From Legacy C2 Systems to Mission-Centered Design: Tactical Tomahawk Weapon Control System

David Kellmeyer & Glenn Osga
SPAWAR System Center - San Diego (SSC-SD)
User-Centered Design Team
CCRTS June 2004

dave@spawar.navy.mil
Sponsors

- **Future Naval Capability (FNC) Programs**
 - ONR Code 31 Knowledge Superiority & Assurance (KSA)
 - LACS Decision Support Capabilities
 - ONR Code 34 Capable Manpower (CM)
 - Task-Centered HSI & Training Capabilities

- **Transition Program Offices**
 - PMA-282 Tactical Tomahawk Weapon Control System (TTWCS)
 - IWS3C Naval Guns
Mission-Centered Design Distinctions

- Like UCD, MCD is an iterative process of Analysis, Design, Implementation, Deployment
- Focuses on mission products
 - Less focus on user characteristics or responsibilities
 - Focus on tasks as a by-product of the products
- Early and frequent user involvement throughout the process
Why TTWCS Needed MCD

- Crew Size Reduction
- Workload Reduction
- Training Reduction
- Better and more consistent performance
- Increasing mission requirements
- Increasing system complexity and functionality
Some MCD Design Axioms

1. Focus on mission products to bound the task analysis.
2. Focus on task goals and products, **NOT** on current methods.
3. Do **NOT** allow task allocation to impact task analysis.
4. Explicitly represent the mission process within the interface.
5. Allow for variable levels of automation.
6. Avoid function based decomposition and analysis.
Mission Products Bound the Task Analysis

- Analyze down to the level of tasks having products.
- What is a product?
 - Something of value to a customer with little or no additional work required from the producer.
 - Product should be tangible.
 - Intangible products lead back to a functional based design
Example TTWCS Products

- Validation Report
- Strike Coordination Overlay
- Line Item Reports
- Post-Launch Report
- Missile Message
- Post-Strike Report
Focus on Goals Not on Current Methods

- Current method normally a by-product of previous constraints
- Want revolutionary not evolutionary improvements
 - Normative - how it was designed
 - Descriptive - how it is used
 - Formative - how it should be designed and used
- Must find ways to develop alternatives or you get stuck in local maximums
Example - Prep Missiles First

- Prepping of missiles is on the critical path.
- Historically waited until planning was completed to prepare missiles.
- Recommending once the strike is validated that missiles are prepped while planning is being done.

<table>
<thead>
<tr>
<th>Validate</th>
<th>Plan</th>
<th>Prep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Validate</th>
<th>Plan</th>
<th>Prep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Goal Explicit Interface

- Tasks
- Processes
- Products
- Responsibilities
- Automation
 - Domain Consistency
 - Reliability
 - Time Availability
Goals, Tasks, & Steps

Task Manager > TLAM Taskings

<table>
<thead>
<tr>
<th>ESP Tasks</th>
<th>Priority</th>
<th>Validate Engmnts</th>
<th>Plan Routes</th>
<th>Allocate Missiles</th>
<th>Power Missiles</th>
<th>Execute Engmnts</th>
<th>Monitor Missiles</th>
<th>Tasker</th>
<th>Engmnts</th>
<th>Missiles</th>
<th>Comment</th>
<th>TOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powering</td>
<td>High</td>
<td>Validated 3/3</td>
<td>Planned 3/3</td>
<td>Allocated 5/5</td>
<td>Powering 5</td>
<td></td>
<td></td>
<td>TSC</td>
<td>3</td>
<td>5 - 3C</td>
<td>None</td>
<td>-00:15:31</td>
</tr>
<tr>
<td>Exec 0007B</td>
<td></td>
</tr>
<tr>
<td>Planning</td>
<td>High</td>
<td>Validated 3/3</td>
<td>Planning 3</td>
<td>Allocated 5/5</td>
<td></td>
<td></td>
<td></td>
<td>TSC</td>
<td>3</td>
<td>2 - 3C</td>
<td>None</td>
<td>-00:21:15</td>
</tr>
<tr>
<td>Exec 0008A</td>
<td></td>
</tr>
<tr>
<td>Validate</td>
<td>High</td>
<td>Validate 1/1</td>
<td>Planning 1</td>
<td>Allocating 1</td>
<td></td>
<td></td>
<td></td>
<td>SLT</td>
<td>1</td>
<td>1 - 4E</td>
<td>None</td>
<td>-00:16:31</td>
</tr>
<tr>
<td>Exec 0009A</td>
<td></td>
</tr>
<tr>
<td>MDU Plan</td>
<td>High</td>
<td>MDU 1/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TSC</td>
<td>1</td>
<td>1 - 3C</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>0010A</td>
<td></td>
</tr>
</tbody>
</table>

UCD Team

User-Centered Design

TLAM Taskings

Ship Readiness

Battlespace SA

Conduct IS&R

Prepare Taskings

Gun Taskings

Rehearse Taskings

08:05:29Z 1
Allow for Variable Task Allocation and Levels of Automation

- Users will decide how to employ automation.
- Users will decide how to allocate tasks.
- If you do not support this they will find a work around (increasing workload) or your system will be seen as inflexible and will meet resistance.
- Everyone has an opinion on organization, don’t get wrapped up arguing about this instead of analyzing tasks.
- Automation availability and reliability will continue to change beyond your control.
- Important to show the current automation settings and allocations, especially if dynamic.
Automation Level Coding

Task Manager > TLAM Taskings

<table>
<thead>
<tr>
<th>Task</th>
<th>Priority</th>
<th>Validate / Plan</th>
<th>Allocate</th>
<th>Power</th>
<th>Execute</th>
<th>Monitor</th>
<th>Taskor</th>
<th>Engmnts</th>
<th>Missiles</th>
<th>Comment</th>
<th>TOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powering Exec 0007B</td>
<td>High</td>
<td>Validated 3/3, Planned 3/3</td>
<td>Allocated 5/5</td>
<td>Powering 5</td>
<td></td>
<td></td>
<td>TSC</td>
<td>3</td>
<td>5 - 3C</td>
<td>None</td>
<td>-00:15:31</td>
</tr>
<tr>
<td>Planning Exec 0008A</td>
<td>High</td>
<td>Validated 3/3, Planning 3</td>
<td>Allocated 5/5</td>
<td></td>
<td></td>
<td></td>
<td>TSC</td>
<td>3</td>
<td>2 - 3C, 3 - 4E</td>
<td>None</td>
<td>-00:21:15</td>
</tr>
<tr>
<td>Validate Exec 0009A</td>
<td>High</td>
<td>Validate 1/1, Planning 1</td>
<td>Allocating 1</td>
<td></td>
<td></td>
<td></td>
<td>SLT</td>
<td>1</td>
<td>1 - 4E</td>
<td>None</td>
<td>-00:16:31</td>
</tr>
<tr>
<td>MDU Plan 0010A</td>
<td>High</td>
<td>MDU 1/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TSC</td>
<td>1</td>
<td>1 - 3C</td>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>
Mission vs. Function Based Design

- **Functional Design** breaks the task procedure down into the engineers mental model -- HCI = SW Architecture
- **Mission-Centered Design** presents the goals and intent in the user’s mental model -- HCI = Goals & Products

VCR Example
- Decide to record a specific program

<table>
<thead>
<tr>
<th>Function Oriented</th>
<th>Task Oriented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Press “Menu”</td>
<td>Select “Record football game”</td>
</tr>
<tr>
<td>Tab down 3</td>
<td>See Today’s Options</td>
</tr>
<tr>
<td>Press “timer set REC lock”</td>
<td>Select Desired Date</td>
</tr>
<tr>
<td>Tab down 2</td>
<td>See Options</td>
</tr>
<tr>
<td>Select “Enter program”</td>
<td>Select Desired Game</td>
</tr>
<tr>
<td>Move cursor to start time</td>
<td></td>
</tr>
<tr>
<td>Press “Enter key” etc....</td>
<td></td>
</tr>
</tbody>
</table>
TTWCS HCI Design Evolutions

Current
Menu (function based)

V5 2006
Task (goal based)

V6 2008
Task (goal based)

Data-driven windows

Task Decision-support
Lockheed-Martin Usability Testing

Cognitive Workload Results

Secondary Tasks Completed
0 20 40 60 80 100 120 140 160

Prototype Version

Navigation Times

Navigation Time (sec.)
400 450 500 550 600 650

Version of Prototype

v4 v5
Fleet Operability Test

- **Performance**
 - HCI supported a single operator performing a complex scenario with accurate, timely performance of tasks and reporting
 - 99.0% on time launches (309/312)
 - Still room to improve on alerting during simultaneous task processing

- **Situation Awareness**
 - Performed better on higher level SA questions
 - Often anticipated upcoming events
 - Least effective in locating requested information

- **Workload**
 - Participant ratings indicated manageable workload across the scenario
 - Ratings were correlated with SME-rated taskload, indicating an understanding of the situation
Land Attack Combat System FNC Team

- **Government Labs**
 - SPAWAR Systems Center - San Diego, CA
 - NAVSEA - Dahlgren, VA
 - NAVAIR - Orlando, FL
 - Naval Submarine & Medical Research Lab, Groton, CT

- **Industry & Federally Funded Labs**
 - Johns Hopkins Applied Physics Laboratory, MD
 - Pacific Science & Engineering Group Inc., CA
 - Southeastern Computing Consultants Inc., VA
 - Lockheed Martin Advanced Technology Labs, NJ
 - Lockheed Martin Mission Data Systems, PA

- **Universities**
 - University of Virginia
 - University of Michigan