a range to be incomparable, resulting in a partial ordering. A natural

interpretation of a security range is that the elements on one end of the range are “more secure

than” the elements on the other end.

A security requirement is more formally defined, as follows. For each variant security

requirement there is a set of elements, from which choices and limits are selected, that are

partially ordered by a “security” relation. This relation is called “dominates,” meaning that one

element is more secure than a second if and only if the first element dominates the second. Each

defined or selected security range for the requirement is a sub-lattice of that set such that the

maximum of the range dominates the minimum. One range is contained “within” a second range,

if and only if the max of the first dominates the max of the second, and the min of the second

dominates the min of the first. For two ranges to intersect means that the maximum of each

dominates the minimum of the other.

Table 21-2 shows the limits and choices of security requirement providers in a task

invocation sequence.

User Application Middleware System

Choice Range Provided Yes Yes Yes Service Level

Limit Range Enforced No Yes Yes Yes

Table 21-1. Security Limits and Choices

Notice that the user does not have an effective limit range, as he has no previous provider

upon whom to enforce such a range. Also, the system choice range is the level of service

ultimately provided by the system in response to the request. This is a unitary range, since there

is no next provider to whom a choice might be given. With so many requirement ranges at

different points in the sequence, one may wonder how these ranges relate to each other.

The following relationships appear to be inherent in a task invocation sequence involving

cooperating entities:

9

1. The maximum of each limit and choice range dominates the minimum of that range.

2. Each provider’s choice range must be within its own limit range. This restriction reflects the

natural protocol to respect one’s own limits.

3. Each choice range must be within the previous choice range in the sequence. This reflects a

natural protocol to respect the choice of the previous requirement provider: a requirement

provider will try to fulfill the request of a previous provider. For example in a quality of

service context, a service provider may accept a request if it can be realized, but it will not

proceed with parameters that are divergent from (outside) the user’s request.

4. Each choice range must be within the next limit range in the sequence. This restriction means

that requests that are out of bounds will be rejected.

5. The limit ranges of each provider in a task sequence must all intersect. This is a consequence

of the need for a choice to be within the provider’s own limit, and within the next limit, as

well as within the previous choice. Obviously, if two ranges in a task invocation sequence

don’t intersect, there does not exist a value that could satisfy both ranges; this would disallow

a task from being successfully invoked.

These relationships are illustrated in Figure 21-1. Because the choices and limits are

partially ordered and thus functionally comparable, it is possible for a security service selection

algorithm to be encoded. A QoSM would maintain databases of static and dynamic resource

characteristics. In the static database, limits might be recorded while the dynamic database could

record current network conditions (e.g., available capacities) and choices. Thus, when a new task

request enters the system, the QoSM can compute its execution strategy. Note that this is an NP-

complete problem, and extensive work exists on heuristic scheduling techniques, e.g. (Siegel and

Ali, 2000).

Figure 21-1. Relationships of Limits and Choices

Max choice

Max limit

Min choice

Min limit

Max choice

Max limit

Min choice

Min limit

Max choice

Max limit

Min choice

Min limit

Previous Current Provider Next

10

QOSS APPLIED

In this section, two aspects of applying QoSS to distributed systems are presented: a

framework for quantifying the cost of QoSS resource selections, such as would be utilized by a

QoSM in making resource allocation decisions; and an examination of how a specific security

mechanism can be modulated to provide differing levels of security service in response to

Quality of Security Service requests.

Costing

Security comes at a cost. If a particular security mechanism is “fixed” (i.e., always

applied) then the overhead for the mechanism is part of the normal cost of running the task and

the normal costing mechanism used by the QoSM will suffice. For variant security mechanisms,

however, the security overhead will vary, depending on the user’s QoS request. Some task

invocations will utilize little, if any, of the variant mechanism and other invocations may utilize

the mechanism at an increased level. Also, the scheduler may adapt security support, while

maintaining any minimum system security policy requirements, in order to schedule the tasks

most efficiently. The QoSM must calculate how much the use of the security mechanism will

increase the cost of the task, according to the specific security “level” requested. For this reason

the QoSM must have access to detailed information about the resource cost (as well as the task’s

requested QoS) for each variant security mechanism. Near-optimal solution selection for task

schedules depends on the accurate estimation of per-task, per-resource, cost of security (Irvine

and Levin, 1999a).

This approach for quantifying the costs related to a task’s security requests (Spyropoulou,

Levin, Irvine, 2000) refers to costs relative to every security service invoked by the task. Each

service may access CPU time, memory, bandwidth, disk space, etc. The resource usages may be

temporary or persistent, providing discrimination between start-up and streaming costs.

For example the Confidentiality on the Network Connection service, using a symmetric

algorithm like Twofish (Juneman, 1997) for data encryption, would require some extra

processing during start-up for the initialization of S-boxes. This is a one-time cost during the

establishment phase of the service. On the other hand, bandwidth costs for the confidentiality

service are streaming costs only, in the form of extra bytes per packet due to the encryption

algorithm.

In a QoS system every application would have its resource costs modeled as shown in

Table 21-3, where cost expressions are functions of security variables. A given security variable

may be a factor in more than one cost expression.

CPU cost types

FTP Security Services Start-up (clocks) Streaming (clocks/packet)

Network Integrity a * KEY_LENGTH + b c * INTEGRITY_RATE

User Authentication d * e (AUTHENTICATION_TYPE) + f 0

Table 21-2: Hypothetical CPU cost formulas for FTP Security

Units of measure can vary, for example to measure CPU costs in clocks (or

clocks/packet), memory costs in bytes, bandwidth costs in bytes (or bytes/packet). In another

11

approach, all measures could be unit-less and normalized within a common framework. A

careful description of the semantics of the units with respect to each security service would then

be required.

After the individual costs are calculated, their intended use is as input to a QoSM for

efficient scheduling of tasks when treating security as a QoS dimension.

Examination of Resource Modulation

For security to be a real part of QoS, security choices must be presented to users, and the

QoS mechanism must be able to modulate related variables to provide predictable security

service levels. Consider, for example, how a specific security mechanism, IPsec, can be

externally modulated to provide different levels of security in response to QoSS requests from

users or the QoSM. One approach is to manage detailed variant security attributes according to

abstract network mode and user security level selections.

The variables associated with many security services are too complex for average users

or application developers to understand or manage without assistance. A simplified abstraction

of security, in the form of security level choices, like “high”, “medium”, “low” can be provided.

The applications, either alone or combined with the QoSM, can then manage a mapping of

security levels to detailed variant attributes, and users will not have to contend with the

complexity of these choices, as shown in Figure 21-2.

Security Level Choice

LOW MEDIUM HIGH

Packet Integrity Rate 0.6 0.8 1

Symmetric Key length 56 96 128

Type of Authentication none Password Biometric & Password

Table 21-3. Hypothetical security attributes per security level

Similarly, abstract policies regarding system limits for different situational modes and

changing environments can be provided. For example, a military network or Internet service

provider might have an "emergency" mode indicating that there is a physical threat to the

facility, or “congested” mode in which there is more traffic than the current capacity. In both of

these cases, the system limits (and choices) for variant security attributes might be different than

for a “normal” mode. Again, the applications, QoSM and/or system could maintain a mapping

from the abstract modes to specific security attribute settings, so that once the mapping has been

established, users and administrators would not have to contend with the complexity of these

choices.

 Two entities that wish to communicate with each other using IPsec (see description of

IPsec in Chapters 64 and 65) negotiate to establish IPsec security associations (SAs), which

define the detailed security characteristics of the communication channels to be used, such as

encryption and/or authentication algorithm, SA lifetime, and cryptographic keys. These SAs are

used until their negotiated lifetime expires (assuming that no interruption or discard of the

channel takes place). The two main issues for utilizing IPsec in a QoSS framework are:

- the SAs should conform to the settings represented by the abstract QoSS parameters. The

set of SA characteristics resulting from an SA negotiation should reflect the mappings

determined for “network mode” and “security level.”

12

- If there is a change in a QoSS parameter, currently active SAs should be stopped and

renegotiated to conform to the new security mappings.

While the usual IPsec management mechanisms have no provision for response to

changing external requirements for a given communication channel, its framework is adaptable

enough to allow for the dynamic management of SAs, such as would result from changes to

network mode or security level selections.

One approach (described in detail in Spyropoulou, Agar, Levin, Irvine, 2002) is to use a

trust management system (Blaze, Feigenbaum, Ioannidis, Keromytis, 1999) and an external

dynamic parameter console to modulate the detailed IPsec security attributes. The dynamic

parameter console interacts with the external environment, such as an administrator or an

intrusion detection system, to receive the current selections for the network mode and security

level, and to pass the selections to the trust management system. The trust management system

keeps track of the current abstract settings, defines the mapping of levels and modes to detailed

IPsec settings, and also acts as policy arbiter regarding allowed IPsec settings and connections

(see Figure 21-3). IPsec and the trust management system are instrumented to perform

renegotiation of SAs when the abstract settings change.

Security Level

Channel LOW MEDIUM HIGH

telnet No IPsec processing ESP processing with

DES

ESP processing with

3DES

finger No IPsec processing AH processing with

HMAC-MD5

AH processing with

HMAC-SHA

ping No IPsec processing No IPsec processing No IPsec processing

Table 21-4. Hypothetical IPsec security attributes per security level

If the network mode changes to reflect a modification in the system status, or if the user

level changes to indicate a desire for higher security, then the dynamic parameter console

notifies the trust management system and IPsec. The trust management system is updated with

the new policy information for use with new SA negotiations. Furthermore if there exist

currently active SAs based on the changed policies, it removes them and initiates a renegotiation

of those SAs.

QOSS AND APPLICATION-CENTRIC SECURITY

The historical view of access control to resources was OS-centric with respect to the

activities of applications and other programs that the OS hosted. The operating system enforced a

policy, to the best of its ability, and ideally, objects never left the control domain of the OS.

Policies that were enforced globally and persistently within this domain were considered to be

“mandatory,” and all others were considered to be “discretionary” (Brinkley and Schell, 1995).

With the advent of distributed/heterogeneous applications, data storage objects, operating

systems, and resources -and a plethora of middleware mechanisms for managing those

distributed entities - application-centric access control has now become common, if not the

norm (e.g., see Blaze, Feigenbaum, Ioannidis, Keromytis, 1999). In this Brave New World, the

application itself (perhaps in concert with some middleware mechanisms) enforces access

control on its objects, rather than depending for this function on an underlying (e.g., OS and

hardware) control mechanism.

13

Thus, network applications have assumed some functions of the traditional OS. If the

application’s objects are completely encapsulated, such that the object never leaves the control

domain of the application, then a global and persistent policy could be said to be enforced,

assuming persistence on the part of the application. However, this is a necessary, but not

sufficient condition for effective policy enforcement. (Note that if the object is allowed to leave

the application’s domain, then it is more difficult to argue that a global policy is enforced. A

component of one such argument for a distributed application is that objects in transit are

protected, perhaps by cryptographic mechanisms, such that the object remains, logically, in the

control domain of the application.)

Another aspect of traditional OS policy enforcement was the notion that, to be considered

highly effective, access control should be performed at the lowest layers(s), including hardware,

of a strictly layered system. The reason for allocating access control functions to the lower levels

is that it is more feasible, then, to ensure that the mechanisms are non-bypassable, persistently

enforced, and small enough to allow thorough analysis (e.g., see (Anderson, 1972)). Without

understanding the dependency layering, it will not be clear on which other modules a module

depends, nor will it be clear if there are fatal (e.g., circularly dependent) or semantically

undefined execution sequences.

In the OS paradigm, regardless of how well formed or misused was an application, if the

enforcement layers were well formed, the policy enforcement could be ensured. Modern

distributed applications do not necessarily have these two properties (dependency layering, and

access control implemented at the lowest levels). For example, a network application, which has

been allocated the responsibility for enforcing a security policy, typically depends on an

untrusted operating system for access to resources; and dependency layering is not a fundamental

design consideration in many modern distributed applications and systems.

Under the conditions described here for distributed systems, much more design analysis

may be involved in understanding the degree to which a distributed system is capable of

enforcing a security policy, than was required to analyze a traditional, non-distributed, layered

system. The QoSS approach may be applicable in certain distributed systems that utilize

application-centric access control concepts. This is not to say that this approach ameliorates the

design analysis problems of application-centric access control. On the contrary, it is important to

reiterate that each such system needs careful design review to understand the effectiveness of its

security mechanisms. Hopefully, the security abstractions presented here will aid in such

analyses.

RELATED WORK

The OSI Basic Reference Model Security Architecture document (OSI, 1989) provides

information and analysis about network communications security services and mechanisms,

including a mapping of security services to mechanisms and OSI layers, and describes the

behavior of lower layers in responding to security service requests. This analysis provides a good

summary of network security services from the perspective of protection of communications.

The QoSS approach is intended to include security services other than those specific to

communications protection, and the QoSS service model is more oriented to the n-tier

architectural framework rather than the OSI protocol stack. Additionally, the OSI work does not

address the constructive management of security variability.

A Quality of Protection parameter is provided in the GSSAPI specification (Linn, 1993).

This parameter is intended to manage the level of protection provided to a message

communication stream by an underlying security mechanism (or service), “allowing callers to

14

trade off security processing overhead dynamically against the protection requirements for

particular messages.” Another early reference to a variable security service is that of Schneck,

and Schwan (1998), which discusses variable packet authentication rates with respect to the

management of system performance. The QoSS work presented here is intended to extend these

efforts into a more general framework, which is applicable to a wide range of policy, processing

and networking contexts, as well as diverse security services.

References to security in the QoS literature can be found in(Chatterjee, Sabata, Sydir,

1998), (Aurrecoechea, Campbell, Hauw, 1996), and (Welch, Shirazi, Ravindran, 1998), although

little is mentioned there of security variability or use of security as a functional QoS dimension.

QoS itself has been extensively discussed in the literature, and the reader is referred to

(Aurrecoechea, Campbell, Hauw, 1996) for a thorough review of QoS definitions and

architectures.

A trust management system (Blaze, M., Feigenbaum, J., Ioannidis, J., and Keromytis,

1999)(Blaze, M., Feigenbaum, J., Ioannidis, J., and Keromytis, 2001) provides a language and

mechanism for specifying security policies and credentials, and may include a policy server or

compliance checker to resolve questions about access control. The trust management system is

not concerned with the nature of the specific policies (e.g., those involving variant security) that

it stores and resolves. Nor is the trust management system expressly concerned with QoS issues.

However, a QoSS system could be built to utilize a trust management system to store and resolve

security range relationships.

CONCLUSION

This chapter has provided an overview of QoSS and variant security, and demonstrates

that these concepts can be useful in improving security service and system performance in QoS-

aware distributed systems. The general requirement for system attributes to participate in the

provision of Quality of Service, as well as an approach for how certain security attributes might

meet these requirements, has been described. Various forms of user and application security

“ranges” have been shown to make sense in relation to existing security policies when those

ranges are presented as user choices.

It is evident that for a distributed multi-tiered system, security ranges can form a coherent

system of relationships, and that security can be a semantically meaningful dimension of Quality

of Service without compromising existing security policies. Further study is needed to

understand the effectiveness of QoSS in improving system performance in QoS-aware systems.

GLOSSARY

Quality of Service Dimension - a response attribute of a distributed system that a user or

program can request or specify, and that the system is capable of delivering at or near those

requested levels. Examples are bandwidth and response time.

Quality of Security Service - refers to the use of security as a quality of service

dimension.

Security Service - a high-level abstract resource providing security functionality such as:

authentication, auditing, privacy, integrity, intrusion detection, non-repudiation and traffic flow

confidentiality. A security service typically consumes other low-level system resources, and may

be implemented by one or more security mechanisms.

15

Variant security - the ability of security mechanisms and services to allow the amount,

kind or degree of security to vary, within predefined ranges.

REFERENCES

ISO (1989). Information processing systems—Open Systems Interconnection -- Basic

Reference Model—Part 2: Security Architecture. International Organization for Standardisation.

ISO 7498-2.

Anderson, J.P. (1972). Computer Security Technology Planning Study. Technical Report

ESD-TR-73-51. Air Force Electronic Systems Division. Hanscom AFB, Bedford, MA. (Also

available as Vol. I. DITCAD-758206. Vol. II DITCAD-772806).

Aurrecoechea, C., Campbell, A., and Hauw, L. (1996). A Survey of Quality of Service

Architectures. Multimedia Systems Journal. Special Issue on QoS Architectures.

Blaze, M., Feigenbaum, J., Ioannidis, J., and Keromytis, A. (1999) The KeyNote Trust-

Management System version 2. RFC 2704. September 1999.

Blaze, M., Feigenbaum, J., Ioannidis, J., and Keromytis, A. (2001). The Role of Trust

Management in Distributed System Security. Secure Internet Programming: Security Issues for

Mobile and Distributed Objects. ed. Jan Vitek and Christian Jensen. Springer-Verlag Inc. New

York, NY. (185 – 210).

Brinkley, D.L. and Schell, R. R. (1995). Concepts and Terminology for Computer Security.

in Information Security: An Integrated Collection of Essays. ed. Abrams, Jajodia and Podell.

IEEE Computer Society Press. Los Alamitos. CA. pp. 40-97.

Chatterjee, S., Sabata, B., Sydir, J. (1998). ERDoS QoS Architecture. SRI Technical Report

ITAD-1667-TR-98-075. Menlo Park, CA.

Hensgen,D., Kidd, T., St. John, D., Schnaidt, M., Siegel, H.J., Braun, T., Kim, J-K, Ali, S.,

Cynthia Irvine, Tim Levin, Prasanna, V., Bhat, P., Freund, R., and Gherrity, M. (1999). An

Overview of the Management System for Heterogeneous Networks (MSHN). Proceedings of the

Heterogeneous Computing Workshop (HCW ‘99). San Juan, Puerto Rico.

Irvine, C., and Levin, T. (1999a). A Note on Mapping User-Oriented Security Policies to

Complex Machanisms and Services. NPS Technical Report NPS-CS-99-008.

Irvine, C., and Levin, T. (1999b). Toward a Taxonomy and Costing Method for Security

Metrics. Proceedings of the Annual Computer Security Applications Conference. Phoenix, AZ.

Irvine, C., and Levin, T. (2000). Toward Quality of Security Service in a Resource

Management System Benefit Function. Proceedings of the Heterogeneous Computing

Workshop. Cancun, Mexico.

Jensen, E., Locke, C., Tokuda, H. (1985). A Time-driven Scheduling Model for Real-Time

Operating Systems. in Proceedings of the IEEE Real-Time Systems Symposium.

Juneman, R. R. (1997). Novell Certificate Extension Attributes. Novel Security Attributes:

Tutorial and Detailed Design. Version 0.998. Novell, Inc. 122 East 1700 St. Provo, UT.

Kim, J. Hensgen, D., Kidd, T., Siegel, H., St. John, D. Irvine, C., Levin, T., Porter, N.,

Prasanna, V., Freund, R. (2000). A QoS Performance Measure Framework for Distributed

Heterogeneous Networks. In Proceedings of the Eighth Euromicro Workshop on Parallel and

Distributed Processing. pages 18-27. Rhodes, Greece.

16

Lee, C. Kesselman, C., Stepanek, J., Lindell, R., Hwang, S., Scott Michel, B., Bannister, J.,

Foster, I., and Roy, A. (1998). The Quality of Service Component for the Globus Metacomputing

System. in Proceeding of the 1998 International Workshop on Quality of Service. Napa

California. pp. 140-142.

Linn, J. (1993). Generic Security Service Application Program Interface. IETF Request for

Comments: 1508.

Sabata, B., Chatterjee, S., Davis, M., Sydir, J., Lawrence, T. (1997). Taxonomy for QoS

Specifications. Proceedings of the Third International Workshop on Object-Oriented Real-Time

Dependable Systems (WORDS’97). Newport Beach, Ca. pages 100-107.

Sargent, R. (1998). CDSA Explained: An Indispensable Guide to Common Data Security

Architecture. The Open Group. Reading, Berkshire, UK.

Schneck, P. A., and Schwan, K. (1998). Dynamic Authentication for High-Performance

Networked Applications. Georgia Institute of Technology College of Computing Technical

Report GIT-CC-98-08.

Siegel, H.J. and Ali, S. (2000). Techniques for Mapping Tasks to Machines in

Heterogeneous Computing Systems. Euromicro Journal of Systems Architecture. Special Issue

on Heterogeneous Distributed and Parallel Architectures: Hardware, Software and Design Tools.
Vol.46, No.8. pp. 627-639.

Spyropoulou, E., Agar, C., Levin, T., and Irvine, C. (2002). IPsec Modulation for Quality of

Security Service. in Proceedings of the International System Security Engineering Association

Conference. Orlando Florida

Spyropoulou, E., Levin, T., and Irvine, C. (2000). Calculating Costs for Quality of Security

Service. in Proceedings of the 16th Computer Security Applications Conference. New Orleans,

LA. pp. 334-343.

Stankovic, J. A., M. Supri, M., Ramamritham, K., and Buttazo, G. C. (1998). Deadline

Scheduling for Real-time Systems. Kluwer Academic Publishers. Norwell MA, pp. 13-22.

Vendatasubramanian, N. and Nahrstedt, K. (1997). An Integrated Metric for Video QoS.

Proceedings of the ACM International Multimedia Conference. Seattle, Wa.

Welch, L., Shirazi, B., and Ravindran, B. (1998). DeSiDeRaTa: QoS Management

Technology For Dynamic, Scalable, Dependable, Real-Time Systems. in Proceedings of the 15
th

Symposium on Distributed Computer Control Systems (DCCS’98). IFAC.

Xie, G., Irvine, C., and Colwell, C. (1999). A Protocol for High Speed Packet

Authentication. NPS Technical Report NPSCS-99-001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

