

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

IPV6 HOST FINGERPRINT

by

Eleftherios Nerakis

September 2006

 Thesis Advisor: Geoffrey Xie
 Co-Advisor John Gibson
 Second Reader: Chris Eagle

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE IPV6 Host Fingerprint
6. AUTHOR(S) Eleftherios Nerakis

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This thesis explores ways of using probe packets to identify the type and version of OS that is run by a remote IPv6 host. Such a probing technique
can be effective because developers of different OSes often interpret the guidance provided by the RFCs slightly differently, and consequently their
network protocol stack implementation may generate responses bearing unique markers to certain probing packets. The key challenge is to find
suitable probing packets for different OSes. Using a real IPv6 test bed, this thesis has evaluated both existing UDP-or-TCP-based and new IPv6-
extension-header-based probing packets against a selected set of eight popular OSes. The results show that the UDP/TCP methods are also effective
in an IPv6 environment and the extension header approach is worthy further study. There are evidences that OS fingerprinting is harder with IPv6.
It might be due to the fact that given the experimental nature of IPv6, similar OSes tend to reuse IPv6 code. This conjecture requires further study.
Finally, the thesis has also developed a method of crafting arbitrary IPv6 packets using the SmartBits system.

15. NUMBER OF
PAGES

119

14. SUBJECT TERMS IPv6, fingerprint, OS detection

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

IPV6 HOST FINGERPRINT

Eleftherios Nerakis
Lieutenant, Hellenic Navy

B.S. Hellenic Naval Academy

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2006

Author: Eleftherios Nerakis

Approved by: Dr. Geoffrey Xie
Thesis Advisor

John Gibson
Co-Advisor

Chris Eagle
Second Reader

Dr. Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis explores ways of using probe packets to identify the type and version

of OS that is run by a remote IPv6 host. Such a probing technique can be effective

because developers of different OSes often interpret the guidance provided by the RFCs

slightly differently, and consequently their network protocol stack implementation may

generate responses bearing unique markers to certain probing packets. The key challenge

is to find suitable probing packets for different OSes. Using a real IPv6 test bed, this

thesis has evaluated both existing UDP-or-TCP-based and new IPv6-extension-header-

based probing packets against a selected set of eight popular OSes. The results show that

the UDP/TCP methods are also effective in an IPv6 environment and the extension

header approach is worthy further study. There are evidences that OS fingerprinting is

harder with IPv6. It might be due to the fact that given the experimental nature of IPv6,

similar OSes tend to reuse IPv6 code. This conjecture requires further study. Finally, the

thesis has also developed a method of crafting arbitrary IPv6 packets using the SmartBits

system.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. IMPORTANCE OF OS DETECTION..1
B. THESIS OBJECTIVES...2
C. THESIS OVERVIEW ...4

1. Chapter II, Background ..4
2. Chapter III, Network Configuration and Packet Crafting..............4
3. Chapter IV, Testing Of Existing IPv4-Based Methods4
4. Chapter V, OS Detection Methods Enabled by IPv6........................4
5. Chapter V, Conclusions...5

II. BACKGROUND ..7
A. TYPES OF OS DETECTION...7

1. Port Scanning ...7
2. Banner Grabbing ...8
3. Passive Stack Fingerprinting ..8
4. Active Stack Fingerprinting..9

B. METHODS OF ACTIVE STACK FINGERPRINTING...........................10
1. FIN Probe ...10
2. Bogus Flag Probe ...10
3. Initial Sequence Number...10
4. Don’t Fragment Bit (DF)..10
5. Initial Window Size..10
6. ACK Value Probe ..11
7. Type of Service (TOS) ...11
8. Fragmentation Handling ...11
9. TCP Options ...11
10. ICMP Error Message Quenching...11
11. ICMP Message Quoting ..11
12. ICMP Error Message-Echoing Integrity ...11

III. NETWORK CONFIGURATION ..13
A. NETWORK SETUP ..13

1. OS Selection..13
2. Network Architecture..15

B. PACKET CRAFTING...16
1. SmartBits Overview...17
2. Smartwindow Transmit Setup..19

IV. TESTING OF EXISTING IPV4-BASED METHODS...27
A. INTRODUCTION..27

1. OS Detection by Nmap ..27
2. OS Detection By Queso..29

B. VALIDATION IN IPV4 ENVIRONMENT ..30
1. Test Cases by Nmap...30

 viii

a. Test case 1, SYN, ECN packet with options to an open
port...30

b. Test case 2, NULL packet with options to an open port30
c. Test case 3, FIN, SYN, PSH, URG packet with options to

an open port...30
d. Test case 4, ACK packet with options to an open port...........30
e. Test case 5, SYN packet with options to a closed port31
f. Test case 6, ACK packet with options to a closed port...........31
g. Test case 7, FIN, PSH, URG packet with options to a

closed port..31
h. Test case 8, UDP packet with data to a closed port31

2. Test Cases By Queso ..40
a. Test case 1, SYN packet without options to an open port......40
b. Test case 2, SYN, ACK packet without options to an open

port...40
c. Test case 3, FIN packet without options to an open port40
d. Test case 4, FIN, ACK packet without options to an open

port...40
e. Test case 5, SYN, FIN packet without options to an open

port...40
f. Test case 6, PSH packet without options to an open port......41
g. Test case 7, SYN, ECN, CWR packet without options to

an open port...41
3. Analysis ...49

a. Don’t Fragment Bit (DF) ...49
b. TTL Value ...49
c. Window Size ..49
d. Options...50
e. Initial Sequence Number ..50
f. No Reply ..50
g. ICMP Port Unreachable...50

C. APPLICABILITY TO IPV6 ENVIRONMENT ...51
1. IPv6 vs IPv4 Header Format ..51

a. Header Length...53
b. Traffic Class ..53
c. Flow Label...53
d. Payload Length ...53
e. Next Header...53
f. Hop Limit...54
g. Source and Destination Address ..54
h. Fragmentation...54
i. Header Checksum...54
j. Options...54

2. Equivalence Of IPv6 To IPv4 Header Fields...................................54

 ix

D. APPLICABILITY OF KNOWN METHODS OVER IPV6
PROTOCOL...57
1. Applicability of the Methods Used by Nmap...................................57

a. Test case 1, SYN, ECN packet with options to an open
port...57

b. Test case 2, NULL packet with options to an open port57
c. Test case 3, FIN, SYN, PSH, URG packet with options to

an open port...57
d. Test case 4, ACK packet with options to an open port...........57
e. Test case 5, SYN packet with options to a closed port57
f. Test case 6, ACK packet with options to a closed port...........58
g. Test case 7, ACK packet with options to a closed port...........58
h. Test case 8, UDP packet with data to a closed port58

2. Applicability of the Methods Used by Queso67
a. Test case 1, SYN packet without options to an open port......67
b. Test case 2, SYN, ACK packet without options to an open

port...67
c. Test case 3, FIN packet without options to an open port67
d. Test case 4, FIN, ACK packet without options to an open

port...67
e. Test case 5, SYN, FIN packet without options to an open

port...67
f. Test case 6, PSH packet without options to an open port......67
g. Test case 7, SYN, ECN, CWR packet without options to

an open port...68
3. Analysis ...76

a. Window Size ..76
b. Options...76
c. No Reply ..76
d. Hop Limit Value..77
e. Traffic Class ..77
f. Flow Label...77
g. Payload ..78
h. ICMPv6 port Unreachable..78

V. OS DETECTION METHODS ENABLED BY IPV6...79
A. OVERVIEW...79

1. Optional Information In IPv6...79
2. Research Concept...80

B. OS FINGERPRINTING METHODS ENABLED BY IPV6
EXTENSION HEADERS..81
1. Routing Header ..81

a. Test case 1, Unrecognized routing type..................................82
b. Test case2, Unrouted address ...82
c. Test case 3, Incorrect extension header length......................83

2. Destinations Options Header ..83

 x

a. Test case 4, Unrecognized destination type............................85
C. ANALYSIS ...90

1. ICMPv6 Pointer Value ..90
2. No Reply..90
3. ICMPv6 Code Value ..91

VI. CONCLUSIONS ..93
A. CONCLUSIONS ..93
B. FUTURE RESEARCH..99

LIST OF REFERENCES..101

INITIAL DISTRIBUTION LIST ...103

 xi

LIST OF FIGURES

Figure 1. TCP/IP protocol stack. ...3
Figure 2. Network architecture..16
Figure 3. SmartBits chassis family..18
Figure 4. SmartWindow application interface. ...19
Figure 5. Transmit setup for General configuration..20
Figure 6. Transmit setup for TCP header configuration. ..21
Figure 7. Transmit setup for IPv6 header configuration. ..22
Figure 8. Transmit setup for Ethernet configuration...23
Figure 9. Transmit setup for editing the entire packet manually.....................................24
Figure 10. SmartWindow application interface. ...24
Figure 11. IPv4 header format...52
Figure 12. IPv6 header format...52
Figure 13. Dual protocol stack. ...55
Figure 14. Routing header format. ..81
Figure 15. Destinations options header. ..83
Figure 16. TLV encoded options format. ..84

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. OS statistics 1[14] ..14
Table 2. OS statistics 2 [15] ...14
Table 3. Open TCP ports on each OS with IPv4 address. ...28
Table 4. Open TCP ports on each OS with IPv6 address. ...29
Table 5. Test case 1 by Nmap, SYN, ECN packet with options to an open port...........32
Table 6. Test case 2 by Nmap, NULL packet with options to an open port33
Table 7. Test case 3 by Nmap, FIN, SYN, PSH, URG packet with options to an

open port ..34
Table 8. Test case 4 by Nmap, ACK packet with options to an open port35
Table 9. Test case 5 by Nmap, SYN packet with options to a closed port36
Table 10. Test case 6 by Nmap, ACK packet with options to a closed port....................37
Table 11. Test case 7 by Nmap, FIN, PSH, URG packet with options to a closed port..38
Table 12. Test case 8 by Nmap, UDP packet with data to a closed port39
Table 13. Test case 1 by Queso, SYN packet without options to an open port42
Table 14. Test case 2 by Queso, SYN, ACK packet without options to an open port.....43
Table 15. Test case 3 by Queso, FIN packet without options to an open port.................44
Table 16. Test case 4 by Queso, FIN, ACK packet without options to an open port.45
Table 17. Test case 5 by Queso, SYN, FIN packet without options to an open port.......46
Table 18. Test case 6 by Queso, PSH packet without options to an open port................47
Table 19. Test case 7 by Queso, SYN, ECN, CWR packet without options to an

open port ..48
Table 20. Test case 1 modified from Nmap, SYN, ECN packet with options to an

open port. ...59
Table 21. Test case 2 modified from Nmap, NULL packet with options to an open

port. ..60
Table 22. Test case 3 modified from Nmap, FIN, SYN, PSH, URG packet with

options to an open port...61
Table 23. Test case 4 modified from Nmap, ACK packet with options to an open

port ...62
Table 24. Test case 5 modified from Nmap, SYN packet with options to a closed

port. ..63
Table 25. Test case 6 modified from Nmap, ACK packet with options to a closed

port. ..64
Table 26. Test case 7 modified from Nmap, FIN, PSH, URG packet with options to

a closed port. ..65
Table 27. Test case 8 modified from Nmap, UDP packet with data to a closed port.66
Table 28. Test case 1 modified from Queso, SYN packet without options to an open

port ...69
Table 29. Test case 2 modified from Queso, SYN, ACK packet without options to an

open port. ...70
Table 30. Test case 3 modified from Queso, FIN packet without options to an open

port ...71

 xiv

Table 31. Test case 4 modified from Queso, FIN, ACK packet without options to an
open port ..72

Table 32. Test case 5 modified from Queso, SYN, FIN packet without options to an
open port ..73

Table 33. Test case 6 modified from Queso, PSH packet without options to an open
port ...74

Table 34. Test case 7 modified from Queso, SYN, ECN, CWR packet without
options to an open port...75

Table 35. Routing types[16]...82
Table 36. Supported option types [16]...85
Table 37. Test case 1, Unrecognized routing type. ..86
Table 38. Test case 2, Unrouted Address...87
Table 39. Test case 3, Incorrect extension header length. ...88
Table 40. Test case 4, Unrecognized destination type...89
Table 41. Consolidated results from using UDP/TCP methods.......................................97
Table 42. Consolidated results from using IPv6 extension header.98

1

I. INTRODUCTION

A. IMPORTANCE OF OS DETECTION
The Internet today, as it is defined in the book, Computer Networking—A Top

Down Approach” by Kurose-Ross, is a “network of networks” [1]. This worldwide

network consists of end systems, either application clients or servers, and the

communication infrastructure that interconnects them. This worldwide network provides

the digital highway for the wide range of services that are available today, and makes the

Internet an attractive tool with a vast amount of users. Although this network was built to

provide services to users with goodwill, it has become a target of malicious attacks.

This is the point where the concept of network security arises with the ultimate

aim to protect the assets of this network. The assets in the Internet could be either the

devices that make up the Internet or the data that are stored in those devices. Because the

Internet initially was not built with great concern for security, over the years it has

evolved to eliminate the vulnerabilities and provide its users the appropriate level of

assurance. Similarly, the end systems have been under the same evolution, and the effort

was to develop operating systems (OSes) that would be self-protected and tamper-proof.

Nevertheless, vulnerabilities still exist in the systems today and may still exist in the

future No matter how hard it is to identify vulnerabilities, there are people devoted to

reveal them and either to correct the problem by performing the appropriate

modifications on the software or to exploit them by staging attacks.

All computer systems today run an operating system, and there are a variety of

OSes from which to choose. Because these OSes have been developed by different

vendors, they have been implemented according to their developers’ own philosophy

about how to best provide assurance to their users and protect the data they store. Until

the time when an absolutely secure system with no vulnerability is developed, all OSes

will have vulnerable points with the potential to be exploited. Those vulnerabilities are, in

fact, weak points in the software of the OS, and this is the reason that makes

vulnerabilities OS specific. Different OSes will have different vulnerabilities, and if

someone wishes to take advantage of them, he will probably need to follow a different

2

approach depending on the OS being attacked. Moreover, the OS is the software platform

for several other applications, which may also have their own vulnerabilities that can be

exploited to take control of a system or perform malicious actions on that system.

So, we come to the conclusion that the knowledge of the OS type and the services

running on a system are the key factors for deciding the appropriate methods for

attacking a given system. To date, a variety of techniques have been explored to remotely

identify the OS type over the Internet and a number of tools have been developed to

automate the process and make it much easier. However, the ability to identify the OS

can also be used for defensive purposes. Network administrators should be aware of the

importance of OS detection and take all the necessary measures to frustrate this threat.

Thus, one way to verify the reliability of the protection measures they have taken is to

use the same tools against their own network and determine what kind of information is

leaving their network that could reveal the OSes running on their machines. These tools

most often use a database of common characteristics associated with specific OSes. That

means a database must be developed in advance with which to compare the observed

characteristics of an OS and then to deduce the type being used. Those characteristics are

pretty much like fingerprints for OSes and thus the overall process can be defined as OS

fingerprinting.

B. THESIS OBJECTIVES
The Internet today implements the IP version 4 protocol within the network layer

of the protocol stack, as it is presented in Figure 1. That means it uses the Internet

protocol of the network layer, as it is defined in RFC 791. This standard describes the

datagram format, the addressing conventions, and the packet handling conventions of the

packets or datagrams traversing the network layer.

3

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

Figure 1. TCP/IP protocol stack.

The most important characteristic of the TCP/IPv4 protocol stack is the

addressing part. Today, all hosts connected to the Internet, in order to be able to send and

receive datagrams, need to have an IP address. Each IP address is 32 bits long and is

unique for every interface that connects a host to the Internet. This architecture works

very well and provides a great degree of efficiency. However, difficulties arise from the

fact that the address space defined with the existing 32-bit addressing architecture has an

upper bound. It can address no more than 4.2 billion hosts1. Although, this is a relatively

large number of hosts, with the current rate of new users attaching to the Internet, it has

been estimated by two leaders of the IETF Address Lifetime Expectations working group

that addresses would become exhausted in 2008 and 2018, respectively [2,3]. Clearly

something has to be done about this. Thus, in the early ’90s the IETF began an effort to

develop the successor of the IPv4 protocol. The solution is the IPv6 protocol [4], which

probably solves the address space limitation once and for all but also introduces a few

more changes based on experience gained from IPv4.

Based on the fact that a transition from IPv4 to IPv6 will occur in the next several

years, a number of questions arise regarding the applicability of OS fingerprinting to

IPv6. Thus, the main objectives for this thesis are the following:

• Investigate the applicability of the techniques used currently for the IPv4

protocol to the forthcoming IPv6.

1 232≅ 4.2 billions

4

• The IPv6 protocol may enable new methods of OS fingerprinting. A

secondary goal of this thesis is to identify some of these methods.

C. THESIS OVERVIEW
This section presents briefly the contents of the subsequent chapters.

1. Chapter II, Background
This chapter describes the approaches available today for detecting the OS of a

remote host in an IPv4 environment and presents the available methods for active stack

fingerprinting. The objective of the information presented in this chapter is to help the

reader create a solid base around the concept of OS detection and especially of OS

fingerprinting.

2. Chapter III, Network Configuration and Packet Crafting
In this chapter, the experimentation network, which was set up for the purpose of

the thesis, is presented. The factors on which the selection of the types and the vendors of

the OSes included in the network were based are also described. Finally, it describes the

packet crafting process and how it was conducted in this thesis.

3. Chapter IV, Testing Of Existing IPv4-Based Methods
Two tools available today for OS detection, Nmap and Queso, were explored and

used for OS detection in the test network. Nmap seems to use the most efficient and

complete methods for OS fingerprinting. The results of using those tools with the

network, in order to have a baseline of OS detection in IPv4 environment, are described.

Then, these methods are tested for their applicability with IPv6. The results of the

implementation of each method on the selected OSes in the network are presented in a

table format and analyzed in order to find identifying factors among the OSes.

4. Chapter V, OS Detection Methods Enabled by IPv6
This chapter reports an attempt to identify new OS detection methods enabled by

the IPv6 protocol itself. New methods are possible because a lot of changes were made to

the IP architecture, and it is likely that new identifying factors may be found in the

implementation of the new protocol by different OSes.

5

5. Chapter V, Conclusions
Finally, the results from the tests are summarized and a discussion is presented

about the effectiveness of those methods into IPv6. This chapter also discusses possible

ways to extend this research

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

II. BACKGROUND

This chapter will provide the reader with a solid base with respect to the OS

fingerprinting concept and explore the approaches taken so far to detect the OS resident

on a system of interest. This is important because, even though there is to be a transition

from IPv4 to IPv6, it is possible that the same concepts used for OS fingerprinting in the

first protocol can be used in the second as well.

A. TYPES OF OS DETECTION
Several different approaches have been developed for detecting the OS of a host.

Each one of them has unique pros and cons, and its effectiveness varies from OS to OS.

The basic approaches used today are briefly described below. However, they could be

categorized into four classes based on the type of information they use to identify the OS.

The first two are looking for information gathered at the application layer level, such as

which ports are open on a host or any explicit reference from the application about the

name of the application or the developer. The next two use the concept of “stack

fingerprinting”[5,6], which looks more deeply into the packets sent from the target host

and attempts to determine the OS by examining the values used for some of the fields

inside the various layer headers. Because a specific set of values could identify the OS,

like a specific fingerprint identifies a person, we refer to this set as an OS fingerprint.

1. Port Scanning
Port scanning is the process of probing the TCP and UDP ports on a target host to

identify the services that are running and listening for incoming connections. Although

this is not explicitly an OS detection technique, it can be used to determine the type and

version of the OS [7]. This is because many services are known to run on specific types

of OS. For example, the NetBIOS name service of the Windows OS listens on UDP port

137. That means that if we discover this port open on a host, it most probably is running a

Windows OS. However, this technique is not always successful, as many services are

capable of running on different OS types. For example the Web service uses the HTTP

application layer protocol, which is identified with the well-known port 80. This port is

8

the same for every host used as a public web server. In this case, identifying that port 80

is open and listening for incoming connections does not say too much about the type of

OS on the host.

Some of the port scanning techniques used today are described later when we

discuss the OS detection methods. Because most of these techniques are used for Active

Stack OS detection, the difference lies in the way we manipulate the results found. In the

case of Port Scanning, we are looking for active processes. So, if we attempt to establish

a TCP connection with the target host by sending a SYN packet, then that machine will

send back either a RST/ACK packet if the port is closed or a SYN/ACK packet2 if the

port is open. If we send this packet in sequence to all ports on the target host, we can

discover all the open and closed ports on that machine3.

2. Banner Grabbing
With banner grabbing, we simply try to connect to applications running on the

target host and observe the responses, which sometimes may reveal very useful

information as to the exact type and developer of the application [8]. However, this is not

always effective. The type of information leaving a host is often configurable and many

administrators have taken care of this when setting up their network. So, this type of OS

detection is most effective only in the case of a misconfigured server.

3. Passive Stack Fingerprinting
Passive stack fingerprinting [9] attempts to identify the OS by monitoring

network traffic and examining the values set for some of the fields of the packets sent

from the target host. Some of these fields are the time to live (TTL), window size, initial

sequence number (ISN), the don’t fragment (DF), and possibly others. Passive stack

fingerprinting will identify the values set for these fields and will compare them with a

database and then infer the OS based on the similarities. This means that we must have a

database developed in advance that catalogs OSes by a set of values for those attributes.

This approach, although it can be performed silently without leaving any trace, has a

major limitation in that we must be inside the network for which we want to see the

traffic.
2 This is the TCPconnect scan used by Nmap, where we are trying to attempt a full three-way

handshake with the target host.
3 The port number is 16 bits long, so there are 216 = 65535 different ports.

9

4. Active Stack Fingerprinting
The most effective method investigated by the author is active stack

fingerprinting [10]. This approach is based on the observation that there are cases where

some vendors interpret or implement specific RFC guidance differently from other

vendors when they develop their TCP/IP protocol stack. So, by probing for these

differences we can come up with a very good conjecture as to the exact type of OS in use.

As with the passive stack fingerprinting, these differences in most cases are different

values that are set by the OS in some of the fields of the packets they send out. Those

values are compared with a database, as with passive stack fingerprinting, to identify the

likely implementation. Also, it is possible to observe different behavior by different OSes

in response to the same probing methods.

One might ask at this point why different OSes use different values or display

different behavior if they conform to the same standard. In the Internet, the format,

syntax, and sequence of all packets exchanged between the communicating hosts are

defined in a great detail by the well-known RFCs. However, there are cases where these

standards provide the OS’s vendor with a degree of flexibility to use values for some of

the fields in the headers of the protocol stack. Further, the vendors may interpret

differently the guidance provided from the RFCs during the development of their

protocol stack. Although this is not a major problem, if it is one at all, for the end systems

to communicate over the Internet, it may help to reveal the underlying OS.

There are many methods used today to probe for these differences because the

more methods used, the more differences that may be found and so the guess would be

more accurate. Another reason is because of security implementations. Administrators

may block specific types of packets from entering their network, most often by

establishing a firewall and configuring it appropriately. Innovative, out-of-the-box

thinking may lead to the creation of packets that can circumvent those restrictions and

reach the intended destination machine.

10

B. METHODS OF ACTIVE STACK FINGERPRINTING
Active stack fingerprinting is based on the fact that different OSes may respond

differently when they are triggered in the same way. The key for the effectiveness of this

technique is to find the appropriate packets that can probe for these differences. This is a

process that demands a lot of testing and inspection of the RFC’s guidance to detect

points that could be interpreted differently by different vendors.The literature describes

many methods that could probe for those differences. Active stack fingerprinting defines

a specially constructed packet to trigger the target host to send back a response, which

will include values that could point to a particular OS or constrained set of OSes. Specific

methods found in the literature [10, 11] are described below and some of them are

implemented by tools available today. These techniques use a combination of TCP

header and IPv4 header field values to characterize the target OS.

1. FIN Probe
In this method, a FIN packet is sent to an open port. Although the common

response, as it is directed by the RFC 793, is not to respond, there are OSes that send a

response back with the FIN and ACK flags set.

2. Bogus Flag Probe
This method sends a packet with the SYN and an undefined flag bit set. Some

OSes, such as Linux, will respond with the flag set in their response packet.

3. Initial Sequence Number
This method sends a series of connection request packets to the target machine,

and from the responses we get back we record the initial sequence number (ISN) and we

try to find a pattern in the selection of the ISN.

4. Don’t Fragment Bit (DF)
This method observes the responses coming back from the target machine and

monitors the DF bit in the IP header. Some OSes set this bit in order to enhance

performance, but there are others that do not set that bit or set it only in specific cases.

5. Initial Window Size
This method monitors the initial window size value set by the target machine.

This value can be unique for some OSes and thus can identify the OS.

11

6. ACK Value Probe
This method monitors the ACK value set by the target machine. There are cases

where the value will be the sequence number we sent or the sequence number +1.

7. Type of Service (TOS)
In this method the type of service field of the ICMP “port unreachable” message

sent back is examined. Most OSes use “0” but this may vary. There are cases, for

example Linux, where they use 0xC0.

8. Fragmentation Handling
It is possible that different protocol stack implementations handle overlapping

fragments differently. Some OSes will overwrite the old data with the new data, and vice

versa, when they reassemble the fragments [12].

9. TCP Options
Although the supported TCP options are defined in RFC 793 and RFC 1323, it is

possible that some OSes do not support all of them. Thus, by sending a packet with one

or more options set, we can identify which options are supported by the target OS. Also,

the supported options may be listed in a different order in the response, depending on the

OS.

10. ICMP Error Message Quenching
RFC 1812 suggests that an OS should limit the rate at which it sends error

messages. This can be tested by sending UDP packets to a closed port and then count the

number of unreachable messages received within a given amount of time. This method

has the disadvantage that some UDP packets may be dropped in the network, making it

hard to compute accurate results.

11. ICMP Message Quoting
ICMP error messages should quote some amount of information from the packet

that generated the ICMP error message. However, not all OSes quote the same amount of

information. Thus, by monitoring the amount of quoted information it is possible to make

a guess about the OS employed on the target.

12. ICMP Error Message-Echoing Integrity
As described in the paragraph above, when the OS sends back an ICMP error

message, it quotes some amount of the original message received. Also, some stack

12

implementations change the IP headers of the original message. So, by examining the

type of alterations made by the target, it is possible to make an assumption about the OS.

This chapter provided a survey of methods currently used to extract information

either directly from target host configurations, such as port scans, or from the packets

generated by those systems and sent over the network. The latter, referred to collectively

as stack fingerprinting because of its extraction of information from various protocol

layer headers, may be either passive or active. Some of the methods introduced here will

be employed in a controlled network environment as described in the next chapter

initially over the IPv4 and then over IPv6.

13

III. NETWORK CONFIGURATION

A. NETWORK SETUP
To identify and test the methods of OS fingerprinting used in a IPv4 environment,

we need to set up a small network lab consisting of different OSes. Also, the same

network will be used later when we test those methods in IPv6, thus the OSes of this

network should be configured for dual protocol stack capability. This chapter first

discusses the considerations taken into account for selecting the OSes included in the

network, then describes the network architecture, and finally presents the packet crafting

process, which is the core part of OS fingerprinting.

1. OS Selection
For the selection of the types of the OSes we will include in our network, we

should take into consideration the number of OSes, the vendor of the OS, and the

popularity of the OS. In order to have results as accurate as possible, we need to set up as

many OSes as possible. Also, because the methods used today are looking for differences

in the protocol stack implemented by different OSes developed by different vendors, it

would by wise to include OSes from as many vendors as possible in our selection. And

finally, we should use OSes that seem to have some level of popularity. Often, surveys

about the popularity of the OSes are conducted . Two of them have been found over the

Internet and they present very interesting information on this subject. Table 1 presents

statistical data from a survey conducted by Statemarket.com [14] in a 3-month period

back in 1999. Table 2 [15] also presents statistical data on the popularity of OSes. It

covers a more recent period of time. From the analysis of this information, we conclude

that Windows is almost the dominant OS today. However we observe that the popularity

of others OSes like Linux and MacOS has increased during recent years and will

probably continue to increase. However, the results may not be as realistic as possible,

but the point is that the percentage of popularity for each of them is so distinct among the

vendors that there is no doubt about the order of popularity.

14

Table 1. OS statistics 1[14]

Table 2. OS statistics 2 [15]

Taking into account the above considerations we came up with the following list of OSes
for our network:

• Windows Server 2003 Enterprise Edition

• Windows Server 2003 Standard Edition

15

• Windows XP Professional

• Red Hat Linux Enterprise 4 WS

• Red Hat Linux 9.0

• Fedora Core 4

• Mac OS X 10.4.5

• FreeBSD 6.0

2. Network Architecture
For our purposes, the network could be as simple as possible. The actual topology

used for this thesis is depicted in Figure 2 below. It is composed of one hub, which

interconnects all the hosts into one collision domain. In this network, there are four

machines, in green color, running the different types of OSes. The yellow box represents

the packet generator, for which we use a SmartBits 6000C device manufactured by

Spirent Communications, Inc. The detailed functionalities of the SmartBits device and its

setup for this thesis will be presented in the next section. The laptop above the “Smart

Bits Chassis is necessary for controlling the packet generator. Finally, the packet analyzer

is represented in blue. This is a simple PC, which runs a packet analyzer like Wireshark

to capture the packets exchanged across the network.

Initially, the OSes were installed on the machines of the network, which is a

challenging and time consuming process because of the multi-boot configuration. Next,

each network module on every OS needs to be configured for dual stack network

connectivity. This is necessary because we need to test the OS detection process first on

IPv4 and later on IPv6. Finally, the SmartBits chassis is connected to the network and the

“controller” and configured for its connectivity.

16

Figure 2. Network architecture.

B. PACKET CRAFTING

Central to the concept of OS fingerprinting is the generation of various packets

that will trigger the remote host to respond in a way that will reveal some unique

characteristics of the underlying OS. Any OS with a network module in its architecture

supports the generation of packets that enable the applications running on top of it to

communicate over the Internet. Those packets are, in most of the cases, ordinary packets

exchanged across the network and are responsible for making the communication among

the applications feasible. For OS detection, however, those types of packets may not be

sufficient to make an accurate guess about the OS type. Here is where packet crafting

may help to circumvent any of those restrictions. Packet crafting uses the same network

protocol stack as any other application but gives the user the ability to form any kind of

packet desired and send it to another host connected to the network.

poseidon
MS Server 2003, En. Edition
MS Server 2003, St. Edition
Windows XP Pro

ikaros
Red Hat Linux WS 4.0
FreeBSD 6.0

kerkyra
Red Hat Linux 9.0

kriti
Fedora Core 4

192.0.2.60/28
2000:0:0:4::1/64

Sniffer

SmartBits controller

SmartBits Chassis

Hub

192.0.2.62/28
2000:0:0:4::9/64

192.0.2.56/28
2000:0:0:4::6/64

athens
Mac OS X

192.0.2.49/28
2000:0:0:4::2/64

192.0.2.53/28
2000:0:0:4::3/64

192.0.2.54/28
2000:0:0:4::4/64

192.0.2.55/28
2000:0:0:4::5/64

17

Many tools are available today for packet crafting. Those tools normally support

two modes of operation. One mode provides the user the ability to select the type of

packet to be sent from a limited number of supported protocols, and the other mode gives

the user the opportunity to create a packet by inserting the values of his choice in

hexadecimal format and actually create a complete frame from the bottom up.

The last mode of operation, although it is very powerful, has the disadvantage that

the user must be aware of the details of the protocols that he is about to use. This is

because a single incorrect value may cause the packet to be interpreted as corrupted from

the receiver and finally dropped without further notice to the sender. Also, it is very time

consuming because all values, even the default, must be inserted manually and in the

correct order. Finally, the calculation of the checksum, which is used by various

protocols, must be accomplished. In this case, the user must calculate the checksum

manually and then insert that value where ever is applicable.

1. SmartBits Overview
SmartBits is a tool that supports packet crafting, along with many more services,

and was selected for use for this thesis. It is a performance analysis system that allows the

user to test, simulate, analyze, troubleshoot, develop, and certify equipment such as

routers, repeaters, bridges, and network interface cards (NICs), as well as VLANs,

ELANs, and live networks. It is composed of the SmartBits hardware, shown in Figure 3

below, and the SmartBits software.

18

Figure 3. SmartBits chassis family.

Each chassis supports a number of SmartCards/modules, which are actually

configurable network cards. Each module is connected to the network under test and is

the interface for sending or receiving packets.

Any SmartsBits system supports a variety of software applications. Each

application runs on PCs or workstations connected to the SmartBits chassis. Almost all

SmartBits applications have an easy-to-use Graphical User Interface (GUI), together with

test setup wizards and shortcut options, which greatly simplify the test setup procedure.

Test results can be viewed in spreadsheet or graph form, providing complete results

analysis support.

19

2. Smartwindow Transmit Setup
The application that provides the ability to send specially formatted packets is the

SmartWindow. The process is almost simple because of the graphical interface. First, the

SmartBits module must be connected to the network and the SmartBits chassis connected

to the PC with the SmartWindow application installed. The GUI for SmartWindow is

shown in Figure 4. This picture reflects the SmartBits chassis used. The chassis used in

this case is the SmartBits 6000C, which supports two modules of which only one is

needed in our case.

Figure 4. SmartWindow application interface.

20

For each module we can select the “transmit setup” wizard shown in Figure 5, and

use a graphical interface to select the desired protocol to be included and set the values

for most of their fields for each one of them. In Figures 6, 7, and 8 below are presented

the different interfaces for the general, or basic, settings for the TCP, IPv6, and Ethernet

protocol headers.

Figure 5. Transmit setup for General configuration.

In the general configuration, we set the size of the entire frame to be sent and also

some predefined error generation and security features, available for use if necessary.

21

At the TCP header interface we can configure the following values, which are

represented in the window interface with a white background:

• Source and destination port numbers

• Window size

• Initial sequence number

• Acknowledgment number

• Urgent pointer

• TCP flags set

The values that have a shaded background can not be changed. Also, in this mode

we cannot set any options available at the TCP header and the two reserved flags, ECN

and CWR. This is actually one restriction of this mode of operation.

Figure 6. Transmit setup for TCP header configuration.

22

At the IPv6 header interface we can configure the following values, which are

represented with a white background:

• Source and destination address

• Flow label

• Traffic class

• Hop limit

Figure 7. Transmit setup for IPv6 header configuration.

The other fields of the IPv6 header cannot be changed. Also, we can choose the

“Enable Extension Header” option, in case we need to include any extension headers.

These headers include the following:

• Hop-by-hop options

• Destination options

• Routing option

• Fragment

23

• Authentication

• Encapsulation security payload

It is possible for the user to select one or more of them to be included in the order he

wishes.

At the Ethernet interface, shown in Figure 9, we can configure the source and

destination MAC address. The type field of the TCP header is configured automatically

by the application.

Figure 8. Transmit setup for Ethernet configuration.

Similarly, other protocol headers instead of those described earlier can be

configured. Those include the UDP and IPv4 headers. Further, we could select the option

to send a packet without any transport layer headers.

The other available mode of operation is one where the user constructs the entire

frame to be sent. This mode is more appropriate when we need to include some TCP

options in the packet. In this mode, the user must input the appropriate values for each

24

header in hexadecimal format and calculate the checksum value manually. Figure 9

shows the “transmit setup” wizard for this mode of operation. In this mode, the user can

chose the number of packets to be sent, the length of the packet, and any application layer

data to be included. More options are supported in this wizard but are irrelevant for our

case.

Figure 9. Transmit setup for editing the entire packet manually.

Figure 10. SmartWindow application interface.

25

The next step is to edit the packet, like the one presented in Figure 10. The

following values, in hexadecimal, have been set for this packet.

• Destination MAC address : 00123FAE2159

• Source MAC address : 00123FADE2F5

• Type code : 86DD

• Version : 6 (IPv6 header)

• Traffic class : 00

• Flow lebel : 00000

• Payload length : 0028 (40 Bytes)

• Next header :06 (TCP)

• Hop limit :40 (64 hops)

• Source IPv6 address : 20000000000000040000000000000009

• Destination IPv6 address : 20000000000000040000000000000005

• Source port number : AAAB (decimal 43691)

• Destination port number : 0016 (decimal 22)

• Sequence number : AAAAAAAA

• Acknowledgment number : 00000000

• Header length : A (10 32-bit words)

• Reserved : 0

• Flags : 42 (ECN, SYN)

• Window size : 0800

• Checksum : 8DB6

• Urgent pointer : 0000

• Maximum segment size : 020405A0 (1440)

26

• SACK permitted : 0402

• Time stamp tsval , tsecr : 080A05376CB700000000

• NOP : 01

• Window scale : 03030A (10)

One difficulty we encountered with this mode of operation is the calculation of

the checksum value. If the checksum is not correct, the destination will drop the packet

without any notice to the source of the packet. There are some scripts available that can

calculate the checksum, but in this case also the user has to provide the necessary fields

included in the pseudo header and used for the checksum calculation one by one. After

some experimentation, we discovered a simple work-around to find the correct value of

the checksum very quickly. It has been described earlier that the OS fingerprinting

process and is performed with the help of a packet analyzer. For this thesis, we used

Wireshark. When a packet with an incorrect checksum value is sent through our network

it will be received at the destination host and the packet analyzer. While destination will

drop the packet, Wireshark will capture the packet and present the values. Wireshark will

identify the wrong checksum and will make a notice that the checksum was incorrect and

will include the correct value of the checksum for this packet. So, we can just send the

packet once with an arbitrary value for the checksum and after we record the correct

value, calculated by Wireshark, we simply apply the correction and resend the packet.

With the test bed network established and the means to generate arbitrary packets

identified, we are ready to employ and assess the various means of extracting identifying

characteristics of operating systems. We begin in the next chapter by looking at the

results of two of these tools as applied to IPv4 and IPv6.

27

IV. TESTING OF EXISTING IPV4-BASED METHODS

A. INTRODUCTION
Many methods have been developed to perform OS fingerprinting in an IPv4

environment. Two of the tools that have the capability to conduct OS detection are Nmap

and Queso. This chapter initially describes the methods used by these two tools and

validates them against the OSes running on the machines of the network presented in

Figure 2. Then follows a discussion about the most important differences between the

IPv4 and the IPv6 headers and finally, the methods described earlier applied in IPv6

environment.

1. OS Detection by Nmap
Nmap was originally developed for port scanning, but later the capability for OS

detection was added. Nmap, performs a 3-step procedure for OS detection. Initially it

attempts to determine if the target host is “alive,” that is, if it has network connectivity.

The next step is to port scan the target host. This step triggers the ports on the target and

determines which of them are open or closed. Nmap needs at least one open and one

closed port in order to make an accurate guess about the OS running on the target host.

This process yielded the results presented in Table 3 below regarding the listening TCP

ports on each OS in the network of Figure 2:

28

 22 111 135 139 445 1025 3689 32768 32769

MS Server 2003 Enter. Ed. √ √ √ √

MS Server 2003 Stand. Ed. √ √ √ √

Windows XP Professional √ √ √

Red Hat Linux Enter. 4 WS √ √ √

Red Hat Linux 9.0 √ √ √

Fedora core4 √ √ √

FreeBSD 6.0

Mac OS X √

Table 3. Open TCP ports on each OS with IPv4 address.

The FreeBSD 6.0 had no ports open by default, thus we have to open at least one

manually in order to be able to trigger it later for OS detection. Also, Nmap is not able to

conduct OS fingerprinting in IPv6, but it can port scan a host by using its IPv6 address.

The results from port scanning the machines using IPv6 are presented in Table 4 below.

29

 22 135 445 1025

MS Server 2003 Enter. Ed. √ √ √

MS Server 2003 Stand. Ed. √ √ √

Windows XP Professional √

Red Hat Linux Enter. 4 WS √

Red Hat Linux 9.0 √

Fedora core4 √

FreeBSD 6.0

Mac OS X

Table 4. Open TCP ports on each OS with IPv6 address.

From this table it is evident that the same services are not necessarily available

with both IPv4 and IPv6, at least by default. In this case also, FreeBSD 6.0 and the Mac

OS X didn’t have any open ports, thus we need to open at least one manually for both.

 Finally, after the open ports have been found, Nmap sends a series of specially

formatted TCP and UDP packets and then examines the responses from the target

machine. Nmap examines the fields in the headers of the responses and compares them

against a database of known fingerprints4. If there is a match it will come up with an

inference about the OS running on the target machine. More information about the

capabilities of Nmap can be found at www.insecure.org/nmap/data/nmap_manpage.html.

2. OS Detection By Queso

Queso is another tool for OS detection in an IPv4 environment. However, it is

much simpler than Nmap. This program makes the assumption that we already know at

least one open port on the target machine, so we have just to specify the IP address and

the open port. Queso uses seven methods to detect the OS. That means seven packets,

4 There are about 1,500 fingerprints in the database

30

formatted appropriately, are sent to the target. Then some of the values in the headers of

the responses are examined against a list of known fingerprints, as is the case with Nmap,

and if there is a match, it will come up with a guess about the OS running on the target.

B. VALIDATION IN IPV4 ENVIRONMENT
Now that we have seen the general view of how those tools perform the OS

fingerprinting we can test them against the machines of our network and develop a solid

baseline for OS fingerprinting in IPv4.

1. Test Cases by Nmap
The methods utilized by Nmap are described below and the results for each one of

them gathered for each OS are presented in the following Tables.

a. Test case 1, SYN, ECN packet with options to an open port
This method sends a packet with the SYN and ECN bits set and some

options included in the TCP header. This packet is a request for setting up a connection

with the remote host on the port number specified in the port number field of the packet

send. The common behavior of the host, which has the port listening for incoming

connections, is to acknowledge the request and respond with a packet with the SYN and

ACK flag bits set. A summary of the packet sent to each host in the network and the

responses received from them is presented in Table 5.

b. Test case 2, NULL packet with options to an open port
This method sends a packet with no flags set and some options included in

the TCP header. A summary of the packet sent to each host in the network and the

responses received from them is presented in Table 6.

c. Test case 3, FIN, SYN, PSH, URG packet with options to an
open port

This method sends a packet with the FIN, SYN, PSH, and URG bits set

and some options included in the TCP header. A summary of the packet sent to each host

in the network and the responses received from them is presented in Table 7.

d. Test case 4, ACK packet with options to an open port

This method sends a packet with the ACK flag set and some options

included in the TCP header. This packet originally acknowledges a packet sent from the

31

remote host. Since no packet was sent earlier from that host, the common response is for

the target host to send back a packet with the reset (RST) flag set. A summary of the

packet sent to each host in the network and the responses received from them is presented

in Table 8.

e. Test case 5, SYN packet with options to a closed port
This method sends a packet with the SYN flag set and some options

included in the TCP header to a closed port. This is a request to establish a connection

with the remote host on the specified port number. Because the port is closed, the remote

host must reject the request and send back a packet with the RST and ACK flags set. A

summary of the packet sent to each host in the network and the responses received from

them is presented in Table 9.

f. Test case 6, ACK packet with options to a closed port
This method sends a packet with the ACK flag set and some options

included in the TCP header to a closed port. The ACK flag indicates that the sender

acknowledges some data sent from the remote host. In this case, however, the remote

host has neither sent any data nor is even listening to the port for incoming packets. Thus,

the remote host sends back a packet with the RST flag set. A summary of the packet sent

to each host in the network and the responses received from them is presented in Table

10.

g. Test case 7, FIN, PSH, URG packet with options to a closed port
This method sends a packet with the FIN, PSH, and URG flags set and

some options included in the TCP header to a closed port. The FIN flag in the header

indicates that the sender is attempting to close a connection, but because there is not any

active connection, the remote host sends back a packet with the RST and ACK flags set.

A summary of the packet sent to each host in the network and the responses received

from them is presented in Table 11.

h. Test case 8, UDP packet with data to a closed port
This method sends a UDP packet to a closed port. The common response

is for the remote host to send back an ICMP port unreachable packet (type 3, code 3). A

summary of the packet sent to each host in the network and the responses received from

them is presented in Table 12.

32

Test Case 1-Nmap

SYN, ECN packet with options to an open port

Packet send

HEADER LENGTH 20

TOS 0

TOTAL LENGTH 60

IPV4

FLAGS 0
SEQUENCE SEQ5

ACKNOWLEDGE 0

HEADER 40

FLAGS SYN, ECN

OPTIONS window scale : 10
 NOP
 max seg size : 265
 time stamp : X, 0

TCP

 EOL

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server 2003
Standard Edition Windows XP Pro SP 2 Red Hat Enterprise

Linux 4 WS FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

HEADER LENGTH 20 20 20 20 20 20 20 20

TOS 0 0 0 0 0 0 0 0

TOTAL LENGTH 60 60 60 60 60 60 60 60

FLAGS 0 0 DF DF DF DF DF DF

IPV4

TTL 128 128 128 64 64 64 64 64
SEQUENCE ISN6 ISN ISN ISN ISN ISN ISN ISN

ACKNOWLEDGE SEQ++7 SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++

FLAGS SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK

HEADER 40 40 40 40 40 40 40 40

WINDOW SIZE 16384 16384 16430/655358 5792 5792 5792 65535 65535

OPTIONS max seg size : 1460 max seg size : 1460 max seg size : 1460 max seg size : 1460 max seg size : 1460 max seg size : 1460 max seg size : 1460 max seg size : 1460
 NOP NOP NOP NOP NOP NOP NOP NOP
 window scale : 0(x1) window scale : 0(x1) window scale : 0(x1) NOP NOP NOP window scale : 1(x2) window scale : 0(x1)
 NOP NOP NOP Time stamp : X, Y9 Time stamp : X, Y Time stamp : X, Y NOP NOP
 NOP NOP NOP NOP NOP NOP NOP NOP

TCP

 Time stamp : 0, 0 Time stamp : 0, 0 Time stamp : 0, 0 window scale : 2(x4) window scale : 2(x4) window scale : 0(x1) Time stamp X, Y Time stamp X, Y
Table 5. Test case 1 by Nmap, SYN, ECN packet with options to an open port

5 A randomly selected Initial Sequence number
6 The value is selected from the OS
7 The next expected sequence number
8 It has been observed that Windows XP Pro may use either values for their Window Size
9 X, Y are tsval and tsecr values that change over time and set by the OS

33

Test Case 2- Nmap

NULL packet with options to an open port

Packet send

HEADER LENGTH 20

TOS 0

TOTAL LENGTH 60

IPV4

FLAGS 0
SEQUENCE SEQ

ACKNOWLEDGE 0

HEADER 40

FLAGS 0

OPTIONS window scale : 10
 NOP
 max seg size : 265
 Time stamp : X, 0

TCP

 EOL

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server 2003
Standard Edition Windows XP Pro SP2 Red Hat Enterprise

Linux 4 WS FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

HEADER LENGTH 20 20 20

TOS 0 0 0

TOTAL LENGTH 40 40 40

FLAGS 0 0 0 NO REPLY NO REPLY NO REPLY NO REPLY NO REPLY

IPV4

TTL 128 128 128
SEQUENCE 0 0 0

ACKNOWLEDGE SEQ SEQ SEQ

HEADER 20 20 20

FLAGS RST, ACK RST, ACK RST, ACK

WINDOW SIZE 0 0 0

TCP

OPTIONS -- -- --
Table 6. Test case 2 by Nmap, NULL packet with options to an open port

34

Test Case 3- Nmap

FIN, SYN, PSH, URG packet with options to an open port

Packet send

 HEADER LENGTH 20

TOS 0

TOTAL LENGTH 60

IPV4

FLAGS 0
SEQUENCE SEQ

ACKNOWLEDGE 0

HEADER 40

FLAGS FIN, SYN, PSH, URG

OPTIONS window scale : 10
 NOP
 max seg size : 265
 Time stamp : X, 0

TCP

 EOL

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server 2003
Standard Edition Windows XP Pro SP2 Red Hat Enterprise

Linux 4 WS FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

HEADER LENGTH

TOS 0 0 0 0 0 0 0

TOTAL LENGTH 40 40 40 40 40 40 40 NO REPLY

FLAGS 0 0 DF DF DF DF DF

IPV4

TTL 128 128 128 64 64 64 64
SEQUENCE ISN ISN ISN ISN ISN ISN ISN

ACKNOWLEDGE SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++

HEADER 40 40 40 40 40 40 40

FLAGS SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK

WINDOW SIZE 16384 16384 16430/65535 5792 5792 5792 65535

OPTIONS max seg size : 1460 max seg size : 1460 max seg size : 1460 max seg size : 1460 max seg size : 1460 max seg size : 1460 max seg size : 1460
 NOP NOP NOP NOP NOP NOP NOP
 Win scale : 0(x1) Win scale : 0(x1) Win scale : 0(x1) NOP NOP NOP Win scale : 1(x2)
 NOP NOP NOP Time stamp : X, Y Time stamp : X, Y Time stamp : X, Y NOP
 NOP NOP NOP NOP NOP NOP NOP

TCP

 Time stamp : 0, 0 Time stamp : 0, 0 Time stamp : 0, 0 Win scale : 2(x4) Win scale : 2(x4) Win scale : 0(x1) Time stamp : X, Y
Table 7. Test case 3 by Nmap, FIN, SYN, PSH, URG packet with options to an open port

35

Test Case 4- Nmap

ACK packet with options to an open port

Packet send

HEADER LENGTH 20

 TOS 0

TOTAL LENGTH 60

IPV4

FLAGS 0
SEQUENCE SEQ

ACKNOWLEDGE 0

HEADER 40

FLAGS ACK

OPTIONS window scale : 10
 NOP
 max seg size : 265
 Time stamp : X, 0

TCP

 EOL

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server 2003
Standard Edition Windows XP Pro SP2 Red Hat Enterprise

Linux 4 WS FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

HEADER LENGTH 20 20 20 20 20 20 20 20

TOS 0 0 0 0 0 0 0 0

TOTAL LENGTH 40 40 40 40 40 40 40 40

FLAGS 0 0 0 DF DF DF DF 0

IPV4

TTL 128 128 128 64 64 64 64 64
SEQUENCE 0 0 0 0 0 0 0 0

ACKNOWLEDGE 0 0 0 0 0 0 0 0

HEADER 20 20 20 20 20 20 20 20

FLAGS RST RST RST RST RST RST RST RST

WINDOW SIZE 0 0 0 0 0 0 0 0

TCP

OPTIONS -- -- -- -- -- -- --
Table 8. Test case 4 by Nmap, ACK packet with options to an open port

36

Test Case 5- Nmap

SYN packet with options to a closed port

Packet send

HEADER LENGTH 20

TOS 0

TOTAL LENGTH 60

IPV4

FLAGS 0
SEQUENCE SEQ

ACKNOWLEDGE 0

HEADER 40

FLAGS SYN

OPTIONS window scale : 10
 NOP
 max seg size : 265
 Time stamp : X, 0

TCP

 EOL

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server 2003
Standard Edition

Windows XP Pro SP2 Red Hat Enterprise
Linux 4 WS

FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

HEADER LENGTH 20 20 20 20 20 20 20 20

TOS 0 0 0 0 0 0 0 0

TOTAL LENGTH 40 40 40 40 40 40 40 40

FLAGS 0 0 0 DF DF DF DF 0

IPV4

TTL 128 128 128 64 64 64 64 64
SEQUENCE 0 0 0 0 0 0 0 0

ACKNOWLEDGE SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++

HEADER 20 20 20 20 20 20 20 20

FLAGS RST, ACK RST, ACK RST, ACK RST, ACK RST, ACK RST, ACK RST, ACK RST, ACK

WINDOW SIZE 0 0 0 0 0 0 0 0

TCP

OPTIONS -- -- -- -- -- -- --
Table 9. Test case 5 by Nmap, SYN packet with options to a closed port

37

Test Case 6- Nmap

ACK packet with options to a closed port

Packet send

HEADER LENGTH 20

TOS 0

TOTAL LENGTH 60

IPV4

FLAGS 0
SEQUENCE SEQ

ACKNOWLEDGE 0

HEADER 40

FLAGS ACK

OPTIONS window scale : 10
 NOP
 max seg size : 265
 Time stamp : X, 0

TCP

 EOL

Packet received

Windows Server 2003
Enterprise Edition
SP1

Windows Server 2003
Standard Edition Windows XP Pro SP2 Red Hat Enterprise

Linux 4 WS FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

HEADER LENGTH 20 20 20 20 20 20 20 20

TOS 0 0 0 0 0 0 0 0

TOTAL LENGTH 40 40 40 40 40 40 40 40

FLAGS 0 0 0 DF DF DF DF 0

IPV4

TTL 128 128 128 64 64 64 64 64
SEQUENCE 0 0 0 0 0 0 0 0

ACKNOWLEDGE 0 0 0 0 0 0 0 0

HEADER 20 20 20 20 20 20 20 20

FLAGS RST RST RST RST RST RST RST RST

WINDOW SIZE 0 0 0 0 0 0 0 0

OPTIONS -- -- -- -- -- -- --

TCP

Table 10. Test case 6 by Nmap, ACK packet with options to a closed port

38

Test Case 7- Nmap

FIN, PSH, URG packet to a closed port

Packet send

HEADER LENGTH 20

TOS 0

TOTAL LENGTH 60

IPV4

FLAGS 0
SEQUENCE SEQ

ACKNOWLEDGE 0

HEADER 40

FLAGS FIN, PSH, URG

OPTIONS window scale : 10
 NOP
 max seg size : 265
 Time stamp : X, 0

TCP

 EOL

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server 2003
Standard Edition Windows XP Pro SP2 Red Hat Enterprise

Linux 4 WS FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

HEADER LENGTH 20 20 20 20 20 20 20 20

TOS 0 0 0 0 0 0 0 0

TOTAL LENGTH 40 40 40 40 40 40 40 40

FLAGS 0 0 0 DF DF DF DF 0

IPV4

TTL 128 128 128 64 64 64 64 64
SEQUENCE 0 0 0 0 0 0 0 0

ACKNOWLEDGE SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ SEQ

HEADER 20 20 20 20 20 20 20 20

FLAGS RST, ACK RST, ACK RST, ACK RST, ACK RST, ACK RST, ACK RST, ACK RST, ACK

WINDOW SIZE 0 0 0 0 0 0 0 0

TCP

OPTIONS -- -- -- -- -- -- --
Table 11. Test case 7 by Nmap, FIN, PSH, URG packet with options to a closed port

39

Test Case 8- Nmap

UDP packet with data to a closed port

Packet send

HEADER LENGTH 20

TOS 0

TOTAL LENGTH 328

IPV4

FLAGS 0
DATA 300 Bytes
 UDP
LENGTH 308

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server 2003
Standard Edition

Windows XP Pro SP2 Red Hat Enterprise
Linux 4 WS

FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

HEADER LENGTH 20 20 20 20 20 20 20 20

TOS 0 0 0 1100 00 0 0 1100 00 0 0 1100 00 0 0 0 0

TOTAL LENGTH 176 176 176 356 356 356 56 56

FLAGS 0 0 0 0 0 0 0 0

IPV4

TTL 128 128 128 64 64 64 64 64
TYPE 3 3 3 3 3 3 3 3

CODE 3 3 3 3 3 3 3 3

ICMP

DATA 120 Bytes 120 Bytes 120 Bytes 300 Bytes 300 Bytes 300 Bytes NO DATA NO DATA
Table 12. Test case 8 by Nmap, UDP packet with data to a closed port

40

2. Test Cases By Queso
The methods implemented by Queso are described below and the results from

using Queso against the OSes running in the network of Figure 2 are presented in the

following Tables.

a. Test case 1, SYN packet without options to an open port
In this method, a common request for setting up a connection10 with the

target host on the specified port number is sent to that machine. The common action for a

machine that listens for incoming requests is to accept the request and respond with a

SYN/ACK packet. A summary of the packet sent to each host in the network and the

responses received from them is presented in Table 13.

b. Test case 2, SYN, ACK packet without options to an open port
In this method, a packet is sent that actually accepts an incoming request

to set up a connection. Because no request has been sent from the remote machine, that

machine will send back a RST packet. A summary of the packet sent to each host in the

network and the responses received from them is presented in Table 14.

c. Test case 3, FIN packet without options to an open port
In this method, a packet is sent with the FIN flag set. In this case, the way

the remote machines respond may vary. A summary of the packet sent to each host in the

network and the responses received from them is presented in Table 15.

d. Test case 4, FIN, ACK packet without options to an open port
In this method, a packet is sent with the FIN and ACK flags set. A

summary of the packet sent to each host in the network and the responses received from

them is presented in Table 16.

e. Test case 5, SYN, FIN packet without options to an open port
In this method, a packet is sent with the SYN and FIN flags set. A

summary of the packet sent to each host in the network and the responses received from

them is presented in Table 17.

10 This is the first part of the 3-way handshake between client and server

41

f. Test case 6, PSH packet without options to an open port
In this method, a packet is sent with the PSH flag set. A summary of the

packet sent to each host in the network and the responses received from them is presented

in Table 18.

g. Test case 7, SYN, ECN, CWR packet without options to an open
port

In this method, a packet is sent with the SYN flag and two more flags that

are not used in a TCP/IP network, like ECN and CWR, set. A summary of the packet sent

to each host in the network and the responses received from them is presented in Table

19.

42

Test Case 1-Queso

SYN packet without options to an open port

Packet send

HEADER LENGTH 20

TOS 0

TOTAL LENGTH 40

IPV4

FLAGS 0
SEQUENCE SEQ

ACKNOWLEDGE 0

HEADER 20

TCP

FLAGS SYN

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server
2003 Standard

Edition
Windows XP Pro SP 2 Red Hat Enterprise

Linux 4 WS FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

HEADER LENGTH 20 20 20 20 20 20 20 20

TOS 0 0 0 0 0 0 0 0

TOTAL LENGTH 44 44 44 44 44 44 44 44

FLAGS 0 0 DF DF DF DF DF DF

IPV4

TTL 128 128 128 64 64 64 64 64
SEQUENCE ISN ISN ISN ISN ISN ISN ISN ISN

ACKNOWLEDGE SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++

HEADER 24 24 24 24 24 24 24 24

FLAGS SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK

WINDOW SIZE 16384 16384 16616/65535 5840 5840 5840 65535 65535

TCP

OPTIONS max seg size : 1460 max seg size : 1460 max seg size : 1460 max seg size : 1460 max seg size : 1460 max seg size : 1460 max seg size : 1460 max seg size : 1460
Table 13. Test case 1 by Queso, SYN packet without options to an open port

43

Test Case 2-Queso

SYN, ACK packet without options to an open port

Packet send

HEADER LENGTH 20

TOS 0

TOTAL LENGTH 40

IPV4

FLAGS 0
SEQUENCE SEQ

ACKNOWLEDGE 0

HEADER 20

TCP

FLAGS SYN, ACK

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server 2003
Standard Edition Windows XP Pro SP 2 Red Hat Enterprise

Linux 4 WS FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

HEADER LENGTH 20 20 20 20 20 20 20 20

TOS 0 0 0 0 0 0 0 0

TOTAL LENGTH 40 40 40 40 40 40 40 40

FLAGS 0 0 0 DF DF DF DF 0

IPV4

TTL 128 128 128 64 64 64 64 64
SEQUENCE 0 0 0 0 0 0 0 0

ACKNOWLEDGE 0 0 0 0 0 0 0 0

HEADER 20 20 20 20 20 20 20 20

FLAGS RST RST RST RST RST RST RST RST

TCP

WINDOW SIZE 0 0 0 0 0 0 0 0
Table 14. Test case 2 by Queso, SYN, ACK packet without options to an open port

44

Test Case 3-Queso

FIN packet without options to an open port

Packet send

HEADER LENGTH 20

TOS 0

TOTAL LENGTH 40

IPV4

FLAGS 0
SEQUENCE SEQ

ACKNOWLEDGE 0

HEADER 20

TCP

FLAGS FIN

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server 2003
Standard Edition Windows XP Pro SP 2 Red Hat Enterprise

Linux 4 WS FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

HEADER LENGTH 20 20 20

TOS 0 0 0

TOTAL LENGTH 40 40 40 NO REPLY NO REPLY NO REPLY NO REPLY NO REPLY

FLAGS 0 0 0

IPV4

TTL 128 128 128
SEQUENCE 0 0 0

ACKNOWLEDGE SEQ++ SEQ++ SEQ++

HEADER 20 20 20

FLAGS RST, ACK RST, ACK RST, ACK

TCP

WINDOW SIZE 0 0 0
Table 15. Test case 3 by Queso, FIN packet without options to an open port.

45

Test Case 4-Queso

FIN, ACK packet without options to an open port

Packet send

HEADER LENGTH 20

TOS 0

TOTAL LENGTH 40

IPV4

FLAGS 0
SEQUENCE SEQ

ACKNOWLEDGE 0

HEADER 20

TCP

FLAGS FIN, ACK

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server 2003
Standard Edition Windows XP Pro SP 2 Red Hat Enterprise

Linux 4 WS FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

HEADER LENGTH 20 20 20 20 20 20 20 20

TOS 0 0 0 0 0 0 0 0

TOTAL LENGTH 40 40 40 40 40 40 40 40

FLAGS 0 0 0 DF DF DF DF DF

IPV4

TTL 128 128 128 64 64 64 64 64
SEQUENCE 0 0 0 0 0 0 0 0

ACKNOWLEDGE 0 0 0 0 0 0 0 0

HEADER 20 20 20 20 20 20 20 20

FLAGS RST RST RST RST RST RST RST RST

TCP

WINDOW SIZE 0 0 0 0 0 0 0 0
Table 16. Test case 4 by Queso, FIN, ACK packet without options to an open port.

46

Test Case 5-Queso

SYN, FIN packet without options to an open port

Packet send

HEADER LENGTH 20

TOS 0

TOTAL LENGTH 40

IPV4

FLAGS 0
SEQUENCE SEQ

ACKNOWLEDGE 0

HEADER 20

TCP

FLAGS SYN, FIN

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server 2003
Standard Edition Windows XP Pro SP 2 Red Hat Enterprise

Linux 4 WS FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

HEADER LENGTH 20 20 20 20 20 20 20

TOS 0 0 0 0 0 0 0

TOTAL LENGTH 44 44 44 44 44 44 44

FLAGS 0 0 DF DF DF DF DF NO REPLY

IPV4

TTL 128 128 128 64 64 64 64
SEQUENCE ISN ISN ISN ISN ISN ISN ISN

ACKNOWLEDGE SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++

HEADER 24 24 24 24 24 24 24

FLAGS SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK

WINDOW SIZE 16384 16384 65535 5840 5840 5840 65535

TCP

OPTIONS max seg size : 1460 max seg size : 1460 max seg size : 1460 max seg size : 1460 max seg size : 1460 max seg size : 1460 max seg size : 1460
Table 17. Test case 5 by Queso, SYN, FIN packet without options to an open port

47

Test Case 6-Queso

PSH packet without options to an open port

Packet send

HEADER LENGTH 20

TOS 0

TOTAL LENGTH 40

IPV4

FLAGS 0
SEQUENCE SEQ

ACKNOWLEDGE 0

HEADER 20

TCP

FLAGS PSH

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server 2003
Standard Edition

Windows XP Pro SP
2

Red Hat Enterprise
Linux 4 WS FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

HEADER LENGTH 20 20 20

TOS 0 0 0

TOTAL LENGTH 40 44 44

FLAGS 0 0 0 NO REPLY NO REPLY NO REPLY NO REPLY NO REPLY

IPV4

TTL 128 128 128
SEQUENCE 0 0 0

ACKNOWLEDGE SEQ SEQ SEQ

HEADER 20 20 20

FLAGS RST, ACK RST, ACK RST, ACK

TCP

WINDOW SIZE 0 0 0
Table 18. Test case 6 by Queso, PSH packet without options to an open port

48

Test Case 7-Queso

SYN, ECN, CWR packet without options to an open port

Packet send

HEADER LENGTH 20

TOS 0

TOTAL LENGTH 40

IPV4

FLAGS 0
SEQUENCE SEQ

ACKNOWLEDGE 0

HEADER 20

TCP

FLAGS SYN, ECN, CWR

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server 2003
Standard Edition Windows XP Pro SP 2 Red Hat Enterprise

Linux 4 WS FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

HEADER LENGTH 20 20 20 20 20 20 20 20

TOS 0 0 0 0 0 0 0 0

TOTAL LENGTH 44 44 44 44 44 44 44 44

FLAGS 0 0 DF DF DF DF DF DF

IPV4

TTL 128 128 128 64 64 64 64 64
SEQUENCE ISN ISN ISN ISN ISN ISN ISN ISN

ACKNOWLEDGE SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++

HEADER 24 24 24 24 24 24 24 24

FLAGS SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK

WINDOW SIZE 16384 16384 65535 5840 5840 5840 65535 65535

TCP

OPTIONS max seg size : 1460 max seg size : 1460 max seg size : 1460 max seg size : 1460 max seg size : 1460 max seg size : 1460 max seg size : 1460 max seg size : 1460
Table 19. Test case 7 by Queso, SYN, ECN, CWR packet without options to an open port

49

3. Analysis
From the results presented in the tables above, it is evident that not all OSes

respond with the same values in their headers. Further, there are cases where they don’t

even exhibit the same behavior. The key differences are highlighted below.

a. Don’t Fragment Bit (DF)
Not all OSes set the don’t fragment bit in the IPv4 header. The Windows

servers never set the don’t fragment bit in their response, and Windows XP sets this flag

only when it responds with a SYN, ACK packet. The other OSes always set the DF bit

except in the case of the ICMP response.

b. TTL Value
The Windows OSes always set this value to 128 and the other OSes

always use the value 64. The TTL value, however, cannot be used explicitly to

characterize the OS. This is because the TTL is set from the sender of the packet to some

initial value and decreases by one every time the packet visits an intermediate node.

Thus, this value can only be used implicitly to exclude OSes. For example, if the TTL

value in a received packet is between 64 and 128, that host could not be an OS that sets

the initial TTL value to 64 or possibly less. However the TTL can be configured to an

other default value and lead to inaccurate conclusions. Thus it can not be considered as an

accurate factor for detecting an OS.

c. Window Size
The window size is actually the buffer size in bytes set at the remote host

for this connection. This value is an important factor for OS detection because many

OSes have a unique value among the other OSes that by itself could possibly identify the

OS. Also, it was observed that the Windows and the Linux machines change their

window size value depending on whether the packet sent to that host included options. In

contrast, the FreeBSD machine always set this value to maximum (65535 bytes). So, the

Test Cases 1 and 3 with Nmap included options in the TCP headers of the packets sent to

the target host. The responses received from the Windows servers had the window size

value set to 16384, Windows XP Pro set the value to either 16430 or 65535, the Linux

machines set that value to 5792, and the FreeBSD set the value to 65535. In the Test

Cases 1, 5, and 7 with Queso, there were no options included in the packet sent and the

50

responses received from the Windows servers had the window size value set to 16384

again, Windows XP Pro set the value to 16616 or 65535, the Linux machines set it to

5840, and the FreeBSD set the value to 65535.

d. Options
The options field is another key point by which to differentiate OSes. Not

all OSes support all options. For those options supported, they do not list the supported

options in the same order. Furthermore, it was observed that, while some OSes may

support the same options and present them in the same order, they may support different

values for the window scale, This is the case with Fedora Core 4 and Red Hat Linux 9.0,

where Fedora Core 4 sets that value to x4 and Red Hat Linux 9.0 sets the value to x1.

e. Initial Sequence Number
The initial sequence number is the value chosen by the OS to start

counting the bytes in the packets it sends to the other party of the connection. Although

the RFC 793 does not specify any fixed pattern for choosing the ISN, the selection must

ensure that no other packet belonging to the same connection has the same sequence

number. In the tests presented above, the value of the sequence number is presented with

SEQ, referring to some randomly generated value. However, Nmap records the ISNs

selected from the remote machine and attempts to find a pattern in the selection process

that the OS developer may have used.

f. No Reply
There are some cases where the RFCs do not specify clearly what the

appropriate response should be from a host receiving some types of packets. Thus, the

various developers of the TCP/IP stacks implement different behaviors for their OSes.

Examples of this are the test cases of the NULL packet, PSH packet, and the FIN packet

as presented in the Tables 2, 11, and 14 respectively. In those cases, only the Windows

machines sent back a response.

g. ICMP Port Unreachable
Finally, another factor that helps in the OS detection is the amount of

original data some OSes include in the “ICMP port unreachable” message they send

back. The purpose of this inclusion is for the other host to be able to identify which

51

packet initiated the ICMP message. However, not all OSes include the same amount of

data, as is apparent in the case of a UDP packet sent to a closed port shown in Table 8.

C. APPLICABILITY TO IPV6 ENVIRONMENT
The previous section discussed OS fingerprinting as it may be conducted in an

IPv4 environment using two different tools available today, Nmap and Queso. These

tools use the same concept regarding OS detection. Both attempt to detect the OS by

triggering the target host to respond to specially constructed packets and then comparing

the responses to a database containing known fingerprints. If a match is found, both tools

will make a guess about the OS running on the target host. However, these tools use

different methods for triggering the protocol stack of the target host. Each method sends a

different kind of packet in order to trigger a specific response, which hopefully will

include unique values for some fields among the OSes. That means that the decision as to

the kind of the packet to be sent is crucial for the development of the database containing

the fingerprints in the first place.

This section describes an attempt to apply the same methods used by Nmap and

Queso in an IPv6 environment and examines the existence of identifying factors among

the OSes of the network of Figure 2. In order to proceed to the actual tests on IPv6 it is

important to have a clear knowledge of the IPv6 header format. Also, because the

objective of this section is to import methods from the IPv4 protocol, we should identify

the differences and similarities between IPv4 and IPv6 headers. A discussion of these

aspects is presented in the following two paragraphs.

1. IPv6 vs IPv4 Header Format
Any packets sent across the IPv6 network must comply with the IPv6 protocol

and, therefore, must use the format and syntax defined by the RFC 2460. Thus, it is

evident that the format of the packets as they were constructed and sent by the tools over

the IPv4 protocol cannot be sent exactly the same way over the IPv6 protocol. This is

because IPv4 and IPv6 protocols are specified by different RFCs and use different

formats for their headers.

52

The format of the IPv4 and IPv6 headers are presented in the Figures 11 and 12

below. The most important differences between these two header formats are the

following:

Figure 11. IPv4 header format.

Figure 12. IPv6 header format.

53

a. Header Length
The header length in the IPv6 header is exactly 40 bytes long, instead of

the variable length in the IPv4 header. This is the reason why there is no header length

field in the IPv6 header.

The variable length in the IPv4 header is the result of the options field at

the end of the header. As not all hosts support all available options, and because not all

options are needed for every packet sent across the network, they are not necessarily

included in the header, so the IPv4 header has a variable length. However, in the IPv6

header this field has been removed, so that the header has a constant length.

b. Traffic Class
The traffic class field is 8 bits long and is similar to the type of service

(TOS) field of the of the IPv4 header. The traffic class field in the IPv6 header is

available for use by originating hosts and/or forwarding routers to identify and

distinguish between different classes or priorities of IPv6 packets.

c. Flow Label
The flow label field is 20 bits long and, as it is described in RFC 2460, is

still experimental. There is no equivalent field in the IPv4 header. Its purpose is for a

source to label sequences of packets for which it requests special handling by the IPv6

routers, such as non-default quality of service or "real-time" service.

d. Payload Length
This field is 16 bits long and it is similar to the total length field of the

IPv4 header. The difference is that the payload length gives the number of the bytes

following the IPv6 header. That means that any extension headers are included in the

Payload Length.

e. Next Header

This field is 8 bits long and it is equivalent to the protocol field in IPv4

header. This field identifies the protocol to which the data of the datagram will be

delivered and it uses the same values as IPv4, as described in RFC 1700.

54

f. Hop Limit
The hop limit field is 8 bits long and is similar with the time to live (TTL)

field in the IPv4 header. The value of the hop limit is initialized by the originator of the

packet and it is decremented by one by each node that forwards the packet.

g. Source and Destination Address
These two values are 128bits long each and are analogous to the source

and destination address fields in the IPv4 header.

h. Fragmentation
The IPv6 protocol does not support fragmentation and reassembly at the

intermediate nodes. Those operations are only performed at the source and destination

hosts. That is why there are no Identification, Flags, and Fragment Offset fields included

in the IPv6 header. However, if a packet is received that is too large to be forwarded to

the outgoing link, the router will drop that packet and send to the packet originator an

ICMP error message “Packet Too Big”.

i. Header Checksum
The header checksum field that was included in the IPv4 header has been

removed from the IPv6 header. This is because the TCP and UDP protocols at the

transport layer and the data links protocols, like Ethernet, also include a checksum in

their headers. It seems that this field was redundant and so it was removed.

j. Options
The options field that was available in the IPv4 header has been removed

from IPv6. However, it has not been removed from the protocol stack completely. That

is, it has changed so that the available options become a separate header and are pointed

to by the Next Header field in the IPv6 header. So, if there is a need for a specific kind of

option or options to be included in the packet sent, a separate header for each of them will

be added between the IPv6 and the transport layer header.

2. Equivalence Of IPv6 To IPv4 Header Fields
The methods described earlier in this chapter for OS detection over IPv4 send

complete frames by generating headers of the other layers of the protocol stack. That is,

they should include a transport layer header, a network layer header, and a data link layer

55

header. The transport and data link layer headers are not affected by the change at the

network layer due to IPv6 protocol entry. This is a characteristic of the layered

architecture of the protocol stack. It is possible to use the same format for these two

layers over both IPv4 and IPv6 protocols. Thus, there is no doubt about the applicability

of the methods that use values of the Transport layer headers for identifying the different

OSes. One point of which we should be aware is that the maximum segment size that is

used in the options of TCP header is 1460 bytes for IPv4 packets but in the case of IPv6

this value should be 1440 bytes. That is because the IPv6 header is 20 bytes longer than

the smallest IPv4 header. It should not be expected that the OSes will use the same values

in both cases. For example, it may be possible to identify the OS based on the window

size value used in the TCP header, but this doesn’t necessarily means that this value will

be the same over the IPv4 and IPv6 protocol.

It should be observed that although the transport and IP layers are separate, the

vendors of the OSes develop their protocol stack with these two layers very tightly

coupled. Also, the OS should be able to implement both IPv4 and IPv6, thus they develop

their dual protocol stack in a way that could be depicted graphically in Figure 13.

Application Layer

TCP/IPv4 TCP/IPv6

Link Layer

Physical Layer

Figure 13. Dual protocol stack.

Although the transport and data link headers can be used exactly the same when

probing the IPv6 protocol, that is not the case for IP header itself. Here some

modifications should be applied in order to send packets over IPv6. It was noted earlier

that not all fields of IPv4 have an equivalent in IPv6. Also, some fields have been

56

removed and some others have been added in the IPv6 header. The appropriate

modifications to the packets sent over IPv4 are the following:

• Version: It must change from 4 to 6.

• Header length: There is no equivalent in IPv6 and it can be ignored

• Type of service: It is equivalent with the traffic class in IPv6. No default

values should be tested.

• Total length: There is no equivalent in IPv6 and it should be ignored.

• Identification/flags/fragment offset: These values do not have an

equivalent in the IPv6 and should be ignored. However, the DF flag was a

key factor for identifying among OSes. So, this identifying factor will not

be available in IPv6.

• Time to live: It is equivalent to hop limit in the IPv6, so it can have the

same or different values.

• Protocol: This is equivalent to the next header in the IPv6. Both protocols

use the values described in RFC 1700.

• Internet checksum: There is no equivalent field in the IPv6 header and it

can be ignored.

• Source/destination address: This is analogous to the source and destination

address in the IPv6. However, in the IPv6 header these addresses are 128

bits long. They are still used for identifying the source and destination.

• Options: There is no equivalent field in the IPv6 header. Instead, a

separate header is added between the IPv6 and transport layer headers for

any desired option, which is identified through the next header field in the

IPv6 header.

57

D. APPLICABILITY OF KNOWN METHODS OVER IPV6 PROTOCOL
Eight methods used from Nmap and seven more from Queso were explored

earlier in this chapter. We turn now to the applicability of those methods for

distinguishing the OS when employing the IPv6 protocol.

1. Applicability of the Methods Used by Nmap

a. Test case 1, SYN, ECN packet with options to an open port
This method sends a packet with the SYN and ECN bits set and some

options included in the TCP header. This packet is a request for setting up a connection

with the remote host on the port number specified in the port number field of the packet

sent. The common behavior of the host which has the port listening for incoming

connections is to acknowledge the request and respond with a SYN, ACK packet. A

summary of the packet sent to each host in the network and the responses received from

them is presented in Table 20.

b. Test case 2, NULL packet with options to an open port
This method sends a packet with no flags set and some options included in

the TCP header. A summary of the packet sent to each host in the network and the

responses received from them is presented in Table 21.

c. Test case 3, FIN, SYN, PSH, URG packet with options to an
open port

This method sends a packet with the FIN, SYN, PSH, URG bits set and

some options included in the TCP header. A summary of the packet sent to each host in

the network and the responses received from each them is presented in Table 22.

d. Test case 4, ACK packet with options to an open port
This method sends a packet with the ACK flag set and some options

included in the TCP header. This packet originally acknowledges a packet sent from the

remote host. Because no packet was sent from that host, the common response is for the

target host to send back a packet with the RST flag set. A summary of the packet sent to

each host in the network and the responses received from them is presented in Table 23.

e. Test case 5, SYN packet with options to a closed port
This method sends a packet with the SYN flag set and some options

included in the TCP header to a closed port. This is a request to establish a connection

with the remote host on the specified port number. Because the port is closed, the remote

58

host must reject the request and send back a packet with the RST and ACK flags set. A

summary of the packet sent to each host in the network and the responses received from

them is presented in Table 24.

f. Test case 6, ACK packet with options to a closed port
This method sends a packet with the ACK flag set and some options

included in the TCP header to a closed port. The ACK flag indicates that the sender

acknowledges some data sent from the remote host. In this case, however, the remote

host has neither sent any data nor is it listening to the indicated port for incoming packets.

Thus, the remote host sends back a packet with the RST flag set. A summary of the

packet sent to each host in the network and the responses received from them is presented

in Table 25.

g. Test case 7, ACK packet with options to a closed port
This method sends a packet with the FIN, PSH, and URG flags set and

some options included in the TCP header to a closed port. The FIN flag in the header

indicates that the sender is attempting to close a connection, but because there is no active

connection, the remote host sends back a packet with the RST/ACK flags set. A summary

of the packet sent to each host in the network and the responses received from them is

presented in Table 26.

h. Test case 8, UDP packet with data to a closed port
This method sends a UDP packet to a closed port. The expected response

is for the remote host to send back an ICMP error message, “port unreachable” (type 1,

code 4). A summary of the packet sent to each host in the network and the responses

received from them is presented in Table 27.

59

Test Case 1-Modified from Nmap

SYN, ECN packet with options to a open port

Packet send

TRAFFIC CLASS X

FLOW LABEL Y

PAYLOAD 40

IPV6

HOP LIMIT 64
SEQUENCE SEQ

ACKNOWLEDGE 0

HEADER 40

FLAGS SYN, ECN

OPTIONS max seg size : 1440
 SACK permitted
 Time stamp : X, 0
 NOP

TCP

 Win Scale : 10

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server 2003
Standard Edition

Windows XP Pro SP2 Red Hat Enterprise
Linux 4 WS

FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

TRAFFIC CLASS 0 0 0 0 0 0 00/03/08/0D/0E 0

FLOW LABEL 0 0 0 0 0 0 RANDOM# RANDOM#

PAYLOAD 24 24 24 40 40 40 44 40

IPV6

HOP LIMIT 128 128 128 64 64 64 64 64
SEQUENCE ISN ISN ISN ISN ISN ISN ISN ISN

ACKNOWLEDGE SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++

HEADER 24 24 24 40 40 40 44 40

FLAGS SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK

WINDOW SIZE 17280 17280 17280 5712 5712 5712 65535 65535

OPTIONS Max seg size : 1440 Max seg size : 1440 Max seg size : 1440 Max seg size : 1440 Max seg size : 1440 Max seg size : 1440 Max seg size : 1440 Max seg size : 1440
 SACK permitted SACK permitted SACK permitted NOP NOP
 Time Stamp : X, Time Stamp : X, Y Time Stamp : X, Y Win Scale : 1(X2) Win Scale : 0(X1)
 NOP NOP NOP NOP NOP
 Win Scale : 2(X4) Win Scale : 2(X4) Win Scale : 0(X1) NOP NOP
 Time Stamp : X, Y Time Stamp : X, Y

TCP

 EOL
Table 20. Test case 1 modified from Nmap, SYN, ECN packet with options to an open port.

60

Test Case 2- Modified from Nmap

NULL packet with options to an open port

Packet send

TRAFFIC CLASS X

FLOW LABEL Y

PAYLOAD 40

IPV6

HOP LIMIT 64
SEQUENCE SEQ

ACKNOWLEDGE 0

HEADER 40

FLAGS --

OPTIONS max seg size : 1440
 SACK permitted
 Time stamp : X, 0
 NOP

TCP

 Win Scale : 10

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server 2003
Standard Edition

Windows XP Pro SP2 Red Hat Enterprise
Linux 4 WS

FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

TRAFFIC CLASS 0 0 0

FLOW LABEL 0 0 0 NO REPLY NO REPLY NO REPLY NO REPLY NO REPLY

PAYLOAD 20 20 20

IPV6

HOP LIMIT 128 128 128
SEQUENCE 0 0 0

ACKNOWLEDGE SEQ SEQ SEQ

HEADER LENGTH 20 20 20

FLAGS RST, ACK RST, ACK RST, ACK

WINDOW SIZE 0 0 0

TCP

OPTIONS -- -- --
Table 21. Test case 2 modified from Nmap, NULL packet with options to an open port.

61

Test Case 3- Modified from Nmap

SYN, FIN, PSH, URG packet with options to an open port

Packet send

TRAFFIC CLASS X

FLOW LABEL Y

PAYLOAD 40

IPV6

HOP LIMIT 64
SEQUENCE SEQ

ACKNOWLEDGE 0

FLAGS SYN, FIN, PSH, URG

HEADER 40

OPTIONS max seg size : 1440
 SACK permitted
 Time stamp : X, 0
 NOP

TCP

 Win Scale : 10

Packet received

Windows Server 2003
EnterpriseEnterprise
Edition SP1

Windows Server 2003
Standard Edition

Windows XP Pro SP2 Red Hat Enterprise
Linux 4 WS

FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

TRAFFIC CLASS 0 0 0 0 0 0 0

FLOW LABEL 0 0 0 0 0 0 RANDOM
 NO REPLY
PAYLOAD 24 24 24 40 40 40 44

IPV6

HOP LIMIT 128 128 128 64 64 64 64
SEQUENCE ISN ISN ISN ISN ISN ISN ISN

ACKNOWLEDGE SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++
HEADER LENGTH 24 24 24 40 40 40 44

FLAGS SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK

WINDOW SIZE 17280 17280 17280 5712 5712 5712 65535

OPTIONS Max seg size : 1440 Max seg size : 1440 Max seg size : 1440 Max seg size : 1440 Max seg size : 1440 Max seg size : 1440 Max seg size : 1440
 SACK permitted SACK permitted SACK permitted NOP
 Time Stamp : X, Y Time Stamp : X, Y Time Stamp : X, Y Win Scale : 1(X2)
 NOP NOP NOP NOP
 Win Scale : 2(X4) Win Scale : 2(X4) Win Scale : 0(X1) NOP
 Time Stamp : X, Y
 SACK permitted

TCP

 EOL
Table 22. Test case 3 modified from Nmap, FIN, SYN, PSH, URG packet with options to an open port

62

Test Case 4- Modified from Nmap

ACK packet with options to an open port

Packet send

TRAFFIC CLASS X

FLOW LABEL Y

PAYLOAD 40

IPV6

HOP LIMIT 64
SEQUENCE SEQ

ACKNOWLEDGE 0

HEADER 40

OPTIONS max seg size : 1440
 SACK permitted
 Time stamp : X, 0
 NOP

TCP

 Win Scale : 10

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server 2003
Standard Edition

Windows XP Pro SP2 Red Hat Enterprise
Linux 4 WS

FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

TRAFFIC CLASS 0 0 0 0 0 0 0 X

FLOW LABEL 0 0 0 0 0 0 0 Y

PAYLOAD 20 20 20 20 20 20 20 20

IPV6

HOP LIMIT 128 128 128 64 64 64 64 64
SEQUENCE 0 0 0 0 0 0 0 0

ACKNOWLEDGE 0 0 0 0 0 0 0 0

HEADER LENGTH 20 20 20 20 20 20 20 20

FLAGS RST RST RST RST RST RST RST RST

WINDOW SIZE 0 0 0 0 0 0 0 0

TCP

OPTIONS -- -- -- -- -- -- -- --
Table 23. Test case 4 modified from Nmap, ACK packet with options to an open port

63

Test Case 5- Modified from Nmap

SYN packet with options to a closed port

Packet send

TRAFFIC CLASS X

FLOW LABEL Y

PAYLOAD 40

IPV6

HOP LIMIT 64
SEQUENCE SEQ

ACKNOWLEDGE 0

FLAGS SYN

HEADER 40

OPTIONS max seg size : 1440
 SACK permitted
 Time stamp : X, 0
 NOP

TCP

 Win Scale : 2(x4)

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server 2003
Standard Edition

Windows XP Pro SP2 Red Hat Enterprise
Linux 4 WS

FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

TRAFFIC CLASS 0 0 0 0 0 0 0 X

FLOW LABEL 0 0 0 0 0 0 0 Y

PAYLOAD 20 20 20 20 20 20 20 20

IPV6

HOP LIMIT 128 128 128 64 64 64 64 64
SEQUENCE 0 0 0 0 0 0 0 0

ACKNOWLEDGE SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++

HEADER 20 20 20 20 20 20 20 20

FLAGS RST, ACK RST, ACK RST, ACK RST, ACK RST, ACK RST, ACK RST, ACK RST, ACK

WINDOW SIZE 0 0 0 0 0 0 0 0

TCP

OPTIONS -- -- -- -- -- -- -- --
Table 24. Test case 5 modified from Nmap, SYN packet with options to a closed port.

64

Test Case 6- Modified from Nmap

ACK packet with options to a closed port

Packet send

TRAFFIC CLASS X

FLOW LABEL Y

PAYLOAD 40

IPV6

HOP LIMIT 64
SEQUENCE SEQ

ACKNOWLEDGE 0

HEADER LENGTH 40

FLAGS ACK

OPTIONS max seg size : 1440
 SACK permitted
 Time stamp : X, 0
 NOP

TCP

 Win Scale : 10

Packet received

Windows Server
2003 Enterprise
Edition SP1

Windows Server
2003 Standard
Edition

Windows XP Pro SP2 Red Hat Enterprise
Linux 4 WS

FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

TRAFFIC CLASS 0 0 0 0 0 0 0 X

FLOW LABEL 0 0 0 0 0 0 0 Y

PAYLOAD 20 20 20 20 20 20 20 20

IPV6

HOP LIMIT 128 128 128 64 64 64 64 64
SEQUENCE 0 0 0 0 0 0 0 0

ACKNOWLEDGE 0 0 0 0 0 0 0 0

HEADER 20 20 20 20 20 20 20 20

FLAGS RST RST RST RST RST RST RST RST

WINDOW SIZE 0 0 0 0 0 0 0 0

TCP

OPTIONS -- -- -- -- -- -- -- --
Table 25. Test case 6 modified from Nmap, ACK packet with options to a closed port.

65

Test Case 7- Modified from Nmap

FIN, PSH, URG packet with options to a closed port

Packet send

TRAFFIC CLASS X

FLOW LABEL Y

PAYLOAD 40

IPV6

HOP LIMIT 64
SEQUENCE SEQ

ACKNOWLEDGE 0

HEADER LENGTH 40

FLAGS FIN, PSH, URG

OPTIONS max seg size : 1440
 SACK permitted
 Time stamp : X, 0
 NOP

TCP

 Win Scale : 10

Packet received

Windows Server 2003
Enterprise Edition
SP1

Windows Server 2003
Standard Edition

Windows XP Pro
SP2

Red Hat Enterprise
Linux 4 WS

FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

TRAFFIC CLASS 0 0 0 0 0 0 0 X

FLOW LABEL 0 0 0 0 0 0 0 Y

PAYLOAD 20 20 20 20 20 20 20 20

IPV6

HOP LIMIT 128 128 128 64 64 64 64 64
SEQUENCE 0 0 0 0 0 0 0 0

ACKNOWLEDGE SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ SEQ

HEADER LENGTH 20 20 20 20 20 20 20 20

FLAGS RST, ACK RST, ACK RST, ACK RST, ACK RST, ACK RST, ACK RST, ACK RST, ACK

WINDOW SIZE 0 0 0 0 0 0 0 0

TCP

OPTIONS -- -- -- -- -- -- -- --
Table 26. Test case 7 modified from Nmap, FIN, PSH, URG packet with options to a closed port.

66

Test Case 8- Modified from Nmap

UDP packet to a closed port

Packet send

TRAFFIC CLASS X

FLOW LABEL Y

PAYLOAD 1208

IPV6

HOP LIMIT 64

DATA 1200 Bytes UDP

Packet received

Windows Server 2003
Enterprise Edition
SP1

Windows Server 2003
Standard Edition

Windows XP Pro
SP2

Red Hat Enterprise
Linux 4 WS

FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

TRAFFIC CLASS 0 0 0 0 0 0 0 0

FLOW LABEL 0 0 0 0 0 0 0 0

PAYLOAD 1240 1240 1240 1240 1240 1240 1240 1240

IPV6

HOP LIMIT 128 128 128 64 64 64 64 64
TYPE 1 1 1 1 1 1 1 1

CODE 4 4 4 4 4 4 4 4

ICMP

DATA 1184 Bytes 1184 Bytes 1184 Bytes 1184 Bytes 1184 Bytes 1184 Bytes 1184 Bytes 1184 Bytes
Table 27. Test case 8 modified from Nmap, UDP packet with data to a closed port.

67

2. Applicability of the Methods Used by Queso

a. Test case 1, SYN packet without options to an open port

In this method, a common request for setting up a connection11 with the

target host, on a specified port number, is sent to the target host. The expected action for

a machine which listens for incoming requests is to accept the request and respond with a

SYN, ACK packet. A summary of the packet sent to each host in the network and the

responses received from them is presented in Table 28.

b. Test case 2, SYN, ACK packet without options to an open port
In this method, a packet is sent that actually accepts an incoming request

to set up a connection. Because no request has been sent from the target host, that host

will send back a RST packet. A summary of the packet sent to each host in the network

and the responses received from them is presented in Table 29.

c. Test case 3, FIN packet without options to an open port
In this method, a packet is sent with the FIN flag set. In this case, the way

the remote machines respond may vary. A summary of the packet sent to each host in the

network and the responses received from them is presented in Table 30.

d. Test case 4, FIN, ACK packet without options to an open port
In this method, a packet is sent with the FIN and ACK flags set. A

summary of the packet sent to each host in the network and the responses received from

them is presented in Table 31.

e. Test case 5, SYN, FIN packet without options to an open port
In this method, a packet is sent with the SYN and FIN flags set. A

summary of the packet sent to each host in the network and the responses received from

them is presented in Table 32.

f. Test case 6, PSH packet without options to an open port

In this method, a packet is sent with the PSH flag set. A summary of the

packet sent to each host in the network and the responses received from them is presented

in Table 33.

11 This is the first part of the 3-way handshake between client and server.

68

g. Test case 7, SYN, ECN, CWR packet without options to an open
port

In this method, a packet is sent with the SYN flag and two additional flags

that are not used in a TCP/IP network, such as ECN and CWR, set. A summary of the

packet sent to each host in the network and the responses received from them is presented

in Table 34.

69

Test Case 1- Modified from Queso

SYN packet without options to an open port

Packet send

TRAFFIC CLASS X

FLOW LABEL Y

PAYLOAD 20

IPV6

HOP LIMIT 255
SEQUENCE SEQ

ACKNOWLEDGE 0

HEADER 20

TCP

FLAGS SYN

Packet received

Windows Server 2003
Enterprise Edition
SP1

Windows Server 2003
Standard Edition

Windows XP Pro
SP2

Red Hat Enterprise
Linux 4 WS

FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

TRAFFIC CLASS 0 0 0 0 0 0 0 0

FLOW LABEL 0 0 0 0 0 0 RANDOM RANDOM

PAYLOAD 24 24 24 24 24 24 24 24

HOP LIMIT 128 128 128 64 64 64 64 64

IPV6

SEQUENCE ISN ISN ISN ISN ISN ISN ISN ISN

ACKNOWLEDGE SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++

HEADER 24 24 24 24 24 24 24 24

FLAGS SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK

WINDOW SIZE 17080 17080 17080 5760 5760 5760 65535 65535

TCP

OPTIONS max seg size: 1440 max seg size: 1440 max seg size: 1440 max seg size: 1440 max seg size: 1440 max seg size: 1440 max seg size: 1440 max seg size: 1440
Table 28. Test case 1 modified from Queso, SYN packet without options to an open port

70

Test Case 2- Modified from Queso

SYN, ACK packet without options to an open port

Packet send

TRAFFIC CLASS X

FLOW LABEL Y

PAYLOAD 20

IPV6

HOP LIMIT 255
SEQUENCE SEQ

ACKNOWLEDGE 0

HEADER 20

TCP

FLAGS SYN, ACK

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server 2003
Standard Edition

Windows XP Pro
SP2

Red Hat Enterprise
Linux 4 WS

FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

TRAFFIC CLASS 0 0 0 0 0 0 0 X

FLOW LABEL 0 0 0 0 0 0 0 Y

PAYLOAD 20 20 20 20 20 20 20 20

HOP LIMIT 128 128 128 64 64 64 64 64

IPV6

SEQUENCE 0 0 0 0 0 0 0 0

ACKNOWLEDGE 0 0 0 0 0 0 0 0

HEADER 20 20 20 20 20 20 20 20

FLAGS RST RST RST RST RST RST RST RST

WINDOW SIZE 0 0 0 0 0 0 0 0

TCP

OPTIONS -- -- -- -- -- -- -- --
Table 29. Test case 2 modified from Queso, SYN, ACK packet without options to an open port.

71

Test Case 3- Modified from Queso

FIN packet without options to an open port

Packet send

TRAFFIC CLASS X

FLOW LABEL Y

PAYLOAD 20

IPV6

HOP LIMIT 255
SEQUENCE SEQ

ACKNOWLEDGE 0

HEADER 20

TCP

FLAGS FIN

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server 2003
Standard Edition

Windows XP Pro
SP2

Red Hat Enterprise
Linux 4 WS

FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

TRAFFIC CLASS 0 0 0

FLOW LABEL 0 0 0
 NO REPLY NO REPLY NO REPLY NO REPLY NO REPLY
PAYLOAD 20 20 20

HOP LIMIT 128 128 128

IPV6

SEQUENCE 0 0 0

ACKNOWLEDGE SEQ++ SEQ++ SEQ++

HEADER 20 20 20

FLAGS RST, ACK RST, ACK RST, ACK

WINDOW SIZE 0 0 0

TCP

OPTIONS -- -- --
Table 30. Test case 3 modified from Queso, FIN packet without options to an open port

72

Test Case 4- Modified from Queso

FIN, ACK packet without options to an open port

Packet send

TRAFFIC CLASS X

FLOW LABEL Y

PAYLOAD 20

IPV6

HOP LIMIT 255
SEQUENCE SEQ

ACKNOWLEDGE 0

HEADER 20

TCP

FLAGS FIN, ACK

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server 2003
Standard Edition

Windows XP Pro
SP2

Red Hat Enterprise
Linux 4 WS

FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

TRAFFIC CLASS 0 0 0 0 0 0 0 X

FLOW LABEL 0 0 0 0 0 0 0 Y

PAYLOAD 20 20 20 20 20 20 20 20

HOP LIMIT 128 128 128 64 64 64 64 64

IPV6

SEQUENCE 0 0 0 0 0 0 0 0

ACKNOWLEDGE 0 0 0 0 0 0 0 0

HEADER 20 20 20 20 20 20 20 20

FLAGS RST RST RST RST RST RST RST RST

WINDOW SIZE 0 0 0 0 0 0 0 0

TCP

OPTIONS -- -- -- -- -- -- -- --
Table 31. Test case 4 modified from Queso, FIN, ACK packet without options to an open port

73

Test Case 5- Modified from Queso

SYN, FIN packet without options to an open port

Packet send

TRAFFIC CLASS X

FLOW LABEL Y

PAYLOAD 20

IPV6

HOP LIMIT 255
SEQUENCE SEQ

ACKNOWLEDGE 0

HEADER 20

TCP

FLAGS SYN, FIN

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server 2003
Standard Edition

Windows XP Pro
SP2

Red Hat Enterprise
Linux 4 WS

FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

TRAFFIC CLASS 0 0 0 0 0 0 0

FLOW LABEL 0 0 0 0 0 0 RANDOM
 NO REPLY
PAYLOAD 24 24 24 24 24 24 24

HOP LIMIT 128 128 128 64 64 64 64

IPV6

SEQUENCE ISN ISN ISN ISN ISN ISN ISN

ACKNOWLEDGE SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++

HEADER 24 24 24 24 24 24 24

FLAGS SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK

WINDOW SIZE 17080 17080 17080 5760 5760 5760 65535

TCP

OPTIONS max seg size:1440 max seg size:1440 max seg size:1440 max seg size:1440 max seg size:1440 max seg size:1440 max seg size:1440
Table 32. Test case 5 modified from Queso, SYN, FIN packet without options to an open port

74

Test Case 6- Modified from Queso

PSH packet without options to an open port

Packet send

TRAFFIC CLASS X

FLOW LABEL Y

PAYLOAD 20

IPV6

HOP LIMIT 255
SEQUENCE SEQ

ACKNOWLEDGE 0

HEADER 20

TCP

FLAGS PSH

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server 2003
Standard Edition

Windows XP Pro
SP2

Red Hat Enterprise
Linux 4 WS

FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

TRAFFIC CLASS 0 0 0

FLOW LABEL 0 0 0
 NO REPLY NO REPLY NO REPLY NO REPLY NO REPLY
PAYLOAD 20 20 20

HOP LIMIT 128 128 128

IPV6

SEQUENCE 0 0 0

ACKNOWLEDGE SEQ SEQ SEQ

HEADER 20 20 20

FLAGS RST, ACK RST, ACK RST, ACK

WINDOW SIZE 0 0 0

TCP

OPTIONS -- -- --
Table 33. Test case 6 modified from Queso, PSH packet without options to an open port

75

Test Case 7- Modified from Queso

SYN, ECN, CWR packet without options to an open port

Packet send

TRAFFIC CLASS X

FLOW LABEL Y

PAYLOAD 20

IPV6

HOP LIMIT 255
SEQUENCE SEQ

ACKNOWLEDGE 0

HEADER 20

TCP

FLAGS SYN, ECN, CWR

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server 2003
Standard Edition

Windows XP Pro
SP2

Red Hat Enterprise
Linux 4 WS

FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

TRAFFIC CLASS 0 0 0 0 0 0 0 0

FLOW LABEL 0 0 0 0 0 0 RANDOM RANDOM

PAYLOAD 24 24 24 24 24 24 24 24

HOP LIMIT 128 128 128 64 64 64 64 64

IPV6

SEQUENCE ISN ISN ISN ISN ISN ISN ISN ISN

ACKNOWLEDGE SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++ SEQ++

HEADER 24 24 24 24 24 24 24 24

FLAGS SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK SYN, ACK

WINDOW SIZE 17080 17080 17080 5760 5760 5760 65535 65535

TCP

OPTIONS max seg size:1440 max seg size:1440 max seg size:1440 max seg size:1440 max seg size:1440 max seg size:1440 max seg size:1440 max seg size:1440
Table 34. Test case 7 modified from Queso, SYN, ECN, CWR packet without options to an open port

76

3. Analysis
From the results presented in the tables above, it is evident that not all OSes

respond with the same values in their headers and there are cases where they don’t even

exhibit the same behavior. These results parallel those found when the two tools are used

in an IPv4 environment. The key points where differences can be identified between the

responses or behavior of individual OSes are discussed below.

a. Window Size
The widow size is actually the buffer size in bytes, set at the remote host

for this connection. This value is an important factor of OS detection because many OS

use a unique value as compared to the other OSes. Also, it was observed that the

Windows and the Linux machines change their window size value depending on whether

or not the packet sent to that host included options, while the FreeBSD machine always

set this value to the maximum (65535 bytes). Specifically, Test Cases 1 and 3 included

options in the TCP headers of the packets sent to the target host and the responses

received from the Windows machines had the window size value set to 17280, the Linux

machines set that value to 5712, and the FreeBSD set the value to 65535. In Test Cases 9,

13, and 15, there were no options included in the packet sent and the responses received

from the Windows machines had the window size value set to 17080, the Linux machines

set that value to 5760, and the FreeBSD again set the value to 65535.

b. Options
The options field is another key point to differentiate OSes. Not all OSes

support all options and nor do they list the supported options in the same order. Windows

machines include in their option field only the “Maximum Segment Size”, where other

OSes may include more options. Furthermore, it was observed that though some OSes

support the same options and present them in the same order, they may support different

values for the window scale, as happens in the case of Fedora Core 4 and Red Hat Linux

9.0.

c. No Reply
There are some cases where the RFCs do not specify clearly the

appropriate response from a host receiving some types of packets. Thus, the developers

of the TCP/IP stack may implement different behavior for their OS. Examples of these

77

cases are the test cases of the NULL packet, the FIN packet, and the PSH packet

described in Test Cases 2, 11, and 14, respectively. In those cases, only the Windows

machines sent back a response.

d. Hop Limit Value
As in the case of IPv4, the Windows OSes always set this value to 128 and

the other OSes always use the value 64. As described with respect to IPv4, the hop limit

value can only be used to exclude OSes. For example, if the hop limit value in a received

packet is more than 64 that host could not be using an OS that sets the initial hop limit

value to 64 or less.

e. Traffic Class
In the test cases presented earlier, the traffic class field of the packet sent

to the target machine was set to a randomly selected value. However, many different

values were tested but they resulted in the same responses. From the results received, it

seems that only the FreeBSD 6.0 and the MacOS X set this field to a value other than the

default, which is “0.” It was observed that there are cases where FreeBSD may use 0x0,

0x3, 0x8, 0xD or 0xe for the responses sent back. MacOS X set this value to “0” when

the response was to accept a connection with the other machine (SYN, ACK packet) and

to the value extracted from the received packet in all other cases. Although this value

seems to give some clue about the OS, actually it is not safe to use. This is because RFC

2460 mandates, “An upper-layer protocol must not assume that the value of the Traffic

Class bits in a received packet are the same as the value sent by the packet's source,”

because any intermediate node could possibly change this value. So it would be wise, at

least for now, to not use it for OS fingerprinting because this field is still under

experimental use.

f. Flow Label

Similar to the traffic class field, the value used for the flow label field was

selected randomly. While many different values were tested no difference was observed

in the responses. The common response is for all OSes to set this value to “0.” However,

FreeBSD and MacOS X set this field to a random value when they were accepting a

request to establish a connection. MacOS X set this field to the same value as that in the

packet received for all other cases. The only case that was observed where this value was

78

set to “0” by MacOS was in the case of the ICMPv6 “port unreachable” message.

Possibly the other OSes do not support this functionality and simply set this value to “0”

as allowed by RFC 2460.

g. Payload
The payload value counts the number of bytes included in the data field of

the IPv6 packet. Thus, it is closely related to the amount of TCP options included in the

packet. Only when the amount of options carried in a TCP segment varies, it is possible

to make a guess (but not accurate) about the type of OS. In the test cases described

earlier, we can characterize an OS belonging to a family of OSes like Windows or Linux.

h. ICMPv6 port Unreachable
In the IPv4 case, it was observed that the amount of original data sent back

from the OSes was not constant, and this was a factor for identifying the OS. In the case

of IPv6, the ICMP protocol has been replaced from the ICMPv6, which is defined in RFC

2463. The “port unreachable” message is identified as a Type 1 Code 4 message. In Test

Case 8, a UDP packet sent to a closed port included some data. The OSes sent back an

ICMPv6 “port unreachable” response but the amount of original data sent back never

exceeded 1184 bytes, regardless of the amount of data in the original packet. Further,

this behavior was observed for all OSes. The point here is that it is not possible to

identify the OS based on the amount of original data included in the ICMPv6 header.

The two tools explored by this thesis were effective in providing clues to

the underlying OS used on a target machine regardless of the IP version encountered as

the tools use information carried in the transport and Network layer headers. We next

look to see if the changes in the IPv6 header format open new opportunities to extract

information that may lead to the identity of the OS.

79

V. OS DETECTION METHODS ENABLED BY IPV6

A. OVERVIEW
The research of this thesis so far was concentrated on the current methods for OS

fingerprinting under IPv4 and the feasibility to use these methods also with IPv6. In the

previous chapter, it was shown that the existing methods for OS fingerprinting on IPv4

could possibly be used on IPv6. However, the necessary changes need to be made on the

IP header of the packet so that it conforms to the requirements of the new protocol. IPv6,

however, introduces a new concept in the overall protocol stack architecture: the

extension headers.

1. Optional Information In IPv6
In IPv4, there was a variable-length optionfield that the originator of the packet

used to request specific handling for the packet by the network or the receiver. In IPv6,

this field is no longer available. The IPv6 header is always 40 bytes long. However,

optional Internet layer information may be encoded in separate headers that may be

placed between the IPv6 header and the upper layer header. There is a small number of

such extension headers defined, each identified by a distinct Next Header value. A full

implementation of IPv6 includes the following extension headers:

• Hop-by-Hop options

• Routing

• Fragment

• Destination options

• Authentication

• Encapsulation Security Payload

With exception of the Hop-by-Hop extension header, these headers are not

examined or processed by any node along a packet’s delivery path, until the packet

reaches the node identified in the Destination Address field of the IPv6 header. The Hop-

80

by-Hop options header is examined and processed by every node along a packet’s

delivery path. Each of these extension headers is subject to specific format requirements.

The first four of them are specified in RFC 2460 and the last two in RFCs 2402 and 2406,

respectively.

2. Research Concept
This chapter concentrates on the possibility of OS fingerprinting methods using

any of the extension headers. The idea behind the use of the extension headers in order to

detect the OS is to identify possible inconsistencies within the guidance provided by the

RFCs in the way the OSes respond to received packets. In a departure from the methods

described in the previous chapter, we do not observe the type of information the target

OS will include in the IPv6 or TCP header. This has been already examined. Also, the

objective of the extension headers is to request some type of service from the network or

the receiver of the packet. In this case, the network or the receiver could possibly provide

the requested type of service or even better, at least for our purposes, would not

understand the requested type of service and so will respond with an ICMPv6 packet

pointing to the unrecognized value. If the requested type of service is understood and

supported by the receiver, it will handle the packet in the appropriate way and proceed to

the next header, which is either TCP or UDP. That means that we will not receive back a

packet with any of the extension headers included. Another reason for receiving an

ICMPv6 response from the target OS is the case where we craft and send to the target OS

a packet with an extension header but with some invalid values included in the fields of

the extension headers. For those cases, RFCs define the appropriate response but it may

be possible that the target OS will not respond with the expected response. The problem

with this case is that if the extension header will be examined or processed by any

intermediate router, it may be possible for the packet to be dropped and never reach its

destination. So, it is important to ensure that the packet we craft and send to the target OS

will get through the network and reach the destination.

81

B. OS FINGERPRINTING METHODS ENABLED BY IPV6 EXTENSION
HEADERS
The following extension headers were examined for utility in identifying the

remote OS. Some key identifying factors are described below:

1. Routing Header
The routing header is very similar to IPv4’s Loose Source and Record Route

option. This header is used by the originator of the packet to list one or more intermediate

nodes that must be visited on the way to the destination. The format of the Routing

Header, as it is specified in RFC 2460, is presented in Figure 14 below.

Figure 14. Routing header format.

• Next header: 8-bit selector. Identifies the type of header immediately

following the routing header.

• Hdr Ext length: 8-bit unsigned integer. Length of the routing header in 8-

octet units, not including the first 8 octets.

• Routing type: 8-bit identifier of a particular routing header variant. In RFC

2460, only the routing type “0” is described. Other routing types supported

or experimental are presented in the Table 35 below.

• Segments left: 8-bit unsigned integer. Number of route segments

remaining, i.e. number of explicitly listed intermediate nodes still to be

visited before reaching the final destination.

• Type-specific data: variable-length field, the format of which is

determined by the routing type, and of length is such that the complete

routing header is an integer multiple of 8 octets long.

82

Table 35. Routing types[16].

For the routing header, the following methods were found that could possibly be used as

a fingerprint for the target OS.

a. Test case 1, Unrecognized routing type
This method sends a packet with a routing extension header following the

IPv6 header and, optionally, the TCP header following the routing header as the upper

layer protocol. The routing type field is set to an unrecognized value such as “0XFF,” the

segments left field is set to “1”, and the data field set to the “::0” address. As it is

specified in RFC 2460, when the receiver of the packet, while processing the routing

header, encounters an unrecognized type it will make the following decision based on the

value of the segments left field. If the segments left field is “0”, then the receiver will

ignore the routing header and proceed to process the next header. Otherwise, the receiver

will discard the packet and send back an ICMPv6 Type 4, Code 0 (parameter problem,

erroneous header field encountered) message to the originator of the packet pointing to

the unrecognized routing type. A summary of the packet sent to each host in the network

and the responses received from them is presented in Table 37.

b. Test case2, Unrouted address
This method sends a packet with a routing extension header following the

IPv6 header. The routing type field is set to the default type “0”, the segments left field is

set to “1”, and the data field set to the ::0 address. As it is specified in RFC 2460, the first

node to be visited is the address specified in the destination address field in the IPv6

header. When the packet reaches that node, then the same node will have to route the

packet through the next address listed in the type-specific data field12of the routing

extension header. In this case, that address is considered unrouted, thus the node would

not be able to forward the packet. The appropriate response for this case is not explicitly

12 A list with the addresses to be visited before the packet reaches the final destination

83

defined in RFC 2460 and the responses by different OSes may vary. A summary of the

packet sent to each host in the network and the responses received from them is presented

in Table 38.

c. Test case 3, Incorrect extension header length
This method also sends a packet with a routing extension header following

the IPv6 header and, optionally, the TCP header following the Routing header, as the

upper layer protocol. The routing type field is set to the default type “0”, the segments

left field is set to “2”, and the data field contains the ::0 address. As specified in RFC

2460, when the receiver of the packet, while processing the routing header, determines

that the segments left field is greater than the routing addresses in the routing extension

header, it should discard the packet and send an ICMPv6 Type 4, Code 0 (parameter

problem, erroneous header field encountered) message to the originator of the packet. A

summary of the packet sent to each host in the network and the responses received from

them is presented in Table 39.

2. Destinations Options Header
The destination options header is used to carry optional information that needs to

be examined only by a packet’s destination node. The format of the destination options

header, as it is specified in RFC 2460, is presented in Figure 15 below.

Figure 15. Destinations options header.

• Next Header: 8-bit selector. Identifies the type of header immediately

following the Destination Options header.

84

• Hdr Ext Len: 8-bit unsigned integer. Length of the Destination Options

header in 8-octet units, not including the first 8 octets.

• Options: Variable-length field, of length such that the complete destination

options header is an integer multiple of 8 octets. Contains one or more

Type-Length-Value (TLV) encoded options, as described in RFC 2460

section 4.2. The format of this field is presented in Figure 16 below.

Figure 16. TLV encoded options format.

• Option Type: 8-bit identifier of the type of option. In RFC 2460, only the

Pad1 and PadN options are described. Other supported options are

experimental as presented in Table 36 below.

• Opt Data Len: 8-bit unsigned integer. Length of the Option Data field of

this option, in octets.

• Option Data: Variable-length field. Option-Type-specific data.

In the destination header, one or more options can be included. Each one requires

a separate one of the TLV encoded options.

85

Table 36. Supported option types [16].

For the Destinations Options header the following method was found that could possibly

be used to fingerprint a target OS.

a. Test case 4, Unrecognized destination type
This method sends a packet with a destination option extension header

following the IPv6 header and, optionally, the TCP header following the routing header,

as the upper layer protocol. The Destination Type is set to an unrecognized value for a

Destination Header. In this case it was set to 0XC2, which is for the “Jumbo Payload,”

which is an optional type supported only by the hop-by-hop extension header. The option

type codes are internally encoded such that the their highest order two bits specify the

action that must be taken if the processing IPv6 node does not recognized the option type.

In this case, the expected response is to “discard the packet and, only if the packet's

Destination Address was not a multicast address, send an ICMP Parameter Problem,

Code 2, message to the packet's Source Address, pointing to the unrecognized Option

Type.” [17]. A summary of the packet sent to each host in the network and the responses

received from them is presented in Table 40.

86

Test Case 1

Unrecognized routing type

Packet send
TRAFFIC CLASS X

FLOW LABEL Y

PAYLOAD 44/2413

NEXT HEADER 0X2B

(ROUTING)

IPV6

HOP LIMIT 64
NEXT HEADER 6 (TCP)

59(NO NEXT HEADER)

LENGTH 2

TYPE 0XFF

(UNRECOGNIZED TYPE)

SEGMENT LEFT 1

ROUTING

ADDRESS ::0
SEQUENCE ISN

ACKNOWLEDGE 0

FLAGS SYN

HEADER 20

TCP

OPTIONS --

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server 2003
Standard Edition

Windows XP Pro SP2 Red Hat Enterprise
Linux 4 WS

FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

TRAFFIC CLASS 0 0 0 0 0 0 0 0

FLOW LABEL 0 0 0 0 0 0 0 0

PAYLOAD 92/72 92/72 92/72 92/72 92/72 92/72 92/72 92/72

IPV6

HOP LIMIT 128 128 128 64 64 64 64 64
TYPE 4 4 4 4 4 4 4 4

CODE 0 0 0 0 0 0 0 0

POINTER 0X2A 0X2A 0X2A 0X2A 0X2A 0X2 0X2A 0X2A

 PARAMETER PROBLEM
MESSAGE

ICMPv6

 ERRONEOUS HEADER
FIELD ENCOUNTERED

Table 37. Test case 1, Unrecognized routing type.

13 44 Bytes when there is TCP header and 24 Bytes when there is no TCP header following the Routing extension header

87

Test Case 2

Unrouted address

Packet send
TRAFFIC CLASS X

FLOW LABEL Y

PAYLOAD 44/24

NEXT HEADER 0X2B

(ROUTING)

IPV6

HOP LIMIT 64
NEXT HEADER 6 (TCP)

59(NO NEXT HEADER)

LENGTH 2

TYPE 0

SEGMENTS LEFT 1

ROUTING

ADDRESS ::0
SEQUENCE ISN

ACKNOWLEDGE 0

HEADER 20

FLAGS SYN

OPTIONS --

TCP

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server 2003
Standard Edition

Windows XP Pro SP2 Red Hat Enterprise
Linux 4 WS

FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

TRAFFIC CLASS 0 0 0

FLOW LABEL 0 0 0
 NO REPLY NO REPLY NO REPLY NO REPLY NO REPLY
PAYLOAD 92 92 92

IPV6

HOP LIMIT 128 128 128
TYPE 4 4 4

CODE 0 0 0

POINTER 0x30 0x30 0x30

PARAMETER
PROBLEM MESSAGE

ICMPv6

ERRONEOUS
HEADER FIELD
ENCOUNTERED

Table 38. Test case 2, Unrouted Address.

88

Test Case 3

Incorrect extension header length

Packet send
TRAFFIC CLASS X

FLOW LABEL Y

PAYLOAD 24

NEXT HEADER
0X2B

(ROUTING)

IPV6

HOP LIMIT 64
NEXT HEADER 59(NO NEXT HEADER)

LENGTH 1

TYPE 0

SEGMENTS LEFT 2

ROUTING

ADDRESS ::0

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server 2003
Standard Edition

Windows XP Pro SP2 Red Hat Enterprise
Linux 4 WS

FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

TRAFFIC CLASS 0 0 0 0 0 0 0 0

FLOW LABEL 0 0 0 0 0 0 0 0

PAYLOAD 72 72 72 72 72 72 72 72

IPV6

HOP LIMIT 128 128 128 64 64 64 64 64
TYPE 4 4 4 4 4 4 4 4

CODE 0 0 0 0 0 0 0 0

ICMPv6

POINTER 0X29 0X29 0X29 0X29 0X29 0X1 0X29 0X29
Table 39. Test case 3, Incorrect extension header length.

89

Test Case 4

Unrecognized destination type

Packet send
TRAFFIC CLASS X

FLOW LABEL Y

PAYLOAD 28/8

NEXT HEADER 0X3C

(DESTINATIONS)

IPV6

HOP LIMIT 64
NEXT HEADER 6 (TCP)

59(NO NEXT HEADER)

LENGTH 0

DESTINATION

TYPE 0XC2
(JUMBO PACKET)

SEQUENCE ISN

ACKNOWLEDGE 0

FLAGS SYN

HEADER 20

TCP

OPTIONS --

Packet received

Windows Server 2003
Enterprise Edition SP1

Windows Server 2003
Standard Edition

Windows XP Pro SP2 Red Hat Enterprise
Linux 4 WS

FEDORA CORE 4 Red Hat Linux 9.0 FreeBSD 6.0 MAC OS X

TRAFFIC CLASS 0 0 0 0 0 0 0 0

FLOW LABEL 0 0 0 0 0 0 0 0

PAYLOAD 76 76 76 76 76 76 76 76

IPV6

HOP LIMIT 128 128 128 64 64 64 64 64
TYPE 4 4 4 4 4 4 4 4

CODE 0 0 0 2 2 2 2 2

POINTER 0X2A 0X2A 0X2A 0X2A 0X2A 0X2A 0X2A 0X2A

PARAMETER
PROBLEM MESSAGE

PARAMETER
PROBLEM MESSAGE

ICMPv6

ERRONEOUS
HEADER FIELD
ENCOUNTERED

UNRECOGNIZED IPV6
OPTION
ENCOUNTERED

Table 40. Test case 4, Unrecognized destination type.

90

C. ANALYSIS
From the results above, it is evident that not all OSes respond with the same

values in their headers and there are cases where their behavior is different. The

common characteristic of the methods described in the test cases earlier is that all of

them trigger the target host to respond with an ICMPv6 message. Although the RFCs

provide explicit guidance as to the appropriate response for most of the cases, the OSes

do show some deviation from that guidance. The various differences that were explored

in the previous chapter regarding the IPv6 header appear in these cases also and are not

discussed again. However, the differences that are identified by examining the responses

in the ICMPv6 headers are discussed below.

1. ICMPv6 Pointer Value
The pointer value placed in an ICMPv6 message sent by a node points to the

unrecognized field of the original packet received by that node. In Test Cases 1 and 3,

almost all OSes sent an ICMPv6 message Type 4 Code 0 to the originator of the packet

pointing to the 0x2A and 0x29 respectively, which are the routing type and segments left

fields of the original packet. An exception was observed for Red Hat Linux 9.0, which

includes different values for the pointer fields, 0x2 and 0x1 respectively. It appears that

Red Hat Linux 9.0 still points to the same unrecognized fields but starts the counting of

the bytes in the original packet from the first byte of the routing extension header,

offsetting it by 40 bytes compared with the values inserted by the other OSes.

2. No Reply
In Test Case 2, the address included in the routing header that is supposed to be

visited on the path to reach the destination node cannot be routed. This case is not

explicitly covered in RFC 2460 and we observe that only the Windows machines

respond with an ICMPv6 message Type 4, Code 0 (parameter problem erroneous header

field encountered) pointing to the 0x30 nyte of the original packet. This byte is part of

the IPv6 address included in the routing header, which we set to “::0”. It is actually the

first byte after the initial 64-bit prefix. This is because the smallest prefix in an IPv6

address is 64 bits and we set it to “0.” When the node examines the prefix value and

finds that it is zero, it determines that it cannot process the packet and sends back the

error message to the source address.

91

3. ICMPv6 Code Value
In Test Case 4, we observe a slightly different response between the Windows

machines and the rest of the OSes. Windows responds with an ICMPv6 Type 4, Code 0

and the rest of the OSes send back an ICMPv6 Type 4, Code 2 message. This is an

example of what can be interpreted differently by different vendors of the OSes. It is

evident in both cases that this packet can not be processed and the problem is at the

destination option type 0XC2 (jumbo payload). The jumbo payload option is supported

only by the hop-by-hop extension header, so Windows machines on the one hand

assume that the 0XC2 value is erroneous for this extension header (destination header)

and the other OSes, on other hand, consider this value as unrecognized.

It can be concluded, then, that the extension headers may provide opportunities

for fingerprinting the target host OS. While this list of techniques indicate the fertility of

IPv6 extension headers for eliciting information about the OSes employed on a network,

it is not comprehensive as other techniques may be used which were not explored in this

thesis

92

THIS PAGE INTENTIONALLY LEFT BLANK

93

VI. CONCLUSIONS

The objective of OS fingerprinting is to identify the OS type a target machine is

running from a remote machine. OS fingerprinting is feasible because developers of

different OSes may interpret the guidance provided by the RFCs differently, and

consequently their network protocol stack implementation may generate responses

bearing unique markers to certain probing packets. The key part of OS fingerprinting is

the finding of suitable probing packets for different OSes. Effective OS fingerprinting

tools have been developed for probing hosts running the IPv4 protocol stack. This thesis

has shown that the methods used by these tools can also be used for probing a host that

runs an IPv6 protocol stack and that IPv6 extension headers could enable additional

methods for OS fingerprinting.

A. CONCLUSIONS
Tables 41 and 42 below summarize the results presented in Chapter IV and V.

They indicate the effectiveness of each method evaluated in this thesis, in terms of its

ability to fingerprint the OS type of a host known to run an IPv6 protocol stack.. For

example, by applying the first TCP/UDP based method on the selected set of OSes we

have identified five different fingerprints, each one associated with a particular OS or a

set of OSes. Note that after a brief description of each method are two page numbers:

one pointing to where the detail of the probing packet is given and the other pointing to

where the detail of the response packets from different OSes is presented.

94

Methods Tested Sets of OSes with Unique Fingerprint

SY
N

, E
C

N
 p

ac
ke

t w
ith

op

tio
ns

 to
 a

n
op

en
 p

or
t

[c
f.

pp
 7

3;
 p

p
76

]

A. MS Server 2003 Enterprise/Standard, Windows XP Pro

B. Red Hat Enterprise Linux 4 WS, Fedora Core 4

C. Red Hat Linux 9.0

D. FreeBSD 6.0

E. MAC OS X

N
U

LL
 p

ac
ke

t w
ith

 o
pt

io
ns

to

 a
n

op
en

 p
or

t
[c

f.
pp

 7
4;

 p
p

77
]

1. MS Server 2003 Enterprise/Standard, Windows XP Pro

2. Red Hat Enterprise Linux 4 WS, Fedora Core 4, Red Hat

Linux 9.0, FreeBSD 6.0, MAC OS X

FI
N

, S
Y

N
, P

SH
, U

R
G

pa

ck
et

 w
ith

 o
pt

io
ns

 to
 a

n
op

en
 p

or
t

[c
f.

pp
 7

4;
 p

p
78

]

1. MS Server 2003 Enterprise/Standard, Windows XP Pro

2. Red Hat Enterprise Linux 4 WS, Fedora Core 4

3. Red Hat Linux 9.0

4. FreeBSD 6.0

5. MAC OS X

TCP/UDP

based
A

C
K

 p
ac

ke
t w

ith
 o

pt
io

ns

to
 a

n
op

en
 p

or
t

[c
f.

pp
 7

4;
 p

p
79

]

1. MS Server 2003 Enterprise/Standard, Windows XP Pro

2. Red Hat Enterprise Linux 4 WS, Fedora Core 4, Red Hat

Linux 9.0, FreeBSD 6.0

3. MAC OS X

95

SY
N

 p
ac

ke
t w

ith
 o

pt
io

ns

to
 a

 c
lo

se
d

po
rt

[c
f.

pp
 7

4;
 p

p
80

]

1. MS Server 2003 Enterprise/Standard, Windows XP Pro

2. Red Hat Enterprise Linux 4 WS, Fedora Core 4, Red Hat

Linux 9.0, FreeBSD 6.0

3. MAC OS X

A
C

K
 p

ac
ke

t w
ith

 o
pt

io
ns

to

 a
 c

lo
se

d
po

rt
[c

f.
pp

 7
4;

 p
p

81
]

1. MS Server 2003 Enterprise/Standard, Windows XP Pro

2. Red Hat Enterprise Linux 4 WS, Fedora Core 4, Red Hat

Linux 9.0, FreeBSD 6.0

3. MAC OS X

A
C

K
 p

ac
ke

t w
ith

 o
pt

io
ns

to

 a
 c

lo
se

d
po

rt
[c

f.
pp

 7
5;

 p
p

82
]

1. MS Server 2003 Enterprise/Standard, Windows XP Pro

2. Red Hat Enterprise Linux 4 WS, Fedora Core 4, Red Hat

Linux 9.0

3. FreeBSD 6.0

4. MAC OS X

U
D

P
pa

ck
et

 w
ith

 d
at

a
to

 a

cl
os

ed
 p

or
t

[c
f.

pp
 7

5;
 p

p
83

]

1. MS Server 2003 Enterprise/Standard, Windows XP Pro

2. Red Hat Enterprise Linux 4 WS, Fedora Core 4, Red Hat

Linux 9.0, FreeBSD 6.0, MAC OS X

96

SY
N

 p
ac

ke
t w

ith
ou

t
op

tio
ns

 to
 a

n
op

en
 p

or
t

[c
f.

pp
 8

4;
 p

p
86

]

1. MS Server 2003 Enterprise/Standard, Windows XP Pro

2. Red Hat Enterprise Linux 4 WS, Fedora Core 4, Red Hat

Linux 9.0

3. FreeBSD 6.0, MAC OS X

SY
N

, A
C

K
 p

ac
ke

t w
ith

ou
t

op
tio

ns
 to

 a
n

op
en

 p
or

t
[c

f.
pp

 8
4;

 p
p

87
]

1. MS Server 2003 Enterprise/Standard, Windows XP Pro

2. Red Hat Enterprise Linux 4 WS, Fedora Core 4, Red Hat

Linux 9.0, FreeBSD 6.0

3. MAC OS X

FI
N

 p
ac

ke
t w

ith
ou

t
op

tio
ns

 to
 a

n
op

en
 p

or
t

[c
f.

pp
 8

4;
 p

p
88

]

1. MS Server 2003 Enterprise/Standard, Windows XP Pro

2. Red Hat Enterprise Linux 4 WS, Fedora Core 4, Red Hat

Linux 9.0, FreeBSD 6.0, MAC OS X

FI
N

, A
C

K
 p

ac
ke

t w
ith

ou
t

op
tio

ns
 to

 a
n

op
en

 p
or

t
[c

f.
pp

 8
4;

 p
p

89
]

1. MS Server 2003 Enterprise/Standard, Windows XP Pro

2. Red Hat Enterprise Linux 4 WS, Fedora Core 4, Red Hat

Linux 9.0, FreeBSD 6.0

3. MAC OS X

97

SY
N

, F
IN

 p
ac

ke
t w

ith
ou

t
op

tio
ns

 to
 a

n
op

en
 p

or
t

[c
f.

pp
 8

4;
 p

p
90

]

1. MS Server 2003 Enterprise/Standard, Windows XP Pro

2. Red Hat Enterprise Linux 4 WS, Fedora Core 4, Red Hat

Linux 9.0

3. FreeBSD 6.0

4. MAC OS X
PS

H
 p

ac
ke

t w
ith

ou
t

op
tio

ns
 to

 a
n

op
en

 p
or

t
[c

f.
pp

 8
4;

 p
p

91
]

1. MS Server 2003 Enterprise/Standard, Windows XP Pro

2. Red Hat Enterprise Linux 4 WS, Fedora Core 4, Red Hat

Linux 9.0, FreeBSD 6.0, MAC OS X

SY
N

, E
C

N
, C

W
R

 p
ac

ke
t

w
ith

ou
t o

pt
io

ns
 to

 a
n

op
en

po

rt
[c

f.
pp

 8
4;

 p
p

92
]

1. MS Server 2003 Enterprise/Standard, Windows XP Pro

2. Red Hat Enterprise Linux 4 WS, Fedora Core 4, Red Hat

Linux 9.0

3. FreeBSD 6.0, MAC OS X

Table 41. Consolidated results from using UDP/TCP methods.

98

Methods Tested Sets of OSes with Unique Fingerprint

U
nr

ec
og

ni
ze

d
ro

ut
in

g
ty

pe

[c
f.

pp
 9

9;
 p

p
10

3]

1. MS Server 2003 Enterprise/Standard, Windows XP Pro

2. Red Hat Enterprise Linux 4 WS, Fedora Core 4, FreeBSD

6.0, MAC OS X

3. Red Hat Linux 9.0
U

nr
ou

te
d

 a
dd

re
ss

[c

f.
pp

 9
9;

 p
p

10
4]

1. MS Server 2003 Enterprise/Standard, Windows XP Pro

2. Red Hat Enterprise Linux 4 WS, Red Hat Linux 9.0,

Fedora Core 4, FreeBSD 6.0, MAC OS X

In
co

rr
ec

t e
xt

en
si

on
 h

ea
de

r
Le

ng
th

[c

f.
pp

 1
00

; p
p

10
5]

A. MS Server 2003 Enterprise/Standard, Windows XP Pro

B. Red Hat Enterprise Linux 4 WS, Fedora Core 4, FreeBSD

6.0, MAC OS X

C. Red Hat Linux 9.0

IPv6

extension

headers

based

U
nr

ec
og

ni
ze

d
de

st
in

at
io

n
ty

pe

[c
f.

pp
 1

02
; p

p
10

6]

A. MS Server 2003 Enterprise/Standard, Windows XP Pro

B. Red Hat Enterprise Linux 4 WS, Red Hat Linux 9.0,

Fedora Core 4, FreeBSD 6.0, MAC OS X

Table 42. Consolidated results from using IPv6 extension header.

99

The following conclusions can be drawn from the results summarized in the tables

above:

• Tools developed in the IPv4 environment can be used to fingerprint an IPv6 host

effectively. They are able to differentiate a majority of the OSes in the selected

test set. However, they can no longer be used to distinguish XP Pro from the

other two server versions of Microsoft Windows. This might be because all

three versions of Windows are bundled with the same IPv6 code. The

confirmation is left for further study.

• The IPv6 extension header based methods seem not as effective as the UDP/TCP

based methods. The methods tried for this thesis trigger the same responses from

Red Hat Enterprise Linux 4 WS, Fedora Core 4, FreeBSD 6.0, and MAC OS X.

Again, it might be because all these OSes have borrowed the same code base.

More work is required in this area to either confirm this conjecture or develop

more effective fingerprinting probes.

• None of the methods tried in this thesis can distinguish between Red Hat

Enterprise 4 WS and Fedora Core 4. This is true even in the IPv4 environment.

 Another point of significant concern for OS fingerprinting methods is the lack of

tools for crafting IPv6 packets. IPv6 is still experimental and there are not many tools

available with an easy-to-use interface. In this thesis SmartBits 6000C was used. There

were, however, cases where the crafting had to be done manually and the appropriate

values provided in hexadecimal format. This is a very time consuming process because a

single incorrect value may make the packet unusable or un-routable.

B. FUTURE RESEARCH

An important aspect that is crucial for OS fingerprinting is the size of the

database holding the known fingerprints. A larger database would lead to more accurate

inferences about the target OS. Thus, it is important to build a database with as many

fingerprints as possible. Each OS explored should be added to the database. It was

noted that Nmap includes about 1,500 fingerprints in its database. From our study we

100

concluded that no single method provides definitive fingerprint for all OSes in an IPv6

environment. An application could be developed to exploit all these methods and

maintain a fingerprint database specifically for IPv6 hosts, iteratively applying probes to

refine each inference and so automate the process of recognizing an OS.

Another limitation of this work is that only a few extension headers of IPv6 were

evaluated. This is largely due to the fact that many of the supported options are still

experimental and thus they are not fully defined. It should be beneficial to revisit this

issue when the specifications of IPv6 extension headers become more concrete and more

stable.

Finally, not all of the methods described in Chapters IV and V were effective.

However, we should not conclude that these methods are absolutely without merit. The

OSes sample used is not large enough to be considered exhaustive. These methods may

be more successful against other OSes. Thus, one possible way to extend this research

could be the application of the methods described in this thesis to additional OSes so

that we can have a better idea about which methods are useful and which are not.

101

LIST OF REFERENCES

1. James F. Kurose, Keith W. Ross. Computer Networking; A TOP DOWN
APPROACH FETURING THE INTERNET 3rd edition. 2004

2. James F. Kurose, Keith W. Ross. Computer Networking; A TOP DOWN
APPROACH FETURING THE INTERNET 3rd edition, pp 344. 2004

3. Solensky 1996

4. Stephen E. Deering, Robert M. Hinden. Internet Protocol, Version 6
(IPv6) Specification. RFC 2460, pp 2.

5. Stuart McClure, Joel Scambray, George Kurtz. Hacking Exposed
Network Security & Solutions 5th Edition, p 69

6. Fyodor. “Remote OS detection via TCP/IP Stack Fingerprinting”. 18 Oct.
1998. <www.insecure.org>.

7. Stuart McClure, Joel Scambray, George Kurtz. Hacking Exposed
Network Security & Solutions 5th Edition, p 52

8. Stuart McClure, Joel Scambray, George Kurtz, Hacking Exposed
Network Security & Solutions 5th Edition, p 79

9. Stuart McClure, Joel Scambray, George Kurtz. Hacking Exposed
Network Security & Solutions 5th Edition, p 73

10. Stuart McClure, Joel Scambray, George Kurtz. Hacking Exposed
Network Security & Solutions 5th Edition, p 68

11. Fyodor. “Remote OS detection via TCP/IP stack Fingerprinting”. 18 Oct.
1998. <www.insecure.org/nmap/nmap-fingerprinting-article.html>.

12. Thomas Ptacek, Tim Newsham; “Insertion, Evasion and Denial of
service: Eluding Network Intrusion Detection”.
<www.clark.net/<126>roesch/idspaper.html>.

13. Stuart McClure, Joel Scambray, George Kurtz, Hacking Exposed
Network Security & Solutions 5th Edition, p 69

14. Philosophe.com. A thoughtful approach to web site quality. 7 Jun 1999.
<http://www.philosophe.com/audience/operating_systems.html>.

15. www.w3schools.com.Browser statistics. 16 Jun 2006.
<http://www.w3schools.com/browsers/browsers_stats.asp>.

http://www.insecure.org
http://www.insecure.org/nmap/nmap-fingerprinting-article.html
http://www.philosophe.com/audience/operating_systems.html
http://www.w3schools.com.Browser
http://www.w3schools.com/browsers/browsers_stats.asp

102

16. IANA. “IP VERSION 6 PARAMETERS”. 25 Jul 2006.
www.iana.org/assignments/ipv6-parameters.

17. Stephen E. Deering, Robert M. Hinden. Internet Protocol, Version 6
(IPv6) Specification. RFC 2460, pp 8.

http://www.iana.org/assignments/ipv6-parameters

103

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Neal Ziring
National Security Agency
Fort George G. Meade, Maryland

4. Matthew N. Smith
National Security Agency
Fort George G. Meade, Maryland

	
	I. INTRODUCTION
	A. IMPORTANCE OF OS DETECTION
	B. THESIS OBJECTIVES
	C. THESIS OVERVIEW
	1. Chapter II, Background
	2. Chapter III, Network Configuration and Packet Crafting
	3. Chapter IV, Testing Of Existing IPv4-Based Methods
	4. Chapter V, OS Detection Methods Enabled by IPv6
	5. Chapter V, Conclusions

	II. BACKGROUND
	A. TYPES OF OS DETECTION
	1. Port Scanning
	2. Banner Grabbing
	3. Passive Stack Fingerprinting
	4. Active Stack Fingerprinting

	B. METHODS OF ACTIVE STACK FINGERPRINTING
	1. FIN Probe
	2. Bogus Flag Probe
	3. Initial Sequence Number
	4. Don’t Fragment Bit (DF)
	5. Initial Window Size
	6. ACK Value Probe
	7. Type of Service (TOS)
	8. Fragmentation Handling
	9. TCP Options
	10. ICMP Error Message Quenching
	11. ICMP Message Quoting
	12. ICMP Error Message-Echoing Integrity

	III. NETWORK CONFIGURATION
	A. NETWORK SETUP
	1. OS Selection
	2. Network Architecture

	B. PACKET CRAFTING
	1. SmartBits Overview
	 2. Smartwindow Transmit Setup

	IV. TESTING OF EXISTING IPV4-BASED METHODS
	A. INTRODUCTION
	1. OS Detection by Nmap
	2. OS Detection By Queso

	B. VALIDATION IN IPV4 ENVIRONMENT
	1. Test Cases by Nmap
	a. Test case 1, SYN, ECN packet with options to an open port
	b. Test case 2, NULL packet with options to an open port
	c. Test case 3, FIN, SYN, PSH, URG packet with options to an open port
	d. Test case 4, ACK packet with options to an open port
	e. Test case 5, SYN packet with options to a closed port
	f. Test case 6, ACK packet with options to a closed port
	g. Test case 7, FIN, PSH, URG packet with options to a closed port
	h. Test case 8, UDP packet with data to a closed port

	2. Test Cases By Queso
	a. Test case 1, SYN packet without options to an open port
	b. Test case 2, SYN, ACK packet without options to an open port
	c. Test case 3, FIN packet without options to an open port
	d. Test case 4, FIN, ACK packet without options to an open port
	e. Test case 5, SYN, FIN packet without options to an open port
	f. Test case 6, PSH packet without options to an open port
	g. Test case 7, SYN, ECN, CWR packet without options to an open port

	3. Analysis
	a. Don’t Fragment Bit (DF)
	b. TTL Value
	c. Window Size
	d. Options
	e. Initial Sequence Number
	f. No Reply
	g. ICMP Port Unreachable

	C. APPLICABILITY TO IPV6 ENVIRONMENT
	1. IPv6 vs IPv4 Header Format
	a. Header Length
	b. Traffic Class
	c. Flow Label
	d. Payload Length
	e. Next Header
	f. Hop Limit
	g. Source and Destination Address
	h. Fragmentation
	i. Header Checksum
	j. Options

	2. Equivalence Of IPv6 To IPv4 Header Fields

	D. APPLICABILITY OF KNOWN METHODS OVER IPV6 PROTOCOL
	1. Applicability of the Methods Used by Nmap
	a. Test case 1, SYN, ECN packet with options to an open port
	b. Test case 2, NULL packet with options to an open port
	c. Test case 3, FIN, SYN, PSH, URG packet with options to an open port
	d. Test case 4, ACK packet with options to an open port
	e. Test case 5, SYN packet with options to a closed port
	f. Test case 6, ACK packet with options to a closed port
	g. Test case 7, ACK packet with options to a closed port
	h. Test case 8, UDP packet with data to a closed port

	2. Applicability of the Methods Used by Queso
	a. Test case 1, SYN packet without options to an open port
	b. Test case 2, SYN, ACK packet without options to an open port
	c. Test case 3, FIN packet without options to an open port
	d. Test case 4, FIN, ACK packet without options to an open port
	e. Test case 5, SYN, FIN packet without options to an open port
	f. Test case 6, PSH packet without options to an open port
	g. Test case 7, SYN, ECN, CWR packet without options to an open port

	
	3. Analysis
	a. Window Size
	b. Options
	c. No Reply
	d. Hop Limit Value
	e. Traffic Class
	f. Flow Label
	g. Payload
	h. ICMPv6 port Unreachable

	V. OS DETECTION METHODS ENABLED BY IPV6
	A. OVERVIEW
	1. Optional Information In IPv6
	2. Research Concept

	B. OS FINGERPRINTING METHODS ENABLED BY IPV6 EXTENSION HEADERS
	1. Routing Header
	a. Test case 1, Unrecognized routing type
	b. Test case2, Unrouted address
	c. Test case 3, Incorrect extension header length

	2. Destinations Options Header
	a. Test case 4, Unrecognized destination type

	C. ANALYSIS
	1. ICMPv6 Pointer Value
	2. No Reply
	3. ICMPv6 Code Value

	VI. CONCLUSIONS
	A. CONCLUSIONS
	B. FUTURE RESEARCH

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

