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PREFACE

The Twentieth Century has been characterized by innumerable
attempts to use the Scientific Method as a basis for policy planning
in national and international affairs. The emergence of the field of
operations research (OR) out of attempts of scientists in the Western
Democracies to apply the Scientific Method to military problems during
World War II is well known. Since World War II there has been a
dramatic growth in both the interest in and use of OR and systems-
analysis techniques for such purposes within the U.S. defense establish-
ment, especially since the beginning of the so-called McNamara Era of
defense planning. A concomitant trend has been an equally dramatic
increase in both the number and variety of mathematical models used to
support these analytical activities.,

Unfortunately, professional communications within the defense
analytical community have not kept pace with this dramatic growth in
modelling and analysis activities. 1In particular, there has been a
relative lack of scientific communication and organization of knowledge
concerning the foundations of defense analyses and associated defense-
analysis technology. However, even this important point has not been
explicitly articulated in several fairly recent critical appraisals of
the foundations of defense analyses+. To be sure, research progress on
these foundations has been made, but it has not always been efficiently

and effectively communicated to interested parties. This inaccessibility

*In particular, see JACOB A. STOCKFISCH, "Models, Data, and War: A
Critique of the Study of Conventional Forces," R-1526-PR, The RAND
Corporation, Santa Monica, California, March 1975 and also U.S. General
Accounting Office, "Models, Data, and War: A Critique of the Founda~
tion for Defense Analyses,' PAD-80-21, Washington, D.C., March 1980.
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- of scientific information concerning combat-modelling methodologies

has contributed to the existing gap between theory and practice. Some

undesirable consequences of this communications deficiency between

analysts and researchers include (1) duplication of effort, (2) models

being inefficiently used (or even misused), (3) lack of the appropriate

intellectual environment for effective professional review by peers, and

(4) lack of any '"road map" to provide direction (and purpose) for
methodological developments.
;' . :} Thus, although there has been a great need, information about
combat-modelling methodologies, their strengths and weaknesses, limita-
tions, etc. has not been very widely disseminated in accessible form.
National security (i.e. material being classified) has not really been a

i' factor in producing this situation in which the quantitative foundations

-~

of defense analyses have not been readily available to the analysis
community for scientific scrutiny. Without such generally available
methodological material, little scientific progress can be made, since
open sclentific discussion is hampered by such vital Information not
being readily available to all interested parties. Consequently, this
monograph has been written in an attempt to fill some of this void by
organizing the current state of knowledge about a certain type of combat
model, so-called LANCHESTER~type equations of warfare. Hopefully, its
appearance will also stimulate discussion and debate concerning assess-
ment of existing capabilities and future needs in this one specific area
of combat-modelling methodology.

At the personal level, the reader may be interested in knowing how
the author has become drawn to this subject: the author has been

? interested in the subject of LANCHESTER-type combat models since the late
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1960's, when R. NICHOLS HAZELWOOD introduced him to combat models and,

in particular, to the work of HERBERT K. WEISS. He has been fortunate
enough to have subsequently had such interests nurtured at the Naval
Postgraduate School (NPS) and has had the opportunity to do research on
combat models and teach graduate-level ccurses about them to students
(primarily U.S. Army and U,S. Marine Corps officers) in the OR curriculum
ac NPS since 1970. The treatise at hand (and its petite predecessor

Force-on-Force Attrition Modelling++) has evolved from these activities.

This monograph is a comprehensive treatise on LANCHESTER-type models
of warfare, i.e. differential-equation models of attrition in force-on-
force combat operations. Its goal is to provide both an introduction to
and current-state-of-~the-art overview of LANCHESTER-type models of warfare
as well as a comprehensive and unified in-depth treatment of them. Both
deterministic as well as stochastic models are considered., Such models
have been widely used in the United States and elsewhere for the model-
ling of force-on-force attrition over the complete spectrum of combat
operations, from combat between platoon-sized units through theater-level
air-ground combat. This material should be of interest primarily to
individuals concerned with defense planning, quantitative aspects of
military analysis, military OR, war gaming, or combat modelling, although
it may also be of interest to the reader concerned with the modelling and
analysis of other dynamic systems. It should also be of interest to the
concerned citizen who is interested in the foundations for defense

analysis and has the appropriate technical background.

++The full citation here is JAMES G. TAYLOR, Force-on-Force Attrition
Modelling, Military Applications Section of the Operations Research
Society of America, Arlington, Virginia, 1980.
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I have tried to make this monograph particularly suitable for three
specific groups of readers: (1) the beginning student of military OR,
(2) the ptacticing military OR analyst, and {3) the research worker in
OR, applied mathematics, models, or systems analyeis and evaluation. For
the first group (i.e. beginning studeats of military OR), I have included
much expository and explanatory material: each major topic is preceded
by a general discussion of the contextual setting in which it arises
(with figures depicting important conceptual ideas and typical numerical
results). For these readers I have supplied motivation and overview.

For the second group (l.e. practicing military OR analyste), I have
emphasized those theoretical and applied concepts that are basic for the
building and running of operational combat models (e.g. the numerical
determination of values for LANCHESTER attrition-rate coefficilents) and
have provided a bridge between such current operational combat models and
the abstract notions that form their conceptual bases. For these readers
I have supplied examples from current operational combat models. For the
third group (i.e. OR and other researchers), 1 have surveyed éhe current
state of the art of pertinent quantitative methodologies concerning
LANCHESTER~type combat models, particularly mathematical results for
analytically investigating the quantitative behavior of relatively simple
LANCEESTER-type mudela. For these readers I have included numerous
references to the literature and a comprehensive bibliography on the
LANCHESTER theory of combat. This book, however, is particularly slanted
toward the beginning military-OR student who is interested in force-on-
force combat models, since it 1s through him (particularly if he is an
officer in one of the military services) and his education about combat

models that the greatest long-term improvements in defense decision
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making may be achieved by the U.S. Department of Defense (DoD). It
strives to give the reader (regardless of his orientation) an apprecia-
tion of the complex operational models that are today used for
investigating large-scale simulated air-ground combat operations by DoD.
Mathematical prerequisites have been kept to a minimum, with more
mathematically oriented sectiors that are not nercessary for the under-

"starred sections." Through-

standing of the sequel being identified as
out this monograph, modelling aspects have heen emphasized. Anyone with
a background in calculus good enough to understand the physical
interpretation of an ordinary-differential equation model should have no
trouble in reading most of 1it., However, the few starred sectione do
require more mathematical sophistication to be understood.

This monograph is organized into twe volumes of four chapters
each. The monograph begins with a discussion in Chapter 1 about the
general nature of models (particularly, combat models), their use in CR,
and particularly the contextual setting for the use of such models as
planning tools in the U.S. DoD. Chapter 2, which begins by reviewing
FREDERTCK W. LANCHESTER's pioneering work on quantitatiﬁely justifying
the Principle of Concentration, examines LANCHESTER's classic combat
models and the many subsequent variants of them. The models are kept
simple and determiniatic here, but the stage is set for subsequent model
enrichments considered later in this monograph. The discugsion of
LANCHESTER's classic combat models is self-contained, with background
material on the relevant mathematics being contained in an appendix.
This material is fundamental and very important not only in its own right
but also for understanding subsequent developments in this book: it

forms the basis for the many extensicns considered later in the book. A
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selection of problems has beer provided in Chapter 2 for the enhancement
of the reader'’s familiarity with these basic models.

Chapter 3 roatains a comprehensive examination of some simple
models of battle termination. It considers both the empirical foundations
of such models and also the mathematical analysis of their properties.
Both deterministic and stochastic battle-termination processes are
examined, although only deterministic LANCHESTER-type attrition processes
are considered. This chapter 1s essentilally a state-of~-the-art survey of
battle~termination modelling and focuses on work by H.K. WEISS and R.L.
HELMBOLD. It culminates by examining HELMBOLD's empirical investigation
of the validity of breakpoint hypotheses. Chaptrer 4 examines stochastic
versions of the simple deterministic homogeneous-force models considered
in Chapter 2. Continuous-time MARKOV-chain models of LANCHESTER-type
attrition processes are exclusively considered. After examining
analytical results for such models and noting their complexity, the
reader will certainly appreciate the fact that except for small numbers
of combatants, the expected course of combat (at least for MARKOV~chain
models cof homogeneous~force combat) is well approximated by determimistic
LANCHESTER~-type equations. Not surprisingly, such deterministic
LANCHESTER~type models are consequently frequently referred to as
expected-value models. Herein ends Volume I.

Volume II begins with Chapter 5. In order to use a LANCHESTER-type
model in any actual military OR study, numerical values must be determined
for the attrition-rate coefficients, which represent the single weapon~
system--type kill rates. Chapter 5 considers in detail approaches and
methodologies for determining such numerical values for LANCHESTER

attrition-rate coefficients for various types of weapon systems. The
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two main approaches that are currently used in the Unice? States to
determine such s#ngle-system kill rates are basad on using (i) a "free-
standing" analytical submodel of an individnal firer engaging a single
enemy target, and (2) a statistical estimate based on 'combat" data
generated by a detailed Monte Carlo combat simulation. Such methodology
is a basic essential ingredient for the building of any operational
LANCHESTER-type combat model. Chapter 6 considers LANCHESTER-type

models for combat between two homogenecus forces and emphasizes the
analysis of such models. LVor several important classes of homogeneous-
force models, analytical results are given that make the analysis
(including determining the force levels as funnations of time and predict-
ing the battle's outcome) of such variable-coefficient combat models
almeost as convenient as that of LANCHESTER's original constant~coefficient
ones. Tables of special new mathematical functions (i.e. the LCS
functions developed by the author) are provided for the reader's use in
analyzing certain important classes of "ailmed-fire" battles Letween two
homogeneous forces.

Chapter 7 considers modelling tactical engagements and surveys
approaches currently used in the United States for assessing casualties
in simulated tactical engagements between general-purpose military
forces in conventional air-ground combat operations. It reviews the
various different modelling alternatives available to the military OR
worker and then expounds on both detailled deterministic LANCHESTER~type
models of attrition in tactical engagements and also aggregated-force
models based on index numbers (e.g. firepower scores), with hierarchical
modelling approaches also being briefly discussed. Model formulation

and methodological aspects are emphasized, with simple auxiliary models

viii

B R R A

- e e e N PSS — e ——— - 5 281 8 .- - : .
7 R TN D N g gt i i sy RIS s pipben Simercri e R R bttt i ik mima s s sbth o Rt s




being used to illustrate modelling points for developing and understanding
complex operational models. Examples of current operational models that
use the two main theoretical approaches of casualty assessmentv(i.e.
detailed LANCHESTER-type force-change represencations and aggregated-force
casualty assessments based on index numbers) are given. Recent develop-
ments by authors such as L.B. ANDERSON, D.P. DARE, and R.M. THRALL for
determining firepower scores (l.e. weapon~-system-type values) from a
linear model that imputes values to weapon-system types based on their
LANCRESTER attrition~rate coefficients are reviewed and discussed, as
well as the important (and elusive) problem of historical validation of
attrition models. Next, Chapter 8 reviews work on developing insights
into the structure of optimal tactical decisions by applying the
appropriate optimization theory to a combat model with military strategy
and tactics quantified through tactical-choice variables. Gaming

agpects are also briefly considered. This chapter is essentially a
comprehensive overview and review of work on the quantitative study of
military strategy and tactics by using optimization theory in conjunct-
ion with combat-modelling theory. Again, simple auxiliary LANCHESTER-
type models are used to study these complex operational problems. As
before, model formulation and insights gained into the structure of
optimal time-sequential decisionsg are stressed, with optimization-theory
(1.e. differential-game) prerequisites being kept at a minimum (i{.e. the
results of such optimization studies are given but not the details in

the application of the optimizaticn theory). Finally, a comprehensive
bibliography on the LANCHESTER theory of combat is included in an
appendix for the reader who 1s interested in further information abcut it.

This monograph has evolved out of a tutorial on LANCHESTER-type

ix
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models of warfare that the author was invited to deliver by the Military
Applications Section of the Operations Research Society of America (ORSA
at the 46th National ORSA Meeting on Thursday October 17, 1974 in San
Juan, Puerto Rico. This tutorial was well received, and it was subse-
quently repeated at the 35th Military Operations Research Symposium in
July 1975 and at the 15th Annual U.S. Army Operations Research Symposium
in October 1976. After attending this tutorial in July 1975, CDR JAMES .
MARTIN, USN, then Chairman ¢f the MORS Publications Committee, expressed
strong interest in the author's expanding the tutorial material into a
monograph on LANCHESTER-type models of warfare. The writing of this
monograph was consequently begun under the sponsorship of the Office of
Naval Research (Code 431, Naval Analysis Programs) in July 1976.
Continued encouragement by Dr. MARTIN (now retired from the U.S. Navy)
has been appreciated. I have used earlier drafts of the beginning
portions of this material (primarily Chapters 1 and 2 and occasionally
Chapter 3) in graduate courses on combat models for OR students at the
Naval Postgraduate School.

The author would like to thank all the organizations and
individuals who have helped facilitate the appearance of this monograph.
Although all those who have helped me are far too numerous to mention,

I would like to explicitly express my thanks to several. Ia particular,
the writing of this monograph has been financially supported by the
Office of Naval Research (both through direct funding by Code 431 and
also through the Foundation Research Program at the Naval Postgraduate
School), the U.S. Army Research Office (ARO), Durham, North Carolina,
and the Feadquarcers of the USAF, Studies and Analysis Group. Addition-

ally, ARO suppcrted some separate research during this period on

C v g S e A ————— T N
T Y s o Bnciai iaiii . dbrs, IPU—— hia. S SO SIS NPT 2L N PO




LANCHESTER-type models of warfare, and results from this work have been
incorporated into the monograph at hand. Most of the author's research
on LANCHESTER-type models of warfare, however, has been supported over
a number of years by the Office of Naval Research (both through direct
funding by Code 431 and also through the Foundation Research Program at
NPS). The author would like to thank Provost JACK R. BORSTING of NPS
(formerly chairman of the OR department) for his continual encourage-
ment and support of such work as well as that from subsequent OR
department chairmen Dean DAVID A. SCHRADY and Professor MICHAEL G.
SOVEREIGN. The endeavors of Assoclate Professor GILBERT T. HOWARD
(associate chairman for research of the OF department) in this respect
are also gratefully acknowledged. The author would also like to thank
HERBERT K. WEISS, Dr. JAMES J. MARTIN, Dr. FRANK E. GRUBBS, Professor
MARTIN SHUBIK, and LTC JOHN FRIEL (USAF), for their constant encourage-
ment. Additionally, the authoir would like to thank Professors CLINTON
J. ANCKER, GORDON E. LATTA, GUILLERMO OWEN, and MICHAEL G. SOVEREIGN, as
well as LTC RICHARD S. MILLER (USA) for their numerous suggestions for
improving this manuscript. T am especially indebted to LTC MILLER for
many stimulating discussions on the topics of combat modelling and this
constant encouragement and help concerning this project. The author
would also like to thank the late ROSEMARIE STA]!(PFELul'i'+ for her consum-
mate typing of this manuscript. Finally, the author would like to thank

his family for their understanding of the long hours he has spent

f++Sadly and unexpectedly ROSEMARIE STAMPFEL passed away just after
completing the typing of the first draft of the manuscript. As a tech-
nical typist, she was without peer. I would like to thank her for her
many suggestions and help in improving this manuscript. She will be

missed by many. «




writing this book and for their comstant support, especially hie wife
MARY ANN, who has proofread most of this monograph (some while recover-

ing from surgery).
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Chapter 1. BACKGROUND AND INTROD'CTION

1.1. Operations Research and Models.

Loosely speaking, LANCHESTER-type models of warfare are differential-
equation models of combat operations. In one form or another, such models
are fairly widely used in operations research (OR) studies by the Depart-
ment of Defense (DoD) in the United States. The use of these combat models
for planning purposes has been made possible by modern large-scale digitgl-
computer technology. However, there are competing methodologies (for
example, so-called high-resolution Monte-Carlo simulation) for combat model
ling, and there has been much debatel by advocates about the advantages
of this method or that one for defense planning. To place such discussion
about the use (and misuse of combat models, their realm of appiicability,
and their strengths and weaknesses in proper perspective, it seems appro-
priate to briefly discuss the nature of OR, combat models, and their use
by DoD. The reader should keep in mind, however, that this book will

focus on LANCHESTER-type models oﬂ warfare,

1.1.1. The General Nature of Operations Research.

Operations research (OR) originated out of questioms arising in
military activities duriné World War II. After the war, the approach
and techniques of OR were applied to business and non-military government
problems. OR has expanded greatly during the thirty or more years since
the end of World War II. What exactly is OR? Although there is far from
universal agreementz as to the exact nature of OR, the author prefers to

think of OR in the following termsB: operations research is a scientific

method of providing executive departments with a quantitative basis for

decisions regarding the operations under their control.
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The above definition of OR is not new, but the author feels that

it is important because this definition focuses on what is being done and

not the techniques used. Moreover, one should expect to find that different

methodologies receive different amounts of emphasig in different fields of

application of OR. For example, in the private (i.e, business) sector of

the economy one finds that the "theory of the firm" and related subjects

(such as profit maximization, efficient distribution of products, invest-

ment planning, inventory management, etc.) pley a central role in OR applica-

tions and require the use of certain OR theory and techniques (such as

inventory theory, queueing theory, linear and integer programming, discounted

cash flow, etc.). One would expect quite a different phenomenological basis

for defense planning, with possibly different OR techniques receiving

emphasis. It is the author's hypothesis that defense planning should be

based as much as possible on the scientific study of warfare. Unfortunately,

this is not the case in practice today (;ee, for example, SHUBIK and BREWER

[86, pp. 9-10] for a discussion of this point). For further discussion

of the nature of OR, the interested reader should consult the literature4.

Four concepts of fundamental importance to the practice of OR are

(see HERRMANN and MAGEE [38]):

(c1)”®
(c2)
(c3)
(c4)

the model,
the measure of effectiveness (MOE),
decision making,

the role of experimentation.

Models (in particular, so-called LANCHESTER~type mcdels of warfare) are the

central theme of this book. We should bear in mind, however, that the de-

velopuwent and application of a model in an OR study is only one of several

essential ingredients for a successful study. Each of the three other aspect
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listed above can significantly contribute to the failure of a defense-
planning study. It is the author's opinion that pcople unfamiliar with

quantitative models are quick to blame an unfamiliar modelling methodology

for deficiencies in the application (e.g. data-base quality or errors, in-
,>ﬂ correct implementation, etc.) of a particular model. The practitioner should
not blame the model (particularly, a LANCHESTER-type model) if the wrong MOE
is used in a study, nor should he blame the modelling methodclogy 1f the
model is incorrectly applied or exercised with low-quality data, or if the
scenario is wrong. Thus, the development of a combat model 18 only one
facet of a military OR study, albeit a very important aspect,
' During World War II most OR concerned actual ongoing military opera-
tions. Some people prefer to use the term operations anslysis (0A) for
;" ? such activities. In 1976 (with the end of U.S. involvement in Southeast
Asia) most applied military OR activities concerned some type of planning.
If a military system does not physically exist (and even when it does),
its effectiveness must be evaluated "on paper,"” Thus, for example, for
] | . agsistance in system-acquisition decisions, one would expect to use in
the advanced planning phase some type of combat model to help quantitatively
explore the possible benefits from a proposed system. Even if a prototype
has been built and "operational" data has been collected, some type of
combat model may be required to assess the system's military worth based
on the observed performance data.6 In other words, the nature of military
OR has changed since World War II when few operational models were really
‘j used, and today combat models are an eseential (and expensive7) part of

a;g DoD planning activities.

1.1.2. The General Nature of Models.

It seems appropriate for us to briefly discuss the general nature of




models in order to better place combat models in proper perspective,

Models are basically representations., They may be representations of

states, objects, or events. Models are idealizations (i.e. abstractions)
in the sense that they are less complicated than reality (and hence po-
tentially easier to use for research purposes). The U.S. Army Models
Review Committee [42, Appendix B to Chapter I] has defined a model as "an

abstract representation of reality which is used for the purpose of pre-

diction and to develop understanding about the real-world process."
f ‘%f Thus, models are easier to manipdlate and "carry about" than the
. 1ﬂf real thing. They are relatively simple compared with reality because only
: | the relevant features of reality have been represented. For the person
2”;;~{; unacquainted with this basic property of models, however, it is easy to
B  §‘ confuse relevance with realism. Thus, many DoD decision makers who are
removed from the modelling business find simulations to be more credible
models of combat operations than analytical models because of the much
larger amount of deiail that is present in a simulation. Additiomally,
models allow one to transcend one's environment and make inferences about
- things and events that have not been experienced directly. In the analysis
of combat operations (particularly possible future ones), this aspect is

quite important.

There are many ways to classify models. Three different basic

1 types of models are the following:

(T1) 1iconic models,

(T?) analogue models,

(T3) saymbolic models.

An iconic model is a large- or small-scale representation of states, object

LT

or events. They "look like" what they are supposed to represent with only
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a transformation of scale. Examples of iconic models are a flow chart,
blueprint, road-map (or any other type of picture or diagram that looks
like the real thing), pilot plant, or a wind tunnel. In each case only
the scale of the system or operation has been changed.

An analogue model uses one property to represent another differen

property. For example, we can represeat the third dimension (i.e. elevat
on a two-dimensional map by means of contour lines, which represent infon
tion about changes in elevation (i.e. slopes) by their distance apart.
Another similar example is the use of colors to represent different types
of terrain on a map. Since one property is used to represent another, a
legend is required to remind the reader of the transformation of ﬁroperti
Other examples of analogue models are the slide rule and an electrical sy

tem represented by a hydraulic system.

The last general type of model is the symbolic model, which repre

properties symbolically. Verbal descriptions of processes or systems qua
as symbolic models When symbols represent quantities, the model 1s usgua

called a mathematical model. We wiil focus on mathematical models of con

bat (in particular, combat attritfon) iir this book. Here we have indicat
to the reader, however, that other types of models certainly exist.
Although they are the most alstract, the distinguishing feature
of mathematical models is the ease with which they may be manipulated for
the extraction of information. Iconic and analogue models are much less
flexible in this respect. In terms of combat operations, we should poin!
out that field exercises are basically iconic models, while map exercise:
are basically analogue models. However, both these two types of combat
models are difficult to manipulate (particularly the field exercise, whi
is also very costly). Thus, although they may require some time and cos

to develop, mathematical models are relatively easy to manipulate and he
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respond to the demands of analysis.

Many other classifications of models are pcssible,8 but for our
purpose of studying combat modelling we need only distinguish here between

two basic types of mathematical models:

(T1l) deterministic model.

and (T2) stochastic model

A deterministic model 1s one that contains no element of chance. Hence, its

output is uniquely determined by its input in the sense that the same input

always produces the s‘ﬁe output. A stochastic model contains an element of
chance (or uncertaﬁﬂ:z?) so that its output is not uniquely determined in
this sense by input, but rather one must talk about the chances of observinj
various outputs £d# a given input. In other words, one must consider the
probability distribution over the set of possible outcomes for a given set
of inputs. In this book we will consider both deterministic and stochastic
LANCHESTER~-type models of warfare.

2

1.2. Defenge Planning, Combat Models, and the Scientific Study of Warfare.

Th: Twentieth Century has been characterized by attempts to use the
Scientific Method in policymaking, in particular for military and defense
problems. Q:ny writerslo have stressed the importance of applying quanti-
tative OR methodologies to defense planning. Enlightened defense planning
13, of course, important for both the short-run and also the long-run

national security of the United States.ll What are typical defense-plannin

problems? According to STOCKFISCH [90], they are as follows:

(P1) How do we assess a possible opponent's military capabiiity, anc
how large should our military forces be to meet the perceived

threat?




(P2) How should the total force be structured between major services,
such as land forces and tactical air forces?

(P3) How should the land forces be structured with respect to (1) com-
bat branches, such as infantry and tanks, and (2) service
specialties that provide logistic and persomnel support?

(P4) What should be the technical perforumance and physical specifica-
tions of new weapons that will be the object of engineering
development programs? Given the availability of new weapons,
what should be their tactical usage, how many ofbthem should be
procured, and in what organizational and command context should

they be employed?

v Such questions concern the evaluation of weapon-system and force-level

planning alternatives in future time frames. In order to determine the
benefits to be gained from a particular alternative, one is invariably faced
with the problem of predicting the effectiveness of specified military forces
in possible future military engagements. Since such forces and/or weapon

. systems only exist "on paper,” some type of combat model (see Section 1.3
for further details) must be used in such studies. In way of summary, then,
combat models are valuable in many aspects of defense planning: (1) for
evaluating "oa paper" proposed weapon systems during advanced planning;
(2) for extending, interpolating, and interpreting operational test data
during field testing; etc. (see [104] for a fuller discussion).

Thus, combat models have been used as decision aids for defense plan-

ning. They have actually been used by analysts to study such major subjects

(see STOCKFISCH [90]) as:

(S1) the design specification and selection of new weapons,
(S2) the allocation of resources between air and land forces and,

within land forces, between infantry and artillery,

s ol s,




(83) how tactical air capability might be allocated among diverse
missions,

(S4) the amount of logistic support that the combat elements of
field forces should have, '

(s5) the rate at which forces might be mobilized and deployed,

and (S6) the issue of how large the forces should be.

The kinds of models that are used for such studies should be related to the
type of information that is desired from the analysis. We will discuss the
various types of combat models in the next section.

1f one contrasts World War II operations research with today's prac-
tice, then it is clear that a major change has occurred in the practice
of military OR and the use of models in defense planning. OR has ceased
to be a purely scientific discipline, and some, in fact, feel that it has
become a purely speculative activity (see, for example, BONDER 9.
During World War II, operations research was primarily concerned with the
engineering (i.e. designing and planning) of on-going operations. Con-
sequently, some combat data could be collected as needed for use in studies.
Hypotheses about such military operations might actually be scientifically
verified by testing against this data. .Thus, World War II OR was many
times a truly scientific discipline. Today military operations research
is primarily concerned with planning of some type; and, as emphasized by
BONDER {9], it has ceased to be a truly scilentific discipline12 because
of the absence of combat data (see also HOWLAND [46]).

In this vein, SETH BONDER [10] has emphasized that there are almost
no empirically verified models of most combat processes. Besides the
inherent problem of operational definition and measurement, the major

insuperable difficulty in empirically verifying any combat model is that

1’ e s



the historical data base 18 too poor: it 18 not rich enough in detail to
permit the classic scientific verification of combat models, since nations
fight wars for other reasoms than to collect combat data., Unfortunately,
in the past military historians have been surprisingly reluctant to provide
information on battles such as the number of forces of each kind partici-
pating on both sides and the losses. H. K. WEISS [115] feels that "the
average military historian is particularly susceptible to the criticism
aimed by VAGTS [102] (see also [103]) at the 'average military officer’

of avoiding 'bellometrics' 'as someting too materialistic and derogatory

to military art.'"

This shortage of historical and other empirical data for combat models
and analysis is apparently not as widely acknowledged, articulated, or ap-
preciated by the policy-making community (and even some parts of the analysis
community) as it should be (see also STOCKFISCH [90]). Moreover, one can-
not expect accurate point estimates of combat effectivemess from these
models. Rather, such nonempirically developed models should only be used

for analysis purposes to provide defense management with [9]:

(R1) 1insights into directions and trends thereby increasing under-
standing of the system dynamics,

(R2) guidelines for the development of data-collection plans - what
data is important and how accurate it must be,

(R3) guidelines for the development of technological and modelling

research plans.

It 1is 4{n this spirit of developing insights that simplified LANCHESTER-type

models of warfare are considered in this book. In the same vein, KARL von
CLAUSEWIT213 [20, p. 191] stated many years ago in his classic work Oun War

that if theory caused a more critical study of war, then it had achieved its

purpose.
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Underlying the engineering (i.e. designing and planning) of military
vperations, evaluation of military systems, and other problems of defense
planning, however, should be the scientific study of conflict (in particular
warfare). Just as most branches of engineering (for example, mechanical
engineering) are besed on NEWTONIAN physics, so should military operations
research be based on the scientific study of warfare. Unfortunately,
appallingly little basic research on conflict and.warfare has apparently
been conducted.l4 No scilence of "bellometrics" [102; 115] has as yet
emerged. Later in this book we will briefly discuss what has been done with
respect to the scientific verification of LANCHESTER~type models of warfare.
.As mentioned zbove, the quality and extent of the historical data base have

been severely limiting factors for such important investigations.

1.3, Different Types of Combat Models.

As we have discussed in Section 1.l1.2. above, models are representations
of reality, and we have seen that different types of such representations are
possible. With respect to combat operations, Figure 1.1 shows the variety of
forms that combat models may take. One can assoclate trends in model
characteristics such as degree of operational realism, abstraction, and
convenience and accessibility with this spectrum of combat models. As
Figure 1.1 shows us, operational realism and degree of abstraction are con-
flicting qualities.

For present purposes, let us focus on the three right-most types
of combat models depicted in Figure l.1. Following BONDER [10], we will

limic our discussion of combat models to the following three general types:

(Tl1) war games,
(T2) simulations,

(T3) analytical models.

10
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Figure 1.1. The spectrum of types of combat models.
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Additionally, in the ensuing discussion we will generally emphasize ground

combat models (i.e. models of warfare between ground combat units). Al-

!
|
1
\"~ﬁi though other classifications are certainly possible, the above is adcquate
: for now.
: According to PAXSON (70], "a war game is 2 model of military reality
f set up by a judicious process of selection and aggregation, yielding the

results of the interactions of opponents with conflicting objectives as

A.;;4 these results are developed under more or less definite rules enforced by
a control or umpire group." The distinguishing feature of war games in
relation to simulations and analytical models, however, is that actual
human beings are used to simulate decision processes by having people
play the roles of decigion makers and use their own judgments in making
decisions (see also [42]). This distinction is graphically depicted in
Figure 1.2.

War games may be classified as being either "rigid" or "free",
depending on whether or not the assessment rules are rigidly prescribed
and completely cover all possibilities. These two types of war games
.-?j (i.e. the rigid and free war games) correspond to the opposing demands
of realistic games and playable games. The rigid war games are somewhat
similar to simulations in thelr assessment of combat outcomus in that
combat interactions are considered in detail. Before the age of large-
scale computers, the sheer immensity of the volume of the details for such
rigid assessments was overwhelming: it was not uncommon for many volumes
(i.e. books) of rules and combat-results tables to be required for the
running of a rigid war game. As a reaction and revulsion to such over-
whelming detail, "free'" war games were developed, with the assessment of
combat outcomes being judgmentally determined by umpires. It is inter-

esting to note that modelling issues such as degree of resolution,
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appropriate technique of aggregation, amount of detail, efc. were all con~
sidered in the past by war gamers of the 19th and 20th centuries.

Today many computer-assisted war games exist, with the computer doing
the bookkeeping and assessing combat outcomes. To a certain extent, the
modern large-scale digital computer has neutralized some of the shortcomings
of rigid war games. Teams of players typically represent the commanding
officers and their staffs. However, this type of model, i.e. the rigid
(computer-assisted) war game, is very expensive in terms of time and money
to develop, maintain, and use. BONDER [10] points out that it typically
may take something like four to eight years to develop such a rigid war
game. He also notes (10, p. 73] that as recently as 1971 it took six mouths
to obtaln one realization of ten hours of battle with 2 particular war game.
War games may be an excellent vehicle for developing general insights and
identifying critical elements for further more detailed analysis, but
many feel that this type of model is not a feasible vehicle for system-
atically analyzing a wide variety of system alternatives in a responsive
manner [10].

To simulate means to act like. Simulations are models in which pro-~
cesses and activities are "acted out." Systems are microscopically analyzed
and modelled by analogue duplication. Because of the large amount of
bookkeeping involved in such minute duplication, a large-scale digital com-
puter is a necessity. In fact, the development of the modern digital computer
has led to the widespread use of simulation as an analysis technique. Such
simulation of combat cperations is the modern~day automated version of the
classic sand table for military analysis. In essence, such a combat simu-
lation 1s an analogue model, which recreates the sand table with the help of
the digital computer, and battles are acted out on this automated sand table.

Simulation may or may not involve actual human beings playing some

14




of the decision-making roles in the system modelled. For the purposes of
our present discussion, we will limit ourselves to so-called machine simu-
lation that runs on a computer entirely without human participation.lS
Moreover, for convenience we will henceforth refer to machine simulation
simply as simulation.

Simulation is probably the most widely used technique for military

systems analysis. To develop a simulation of combat operatioms, the

ﬂ; military system and associated activities are microscopically studied and
decomposed into a set of basic events, which in turn are ordered in sequence
of occurrence (much like a network). When such a model is ruﬁ to predict
combat outcomes such as numbers of casualties of various types, territory
"<_%f lost, resources expended, etc; the battle is essentially "acted out on
'E' the computer,” with the sequence and flow of events and combat activities
followed in the same microscopic sequencing as determined by previous
analysis. Human decision making in the combat is simulated with pre~
.-: j determined decision tables or rtules,
Moreover, there are some problem areag that are more or less unique
to the simulation of combat operations. A ma&or problem area is the re-
presentation of terrain, especially the modelling of the line—of-sight
process. A high-resolution simulation such as DYNTACS [7; 19] may spend
as much as 60 percent of iﬁs running time in checking for intervisibility
(1.e. the existence of line-of-sight) between weapon systems, and usually
at least about 20 percent of its running time is so spent [69]. Thus, an
! inordinately large amount of time is usually spent in simulating the line-
of-sight process in combat simulations, Terrain modelling sometimes re-
' i ceives attention in books on simulation (see EVANS, WALLANCE, and SUTHERLAND

[26]), but usually it does not (see, for example, FISHMAN [29]). Other
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problem areas (not only for simulstion but for combat modelling in general)
are cﬂé modelling of battlefield intelligeace, route selection, and tactical
decision processes (especially those relating to the management of large-
scale warfare [10]).

Most combat simulations used in defense planning are so-called Monte

Carlo simulations because statistical sampliang techniques (involving the

generation of pseudorandom numbers [29]) are used to determine the outcomes
of random events, such as the outcome of firing at a target. Because of
the tremendous quantity of computations and other information processing
requirements in such a simulation, the uge of a modern high-speed digital

computer 1is essential. Probability distributions for all the random element:

(i.e. random variables) in the simulation are required as inputs, and con-~
. segquently a high-resolution Monte Carlo simulation such as DYNTACS requires
'~f7 a rather extensive data base for its running.16 The difficulties and costs
of data base preparation are considerable and are frequently underestimated.
The simui;tion then empirically generates the probability distribution for
the set of possible combat outcomes. Each run of the simulation for a
glven set of input data is essentially a sample from the distribution of
outcomes, and the simulation must be run repeatedly to obtain accurate
statistical information about this distribution of combat outcomes.

The strong point of Monte Carlo combat simulation is that such a
simulation may contain a lot of detail and therefore may be more credible
than a more abstract model to many people. Examp1e317 of such Monte Carlo
simulations are ASARS II, CARMONETTE, DYNTACS, and SIAF, Some people
(gee SHUBIK and BREWEB [86], for example) feel, however, that such simula-
tions make a "fetish of realism.” The large amount of detail, moreover,
causes a significant amount of computer time to be required for a single

run of such a simulation, and this characteristic is essentially their un-

doing as far as being a viable analysis technique for exploring the limits
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of system capability.

There are a number of serious shortcomings to the use of Monte Carlo
simulation for defense analysis.18 First, such simulations are quite costly
to build. It is not unieasonable tc expect to spend 5 to 10 man-years of
effort to develop a detailed simulation of tactical combat.l9 Second,
they are costly to run, with typically 10-20 minutes of computer time
(IBM 360/67) required per replication of about the same length of battle
time, and one needs 10-60 replications for statistical stability in the
results (see, for example, ZIMMERMAN (120, p. 741]). Additionally, because
of the amount of detail involved, the data~base requirements are quite
demanding. For example, it is not unheard of to have several analysts
spend about three months preparing a new set of input data and the cor-
responding data deck for DYNTACS. Not only is a so-called high-resolution
combat simulation costly to build and run, but it is also costly to main-
tain: a staff of fairly highly trained personnel must be maintained to
insure that the computer program stays running and debugged as changes
are continually implemented. For several reasons (e.g. size of the com-
puter program, complexity of the model, etc.), changes may be quite dif-
ficult to implement in such a combat simulation. The tremendous amount of
detail (i.e. the large number of variables and other parameters) present
in a simulation essentially precludes the running of parametric studies
to examine the sensitivity of the model to changes in simulation asgumptions
and input data. Because of this lack of capability to run parametric
studies, it is essentially impossible to use simulation by itself as a
vehicle for determining those system capabilities, tactics, and environ-
menta. characteristics that significantly influence the system's effective~
ness. As S. BONDER points out [11, Chapter 1], simulation is essentially

too detailed to be by itself a useful tool for analysis. These disadvantag
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of Monte Carlo simulation are summarized in Table 1.I.

Analytical models (like machine simulation) do not involve human

participation during running. They may, of course, be either deterministic
or stochastic in nature. Their distinguishing characteristic is their de-
gree of abstraction: as Figure 1 shows, analytical models are more abstract
than simulations. 1In fect, a good analytical model is usually quite ab-
stract, poor in the number of variables explicitly conasidered, but rich in
ease of manipulation and clarity of insight [86]. Before the advent of
high-speed digital computers, an analytical model consisted of at most a
few equations (see LANCHESTER's [51] classic models discussed in Chapter 2).
Today large-scale processes and systems can be modelled by many equations
with the help of a digital computer. The process under study 1is analyzed
and abstracted (i.e. decomposed into basic events and activities). Then
mathematical submodels of events and activities are developed and integrated
into an overall structure.

Analytical models of any degree of complexity usually do not yield
convenient analytical solutions but require numerical approximation methods
and a digital computer for the generation of numerical results. However,
in those cases in which an explicit analytical solution can be obtained, one
has obviously simplified the process of undersfanding the model. Insights
into the dynamics of combat may be obtained by, for example, examining
explicit relations between the independent variables, the wodel's para-
meters, and the dependent variables (which are usually'related to the MOEs).
Such insights are much more difficult to acquire when the solution is not
simply expressible in terms of elementary functions and, for example, finite
difference methods must be used to generate numerical (approximate) results,
although the model's basic structure is explicitly contained in equations

that are readily examined. Thus, although more abstract than simulations,
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TABLE 1.I. Disadvantages of Monte Carlo

(D1)
(D2)
(D3)
(D4)
(D3)

Simulation of Combat

Costly to build

Costly to run

Costly to maintain

Lack of flexibility for change
Essentially impossible to perform

sensitivity and other parametric
studies
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Y analytical models are characterized by their transparency (1.e. ease’ of

B revealing their basic structure and assumptions). We will focus on such

models in this book.

Analytical models, particularly simple ones, help clarify the relation~-

ship between theoretical models, empiricism, and data gathering. An ana-
iytical model is usually too simple and restricted to directly solve an
actual operational problem. But because of its transparency, the analyti-
t?}ﬁ? F; cal model can warn about potential problem areas, indicate where additional
b meansuresments are most needed, and identify and order important omissions
éfffJ } from the model (see SHUBIK and BREWER [86] for a further discussion).

-fg There is one further general type of combat model that werits our

attention, a mixture of two of the above types called the hybrid analytical-

gimulation model [10]. It has been developed in response to the needs for

parametric analysis coupled with the long preparation and rua times for

Monte Carlo simulations. It combines the strengths of these two modelling

“'ﬁﬁ approaches by representipg some processes in one way and others in the other.
}; Again, the modern high—s;eed digital computer makes possible the integration

‘%-h ) ~f these model types. For example, in battalion-level combat models such

| \as BONDER/IUA (see [92]; also [11; 12]) (and its various derivatives such

j as BLDM, FAST [13], AMSWAG [36], IHA [104]) and COMAN [18], attrition and

ﬁ target acquisition (and sometimes allocation) processes are modelled

analytically, while simulation is used to model battlefield movement pro-

cesses [10]. The same general approach has been applied to large-scale

; combat (i.e. combat between division-size and large units) with models such
as DIVOPS [106] and VECTOR-2 [107]} in which the attrition, maneuver-unit-
element and fire-support-sensor acquisition, and terrain-line-of-sight pro-

cesses are modelled analytically [10]. Such hybrid models use LANCHESTER-

type equations (i1.e. deterministic differential equations) to rapresent the
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combat attrition process.

A related (but yet distinct) classification of combat models would
according to how they assess the outcoyes of tactical engagements (irresp
of how tactical decision making is modelled). Three current approaches f
predicting the effectiveness of combat units in such engagements are as

follows (gee BONDER and FARRELL [11] for further details):

(Al) firepower scores (see STOCKFISCH [90, pp. 6-2701),
(A2) Monte Carlo simulation [33; 120],

(A3) analytical models (e.g. differential equations) [11].

All three approaches have been used to assess the outcomes of combat engag
ments in war games. We have already discussed Monte Carlo simulation and
analytical models above so it remains to discuss the other combat-assessme
approach, firepower scores. We will also say some additional words about
analytical models in the context of assessing the outcomes of tactical
engagements. Finally, we will briefly discuss the relation between the
scale of combat operations and these mode..ling approaches.

The firepawer-scorezo approach is basically a technique for aggre-

gating heterogeneous forces (i.e. tanks, artillery, infantry, etc.) into a
single homogeneocus force on each side. It is an index-number approach,
which develops one number (referred to as the firepower index) to represent
the "combat potential"” of a unit. A linear model is used to develop this
index number, i.e. the firepower index, from the scores of individual wea-
pon systems as Table 1.II shows. Moreover, as emphasized by STOCKFISCH

[90, p. 7], the words score and index should not be regarded as being

synonymous. It is more precise, therefore, to use the term firepower score

to refer to the military capability or value of a specific weapon system

and to use the term firepower index -~ which is obtained by summing scores -
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TABLE 1.1I. Hypothetical Example of Determination
of Firepower Index for a Combat Unit

Firepower | Total Contribution

Weapon Type Number Score to Firepower Index
Rifle, M-16, 5.56mm 6,000 1 6,000
MG, M-60, .30 cal 150 6 900
MG, M-2, .50 cal 250 10 2,500
Mortar, M-125, 8lmm 50 20 1,000
Howitzer, M-109(SP), 155mm 50 40 2,000
Howitzer, 8" 8 30 240
Tank, M60A2 200 100 20,000

TOTAL FIREPOWER INDEX 32,640

Firepower Index for U.S. Army's 7th Infantry Division
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to refer to the military capability or value of some aggregation of diverse
% weapons. In other words, the firepcwer-score approach provides a common
e denominator for aggregating the many different types of weapons on a battle-
field, and military combat is characterized by such 'combined-arms" opera-
tions consisting of many different weapon systems.

How is the basic firepower score for a weapon system determined? There

are apparently almost as many different answers to this crucial question

as there are different firepower-score methods~21 Many methods state that
the firepower score of a weapon system is essentially the product of a mea-~
sure of single-round lethality multiplied by the expected expenditure of
ammunition during a fixed period of time. Although this procedure appears
to yield an objective measure of weapon-system capability, STOCKFISCH [90,
pp. 23-78, especially pp. 23-27 and 76-78] points out that actually varying
amounts of subjectivity are cranked into various such firepower scores-
Moreover, the firepower-écore approach probably dates back to World War II,
although documentation about it is generally somewhat difficult te come by
(see STOCKFISCH [9] for introduction to the scanty firepower-score literature).
In large-scale (i.e. division-level and above) ground-combat models,
firepower indices are used as a surrogate for unit strength. They are then

in general used to:22

(Ul) determine engagement ontcomes,
(U2) assess casualties,

(U3) determine FEBA movament.

[FEBA stands for Forward Edge of the Battle Area. It is the contact zone
between two opposing forces.] The force ratio is the significant factor in
such determinations. Here the term force ratio means the ratio ~f the fire-

power index (i.e. the aggregation of all the firepower scores in the uait)

|
|
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of the attacker to that of the defender. Let us consider a hypothetical
example to illustrate this point. Consider, for example, the 7th Division
of the U.S. Army and assume that the firepower scores shown in Table 1.II
apply. Then the 7th Division has a firepower index of 32,640. If an
attacking enemy Army Group were to have a firepower index of 146,880,
then we would have a force ratio of 4.50 (A/D), where A refers to the at-~
tacker and D to the defender.

Although the firepower-score approach has been widely used for top-
level planning, it has received increasing criticism in recent years (see,
for example, STOCKFISCH [90] or [1l1]). Significant deficiencies of the

index-number approach are the following (from [11]):

(D1) it does not measure the accomplishment of unit missioms,

(D2) it ignores most of the significant factors that affect mission
accomplishment (i.e. weapon system characteristics, threat
variables, organizational structures, tactics employed, en-
vironmental conditions, etc.),

(D3) it oftentimes bears little relation to the physical combat

or other processes under study.

STOCK¥FISCH [90, p. 128] claims that no satisfactory simple technique for
aggregating modern conventional forces currently exists., Although the
firepower-score approach has been thus far much criticized, conventional
forces must be aggregated in many analyses, and until a better alternative
ig developed, firepower scores will continue to be used.

Analytical models have been discussed in general terms above. We

will now discuss their use specifically for assessing the outcomes of com=
bat engagements. In particular, differential-equation models have be:on

fairly widely used for the assessment of combat outcomes. Such models are
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used to represent the decay in numbers of weapon systems (i.e. the attrition
process) and require submodels (again‘usually analytical ones) for various
subordinate processes such as target detection, target location, fire al~
location, etc. The modern large-scale digital computer has made possible
the development of large-scale hierarchical system models, with submodels
feeding information into a master coordinating model. 1In the field of
combat modelling, the basic calculaticn is one of force attrition, and con-
sequently 18 usually dome with the aid of some type of differential—~equation
model. The use of such models as practical analysis tools is primarily due
to the efforts of S. BONDER and his colleagues formerly at the University of
Michigan and now at Vector Research, Inc. Their main contribution has been
the development of fairly detailed submodels for the prediction of loss
rates from engineering and operational data for such differential-equation
models. We will refer to such a differential-equation model that represents
attrition from enemy action through a system of differential equations for

the force levels as a LANCHESTER~type model of warfare (also commonly

called a differential combat model [16}). The rest of this book concerns

such models.

Each of the above combat-assessment approaches (i.e. firepower scores,
Monte Carlo simulation, aud analytical models) may be thought of as cor-
responding to a different scale of combat operations, with the firepower~
score approach and Monte Carlo simulation being at opposite ends of the
spectrum of the scale of combat operations (i.e. the size of the units in-
volved), This correspondence is shown in Table 1.III. The contenta23 of
Table 1.1III are only generally true, with exceptions certainly existing.

As we see from this table, the firepower-score approach has been primarily

used for eagagement assesgments in large-scale (i.e. theater-level) combat
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TABLE 1.III. Combat-Assessment Approach Related
to Scale of Combat Operations

Scale 23
Modelling of - E‘;ggi; of
Approach Combat
firepower score theater - ATLAS, CEM
Monte Carlo infantry: platoon - ASARS II
simulation armor: company/battalion -

DYNTACS, CARMONETTE

battalion - BONDER/IUA

iﬁgﬁ?ESTER'type division - DIVOPS
theater - VECTOR-2, TWSP,
BALFRAM, DMEW
26
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models. Alﬁhough there are exceptions, ‘high~resolution Monfte-~Carlo simu-
lation has béen a feasible assessment approach only when there have been

no more than aéeut 100 elements (e.g. individual tanks, crew-served weapons,
etc.) on each siﬁs. On the other hand, LANCHESTER-type modéls have been
developed for che\full spectrum of combat operations, from combat between

company/battalion-sized units to theater-level combat operations-

4

| fé 1l.4. The Influence of Modern-Digital Computer Techqg;ggz.z
: Without the modern\high-speed digital computer both high-resolution
- Monte Carlo simulations such ag DYNTACS and CARMONETTE and also differential
combat models such as BONDER);UA and its many derivatives would be impos-
} ." - sible. The modern computer p;Bvides not only large-scale memory capacity
but. also the ability to perform %llions of arithmetic operations per
second. In such a computational environment, the numerical integration
of a system of hundreds of ordinary\differeutial equations becomes possible.
Today LANCHESTER-type complex system models, which rely on modern digital
computer technology for their implementation (gee, for examplea, BONDER and
;f HONIG [12]1), have been developed for various levels of combat, from combat

lf.vv & ‘ between battalion-sized units (see BOSTWICK et al. [13] or HAWKINS [36])

to theater~level operations (see CORDESMAN [21}, FARRELL [28], or [105; 107]).

1.5. The Purpose of This Book.

As indicated above, there currently appears to be a trend toward increas
interesi in LANCHESTER-type models of warfare. However, information about
the nature of such models, their strengths and weaknesses, etc., unfortu-
nately does not appear to be widely disseminated beyond a relatively small

group of research workers. Moreover, there have been essentially no readily
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accessible sources of general information about LANCHESTER-type models:
there has been no book, textbook, or monograph on LANCHESTER-type models

of warfare, and the one and only survey article by DOLANSKY {23] appeared
in 1964. Considering contemporary developments, DOLANSKY's article is quite
out of date today. Purthermore, results and developments have been widely
scattered in the literature, and it has been difficult (if not impossible)
for an analyst to obtain general information and an overview of LANCHESTER~
type models of warfare.

The purpose of this book is to provide a comprehensive survey of
LANCHESTER-type models of warfare. By LANCHESTER-type models of warfare
we mean differential-equation models that describe changes over time in the
force levels of the combatants and other significant variables that describe
the combat process. Our objective is to present a unified treatment of
such models and of their behavior, with emphasis on the insights that may
be consequently obtained into the dynamics of combat. We hope to tie to-
gether much of the knowledge about LANCHESTER-type models that has been here-
tofore widely scattered in the literature,

In the past (say up until about 1970), LANCHESTER-type models of war-
fare were only used by a small group of the leading analysts: as a conse-
quence of pioneering work by F. W. LANCHESTER25 [51] done about the time of
World War I, a few military operatjions analysts have used simplified de~
tetministic26 differential-equation models to develop insights into the
dynamics of combat from about the end of World War II (see, for example,

{8; 11; 12; 23; 94; 110-112]). The advent of the modern high-speed digital
computer has made feasible the development and use of quite complicated
versions of such LANCHESTER~type (also frequently called differential)

models as practical defense planning tools [10]. Thus, today militarily
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realistic computer-based LANCHESTER-type models of quite complex combat sys
tems have been developed and are fairly widely used by a much larger numbe:
of analysts than ever used the simple differential-equation models. Thus,
the modern digital computer has made much more extemsive use of these model
possible. Such models currently exist for almost the entire spectrum of
combat operations, from combat between battalion-sized [13] and division-~
sized [16] units to theater-level operations [21; 28]. The study of the
basic nature and behavior of such differertial combat models is the subject
of this book. Our geoal is to promulgate a better understanding of such
models.

Two divergent aspects of LANCHESTER-type combat models are the
following:

(Al) 1insights that they provide into the dynamics of coumbat,
(A2) their enrichment in order to better model real~world combat

activities.

As is always the case, a book reflects the tastes and interest of its autho
Inspired by the works of F. W. LANCHESTER and H. K. WEISS, I have been more
interested in obtaining insights into the dynamics of combat from relatively
simple models than enriching such models in detailas (see W. T. MORRIS [63]
for a discussion of the processes of such enrichment). Hence, this book
emphagizes studying relatively simple combat models in order to learn their
basic nature and to, hopefully, perceive significant interrelationships that
are difficult to discern in more complex models. Such insights can provide
valuable guidance for more detailed computerized investigations (gee WEISS
[112]). We will also consider the use of LANCHESTER-type models of warfare
for developing quantitative lnsights into optimal time-sequential combat

strategies (see Chapter 8).
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1.6, Dynamic Systems and State Variables.

-y ' The LANCHESTER~type combat models considered in this took may be
viewed from the vantage point of system theory (see PADULO and ARBIB (68]).
We will find it convenient to do so in order to better understand the

philosophical underpinnings of such models. Let us therefoire introduce

the reader to some intuitive notions and ideas related to systems, We

/
will not attempt to give explicit and precise definitions. For our pur-
poses intuitive and rather vague termirology will suffice.27

A physical system is defined as an intercomnection of physical elemen

or objects. The notion of a system is rather broad: it applies not only
to simple mechanical and electrical devices but also to more esoteric and
complex systems such as automobiles and (especially) weapons systems. In
particular, one can view military units such as companies aud battalions
as cystems.

Systems may be either static or dynamic. This book concerns dynamic

combzt systems. For our purposes, a dynamic system is one whose inputs and

outputs are related by a set of differential (or difference) equatiqns. Thi

system evolves dynamically cover time. The set of differential equations pr«
vides a medel fur the system's evolution. We require that such a model be
valid in the sense that the present predicts the future. Let us informally
therefore, introduce the notion of cause and effect or, more formally, the

principle of casualty. Consider the following example: in NEWTONIAN

mechanics, the future motion of a system of particles is completely determi
if the present positions and moments are known, along with the present and
future forces. Future forces have no affect on the present (nonanticipator:

system), “nd how the system reached its ptresent state 1s not important.

30

[T

. R
T I . S




Knowledge of the present allows us to predict the future. What we must knc

about the present (berides the equations that describe the evolution of suc

quantitites) 1s called tha gtgte of the system. Intuitively, the state of

system is the minimum amount of present information about the history of th

system that allows one to predict the effect of the past upon the future.

variables chat are used to describe the state of a system are called the st

variables.

The above terminology 1s convenient for communication sbout LANCHESTE
type models of warfare. Later when we consider time-sequential combat stra:
tegles, it will be convenient to introduce the system-theory notions of clo:
loop and open-lnop controls. As we will see in the next chapter, one may vi
LANCHESTER's classic combat thesry as saying that force levels are the state
variables for combat between two military systems. We return to this theme

later.

1.7. Final Remarks.

Thus, we see that we may say that LANCHESTER-type models of warfare re
present dynamic combat systems whose state variables are typically force lev
In this introductory chapter we have established a framework for studying su
differential-equation models of combat: we have examined the general nature
of models, the use of combat models in defense planning in the United States
and the various types of combat models that are in current use. Based on ow
examination of the scientific study of conflict and warfare, we feel that mo:
of the shortcomings usually attributed to LANCHESTER-type models28 are alsot
shortcomings of any combat model.

Moreover, we feel that LANCHESTER-type models are an ideal vehicle for
studying combat dynamics because of the relative ease of extracting informati

from them and the fact that usually no other type of model is better justifie
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Our conclusion is based on a careful examination of the state-of -the-art

of conflict and combat modelling., In the next chapter we will see how

f; N LANCHLCSTER-type models readily provide many important insights into the

'ﬁ dynamics of combat.
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FCOTNOTES for Chapter 1

Unfortunately, little of this debate has reached the open literature.
See, however, the axcelleat report by the U.S. Army Models Review Com~

mittee [42], BOMDER and FARRELL [11, Chapter 1], and BONDER [10].

For some differing views on the nature of operations research, see
BARISH (4], BONDER [9], CHURCHMAN, ACKOFF, and ARNOFF [17], GOODEVE [34
KLEIN and BUTKOVICH [50], MISER [59; 60], and rerferences contained ther

in.

Although this definition opens the classic book by MORSE and KIMBALL [6
the definition apparently goes back to KITTEL [49] (as reported by
GOODEVE [35]).

See, for example, MORSE and KIMBALL [64], CHURCHMAN, ACKOFF, and ARNOFF
{17], HILLIER and LIEBERMAN [40], or WEISS [113]. See also the referenc

cited in Footnote 2.

Here the letter C is used phonetically to denote that ws are enumerating
concepts in this lis:. For the next such enumeration in this bock, the

letter T is used to denote that we are listing types (of models).

The effectiveness of any military system may be defined as the extent

to which the system may be expected to achieve a set of objectives [109]

and the quantitative expression of the extent to which specific mission
requirements are attained by the system is referred to as a measure of

effectiveness (MOE). In OR work, it is important to distinguish between

the performance (e.g. rounds fired per minute, single shot kill probabil
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10.

etc.) of a weapon system and its effectiveness (e.g. decisively winning
a fire fight), or military worth. Failure t§ choose appropriate measur:
of effectiveness can lead to completely wrong conclusions as to preferr:
alternatives (see MORSE and KIMBALL [64]). As stated in the main text,
although performance data for a weapon system day be collected in "oper:
tional" tests, a combat modei is usually required (for example, due to

safety considerativns) to "put ir all together" against an enemy threat
in an operating environment to estimate system effectiveness (see, for

example, RUDWICK [80, p. 57]). In other words, the combat model trans-
forms performance measures (e.g. target acquis;tion capability, rate of

fire, etc.) into elfectiveness measures (e.g. battle outcome, FEBA move-

ment).

About $30 to $40 million is apparently spent each year for just the
construction of such models. Unfortunately, it is very difficult to
estimate how much money is actually being spent annually on combat model-

ling activities because of the nonexistence of cost-accounting definition

and procedures [86].
See, for example, QUADE and BOUCHER [74, pp. 221-225].

In the decision sciences, the word '"uncertainty" has a special technical

meaning (see, for example, LUCE and RAIFFA [54]). However, we are using

this word as being synonymous with "having an element of chance involved.

See, for example, HITCH and McKEAN [41], QUADE [73], ENKE [25], QUADE and

BOUCHER [74], or BONDER [9].
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11.

12.

13.

Here we are brought face to face with the disagreeable paradox pointed c
by M. HOWARD (45, p. 10] that "war might be necessary as an instrument
of policy to insure the survival of a society in which it was possible
to renounce war as an instrument of policy." Speaking about World War I
he went on to say [45, pp. 10-11], "Good will and international organiza
tions were apparently not enough in themselves to eliminate violence as
an element in international affairs." In the mid-1960°s and early 1970'
a wave of sentiment (remarkably similar to that reported by HOWARD [45,
p. 10] for post-World-War-I England) arose within American academe (and
especially within the OR community) that war was not a problem to be
examined but an evil to be shunned. The parallel with the intellectual

climate of the 1920's and 1930's (as reported by HOWARD) is uncanny.

There is a special problem which has gone largely unnoticed, for those
who wish to test the validity of models of defemnse/military systems and/
or operations: the data base for the testing of such a model is from th
real world (past and present), whereas the prediction from the model is
for the real world (future). The physical sciences are based on the pri

of uniformitarianism, which holds that physical and biological processes

conditions, and operations do not change over time (i.e. uniformity over
time). For example, in geology the doctrine of uniformitarianism holds
that the present is the key to the past [61]. This principle, of course
does not hold for planning models of new future environments (see, for
example, HOWLAND [46]). What is meant by the validity of such a plannin

model is in need of critical examination.

For a discussion of von CLAUSEWITZ and the other major writer of the
NAPOLEONIC age on the art of war (namely, General Baron de JOMINI), see

EDMONDS [24].
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14. Concerning the scientific study of warfare, let us note some of the work
that has been done in the fields of arms races and warfare in general.
LEWIS FRY RICHARDSON did pioneering work in both fields [78; 79]. For a
lucid and authoritative discussion of RICHARDSON's mathematical theory of
war (Including arms races), see RAPOPORT [75]. For an introduction to
the scientific study of arms races, see INTRILIGATOR and BRITO [47],
RATTINGER [76], SAATY [81] and WEISS [113]. H. K. WEISS [114] has pointed
out that although more books have been written about war than about almost
any other human experience, the number of quantitative analyses is ex~
tremely small. The most notable of these are the pioneering studies by
QUINCY WRIGHT [117] and L. F. RICHARDSON [79].

SAATY [81] points out that in 1965 a Norwegian statistician used a
computer to organize a data base for 14,531 wars in 5,560 years of recorded
history. This data suggests that RICHARDSON's [79] pioneering quantita-
tive study of 315 wars that ended between 1800 and 1952 may well be re-
presentative of the entire recorded history of man on earcth. H. K. WEISS
[114] has taken RYCHARDSON's data as a point of departure for developing
several stochastic models for the duration and magnitude of wars. HORVATH
[44]), however, has criticized this work and suggested an alternative
model based on the theory of extreme values. All this data suggests that
unfortunately, war has been quite an estsblished human institution. More-
over, the author feels that one should view the scientific study of war
(including Lanchester—type and other combat models) much as one views the
study of, for example, a disease like cancer: the subject area may be
unpleasant but somebody must understand the phenomenon to be able to

realistically suggest what to do about it.

15. One, for example, develops simple decision tables or rules to model the
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complex human decision-making process.

16. However, Monte Carlo combat simulations are not appreciably more demanding
in their input requirements than detailed hybrid analytical-simulation
comﬁat models such as BONDER/IUA and its various derivatives discussed

below.

17. Even when it exists, documentation of a combat model may be poor ([86].
However, the following documentation and information is exceptionally
good for this field. Further information about CARMONETTE may be found
in ZIMMERMAN [120] or ADAMS, FORRESTER, KRAFT, and OOSTERHOUT [3].
CARMONETTE was an early effort in ground combat simulation and won the
Lanchester Prize (see Footnote 24) for RICHARD E. ZIMMERMAN [119] in 1956.
Further information about DYNTACS is to be found in [7; 19], while that
about SIAF is in [99]. General information about current combat models

(mainly Monte Carlo simulations) is available in [92; 101].

18. Our discussion here follows BONDER [10].

19. CARMONETTE, a pioneering combat simulation, took about 20 man-years of
effort to develop (3, p. 6]. For more recent data on the cost of simu-~

lation development, sece SHUBIK and BREWER [86].

20. Indices of the relative combat capabilities of military units (based on
a "scoring system" for the weapons employed in the units) have been used
by military gamers and force planners for years. We are here generically
referring to such indices as firepower scores, i.e. using the term firepower
scores to refer to any one of a large family of such indices. Other
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21.

22.

24.

members of this family of indices and related terms are firepower potentia
(FP), firepower potential score (FPS), unit firepower potential (UFP),
index of firepower potential (IFP), index of combat effectiveness (ICE),
weapon effectiveness index/weighted unit value (WEI/WUV), weapon effective
ness value (WEV), etc. (see STOCKFISCH [90, pp. 6-27] for further re-

ferences and a guide to the literature about firepower scores).

Names of various firepower-score methods are given in Footnote 20. See

STOCKFISCH [90] for further information.

The exact details vary from model to model. Sometimes (Ul) and (U2)

are combined.

As pointed out in Footnote 17, documentation of coubat models is
generally poor. The following documentation and information is, however,
exceptionally good for thus field. General informstion about contemporary
combat models (mainly Monte Carlo simnlations) 1s available in [92; 101].
Further information about ATLAS may be found in KERLIN and COLE [48] or
[33], while that about CEM may be found in [15] or [53]. Documentation
of both DYNTACS and CARMONETTE has been discussed above in Footnote 17.
Information about BONDER/IUA and its various dzrivative models may be
found in [11; 12; 36; 92; 104], while that about DIVOPS may be found in
[106]. The theater-level combat model named VECTOR is documented in

[21; 105; 107]. DMEW (see [100]) is also a theater-level model, as is

TWSP (see [21] or [27]).

For an excellent general discussion of comptiters and national security,

see PAXSON [71].
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FRFDERICK W. LANCHESTER (1368-1945) was an eminent English automotive and
aeronautical engincer. Fcr a brief sketch of his wany scientific and en~
glneering contrihutions, see McCLOSKEY [55]. Tie Lanchester Prize is named
altev him and is swarded anwually by the Operationa Rescarch Society of
America "for the paper on operarions research judged to be the best of

the c2lendar year."

Corresponding stochastic rormuiations (i.e. Markov-chain analoguee) are
for all pructical purposes analyrically intractable (see Note 1 of

TAYLOR and BROWN [93, p. 65]).

See PADULO and ARBIB [68] or TIMOTHY and BONA [98] for more precise and

extensive discussions.

See, for example, the chortcomings given in Section 2.6 for LANCHESTER's

classic (constant-coefficient) combat formulations.

39




NOTES and REMARKS for Chapter 1

Our discussion of models in Section 1.1.2 is similar to that of ACKOFF
[2, Chapter 4]. Furthevr discussion in a similar vein is to be found in
CHURCFMAN, ACKOFF, and ARWOFF [17, Part III] Our discussion of the dif-
ferent types of combat models in Section 1.3 owes much to BONDER and FARRELL

[11, Chapter 1] and BONDER [9; 10].

World-War-1XI Operations Research. Further information about World-War-II

operations—research activities may be found in McCLOSKEY and TREFETHEN [57]
and McCLOSKEY and COPPINGER [56]. For some idea about the subsequent develop-
ment of OR, see (for example) DAVIES, EDDISON, ard PAGE [22], ACKOFF [1],
HERTZ and EDDISON [39], and any recent textbook on OR (see, for example,

the fairly extensive references given in WAGNER [10]). The bock by STOCK-
FISCH [89] contains not only a very good description of World-War-II OR
activities but also an outstanding description and analysis of the subsequent
development and use of OR, cost-effectiveness analysis, and their mary

variants by DoD.

Defense Planning. For discussions (the classic ones) of defense plauning, see

HITCH and McKEAN [41], ENKE [25], QUADE [73], and QUADE and BOUCBER [74]. For
an older account of the weapons—acquisition process, see PECK and SCHERER
[72]. Overall discussion of American defense policy is to be found in HEAD
and ROKKE [37]. Information about the yearly Planning-Programming-Budgeting-
System (PPBS) Cycle and its evolution is to be found in ENKE [25] and NOLAN
[67]. STOCKFISCH [89] has given a penetrating analysis of weapon-gyatem
development and procurement by DoD. He has postulated flaws that lead to

the military bureaucracies operating under 'perverse incentives" in the cur-
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rent defense system, and he has also made suggestions for improving DoD
management (see also STOCKFISCH [90; 91]). For discussions of contemporary
defense-policy issues, see various publications of The Brookings Institution
(for example, LAWRENCE and RECORD [52], or RECORD [77]). 1lsasues for the

fiscal year 1977 are discussed in SCHNEIDER and HOEBER [82].

Systems Analysis. For various views on the nature of systems analysis, its

role in defense plauning, and its relationship to OR, see QUADE [73], QUADE
and BOUCHER [74], RUDWICK ([80], and NOLAN [67]. For a critical discussion
of systems analysis in nonmilitary contex:s, see H00S {43]. In fact, the
study of "systems" has become quite a field of study in its own right (see,
for example, von BERTALANFFY [6]). Unlike the variety of systems analysis
practiced in the defense community (gee the above references [67; 73-74; 80]
the brand of systems theory espoused by von BERTALAFFY and others of this
general school of systems science (see, moreover, HOOS [43, pp. 15-41] for
a brief and penetrating survey of the diverse meanings of the word "system"
as used in many differcnt disciplines) uses differential-equation models as
the basic vehicle for studying the dymamical behavior of systems. In this
respect, see (for example) the work of FORRESTER [30-32]. Moreover, |
FORRESTER's work, in contrast to the work at hand, has stressed an "experi-
mental" approach to understanding system behavior through the repeated
running of continuous-time simulations (i.e. numerical integration of sys-
tems of differential equations, not Monte Carlo simulation). This work ha
not been without its critics, though (see, for example, SHUBIK [83], BREWE
and HALL [14], and BERLINSKI [5]). Moreover, the analogue in the defense
community of FORRESTER'e work has been that of PAUL CHAIKEN of the Stanfo:

Research Institute (see, for example, [58]).
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Simulation and Gaming. For an early general account of simulation, see

MORGENTHALER [62]. More recent accounts are contained in, for example, the
books by NAYLOR, BALINTFY, BURDICK, and CHU [66], EVANS, WALLACE, and SUTHER-
LAND [26], and FISHMAN [29]. The latter book [29] (see also NAYLOR [65])
contains fairly extensive references to the simulation literature. Most of
this literature, however, is irrelevant to our current examination of combat
models and defense planning: a very small portion of the contemporary
literature on simulation (one exception being the book by EVANS, WALLACE,
and SUTHERLAND {26]) considers the simulation of military combat or other
military operations and is therefore relevant to the analysis of defense-
planning problems. Along these lines, ZIMMERMAN's 1960 article [119] is
probably still the beat article available on the simulation of ground combat.
Although the list of combat simulations that we have given above (gsee, for
example, Footnote 17) 1s rather short, it does include most of the principal
ones that are being used by DoD today.

We probably have not done justice to the toplc of gaming. For recent
general discussions of various aspects of gaming, see SHUBIK [84; 85] (see
also SHUBIK and BREWER {87] and SHUBIK, BREWER, and SAVAGE [88]). The lat-
ter book [85] contains excellent guides to various parts of the gaming
literature. For a very readable and informative popular account of war gamir
see WILSON {116]. We agree, moreover, with SHUBIK and BREWER [86, p. 8]
that '"the amcunt of publicity given free-form, political-diplomatic-military
games has been enormously disproportionate to the financial and intellectual
investments ip them. Popular accounts aside (such as [116]), research on
the intellectual foundations and uses of this type of work has been neglible.
The classic work on "traditional" war gaming is by YOUNG [118] and contains
a comprehensive history of the development of war gaming. For accounts of

operational gaming and its role in militsry operations research, see THOMAS
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and DEEMER [97], THOMAS [95; 96], and PAXSON [70]. Although scmewhat dated
the references [95-97] are still an excallent introduction to gaming,K proba
the bast technical one in the military field. A more recent version of thi

matarial (but not as deep or comprehensive in the military area) is to be

found in the bock by SHUBIK [84].
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Chapter 2. LANCHESTER'S CLASSIC COMBAT FORMULACIONS

2.1 Lanchester's Original Work.

In 19141 F. W, LANCHESTER2 [55] considered his now classic mathematical

formulations of combat between ¢wo homogeneous forces in order to quanti-

tatively justify the principle of conceng;ation3 wnder "modern conditions."
When viewed in this light, his simple differentisal equation modecis are
quite reasonable. With the elegaunce of simplicity, thevy coavincingly
ghow that concentration of forces 1s much more important under '"modera

conditions" than under "ancient conditions."

We should, perhaps, be more amazed that such simple modeis yield
intuitively appealing results than be critical because of the factors
omitted from them (see WEISS [98, p. 15]). As is usually the case with
simple analytical models (gee Section 1.3 above), they may be tno abstract
;o solve any specific real operational problem. They can, bowever,
illustrate a general principle such as concentration, clearly delineate
mvdelling issues, warn about potential difficulties, and serve as a
basis for communication among analysts (see SHUBIK and BREWZIR (74, pp. 2-3]
for further discussion). In other worde, svch simple analytical models
can provide valuable insights into the dynamics of combat, although they

may be far too simple to be able to address any specific operationzl

problem.4
LANCHESTER's [55] hypothesis was simply the folilowing. It "ancient

times," warfare was essentially a sequence of one-on-one duels5 so that
the casualty-exchange ratio during any period of battle did not depend

on the combatante' force levels. But under "modern conditioms,' however, the
firepower of weapons widely separated in firing location can be concen-

trated on surviving targets so that each side's casualty rate is proportiomal
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to the number of enemy firers and the casualty-exchange ratio consequently
depends inversely on the force ratio. Kence, under modern (i.e. 1914) comn-
ditions there is a definite advantage to be gained from concentration of
forces; this has nnt always been true siuce in ancient times there was no

such advantage to be usually gwined from concenttation6. LANCHESTER

stressed thac "modern" technology had radically changed the fundamental
nature of warfare from wha:t it was in the past. In ancient times, weapons
such as swords and battle axes had to directly engage each other so that
warfare was essentially a sequence of one-on-one duels., However, in
modern times, the long-range delivery capability of contemporary weapons
allows the concentration of firepower by weapons widely separated in
firing location. Consequently, many weapons may fire at a few with
devastating effects.

LAﬁEHESTER's [55] main contribution was to translate the above verbal
model7 into mathematical terms. Because of the really pioneering nature
of his work, LANCHESTER provided much motivation and logical (but not
scientific) justification for his simple mathematical developments. He
[55, p. 422] very insightfully comments that "the defense of modern times
is Indirect: tersely, the enemy is prevented from killing you by your
kiliing him first, and the fighting is essentially collective." The
mode]l that LANCHESTER formulated for combat under modern conditions re-
flects this consideration. He then used this model to convincingly
show the advantage from concentration of forces, i.e. the advantage of
aot. committing forces "piecemeal."

Conditions of Ancient Warfare. As we have seen above, LANCHESTER

hypothesized that ancient warfare was essentially composed of a series
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of one-to-cne duels between men fighting with weapons such as swords,
battle axes, etc. He argued that if two equal-sized forces composed of
combatants with equal fighting ability were to meet in battle, then each
side would lose about the same number of men. Let us denote oune side as
the X force aad the orher as the Y force, Then LANCHESTER reascred that
if 1000 members of the X force and 1000 of the Y force meet in battle,
it is of little consequence whether, for example, the 100C X meet the
entire Y force at once, or half now and the sther half later. LANCHESTER
reasoned (implicitiy) that those who do not have duel opponents would have
to wait in line for the opportunity to do battle and could not "gang up"
on the enemy. In other words, .here is no advantage to be gained from
concentration of rcrces.

LANCHESTER did not give any equations for ancient wnrfares, but 1t
is clear from reading his paper that he had in mind a combat attrition
orocess for which the (instantaneous) casualty-exchange ratio is independent
of the numbers of combatants, i.e.
%"; - , (2.1.1)
where x(t) and y(t) denote the numbers of X and Y coumbatants at
time t, and E denotes the coustant exchange ratio. If we denote the
initisl number of X combatauts at the beginning of battie at + = 0 as
Xy l.e. x(0) = Xys and similarly for the Y force, then integration

of (2.1.1) yields LANCHESTER's linear law
X - x(t) = E{yo - y(t)} . (2.1.2)

The significant insight into the dynamics of combat, which the above

simple analytical combat model readily yields, is that under such ancient
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conditions of warfare there was no advantage to be gained from concen-

trating forces. We can see that this important result is an immediate

consequence of LANCHESTER's linear law (2.1.2) by considering how a side's
casualties depend on the number of his forces imitially committed to bat-
tleg. Consider, for simplicity, a fight-to-the-finish in which the X
force wilil be annihilated. [In Section 2.10 bBelow, we will consider this
topic again with more realistic battle-termination conditions after we
have briefly considered the topic of modelling the battle-~termination
process.] Let us denote the final force levels at the end of battle with
the subscript "f," and then X, = 0. Let us also assume that the ex-
change ratio E 1s equal to unity, i.e. E = 1, and that X starts

with 100 men, i.e. Xy = 100. Then, we can take different values for

Y's 1initial strength, use (2.1.2) to compute Yo and determine Y's

loss four each different initial commitment of forces. As Table 2.1 shows
us, we find that Y's loss is always the same (provided that Y wins,
i.e. yO‘: 100), irrespective of how many men he commits to battle. Al-
though we have demonstrated this result only for specific numerical values,
it 18 true in general (see Section 2.10 below). Thus, there is no ad-
vantage under conditions of ancient warfare to concentrating forces.

"Modern Conditions Investigated. LANCHESTER hypothesized that under

"modern conditions," a gide's casualty rate would be proporticnal to the
number of enemy combatanf.s due to the firepower-delivery capability of

modern weapons. In mathematical terms, we have

with x(0) = X0»
(2.1.3)

with Y(O) - yoy
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TABLE 2.I Numerical Results That Illustrate That Under "Ancient Conditions"
of Warfare There Was No Advantage to Concentrating Forces ({i.e.
No Reduction in Own Casualties From Committing More Men to

Rattle).

"ANCIENT WARFARE"

X =% = E (yg - yg)

Set E=1, X, = 100, x; = 0
Then
Yo 100 150 200 250 300 500
V¢ 0 50 100 iSO 200 400
Y's loss 100 100 100 100 100 100

NO ADVANTAGE TO CONCENTRATING FORCES
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where t denotes the battle time, the battle beginsg at t = 0, and a

and b are constants that are today called LANCHESTER attrition-rate

coefficienta. These attrition-rate coefficients represent the effective~

ness of each side's fire (i.e. its firepower). This simple combat situa-

tion considered by LANCHESTER 18 diagrammatically represented in Figure

2'1.

In contrast to the previous situation for ancient warfare, it now

makes a tremendous difference how the Y force of 1000 combatants is

‘ committed against the X force of 1000 combatants. If all 1000 Y meet

'ﬁf the 1000 X of equal fighting ability (i.e. we assume that the relative

| fire effectiveness, %3 is equal to unity, namely %-- 1), then the bat~

Fi tle would be fought to a draw, with both sides being simultaneously

3 annihilated., However, if half the Y force, i.e. 500 combatants, meets

the entire X force, the result would be the annihilation of all the

Y forces committed at a cost of about 134 casualties to X. Plots of the d

of the force levels are shown in Figure 2.2. If the 866 X survivors

now engage the remaining 500 Y, the result would again be the annihilation

of the Y combatnats, this time at a cost of about 159 additional casual-

-

ties to X (see Figure 2.3). Thus, if X cen divide the Y force and

concentrate all his forces against each half in two sequential battles, ther
entire Y force of 1000 men can be annihilated by X with a loss of only
g 293 men. LANCHESTER {55] gave this example and then went on to examine
© Y several other examples of the "weakness of a divided force." Thus, we
see that under the "conditions of modern warfare'" (at least as modelled
by (2.1.3)) JULIUS CAESAR's famous dictum ''divide and conquer’ has been
quantitatively justifed (at least in a heuristic sense).

From equations (2.1.3) we may obtain the instantaneous casualty-

exchange ratio
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dy bx X

where the constant exchange-ratio coefficient E = a/b has been intro-
duced so that we can readily compare (2.1.1) and (2.1.4). Integration

of (2.1.4) yields LANCHESTER's square law

2

bl - %) = ayl - v) (2.1.5)

which (as we have partially seen above) has the important consequence

that a side can significantly reduce its own casualties by initially com-

mitting more forces to battle (see Table 2.II and compare with Table 2.I)
LANCHESTER, however, referred to the "condition for equality of

fighting strengthslo," namely

bx? = ay> (2.1.6)

as the "square law." It is interesting to note that he did not
deduce (2.1.6) from (2.1.5),'! but LANCHESTER

[55, p. 422, column 1] reasoned that two forces are of equal strength

when their force ratio does not change during the course of battle. For

example, let an X force of 1000 combatantsy, each armed with an M-16, en-
gage a Y force of 500 men, each armed with a light machine gun. If
after a given time, X will have lost 200 men against a loss of 100 for
Y, then the force ratio has remained constant and the forces may be re-
garded as being of equal strength. Introducing the force ratio, u = x/y,

we find that it satisfies the RICCATI equaticu

du 2 X0
it b u® -a with u(0) uy = ;; . (2.1.7)

From (2.1.7) we see that the force ratio doesn't change over time
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TABLE 2.I1 Numerical Results That Illustrate That Under "Modern Conditions”
of Warfare There Is an Advantage to Concentrating Forces (i.e.
Reduction in Own Casualties From Committing More Men to

Battle).

T R g L St S s+ 0 A 2

""MODERN WARFARE"

P

R T .

X, = 100, x. =0

100 150 200 250 300 500

Ye 0 112 173 229 283 490

Y's loss 100 38 27 21 17 10

ADVANTAGE TO CONCENTRATING FORCES
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(L.e. du/dt = 0) 1if and only if (2.1.6) holds. It was indeed insight

that LANCHESTER deduced his famous "square law" in this fashion.l2

Area~Fire Model. LANCHESTER also considered the case in which each

side fires into the general area occupied by the enemy and not at par-
ticular targets. He assumed that this area is independent of the number
of targets present in the area. Implicit in LANCHESTER's devclopment is
the assumption that fire is uniformly distributed over this area. In

this case, LANCHESTER hypothesized that the following equations would

hold
dx
dc - T axy with x(0) Xy
(2.1.8)
d
at - bxy with Y(O) yO'

Again, (2.1.2) is a consequence of (2.1.8) with E = a/b, so that in
such cases of area-fire battles there 13 no particular advantage from

concentration (again, see Table 2.I).

Final Remarks. The level of mathtematics is kept at a minimum

in LANCHESTER's original paper [55], yet 1f ome carefully reads the paper
it becomes clear that LANCHESTER had explored fairly deeply the mathe-
matical properties and operational implications of his simple models.

In the next couple of sections we will examine the properties, behavior,

and operatiohal implications of these classic models.

2.2. Constant-Coefficient LANCHESTER-Type Equations for Modern Warfare.

We have seen that in his original 1914 paper, LANCHESTER [55]
hypothesized that combat between two homogeneous forces under "modern con

ditions" could be modelled byl3

63

v‘ 1‘ ‘ l‘ & A ) ) s [y N A‘_AA . 3 i R PR




o= = ~-ay with x(o) - X

dt 0"’ (2.2.1)
dy

it = -bx with y(o) - YO ‘

Even though cbmbat is a complex random process, such deterministic differ-
ential-equation models are commonly used in the analysis of military
ccmbat.l4 In this simple combat model, the attrition rate for each force,
e.g. (~dx/dt) for the X force, 1s assumed to be proportional to only
the oumber of enemy firers. As we have seen above, the constants a and
b represent the effectiveness of each side's fire, 1.e. its firepower,

and are called LANCHESTER attrition-rate coefficients. In other words,

the attrition-rate coefficient a represents the fire effectiveness of
a single Y firer, i.e. the rate at which he kills X targets.

This simple combat model is very significant because almost all develop-
ments in the LANCHESTER theory of combat [including current operational
models such as BONDER/IUA, BLDM, VECTOR-2, etc. (see Section 1.3)] may
in one sense or ancther be considered to take (2.2.1) as a point of
departure. In particular, much can be learned about developing analytical
solutions and gaining insights into the dymamics of combat by studying
it. Consequently, we will study this particular model in some detail.

For convenience, we will refer to the equation (2.2.1) as LANCHESTER's

equations for modern warfare,l5 although they have been hypothesized to
apply under other circumstances. In fact, two sets of physical cifcum-

stances under which these equations have been hypothesized to apply are:

(Cl) both sides use "aimed" fire and target-acquisition times are
constant, independent of the force levels (a special case of
which is when target acquisition times are negligible) [99],

(C2) Dboth sildes use "area" fire and a constant density defense [15].
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A more complete discussion of these hypotheses is to be found in the
papers by BRACKNEY [15] and WEISS [99] and in Section 2.11 below.

The above equations (2.2.1) only make sense for x, y > 0, since
negative force levels are physically meaningless. If we consider the
physical process of ﬁwo military forces exchanging fire, then it is clear
that equations (2.2.1) can only be valid for x, y > 0 and require modi-
fication for x = 0 or y = 0. For example, the first becomes dx/dt=0
for x = 0. To be more precise, we should write LANCHESTER's classic

model of modern warfare as

dx _ { -ay for x>0,
de 0 for x=0,
(2.2.2)
dy . { -bx for y>0,
dt 0 for y =0 .

To avoid inessential complications, however, we will not do so with the
understanding that when we write the differential equations for some model
like (2.2.1), we implicitly imply that the equations are "turned off" when,
for'example, one side or the other is annihilated. The reader should also
observe from (2.2.2) that a LANCHESTER-type differential-equation éombét nodel

need not always have the same "right~hand sides."

The next aspect to consider 1is to determine what we can learn from
LANCHESTER's model of modern warfare about the dynamics of combat between
two homogeneous forces. In particular, one is interested in answering

such questionsl6 as:

(Ql) Who will "win'"'? Be annihilated?

(Q2) Wwhat force ratio is required to guarantee victory?
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(Q3) How many survivors will the winner have?

(Q4) How long will the battle last?

(Q5) How do the force levels change over time?

(Q6) How do changes in parameters ti.e. initial force levels, x. and Yo»
and attrition-rate coefficients, a and b) affect the outcome

of battle?

(Q7) 1Is concentration of forces a good tactic?

In the remainder of this section we will consider answering the above
questions.

The two basic vehicles for answering the above questions are (1) the

state equation, and (2) the X(or Y) force level as a function of time. Additional-

ly, we will see that we can alsc determine who will be annihilated from the

force-ratio equation and obtain further insights into the dynamics of combat.

A state equation is an equation satisfied by the state variables.

Since time t is not a state variable, the state equation for combat between

two homogeneous forces takes the general form
S(x,y) =0, (2.2.3)

where x and y denote the force levels of X and Y, respectively.
To obtain the state equation for the combat model (2.2.1), we divide the

first equation by the second to obtain the instantaneous (or differential)

cagualty—-exchange ratio

dx _ ay
dy " bx (2.2.4)

Separating variables and integrating, we obtain the state equation for

LANCHESTER's model of modern warfare

bixs - x2()} = aly] - y2(e)} . (2.2.5)
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We will also refer to (2.2.5) as LANCHESTER's square law.

Let us now see how we may use the above state equation to obtain the

X force level as a function of time, denoted as x(t), for combat modelled

by (2.2.1). Solving for x and substituting into the first differential

equation of (2.2.1), we obtain

%% - - Jx2+k with initial condition x(t = Q) = Xy (2.2.6)

where T =/Vab t and k = (a/b)yg - X2

0 Separating variables and inte-

grating, we find that

2
Ln ( x + /x tk ) - -1, (2.2.7)
\xq + Yo Ya/b

Raising e to the power of each side of (2.2.7), we obtain the X force

level x(t) after some algebraic manipulation
L1 5., Jabt Sy T
x(t) =5 {(x, -\/; Yg) © + (xg + 5 V) @ boo (2.2.8)

In terme of the so-called hyperbolic functions (gge Appendix A.l), we may

write the X force levels as

x(t) = x

o cosh Yab t - yo/-g sinh vab t (2.2.9)

For the general case of time-dependent attrition-rate coeffici&nts,17

there is no state equation of .the form §S(x,y) = 0. With this fact in mind,
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let us seek anothex method that dces not depend on using such a state
equation to develop the X force level. We may differentiate the fizst
equation of (2.2.1) with respect to t and combine the result with the
second equation to obtain a second order linear ordinary differential

equacion that contains only the X force level

dzx
dt
with initial conditions
x(0) = x and 4X (0) = -ay. .
(1 I dt 0 *

We will call (2.2.10) the X force-level equation. Using standard solution

methods (see Appendix A.2), we again obtain (2.2.8) [or, equivalently,
(2.2.9)] for the X force level. Again, this solution approach of develop-
ing an X force-level equation is significant because it generalizes to
cases of variable coefficients, whereas the approach based on the state
equation in general does not.

In Figures 2.4 and 2.5 is plotted the decay of the X and Y force

levels. For convenience, we record these results here as18

x(t) = X cosh/ab t - yOv/g sinh vab t ,

and (2.2.11)
y(e) =y, coshvab t - x0y4§ sinh vab t .

The force levels are most conveniently expressed in terms of the hyperbolic
functions when parametric studies are desired. We will see below that repre-
sentation of the force levels in terms of the exponential functions provides
certain important insights. In Figure 2.4 the smaller force is seen to be
annihilated, whereas in Figure 2.5 the larger force is annihilated. 1In

both cases, we have '"stopped" the battle as soon as one side or the other
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Figure 2.4. Force-level trajectories of X and Y forces for combat
modelled by LANCHESTER's equations of modern warfare. For
these calculationa, a = 0.04 X casualties/(minute‘number of
Y combatants) and b = 0.04 Y casualties/(minute‘number of

X combatants).
69



Force 4

LEVEL
Yo " 60 4
y(t)
x(t)

Xg ™ 30 %

[ A [

v 14 L "

0 10 20 30
TiMe (MINUTES)

Figure 2.5. Force-level trajectories of X and Y forces for combat

modelled by LANCHESTER's equations of modern warfare. For
these calculations, a = 0.01 X casualties/(minute-number of

Y combatants) and b = 0.1 Y casualties/(minute ' number of

X combatants).
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has been annihilated, i.e. we have not computed the force levels past the
time at which one side is first annihilated.

To more clearly exhibit the parametric dependence of the force-
level trajectors, we normalize the force level by considering the fraction

of the initial strength x(t)/x0 given by

y
2(t) . osh Vab t - —2 /2 ginh Vab ¢ . (2.2.12)
xo xo b

From (2.2.12) we see that the X force level depends on the following three
quantities (although the model (2.2.1) contains the four independent
parameters, a, b, Xg and yo):

(1) 1initial force ratio, uy = xO/yo,

(2) intensity of combat, 1 = Yab,

(3) relative fire effectiveness, R = a/b.
We observe that u, and R are relative quantities (without units), whereas
I is an absolute quantity. It is the so-called geometric mean of the attri-
tion~rate coefficients. It seems appropriate to call I = /ab the intensity
of combat, since the course of combat for the model (2.2.1) more quickly
reaches 1ts conclusion the larger that 1 1is. In other words, I controls
the time scale of battle.

To determine who will "win" the battle, one must specify battle-
termination conditions, with "victory" conditions also being given for each
side. 1In other words, one must have a model for the battle-termination
process. The simplest, but albeit somewhat unrealistic in the light
of historical evidence, model of battle termination is to consider that each side
fights until it is annihilated. Let us assume that this is true.

We will consider a wmore realistic model helow\in Section 2.8.
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Thus, we consider a "fight-to-the~finish,'" which can have three

possible outcomes:

(XW) X wins with Xe > 0 and Y * 0,

(W) Y wins with Ve >0 and Xe = Q,

(D) draw with Xe =Yg = o,
where Xe denotes the final X force level and similarly for Ye- For
any particular battle (i.e. for particular specified values of the attrition-
rate coefficients a and b and the initial force levels X, and yo) we
can always plot the decay of the force levels x(t) and y(t) versus time t

and consequently determine who will be annihilated and who will win the

fight-to-the-finish (gsee Figures 2.4 and 2.5). This is, however, a time-consumir

procedure, and doesn't provide any deep understanding of the dynamics of
combat, 1i.e. how weapon-system capabilities (as quantified by the attrition-
rate coefficients a and b) and the initial force levels X and Yo
determine the outcome of battle. However, it is of considerable interest
to determine force-annihilation-prediction conditions, i.e. conditions that
allow us to determine battle outcome (here, force annihilation) without
having tec spend the time and effort of explicitly computing force-level
trajectories. Let us, therefore, now determine condit;ons that are necesgary
and sufficient for Y to win a fight-to-the~finish in finite time, i.e. X
be annihilated in finite time. There are several ways in which we can do
this. Here we will only consider the easiest way, with a more in depth
examination being given in the next section.

Probably the easiest way to determine force-annihilation-prediction
conditions 18 to consider the X and Y force levels expressed in terms

of the exponential functions, namely

12
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x(6) = 3 {(x, -/% vg) ¢’ €4 (xy +/§yo> RO (2.2.13)
and
y(t) -% {(yq - E x4) e/;b. £+ ¥y +‘/§- xg) e—'fég 5 . (2.2.14)

We observe that the second term in brackets for both x(t) and y(t) 1is
always positive, since the negative exponential function is always positive
It is strictly decreasing as a function of t and becomes negligible for

large t. Thus, both x(t) and y(t) >0 and 1iim x(t) = limt_,+ay(|

£+
= 0 1f and only if xolyo = Ya/b. 1In cther words, we have a draw when
(and only when) xo/yO = Ya/b. Furthermore, y(t) > 0 for all ¢t >0 and
lim +o/(t) > 0 4if and only if the first term in brackets for (2.2.14) is
positive, i.e. the coefficient of the increasing exponential in (2.2.14) is
positive. This 1is equivalent to xO/yO < Ya/b. 1In this case (i.e.

xO/y0 < /a/b) the first term in brackets of (2.2.13) for x(t) is negativ

and decreases without bound as t + + ». Hence, at some point in time

x v 0 when the two terms in brackets just cancel out. Thus, we have shown

PROPOSITION 2.2.1: Y will win a fight-to-the—~finish in finite

time if and only if xO/yo < va/b .

Proposition 2.2.1 is particularly significant because it shows us
that the outcome of battle (here, the annihilation of one side) is determin
by only two relative factors (namely: (I) the initial force ratio Uy

u xo/yo, and (II) relative fire effectiveness, R = a/b) and not absolute
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quantities. Thus, even though the model (2.2.1) contains the four inde~

pendent parameters, it is the only two relative quantities ug and R

that determine force annihilation. It is also very important for us to

point out that (except for the so-called quasi-autonomous case in which
a(t)/b(t) 1is constant) although LANCHESTER's square law in the form (2.2.5)

does not generalize to cases of time-dependent attrition-rate coefficients,

the force-annihilation-prediction condition of Proposition 2.2.1 does

generalize to such cases.

Rewriting (2.2.14) as

y(t) = %jz: {- (x0 b \/-:.-) e&‘F t s (:4:0 + Y J—E—) e_'/;g £y, (2.2.15)

we clearly see from (2.2.13) and (2.2.15) that at most one of X and Y

can ever be annihilated in finite time (i{.e. at most one of x(t) and

y(t) can ever be driven to zero in finite time). This is an important

property of the medel (2.2.1), since it allows us to consider only

one of x(t) and y(t) 1in order to determine force annihilation for both

combatants. In other words, 1if x(tﬁ) = 0 with tg >0 and finite, then

we know that y(t) > 0 for all t > 0. Thus, if we can compute the time

for X to be annihilated, we know that y(t) will always be greater than

zero. In more mathematical terminology, equivalently, we have shown that

the X force-level equation (2.2.10) possesses a nonoscilliatory solution

x(t), 1i.e. =x(t) has at most one zero for t ¢ [0, + =). Furthermore,

the same is true for (dx/dt)(t).

In view of the importance of the fact that at most one of x(t)

and y(t) 1s ever equal to zero, let us deduce this property of the
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force level trajectories from the basic differential equations themselves
First, a few heuristics. Looking at the first equation of (2.2.1), we
see that if y(t) becomes negative, then x(t) begins to increase.
Thus, it is intuitively obvious that if y(t) goes to zero and then
becomes negative, the corresponding plot of x(t) versus t will have a
positive minimum corresponding to the time t: at which y(t) = 0. This
situation is shown in Figure 2.6. Thus, if we forget to "turn off"

equations (2.2.1) at t: (1.e. don't use (2.2.2)), then the X

force level will actually increase as time t increases when ¢t > tz.

Let us now give an analytical demonstration of the fact that all
the solutions to (2.2.1) are nonoscillatory (see HILLE [38, p. 373]), 1.«
at most one of x(t) and y(t) can vanish in finite time. Multiplying
the first equation of (2.2.1) by vy, the second by x, adding, and

integrating the result between 0 and t, we obtain

t
x(t) y(&) = x5y, - f {ayz(s) + bxz(s)} ds . (2.2.16
0

It 1s impossible for both x(t) and y(t) to be equal to zero at

any finite time, since then they would have to be equal to zero for
all time.l? Hence, the integral term (i.e. ft {ayz(s) + bxz(s)}ds)

is strictly increasing and positive for t > 8. Since X3¥o >0, it
follows that x(t) y(t) has at most one finite zero for t > 0. Thus,
we have deduced the desired property, which we record here as

Proposition 2.2.2.

PROPOSITION 2.2.2: For the model (2.2.1), at most one of the

two force levels x(t) and y(t) can ever vanigsh in finite time.
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Force-level trajectories for combat modelled by the
differential equations (2.2.1). The dashed lines

extend the X and Y force levels computed by (2.2.13)
and (2.2.14) past t:.

the same as for Figure 2.5.

The values of a and b are
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Since the force-annihilation-precdiction condicion contained in
Proposition 2.2.1 involves the iritial force ratio and not a force level
we are motivated to consider the force ratio and ask what happens to it
over the course of battle., Furthermore, many aggregated combat models
(such as ATLAS) have both casualty rates and also FEBA movement depend
on the force ratio (of firepower irdices or their equivalent). In order
to determine how the force ratio changes over time, we seek a differenti
equation for it. Introducing the force ratio u = x/y, we consequently

consider n u = %n x - ¢n y and differentiate with respect to time to

ldy _ ldx_lgy
udt xdt ydt °

Using the differential equations (2.2.1), we find that for the combat
dynamics of (2.2.1) the force ratin u = x/y satisfies the following

Riccati equation (see Appendix A.3)
e=bu’ -a, (2.2.17)

with u(0) = uy = xo/yo.

Although we could separate variables in (2.217) and integrate

(see INCE [41, pp. 311-312]) to obtain®?

[ Grg = 9072T0) + (xg + y/aTR) 7220 )
u(t) = - ﬁ

l = ’. (2.2.18)
(xg = ¥o7alb) = (xy + yo/alb) e 2720 ¢

0 0 0 0
the main use of the force-ratio equation (2.2.17) is not to solve explici

for u(t) but to obtain qualitative informatiom about the-solution u(t)
For a fight-to-the-finish, we observe that (a) X wins at t = T when

.

u(T) = + », and (b) Y wins when u(T) = 0. Thus,it seems appropriate
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to say that "the course of battle is moving towards a Y victory" when

du/dt < 0 (or, simply, that "Y is winning"). Moreover, du/dt < 0 if
and only if

< {3 . (2.2.19)

Let us now examine the qualitative behavior of the force ratio over

time as determined by the force-ratio equation (2.2.17). We will see that

we need not solve (2.2.17), i.e. consider (2.2.18), in order to quali-
tatively determine how wu(t) changes over time. It seems appropriate

to call du/dt the force-ratio velocity. For convenience we consider that

(2.2.17) holds for =~» < u < + =, Let us now examine how the force-ratio

velocity du/dt depends on the force ratio uv. For such an examination

we hold t constant and consider du/dt to be a function of only u,

denoted as du/dt{u), We define = va/b and u_= -vYa/b. It follows

u,

from (2.2.17) that du/dt(u) <0 for wu_ < u < u,. The minimum of

du/dt(u) occurs at u = 0, and we have du/dt(umin) = -3 < 0,

min
Usually, however, we will let t vary, and then du/dt may be considered
to be a function of t, denoted as du/dt{:), since the dependent vari-

able u depends on t.

In Figure 2.7 the force-ratio velocity du/dt is plotted against
the force ratio u. It should be recalled that a negative force-ratio
velocity has the interpretation that Y 1s "winning" the battle (2.2.1).
Also shown by means of arrows drawn along the u axis in Figure 2.7 is the
direction of movement of the force ratio, with the length of the arrow
reflecting the magnitude of the force-ratio velocity. From Figure 2.7
it is clear that if du/dt (t = 0) < 0, then u(t) decreases and du/dt(t)

becomes more negative (as long as u > 0). Thus, we have proved
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Flgure 2.7. Force-ratic velocity as a function of the force
ratic for combat modelled by LANCHESTER's

equations of modern warfare.
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PROPOSITION 2.2.3: If du/di(t = 0) < 0, then du/dt(t) < 0

for all t > 0, If u >0, then du/dt(t) < du/de{t = 0) < O.

Thus, if u, < va/b, the force-ratio always will decrease during the
course of battle; it will always increase if U, > v3/b. For the

constant-coefficlient model of "modernm warfare' (2.2.1), we see from

(2.2.17) that 1if xolyo = Ja/b, then the force ratio remains constant
during the course of battle although the force levels exponentially decline.

We state this result as Proposition 2.2.4.

PROPOSITION 2.2.4: If du/de(t = 0) = 0 (i.e. x,/y, = /a/b), then
the force ratio remains ccnstant during the coursz of battle (i.e.
u(t) = x(t)/v(t) = Ya/b), although the force levels exponentially

decrease, i.e. x(t) = x. exp(-vab t) and y(t) = Yo exp(-/sg t).

0

We observe that such force-level behavior only holds for a constant-

21 model.

coefficient
Let us now show how the force-amnihilation-prediction condition of
Proposition 2.2.1 may be deduced from the force-ratio equation (2.2.17).
This result is particularly significant because it generalizes to certain
cases of time-dependent attrition-rate coefficients and yields simple
force-annihilation-prediction results that do not involve any higher
transcendental functions. We observe that du/dt{t = 0) < 0 if and only
if xo/y0 < Y/a/b. Thus, by Propositioa 2.2.3 u(t) 1is strictly decreasing.
It remains to show that u{t) beccmes zero in finite time. We readily
show this by considering for u > 0

t
- du , Au
ue) = uy + {) @GP decugre g (O,
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the last inequality holding by Proposition 2.2.3. Hence, u(t) - 0

in finite time, since du/dt(0) < O.

We are now in a position to easily answer the question of how
long the battle will last. Agaln, the results given here will be limited
to a fight-to~the-~finish. By proposition 2.2.1 we know that X will be
annihilated if and only if xy/y, < Va/b. The time at which X is
annihilated, denoted as tz, may be determined from x(cg) = 0, In this

determination we may express the X force level in terms of either the

exponential functions {see equation (2.2.8)] or the hyperbolic functions

[see equation (2.2.9)]. Thus, we have

F < 1+ (xy/v,)Vb/a
S £ - in : (2.2.20)
B 2/ab 1-(x0/Yo)Vb/a
or, equivalently,
% -
Lol tanh—l( 9 /b ) ) (2.2.21)
&  Jab Yo 2

The number of survivors for the winner (here Y) of this fight-to-the-
finish mayv be determined by substituting the annihilation time ti given
by (2.2.20) into (2.2.14). Doing this, we obtain for the fractional

| '; survivors

] . y X, \2

o y_f'f‘% (;9-) , (2.2.22)
L 0 ‘0

where Ve denotes the final Y force level at ¢t = ti. We also could

have deduced (2.2.22) from LANCHESTER's square law (2.2.5) (i.e. the state
equation for LANCHESTER's model of modern warfare) by setting =x(t) = Xe= 0
and y(t) = Ve We observe that the state equation (2.2.5) is useful for

such determinations only when we already know one of the force levels.
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In general, for x, y > 0 we have

I X \2 2} .
2w f1- 2‘(.2) - (.&.) . (2.2.23)
Yo a l Yo Y9 )

The principal results that we have developed above are summarized

.in Table 2.III.
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TABLE 2.III. Summary of Principal Results for LANCHESTER's Model

of Modern Warfare

LANCHESTER's Equations for Modern Warfare

" : %% = -ay with x(0) ~ Xg
' dy
| dt = “bx vith y(0) =y,
i
‘ Differential Casualty-Exchange Ratio, %3: %3 - %ﬁ

State Equation: a{yé - yz(t)} - b{xg - xz(t)}

Differential Equation Satisfied by the X Force Level:

.{ 2
N Q—% - abx = 0
( dt
1 ] with initial conditions
! dx
3 <(0) = ax - -
=(0) Xy and it (0) ay,

X Force Level:

x(t) = X, cosh/ab t - yo\/%. sinh/ab t

or

x(t) = %{(xo - Y /-%—) e‘/;b t s (x0 + Yo %) e.'/E t}

Differential Equation Satisfied by the Force Ratio, u = %:

k| x
] g_u = bu2 - a with u(0) = 2
3 £ Yo

Force-Annihilation-Prediction Condition: X will be annihilated in
< va/b.

finite time if and only if x0/y0
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*#2.3. A Further Look at Predicting Force Annihilation.

It 1s important for the military operations analyst to have a clear
understanding of how force-level and weapon-system—performance factors
interact to determine the outcome of battle. Victory~prediction condi-
tions (i.e. conditions that predict the outcome of battle without re-
quiring the expenditure of time and effort to explicitly compute tne
force-level trajectories) provide important insights into the dynamics
of combat by explicitly relating the initial force ratio and weapon-
system capabilities to the ouécome of battle. Consequently, we will
examine in greater depth here the development of force-annihilation-
prediction conditions for LANCHESTER's (constant-coefficient) equations
for modern warfare (2.2.1). Our reasons for doing this are twofold:

(R1) to extend such victory-prediction conditions to other

models [particularly the variable-coefficlent version of
(2.2.1)],
(R2) to develop cther types of outcome-prediction conditions
[e.g. victory-prediction conditions for a fixed-force-
level-breakpoint battle (gsee Section 2.8 below)].
In other words, examining the various approaches for developing force-
annihilation-prediction conditions provides us with important clues for
extending such conditions to other cases of interest.

In Table 2.IV we list the six different approaches for developing

force-annihilation-prediction conditions. For the combat model (2.2.1),

the force—anuihilation-prediction condition is given by Proposition 2.2.1

*Starred sections are not required for the understanding of the sequel an
should be omitted at first reading. They usually require more mathe-~

matical sophistication to be understood.
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”j which we resrate here for convenience.
{
{ PROPOSITION 2.3.1: Y will win a fight-to-the-finish in finite

time 1f and only if ;Q < ﬁ .
- 0
The 1list given in Table 2.1V is exhaustive, i.e. we do not know of any
other way to develop conditions that predict force annihilation. Moreoﬁer,
it is approach (3b), determining the time to annihilation with the force
RF levels represented in terms of the hyperbolic functions, that prouvides a

{.:;,ii computational means for determining force-annihilation-prediction condi-
| tions for the general case of time~dependent attrition-rate coefficients
e i for the model (2.2.1). All the other approaches are not capable of being
generalized to such cases of variable coefficients.

In all but the next to last approach (4), manipulation of the
state equation (2.2.5), we will ultimately discover the nonoscillation
of all solutions to (2.2.1), i.e. at most one of the force levels x(t)
:'i‘ and y(t) can ever become zero (see Proposition 2.2.2). Since its
proof does not depend on force-annihilation determination, let us assume
that this important property of all solutions to (2.2.1) has been establishe
Knowledge of the existence of the nonoscillation property
simplifies'the development of force—annihilation-prediction
conditions. Let us note, however, that this impertant nonoscillation
property no longer generally holds when continuous replacements and/or
withdrawals are added to the model (2.2.1).

Since approaches (1) and (2) of Table 2.IV have been considered
in Section 2.2 above, we will not consider them furiher here except for

making a few additional comments. First, we observe that analysis of the
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TABLE 2.1V Approaches for Developing Force-Annihilation-Prediction

Conditions

THESE APPROACHES ARE TO CONSIDER:

(1) X force level represented in terms of exponential functiuns

(2)
(3)

(4)
¢

force-ratio equation
time to annihilation with force levels represented in
terms of
(a) exponential functions
(b) hyperbolic functions .
state equation

HELMBOLD's monotonicity condition (Method B of Section 3.3)
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force-ratio equation (2.2.16) (see Figure 2.5) leads to another proof
of the nonoscillation of all solutions to (2.2.1), Secondly,
by both approaches (1) and (2), we readily establish that an-
nihilation occurs in finite time (except for the case of a draw).

Approsch (3a) consists of cousidering the X force level expressed
in terms of the exponential functions [see equation (2.2.8)] and solving
for the time for the X force to be annihilated, denoted as tﬁ, ag

determined by the equation x(ti) = (. Consequently, we f£ind that

Vo Yo +x, b i (2.3.1)
Y Ya - Xg 'y

tx"

2 2 /ab

In order for tﬁ to be well defined and positive, the argumeat of the
logarithm must be greater than one (but finite), and hence xo/y0 > a/b

in order for X to be annihilated. By the nonoscillation of all solutions
to (2.2.1) (i.e. Proposition 2.2.2), we know that y(t) > 0 for all

t >0 1if there exists a finite ti such that x(fi) = 0, whence fol-
lows Proposition 2.3.1. We also observe that the nonoscillation of all

solutions to {2.2.1) may also be proven by observing that

(2.3.2)

and comparing this result with (2.3.1).
Approach (3b) consists of considering the X force level expressed
in terms of the hyperbolic functions [see equation (2.2.8)] and again de-

X X
termining t, from x(ta) = 0, Hence,

-1 [ %o
tarh (-};(—)— /g) (2.3.3)

Proposition 2.3.1 follows by observing that the hyperbolic tangent, 1i.e.

a  vap
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tanh £, is a strictly increasing function with range [0,1] corresponding
to £e[0, + »]. It is this property of the hyperbolic tangent that may be
generalized to cases of time~dependent attrition-rate coefficients in orde:
to develop the sought force-annihilation-prediction conditions.

Approach (4) consists of considering the state equation (2.2.5)

and setting x = X = 0 and y = Ye > 0 to obtain

2

2
YE Yo" x>01

® |

2
0
which means that we must have xO/y0 < Ya/b in order that X will be
annihilated. Thus, we have gshown that xo/y0 < Ya/b is a necessary
condition for the X force to be annihilated. However, to show that

this condition i3 also sufficient 1is much more difficult. Ewen if we
assume that Proposition 2.2.2 has been proven, it is still not a trivial
task to show that the condition xolyO < Ya/b 1is sufficient to guarantee
that X will be aanihilated (and much less that it will occur in finite
time). The difficulty is that we have not shown that there must be one
(and only one) zero for x(t) and y(t) in finite time if xolyo # /a/b.
To prove the latter proposition, however, one uses an approach that is
essentially equivalent to proving Proposition 2.2.1 by apprach (1) of
Table 2.1V, Thus, we reach the conclusion that although the state-equation
approach to developing force-annihilation-prediction conditions yields the
simplest way of guessing the desired conditioms, this epproach is totally
unsatisfactory for proving that the condition 1s indeed sufficient to
guarantee the occurrence of force annihilation in finite time (even for the

simple constant-coefficient model (2.2.1)).

Approach (5) consists of showing that one force level may be express
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as a strictly increasing function of the other one. This monotonicity

condition is usually developed, however, by using the state equation.

The desired force-annihilation condition may then be readily deduced from

relationship, but we will defer further discussion of this approach, which

apparently due to HELMBOLD [37], until the next chapter (see Sectiom 3.3).
Let us conclude this section by showing that for the combat model

(2.2.1) there must be exactly one zero for x(t) and y(t) 1in finite

time 1f xo/yo # va/b. As in the proof of Proposition 2.2.2, let us multi
ply the first equation of (2.2.1) by vy, the second by x, and add to obta
) 2
L Gy) = - @ D) . (2.3.4)

Similarly from (2.2.1) we also find that
é% (ay2 + bxz) = - 4abxy . (2.3.5)

Thus, the system of differential equations (2.2.1) is equivalent to

(2.3.6)

do
ac - " 4abm

where 7= xy and ¢ = ay2 + bxz. It follows that the product of the

force levels rm satisfies the following differential equation

d2
._-% - /4 ght = 0 (2.3.7)

dt
with initial conditicns

dn 2 2
m(0) = XY and at 0) = - (ayo + bxo)
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Solving (2.3.7) we find that

_ 1 : 2 2/ab t 2 -2/ab t) (2.3.8)
n(t)-l‘/‘_b_{-(xoﬁ-yov/a_)e +(xoﬁ;+y0/a-)c }

whence it 18 obvious that n(0) > 0 but a(t) must become negative as

t ++» if xO/y0 ¥ va/b . Thus, we have proved the assertion that there

is exactly one finite zero for x(t) and y(t). Let us note, however,

that solving (2.3.7) in terms of exponential functions is essentially

equivalent to developing (2.2.8), whence cur comment that showing that

xolyo < /a/b 1is sufficient to guarantee force annihilation in finite

time by using the state-equation approach (i.e. approach (4) of Table 2.IV)

is equivalent to proving Proposition 2.3.1 by approach (1) of Table 2.IV.
Let us finally note that from (2.3.6) we may similarly deduce that

d 2 2
ac (0” - 4abn”) =0 , (2.3.8)

which is equivalent to the state equation (2.2.5).
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2.4, Constant-Coefficient LANCHESTER-Type Equations for Area Fire.

LANCHESTER [55] also hypothesized that under "conditions of long-
range fire with fire concentratad ou a certain area,'" combat between two

homogeneous forces could be modelled by

%% = -axy with x(0) = Xy »

(2.4.1)
.(.11 - e -
3¢ = by with y(0) =y, ,

where a and b are again called LANCHESTER attrition-rate coefficients.
This time, however, such an attrition-rate coefficient represents both the
effectiveness of a side's fire and also the vulnerability of enemy targets
to taat fire, Thus, the a's and b's (i.e. the LANCHESTER attrition rate
coefficients) are different in equations (2.2.1) and (2.4.1) and may be
related to different physical quantities (see Chapter 5). For simplicity,
however, we have chosen to denote, for example, "X's attrition-rate coef-
ficient" as b in both (2.2.1) and (2.4.1), and we caution the reader that
b therefore has a different meaning in these two equations.

In this simple combat model (2.4.1), the attrition rate for each
force, e.g. (-dx/dt) for the X force, is assumed to be proportional to
the product of the numbers of firers and targets. For convenience, let us

refer to the equations (2.4.1) as LANCHESTER's equations for area fire,b20

although they have been hypothesized to also apply under other circumstances,
In fact, two sets of physical circumstances under which these equations

have been hypothesized to apply are:
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(Cl) both sides use "area'" fire and a constant area defeuse [15,99].
(C2) both sides use "aimed" fire, and target acquisition times are:

(a) inversely proporticnal to the number of enemy targets, and
(b) the domipant factor in the attrition process [15].

A more complete discussion of these hypotheses is again to be found in the
papers by BRACKNEY [15]) and WEISS [99] and in Section 2.11 below.

Let us now conslider what we can learn from our model (2.4.l) about
the dynamics of combat Letween two homogeneous forces. We will do this
again by considering the seven questions (Ql)-(Q7) posed in Section 2.2
above. We begin by again developing (1) the state equation, and (2) the
X force level as a function of time, x(t).

To develop the state equation for the combat model (2.4.1), we
divide the first equation by the second to obtain the instantaneous (or

differential) casualty-exchange ratio

a
Frialia (2.4.2)

Separating variables and integrating, we obtain the state equation for

LANCHESTER's equations for area fire

b{xo - x(t)} = a{yo - y(t)} . (2.4.3)

We will also refer to (2.4.3) as LANCHESTER's linear law. Solving for vy

and substituting into the first differential equation of (2.4.1), we obtain

the following RICCATI equation for the X force level

dx 2
it = -bx" + GOX ’ (2.4.4)
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where §g ™ bxo ~ ayg- For 8q ¥ 0, a partial fraction expansion yields

(see INCE [41, pp. 311-312))

dx L dx
< & (Bx=6,) §g 4t » (2.4.5)

which readily yields our desired result for x(t). For 60 =0, (2.4.4)

becowas

dx

-5 - b dt , (2.4.6)
X

which is also readily integrated. Hence, we find that

bxo - ay,
X for bx, ¥ ay,,
0 bxO - ay, exp[-(bxo-ayo)t] 0 0
x(t) = (2.4.7)
0
1+ bxot for bx0 = ay,-
Later,

it will be of interest to consider the variable coefficient

version of (2.4.1) for which no state equation such as (2.4.3) generally

holds. With this in mind, we would like to be able to develop (2.4.7) by

a method that does not involve the state equation (2.4.3) and can conse-

quently be extended to the variable-coefficient case. We have discussed

such a point previously in Section 2.2 above. Accordingly, we again differ-

entiate the first equation of (2.4.1) with respect to t and combine the

result with the second equation to obtain a second order nonlinear ordinary

differential equation that contains only the X force level, namely

2
d™x 1l ,dx dx
dtz - 3 (dt) + bx dc o, (2.4.8)
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wicth initial conditions

dx
x(0) = Xq and dc (0) = ~ax,y,

We will call (2.4.8) the X force-level equation. It is the analogue of

equation (2.2.10). This nonlinear differential equation (2.4.8) is one of
fifty standard forms for a certain class of nonlinear second order equations
Unfortunately, there apparently is no analytical technique for solving
(2.4.8) dirsctly, and thus hope for the analytical treatment of the variable
coefficient version of (2.4.1) appears dim. However, the term 1/x 1is an

integrating factor for (2.4.8), and we find that

4 1dx dx .
at Gag) YPbg =0 (2.4.9)

whence integration yields the RICCATI equation (2.4.4). Thus, without use
of any approximation, the X force-level equation (2.4.8) is not as useful
as the corresponding equation (2.2.10) was for the model (2.2.1).

The decay of the X and Y force levels is plotted in Figures
2.8 and 2.9. For convenience, we record these results here as

bx, - ay
X [ 0 0 for bx #.ay
0 bx0 ~ ay, exp[-(bxo—ayo)t] 0 o’

x(t) = (2.4.10)
for bxo = ayg»
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Yo " 60~

y(t)

= 30 30 =

FOrRCE LEVEL
»

x(t)

[
5 T ] :*-
10

20 30 40

TiME (MINUTES)

Figure 2.8. Force-level trajectories of X and Y forces
for combat modelled by LANCHESTER's equations for
area fire. For these calculations, a = 0.004 X
casualties/(minute + number of X combatants + number
of Y combatants) and b = 0.004 Y casuvalties/
(minute « number of X combatants - number of Y

combatants).
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FOrRCE LEVEL

y(t)
Xp = 30 §(t)
24 =
.a
¥ b’
1
5 1 S !
10 20 30 40
TIME (MINUTES)
Figure 2.9. Force~level trajectcries of X and Y forces for combat

modelled by LANCHESTER's equations for area fire. For
these calculations, a = 0.001 X casualties/(minute *°
number of X combatants *snumber of Y cowbatants) and
b = 0.01 Y casualties/(minute ¢« number of X combatants

*s number of Y combatants).
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and

. r X bxo - ayo

'xh for bxo $ 8y, »
1 y(t) =4 (2.4.11)
Yo

i—_'_—a—ygg for bxo = ay, .

“

In Figure 2.8 the smaller force 13 seen to be annihilated. In contrast to

the model (2.2.1), however, force annihilation 1s seen to be an asymptotic
result, i.e. it takes "infinite time' to occur. Thus, x(t) and y(t) > O
for all finite t, and we do not have to '"turn off" the equations (2.4.1)
to avoid negative force levels as we had to do for the model (2.2.1) [see
in this respect (2.2.2)]. In Figure 2.8 the smaller force is annihilated,
while in Figure 2.9 the larger ome is.
To more clearly exhibit the parametric dependence of the force-

level trajectories, we again '"mormalize," for example, the X force level

by considering the fractional X force level, namely x(t)/xo, given by

x(t) , _P-1
Xq p - e(t) ’

(2.4.12)

where , = 'bxo/ay0 and e(t) = exp[—ayot(p—l)]. From (2.4.12) we see
that the X force level depends on the following three quantities (althougt
the model (2.4.1) contains the four independent parameters a, b, Xq» and

' Yo):

T: (1) initial force ratio, u, = xo/yo,
Yy (2) relative fire effectiveness, R = a/b,

(3) 1initial volume of en=my fire, V0 = ay,-
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The initial force ratio Yy and the relative fire effectiveness?4 R are

the same two relative quantities that we encountered in our study of the
;j model (2.2.1), whereas the initial volume of enemy fire VO. is an absolut
| quantity that corresponds to the intensity of combat I = Yab for the mod
(2.2.1).

Let us now consider the determination of who will "win" the battl

Again, for simplicity, we will consider here only a "fight-to-the-finish,"

with a more reallstic model of battle termination being considered in Sect
3 f; 2.8 below. From considering (2.4.10) and (2.4.11), we can make a number o
important observatioms: (1) x(t) and y(t) > 0 for all finite t > O,

(2) 1lim x(t) = 0 1if and only if xO/yo < a/b, and 1lim x(t) =

t>+e t+ +w

‘ﬁi if and only if limt+_+q’y(t) =¥y - (b/a)xo. Thus, we have shown

PROPOSITION 2.4.1: Y will win a fight-to-the~-finish if and only
if xO/y0 < a/b. The time required to annihilate X 1is not finite,

however.

$
o Furthermore,

PROPOSITION 2.4.2: For the model (2.4.1), we have x(t) and y(t) >
for all finite t > 0. Consequently, both x(t) and y(t) are

PO always strictly decreasing, positive functions.

As we have pointed out in section 2.2 above (see also Section 1.3),
most aggregated models of ground combat (for example, ATLAS) use the force

v
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ratio to determine both casualty rates and also FEBA movement. Consequer
it is of considerable interest to invesivigate how the force ratio, e.g.

u = x/y, changes during the course of battle for cur simple combat model
(2.4.1). We first observe that in general logarithmic differentiation of

force ratio, u = x/y, yields

ldu _ ldx_1dy
udt xdt vy dt’ (2.4.13)
whence for the model (2.4.1) we obtain2?
du a
3 " bx(u - S) . (2.4.14)

Thus, we see that unlike the case of the model (2.2.1), there is no first
order differential equation involving just the force ratio for the model
(2.4.1). We can artificially achieve this situation, however, by letting

T =b fg x(s) ds, and then

du
dT F - (2-&015)

Following an analysis similar to that given in Section 2.2 for the force-

ratio equation (2.2.16), we can easily prove Proposition 2.4.3.

PROPOSITION 2.4.3: If du/dt(0) < 0, then du/dt(t) < 0 for

all t > 0.

Thus, if uy = xo/y0 < a/b, the force ratio will always decrease during the
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course of battle; it will remain constant if and only 1if xO/yo = a/b alth
the force levels continuously decay, of course [e.g. x(t) = xo/(l + bxoc)].
It is very important to note that du/dt < 0 for all t > 0 does not in
this case imply that u(t) -+ 0 1in finite tine, since it is no longer true
that du/dt(t) < du/dt(0) when du/dt(0) < O.

From (2.4.10) and (2.4.11) it 1is clear that neither side can ever
be annihilated in finite time. Thus, our model says that a fight-to-the-
finish will be of infipite duration. We do find from (2.4.10) that for
bxo # ay, it takes time tf for the X force level to decay to a given

value Xes namely

X

t e + = [1-0]) , (2.4.16)
Xe

- ——t
f ayO(l-p)

where p = bxo/ayo # 1 and the following restrictions must be placed on x,

0 2 e £ X for p <1,
x _-a-y < x. < X for p >1
0 »°0—"f~-70 ’

The number of survivors, expressed as a fraction of initial strength, for
the winner (here Y for xO/y0 < a/b) of such a fight-to~the-finish is

readily obtained from the state equation (2.4.3) to be

y X
fa1- %—0 , (2.4.17)
Yo Yo

where Ye denotes the final Y force level at t = + =, This equation
shows us quite clearly that fractional casualties are determined entirely

by relative factors. For any other (nonnegative) value of the X force

level, we (of course) have
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X
Yoo l’.(_ﬂ - 3-‘-) ) (2.4.18)

£
: ~f? The principal results that we have develcped above are summarized
R ,

S o

|
!
|
|
]
|
|
3
; in Table 2.V.
|
t
i
|
]
|
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f;:zli-l TABLE 2.V. Summary of Priacipal Results for LANCHESTER's Model
: of Combat with Area Fire by Both Sides.

LANCHESTER's Equations for Area Fire

|
|
|
i
}
-d—x- . - =
;; it axy with x(0) X
|
i
{
|
i
|
i

f' 0
dy . )
b ' at bxy with y(0) =y,
3 Differential Casualty-Exchange Ratio, QE: dx _ 2

dy dy b

State Equation: a{yo - y(t)} = b{xo - x(t)}

.;f: ;fl Differential Equation Satisfied by the. X Force Level:

2 2
d'x 1 ,dx dx
—= = (= +bLbx-==—=0.
| dt2 x dt dt
with initial conditions
' dx
x(0) = X, and at (0) -ax,¥,

X Force Level:

( . 8 [ bxo - ay, ]
3 3 X - for bx, # ay
0 bxo ay, expl (bx0 ayo)t) 0 0
1 x(t) =
. xo
] -i-—-‘;-rot—- for bxo = ayo

Differential Equation Satisfied by the Force Ratio, u = 3:

du a X0
qt bx(u -~ F) with u(Q) = ;0-

4 Force-Annihilation-Prediction Condition: X will be annihilated (in

infinite time) i1f and only if xO/yo < a/b.
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*2.5. A Further Look at the Area-Fire Model.

In this section we present a more in depth analysis of LANCHESTER'
model for area fire (2.4.1). In particular, we will ccusider the followir
toplcs:

(T1l) a solution approach that can be generalized to cases of time-
dependent attrition-rate coefficients,
and (T2) determining the qualitative behavior of the force-level

trajectories for the model (2.4.1) without having to explicitly

solve che system of differential equations.

As note above, for the general case of time-dependent attrition-
rate coefficients, there is no state equation of the form S(x,y) = 0.
With this fact in mind, let us seek a method of solviag (2 4.1) that does
not depend on using such a state equation. Accordingly, we will develop &
method of solving (2.4.1) that has this property and consequently for case
of time-dependent attrifrion~rate coefficients, will allow us to determine
two approximate solutions that many times bound the exact solution, for
example, for the X force level.

We begin by providing motivation for a key transformation that
"linearizes' our nonlinear combat model. Let us rewrite the RICCATI

equation satisfied by the X force level =x(t), namely

dx 2
at -~ bx~ + éox , (2.5.1)
where 60 = bxo - ay,. Since there 1is no constant term on the right-hand

side of (2.5.1), it is a special case of a particular kind of RICCATI
equation called a BERNOULLI equation (see, for example, HILLE [39 , pp.

104-105]). The nonlinear BERNOULLI equation, moreover, can be transformed

i
103




to a linear equation by a substitution for the dependent variable. For

(2.5.1) this substitution takes the form w = 1/x. Let us therefore make

the substitution

we 1/x aad z=1/y (2.5.2)

in (2.4.1) to obtain

‘-;% -2 with w(0) = 1/x, ,

(2.5.3)
dz _ bz i
Tl with z(0) l/y0 .

The first equation of (2.5.3) may be rearranged and differentiated to yield

4 Ldw | _1gds
dt {aw dt} z2 de ° (2.5.4)

We may also manipulate (2.5.3) to obtain that —(llzz) dz/dt = (b/a)d(1l/w)dt,

whence (2.5.4) becomes

d (1 dw b
it {aw at aw} =0 . (2.5.5)

Integrating (2.5.5), we obtain

dw
It + (bxO - ayo)w : b, (2.5.6)
whence a2 second integration yields

bxo - ay, exp[-(bx0 - ayo)t] for bx. # ay
- s
xo(bx0 ayo) 0 0

w(t) = (2.5.7)

1+ bxot

" for bxO = ay, -

0
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g Recalling (2.5.2), we readily obtain (2.4.7) from (2.5.7). Moreover, this
r solution approach may be used to develop some very useful approximations
in cases of time-dependent attrition-rate coefficients, siace we did not
make essential use of the state equation (2.4.3).
| Let us next determine some important soluticn properties for the
model (2.4.1) without having to develop an explicit solution. We begin by
examining the qualitative behavior of the X force level x(t) as
determined directly from the RICCATI equation (2.5.1). We will show that
f much valuable information (e.g. force-annihilation prediction) about the
force-level trajectories of the model (2.4.1) may be obtained directly

from (2.5.1) without explicitly solving for x(t). Let us accordingly

focus on the RICCATI equation (2.5.1)

dx 2
, at -bx* + (bx0 - ayo)x . (2.5.1)

It seems appropriate to call dx/dt the force-level velocity. Let us

denote the two roots of the equation bx2 - (bx0 - ayo)x =0 as Xy

and X9 with Xy = X = (a/b)y0 and X, = 0. Then the maximum of

dx/dt considered as a function of x occurs at x = (xl + xz)/2. The
corresponding RICCATI equation satisfied by the Y force level y(t) 1is

d 2
E% = - ay” + (ay0 - bxo)y , (2.5.8)

and we similarly define y, and y, with y, =y, = (b/a)x, and Y, = 0.
We observe that X, " -(a/b)yl so that X and Y1 always have opposite

signs except when they are both equal to zero. There are now three cases

5 to be considered: (I) xO/yO < a/b, (II) xO/yO = a/b, and (III) xo/y0> a/b.
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In Figure 2.1) the force-level velocity is plotted against the
force level for each of the X and Y forces in Case (I): xO/y0 < a/b.
The "“direction" of movement for the force level is shown in Figure 2.10 by
means of arrows drawn along the force-level axis, with the length of the
arrow reflecting the magnitude of the force-level velocity. In this case,
X, = X - (a/b)yo <Xy mY, <Y mYy " (b/a)xo. We always have |x1| < X
and Iyll < o+ From Figure 2,101t is clear that y(t) + y, - (b/a)x, and
x(t) +0 as t + + =, and also that x(t) and y(t) > 0 for all t > O.
Thus, by plotting the force-level velocity versus the force level for each
of the combatants, the qualitative behavior of the force levels becomes
obvious. In Case (II) both x(t) and y(t) -0 as t - + «, Case (III)
is symmetric to Case (1), with the roles of X and Y interchanged. Thus,
we see that in all cases x(t) and y(t) >0 for all t > 0.

Let us now show that for the model (2.4.1) [without any modifica-
tion of the right-hand sides, cf. (2.2.2)] x(t) and y(t) > 0 for all
finite tli 0. The easiest way to do this without explicitly solving the
differential equations is to introduce functioms =(t) and o(t), analogous
to those introduced in Section 2.3 above. To this end, let us multiply the

first equation of (2.4.1) by y, the second by x, and add to obtain

g; (xy) = - xy(ay + bx) . (2.5.9)
Similariy,
a‘l‘g (ay + bx) = -2abxy . (2.5.10)

Let us rewrite the above as

an _ _ do _ .
T g, and at 2ab 7, (2.5.11)

where 7 = xy and o = ay + bx. We observe that as a consequence of

(2.5.11) we have
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g -y

f; (32 - 4abr) = 0 , (2.5.12)

which is equivalent to the state equation (2.4.3).

By considering the first equation of (2.5.11), we will now show
that x(t) and y(t) > 0 for all finite t > 0. Recall that we have
shown above by considering tbe two RICCATI equations (2.5.1) and (2.5.8)
that =x(t) and y(t) >0 for all ¢t > 0. It follows that n(t) > 0 and
from (2.5.11) that o(t) 1is a decreasing function of time. Hence,

o(t) £ 04 =0(0) forall t >0 so that

dnw
de = "%
whence
m(e) 2 my e 0%, (2.5.13)

This last result (2,5.13) shows that =x(t) and y(t) > 0 for all finite
t, since w(t) > 0 for all finite t > 0. Thus, we have proven Propositior
2.4,2 without explicitly solving the equations (2.4.1). It 1s desirable,
however, for extending this result to the case of time-dependent attrition-
rate coefticients to use the following argument.

Another (however, much more important) way to prove Proposition
2.4.2 is to consider the system of equations (2.5.3) satisfied by w = 1/x
and z = 1l/y. We will prove the following proposition (which is equivalent

to Proposition 2.4.2).

PROPOSITION 2.5.1: The solution w(t), z(t) to (2.5.3) is positive

and bounded for all finite t > 0.
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PROOF: First, we show that no component of the solution to (2.5.3) can
become negative by passing through zero. We prove this by contradiction:
let ¢, = inf(t|w(t) = 0 or z(t) =0 for t > 0} and assume that ty

is finite. Then w(t) and z(t) > 0 for t e [O,tl), and dw/dt(t) and
dz/de(t) > 0 by (2.5.3), which is “‘mpossible 1f a component of the solution
is to have a finite zero. The only other way in which a component of the
solution can become negative would be for it first to become infinite.

Let ¢, = inf{t|w(t) = or z(t) =« for t > 0}. We will now show that
it is impossible for t2 to be finite. 1If this were indeed the case, then
w(t) and z(t) > 0 for te [0,t,) so that dw/dt(t) and dz/dt(t) > 0.
It suffices to show that w(tz) cannot be unbounded for any finite tz > 0.
Let us note that z(t) > zy >0 for t > 0. Hence, we have from (2.5.3)

that

2
)

w .

a.la.
gk

hl
Thus, for any finite t > 0, we have

w(e) < w, exp(=-t) <= (2.5.14)
< 2o

Hence, the solution to (2.5.3) is positive and bounded for all finite

t> 0. Q.E.D.
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2.6. Shortcomings of Lanchester's Original Models.

"'iu Viewed in the light that LANCHESTER [55] developed his very simple
‘,.i models of combat (2.1.1), (2.1.3), and (2.1.8) to provide insight into
9 the dynamics of combat under '"modern conditions" and to quantitatively
justify the principle of concentration, LANCHESTER's simple differential
equation models are quite reasonable. They yleld results that are in

L congonance with military judgement. Although such simple analytical

models can provide valuable insights into the dynamics of combat, they
are far too simple to be able to solve by themselves any specific opera-

tional problem. Thus, from the point of view of a weapon-system designer

or defense planner, who is interested in more than just 1nsight326, differ
ent demands are made on a model. In particular, the "realities of the

ﬁ! real world" must be "adequately" treated in the model in order that sound
:f: recommendations be based on the information that it gemerates. Accordingl
we will now examine what factors are not "adequately" treated in LANCHESTE

original models, i.e. their shortcomings.

Speaking about the shortcomings of LANCHESTER's classic combat for-
mulations, WEISS [98, p. 15] has eloquently stated,
"While we should, perhaps, be more pleased that such simple
formulae yield reasorable results than critical because of
the elements omitted from them, we must look beyond the LAN-
CHESTER expressions to see how they differ from reality, and
what may be added to them"
With this in mind, we have listed some of the major shortcomings of

LANCHESTER's original models (2.1.1), (2.1.3), and (2.1.8) in Table 2.VI.

»

These shortcomings are listed roughly in order of decreasing importance,

with the most important ones appearing first in the list.
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TABLE 2.VI. Shortcomings of LANCHESTER's Original Models

SHORTCOMINGS :
1. Conatant attrition-rate coefficients
2. No force movement (a.g. no advance or retreat of forces)
3. Homogeneous forces
4, Battle termination not modelled
5. No element of chauce
6. Not verified by history
7. No way to predict attrition-rate coefficients
8. Tactical decision processes not considered
9. Battlefield intelligence not considered
10. Command, control, and communications not considered
11. Loglstics aspects not considered
12. Suppressive effects of weapons not considered
13. Effects of terrain not considered
14. Spatial variations in force capabilities not considered
15. No replacements or withdrawals
16. Symmetric form of attrition
17. Target priority/fire allocation not explictly considered
18. Target acquisition force-level independent in modern-warfare
model
19. All troops assumed to fire in combat
20. Noncombat losses (e.g. surrenders, desertions) not considered
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Let us now briefly discuss the first ten shortcowuings of LANCHESTERS

classic models given in Table 2.VI.

e s b P

(S1) Constant attrition-rate coefficients essentially mean that
the kill rate of each and every weapon system doesn't change
over time due to changes in range between target and firer,

target posture, firing rate, vulneralLility of the target,

target acquisition rate, etc.
(S2) No provision is explicitiy made for movement, retreat or

advance. In particular, the movemenﬁ of contact zones

(i.e. FEBA movement) 13 not considered.
: (S3) All forces on ore side are considered to be the same. In
combined arms engagements, one usually has various different
force types, such as infantry, artillery, armor, mortars,
mechanized infantry combat vehicles, tactical aircraft, etc.
. 4 Also, there are other factors such as minefields, fortifica-
f‘ tions, barriers, smcke, etc. Furthermore, spatial variations

ﬁ'x‘f:'ij in the effectiveness of forces are not considered.
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(s4)

(585)

(s6)

(87

(s8)

(595

(s10)

No rules for battle termination are given, WEISS [98, p. 1
emphasized that "engagements that continue until one side i
wiped out are rare. Retreat begins when the number of casu:
ties approaches the order of 10%."

The equations are deterministic and de not portray the randc
nature of combat., Many of the factors in combat are of a

random nature, and the uncertainty27 in battle outcome 1is lo

when one models combat with such déterministic equations.

A priorl we have no confidence that combat (even in a gross
senge) actually behaves as postulated by LANCHESTER. Empiri
cal verification would greatly enhance the acceptability of
such a basis for operational models by users and decision
makers,

One doesn't know huw to levelop numerical values for the
attrition-rate coefficients such that the performance charac
teristics of the weapon systems and the operating environmen
are adequately reflected in the model.

Decisions to initiate combat, commit forces and/or reserves,
allocate fires, allocation of effort searching for targets,
etc. are not explictly considered.

The ability to locate and identify targets, correctly sense
killed targets, etc. are not explictly considered.

The pasaing of information up and down the chain of command

is not considered.
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We could go on and on. However, Table 2,VI and our brief discussion here
should give the reader some flavor of the shortcomings of LANCHESTER's
classic wodels,

The reader should recognize that many such shortcomings are not
strictly limited to only Lanchester-type models. If one dcesn't know
how, for example, command and control influences weapon-system kill rates
in a particular combat environment, then this is not necessarily a short-
coming of Lanchester-type models. It will also apply to the firepower-score
and Munte~Carlo-simulation combat-modelling approaches. The author be-
lieves that if a combat process can be modelled at all, then it can ulti-
mately be modelled with a differential equation model of some type.

In spite of all these shortcomings, the amazing thing is that such
simple differential-equation models (or their equivalent) are frequently
used even today. It is frequently the case, however, that one does not
realize that the combat model he is using either is equivalent to or may
be most fruitfully viewed as a differential combat model (see, for example,
Chapter 8 below).

From the point of view of the subsequent development and enrich~-
ment of differential-equation models of combat (i.e. the so-called Lan-
chester theory of combat), the above shortcomings of LANCHESTER's original
1914 models have played a central role. Nama:ly, subsequent developments

in the Lanchester theory of combat have evolved to overcome these short-

comings.
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2.7. Subgequent Development of the LANCHESTER Theory of Combat: A
Preview of Things to Come.

As we have just discussed in the previous section, the development
of the so-called LANCHESTER theory of combat is probabiy best understood
by considering the shortcomings of LANCHESTER's original 1914 models.
Various authors from the 1940's on have subsequently sought to overcome
the shortcomings listed in Table 2.VI above, and these individuals Lave
accordingly made various extensions to LANCHESTER's classic combat models
A list of such extensions is given in Table 2.VII. The extensions listed
in Table 2.VII are given in more or less chromnological order, with the
reference(s) given representing in most cases the earliest work on the
topic known to this author. References available in the open, unclagssi-
fied literature are emphasized.

Let us now make some remarks about the various extensions listed
in Table 2.VII., The first extensions of LANCHESTER's [ 55] original work
appeared in MORSE and KIMBALL's classic beok [A4], which reports various
investigations undertaken during World War II by American wartima analysis
groups. In particular, replacements were added to a model of aggregated
force combat, and some implications of the resultant model were studied
in [64] (see also KARNS [47]). Equations (both the forward Kolmogorov
equations and alsc "random walk" ones) for a stochastic combat-attrition
process were developed, and results from the stochastic model were com-
pared with those from the usual deterministic model in the special case
vf very few combatants on each side. R. SNOW (78] summarized and ex-
tended work done at RAND in the late 1940's. Ia particular, he examined
a LANCHESTER-type, MARKOV~chain model of combat and heterogeneous-force

combat formulations. Both the assumptions for LANCHESTER-type combat
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TABLE 2.VII. Extensions of LANCHESTER's Classic Combat Models

EXTENSIONS:+
1. Replacements (an/or withdrawals) [47; 64]
2. Heterogeneous forces (78]
3. Inclusion of random effects in the attrition process [64; 78]
4., TFEBA movement considered [28; 65; 99]

5. Fire-support effects included [28]

6. Optimization of tactical decisions [28]
7. Comparison with historical data [24; 32; 99] _
8, Attrition structures other than LANCHESTER's classic models [15; 3Gj
9. Unsymmetric formulations for attritions [15; 22]
10. Time- (or range-) dependent attrition-rate coefficients [8; 99 ]
11. Operational losses considered {3]
12. Rough effects of intelligence and command and control [73]
13. Attrition-rate coefficients that depend on force sizes [36]
14, Models of guerrilla warfare activities [22; 72]
15. Prediction of attrition-ratza coefficients {4; 9; 20]
16. Noncombat losses (e.g. surrenders and desertions) ([72]
17. Suppressive effects of weapomns [72]
18. Modelling of battle termination [37; 102 ]
19. Interfacing with high-resolution Monte Carlo simulations [20]

o .f- 20. Large-scale, complex planning models [19; 26]

} ] 1-I‘Jumb.v.-rs in brackets refer to references at the end of this chapter.
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13. between heterogeneous forces and analytical solution procedures were con-
sidered by SNOW [78 ], although the special structure of the combat equati
i}f was not fully exploited for developing analytical gsolutions in this pio-
neering work. \

The RAND memorandum by|GAIMBONI, MENGEL, and DISHINGTON [28] con-

tains a number of pioneering extensions of LANCHESTER's classic combat

P

"‘; formulations: (E1) FEBA-movement modelling, (E2) inclusion of fire-
support (particularly t;ctical airpower) effects, and (E3) optimization
of the time-sequential allocation of aircraft to tactical targets. This
report memorandum is still worthwhile reading today, even though it was
written in 1951. MULHOLLAND and SPECHT {[65] examined some World War II
data and developed a rough ﬁédel for FEBA movement in theater-level opera
tions (see also WEISS [99]). Pioneering efforts at comparing the theo-
retical predictions of LANCHESTER-~-type models with historical data have
been by J. ENGEL [24] and H. K. WEISS [99] (see also the work by R. L.
HELMBOLD [32-35; 37]).

A benchmark paper, which is still worthwhile reading today although
it is somewhat inaccessible, is H. K. WEISS's 1957 paper, '"Lanchester-
Type Models of Warfare." Many innovative ideas were introduced, includin
the foilowing: (1) range-dependent attrition-rate coefficients, (2)
comparison of model results with historical data, (3) a model of combat
among small groups, (4) a model of FEBA movement, and (5) a differential-
game e;amination of optimal fire-support strategies. WEISS's [99] paper
is probably the second most referenced paper in the field after LANCHESTE
original paper. Furthermore, all of H. K. WEISS's work has been charac-
terized by imaginative innovation, coupled with deep insights into the

g scientific analysis of combat cperations.
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Other modeis for the mutual attrition of two homogeneous forces in
combat have been proposed by BRACKNEY {15] and HELMBOLD [36]. BRACKNEY
[15] introduced target acquisition considerations and hypothesized that
the time to acquire a target is related to the target's tactical posture.
HELMBOLD [36] has proposed a modification of LANCHESTER's equations for
modern warfare, which incorporates inefficiencies of scale for the larger
force when force sizes are grossly unequal. S. BONDER [8] did the pioneer-~
ing work on the prediction of attrition~rate coefficients from weapon-
system performance characteristics (see also BONDER [9; 10] and BARFOOT
(41), and, motivated by such developments, he examined the effects of
range~dependent attrition-rate coefficients and wmobility on battle outcome.

Operational losses were considered by BACH, DOLANSKY, and STUBBS
(31, who showed that if operational losses were ''large enough," then it
would no longer be "beneficial" to concentrate forces (i.e., friendly
casualties would increase if more friendly forces were initially committed
to battle). LANCHESTER-type models of guerrilla-wirfare engagements were
considered by DEITCHMAN [22] and Schaffer [72]. DEITCHMAN [22] developed
a LANCHESTER-type model of an ambush in order to explain the observed
high overall force ratios of regulars to guerrillas insurgency operations.
WEISS's [99] model for combat among small groups is DEITCHMAN's point of
departure. SCHAFFER [72] later developed models of several types of
guerrilla-warfare engagements in insurgency warfare. He considered non-
combat losses (such as surrenders and desertions) and included suppressive
effects for supporting weapons in several of these model=.

The above very rough sketch and Table 2.VII should give the reader
a general idea of the development of the so-called LANCHESTER theory
of combat. Although we haven't discussed every reference cited in Table

2.VII, we have touched upon the high points. Figure 2.11 depicts the
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LANCHESTER (1914)

N

Mencer (1951)

I§;Acs (1954, 1965)

Y

IsBeLL, MAarLow (1956)
SAyess (1957, 1959, 1966)

v \

HELMBOLD (1961, 1964, 1971)

WILLARD (1962 \\\

BONDER (1964)

EnceL (1954)

De1TCHMAN (1962)

Kist, Hirose (1966)
ScHAFFER (1968) CrArx (1969)

GRUBBS, SHuUForRD (1973)
TayLor (1971, 1974)

TAYLOR, ﬁzown (1976)

Y
TavyLor (1972, 1974)

TAtLoR (1975) TAYLOR

~
TayLor, Brown (1978)

Figure 2.11.

Kawara (1973)
TavyLor (1974)

Morse, KimBaLL, KoopMan (1940°s)

Snow (1948)

\

Brown (1955, 1963)

ggafxékv (1959)

SMiTH (1965)

Bonper (1367)
B‘ARFO\OT (1969.

KIMBLETON (1§7l)

\
1858, ‘1%

(1977)

Chronology of developments in

LANCHESTER theory cf combat.
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chronology of these developments. In this figure, the arrows depict this
author's best guess as to how the works of varions authors have influenced
each other.

Another way to look at developments in the LANCHESTER theory of
combat 1s to classify them into sevearal brcad areas. Tabla 2.VIII lists
the major areas of development for the LANCHESTER theory of combat into
which most of the extensions, for example, listed in Table 2.VIi{ fall.

In Table 2.IX, we enumerate various papers that fall into these efight
major areas. In Table 2.IX, we give the authors' names and date of the
publighed work for each major {or benchmark) piece of work in these
areas. The exact reference to each piece of work may be obtained by con-
sulting the list of references at the end of this chapter.

Thus, we hope that Tables 2.VIT through 2.IX, Figure 2,11, and these
brief comments will provide a rough idea of how the LANCHESTER theory of
combat has developed. In the remaining chapters of this book, we will

examine in more detail some of the more important topics on combat model-

ling and/or analysis.
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TABILE 2.VIII. Major Areas of Development for

2.

LANCHESTER Theory of Combat

Stochastic combat models

Optimnal fire-distribution strategies

4. optimal air-war strategies

b. optimal fire~support strategies

Empirical verification

Different functional forms for attrition rates
Applications to guerrilla warfare

Prediction of attrition~rate coefficients
Variable attrition-rate coefficients

Large-scale, complex planning models

121

R UUIE N S



H
4
£
1
£}
ﬁ
i
1

s o

[

e

TABLE 2.IX. Development of the Major Areas of the LANCHESTER Theory of Combat.

Stochastic Combat Models
KOOPMAN (1940's; see MORSE and KIMBALL (1951))

Variable Attrition-Rate Coefficients
KOOPMAN (1940's: see MOCRSE and KIMBALL (1951))

SNOW (194%) "POMN (1955, 1963) H. K. WEISS (1957) BONDER (1954)

G. WEISS (1963) SMITH (1965) FARRELL (1970) TAYLORT (1971, 1974c)
KISI and HIROSE (1966) HELLMAN (1965) TATLOR and PARRY (1975) TATLOR and BROWN (197¢)
SPRINGALL (1968) CLABK (1569) TAYLOR and COMSTOCK (1977)

GCKUBBS and SHUFORD (1973) KARR (1974, 1975a, 1875b, 1976)
SHUFOBD and GRUBBS (1975) WATSON {1976)

Optimal Fire-Distridution Strategies

A, General b. Optimai Air-War Strategies C. Optimal Fire-Support Strategies
\. ISBELL and MARLOW (1956b) MORSE and KIMBALL (1951) B. K. WEISS (1957, 1959)
TAYLOR (1973, 1974a, 19744, 1975) GIAMBONI, MENGEL, and DISHINGTON {1951) KAMARA (1973)
& -5 MENGEL (1953, 1954) ISAACS (1954, 1955, 1965) TAYLOR (1974, 1977)
'{S FULKERSON and JOHNSON (1957) BELLMAN and DREYFUS (1958) TAYLCR and BROWK {1978)
N

BERKOVITZ and DRESHER (1959, 1960) BRACKEN (1973)
SRACKEN, FALK, and KARR (1975)
ANDERSON, BRACKEN, and SCHWARTZ (1975)

Different Functional Furms for Attrition Rates Empirical Verification Applications to Guerrilla Wariare
PETERSON (1953, 1967) ENGEL (1954) DEITCHMAE (1962)
BRACKNEY {1959) H. K. WEISS (1957, 1966) KISI ard HIROSE (196¢€)
HELMBOLD (1965) HELMBOLD (1961a, 1961b, 1964a, 1564b, 1971) SCHAFFER (1968)

WILLARD (1962)
Prediction of Actrition-Rate Coefficients Large-Scale, Complex Planning Models
BRACKNEY (1959) BOKDER (1964, 1967, 1970) GIAMBONI, MENGEL, and DISHINGTON (1951)
SCHAFFER (1968) BARFOOT (1969) SISKA, GIAMBOP*, and LIND (1954)
CLARK (1969) BONDER and FARRELL (1970) BONDER (1964) CLARK (1969)
KIMBLETON (1971) BONDER and FARRELL (1970) BONDER snd HONIG (1971)
FARRELL (1975) CHERRY (1975)

tﬂere TAYLOR (1974c) = tbz third paper published by TAYLOR in 1974.




2.8. A Simple Model of Battle Termination.

For assessing the outcomes of combat engagements between units in war
games and simulations, one needs some type of 'combat results table" that
relates the initial conditions of combat to probable outcomes. The military
operations analyst is faced with comstructing such a table. Let us recall
that the first question that we posed in Section 2.2 about the dynamics of
combat between two homogeneous forces was (Ql): "Who will 'win'? Be annihi-

lated?" It turns out that the determination of battle outcome depends on

not only the dynamics of combat (i.e. differential equations such as (2.2.1),
which model the force-attrition processes) but also the battle-~termination
rules used.

Of even more interest to the military operations analyst is how the
means and tactics for waging war are related to the outcome of battle.
Specifically, one desires to have a clear understanding of how force-level
and weapon-system performance parameters interact to determine a battle's
outcome. What is the tradeoff between quality and quantity of weapon
systems? When are two forces of equal strength? All such determinations
require the specification of a model for battle termination. We will now cons
a simple model of battle termination and briefly study its implications for co
ditions of force superiority. We had to defer the discussion of battle-
outcome determination/prediction (i.e. the answering of questioms (Ql)
through (Q4) of Section 2.2) until now when we will examine battle-termination
modelling.

As H. K. WEISS [98) has emphasized, engagements that continue until
one side is wiped out are rare. Although we are well aware that battle
termination is a complex random process for which it is by no means certain

that force levels are the only significant variables (i.e. the state
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variables)zq we will assume that combat ends when either of two given
"breakpoint" force levels is first reached. In Chapter 3 we will discuss
the modelling of battle termination more thoroughly. Accordingly, for

present purposes, let us define a force-level breakpoint as that point (i.e.

force level) at which a unit (either offensive or defensive) can no longer
perform its misaion during a fire fight. We will assume that when a unit's
breakpoint force level (or, simply, its breakpoint) is veached, the unit
will "break off" the engagement and leave the enemy force in possession of
the field of battle. In other words, we consider that when a unit reaches
its breakpoint before the enemy has, that unit has lost the battle.

Thus, the simplest model of battle termination is that battle outcome
depends (deterministically) only on the force levels. In other wordas, we
are considering a purely deterministic model of battle termination (with
no element of chance). TIn Chapter 3 we will discuss the modelling of
battle termination as a stochastic (or random) process. Let us consider
combat between two homogeneous forces (denoted as X and Y) and denote

X's breakpoint force level as P’ with Yap being similarly defined.

*B
Hence, for example, the following three conditions hold for a Y victory:

" (CcL) X, * X

f BP ,

Y wins when (C2) (2.8.1)

(C3) x(t) » Xap and y(t) > Ygp for 0 <t < tes

where x(t) and y(t) denote the X and Y force levels at time ¢,
and tf, Xe = x(tf), and Ve = y(tf) denote final values. Let us also

write that, for example,
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X
Xgp fBPXO , (2.8.2)
Where fxBP denotes a given fraction of X's initial strength. This break-
point fraction f:P (or, equivalently, the unit's breakpoint) 1s usually
asgumed to depend on the tactical posture of the unit, i{ts size, etc. Typica

values for a company-sized unit are the following:

ffp = 0.7 for an attacking force,

ad

and X
fBP = 0.5 for a defending force.

For any particular battle (i.e. for particular specified values of
attrition-rate coefficients and initial force levels) between two homogeneou
forces with assumed fixed-force-level breakpoints, we can always, of course,
determine the outcome simply by plotting the decay of the force levels x(t)
and y(t) and observing which side first reaches its breakpoint. This
approach is, however, a time-consuming procedure, and it does not provide
any deep understanding of the dynamics of combat (i.e. how weapon-system
capabilities and numbers of forces determine the outcome of battle). It is
therefore of interest to have available victory-prediction conditions, which
explicitly portray the relationship between these variables (i.e. weapon-
system~-capability and force-level variables) and the outcome of battle.

Thus, we will give victory-prediction conditions for LANCHESTER's
classic combat formulations with fixed-force-level breakpoints. We will
state these results without proof; details of their development are given
in Chapter 3. In other words, we now will give battle-outcome-prediction
results that answer questions (Ql) through (Q4) posed in Section 2.2 above

for the two classic models:
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(M1) LANCHESTER's equations for modern warfare (2.2.1),
and (M2) LANCHESTER's equations for area fire (2.4.1).
Let us therefore first consider the case in which the combat dynami

are given by LANCHESTER's equations for modern warfare (2.2.1). In this

Y will win a fixed-force-level-breakpoint battle (in finite time) if and

only if
S Sy
*0 a)l- (fBP) )
Vo NP1 (o2 (2.8.3)
0 1 - (fBP)

When (2.8.3) holds and Y wins, the number of his survivors follows from

LANCHESTER's square law (2.2.5) and (2.8.2), and it is given by

2
b( *o X 2
Ve = yoJl - ;(yo ) {1 - (g% . (2.8.4)

It is also of interest to compute the winner's total casualties
(denoted as yg) and also his fractional loss (denoted as (fz)f), since
these quantities are measures of his 'cost'" for doing combat and achieving
victory. In general for cases with no replacements and no withdrawals,

Y's total casualties, denoted as y.» are given by
y - yo - Y » (2.8-5)

so that (2.8.4) ylelds that the victor's losses are given by

x,\2
yE =¥, {1 -J - %(;3) - &% . (2.8.8)
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where yg denotes Y's final ..sualties at the end of battle at te

Similarly, Y's casualty fraction is defined (in such cases of no replace-

ments and withdrawals) by

Vg = ¥
£ o (2.8.7)
Yo
- so that (2.8.6) yields that the victor's fractional loss 1is given by
Y J b %o X2
(fc)f =1 -_/1-~ 2 ;g {1- (fBP) }o, (2.8.8)

where (fZ)f denotes the final casualty fraction.

X
yp
tgp being similarly defined. The time tgp may be determined by solving

We denote the time for X to reach his breakpoint as , with

the equation
X X
x(tBP) = Xpp = EBPxO , (2.8.9)

and accordingly we obtain using (2.2.8) that

( -1 X X5 -
—= In(l - £_) for ——--‘/:,
(2.8.10)
X 2 X ,2
X < I S ; '(xo/yo) fop t J(a/b) - (xO/yo) (1 - (fBP) ]
2 "\ l /a6 - (xyly,)
X
for 9 # .f%

”~

Yo
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We can obtain a similar result for tgp. Then che victory-prediction con-
"} dition (2.8.3) follows from requiring that tgp < t:P. Since the battle
ends upon X's force level reaching his breakpoint [see (2.8.1) above], tt

time at which the battle ends, t,., 1s equal td ¢ Thus, the time for

X
£ BP’
to win such a battle, denoted as tz, is given by t; - tf. These results
’ .“ are 41l summarized in Table 2.X. In summary, the information contained in
this table provides the anawers to the questfons (Ql) through (Q4) posed
above in Section 2.2.

These results are particularly significant because they show that
the outcome of battle 18 determined by only three relative factors (and no
} f‘.?f absolute quantities), even though our combat model (2.2.1) (with battle
N termination conditions included) ccontains six independent parameters: name
"13; a, b, Xgs Yoo fgp’ and ng. In particular the victory-prediction comnditi

(2.8.3) explicitly shows the parametric dependence of battle outcome on
various combat factors. We see that the outcome of a fixed-force-level-
éf *,;J; breakpoint battle depends on three factors:

N (F1) the initial force ratio, uy = xO/y0

(F2) relative fire effectiveness, R = a/b,

R R

i  ', and (F3) a relative breakpoint factor, B = B(fgp, f;P) ,
? f: wi' where

3

] B(u,v) = [E2Ys .

‘ g l1-u

All three factors are relative factors. The first two are simply ratios,
invariant for certain types of chaages in the absolute battle conditions
{namely, the group of similarity transformations, which leaves these ratios

unchanged). The relative breakpoint factor has the following properties:
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TABLE 2.X. Summary of Battle-Outcome Results for LANCHESTER's Equations

for Modern Warfare and Fixed Force-Level Breakpoints

x, jl-—(f )ZI
Y will win if and only if - < )
y llm(fxz

o
ol

When Y wins:

(A) winner's survivors,

b 0
1-= ;—) {1 (f p) 2y

x')
B -

(B) winner's fractional loss, (f ) \/;

mlc

{C) duration of battle, tf = t; where

N _
=L 1@ - ) for 2= [2
/ab Yo

X my o 2 ek 2
O A Jiam) - Glyp? 1 - (a7
% /aT6 - (eglyg)

x
for —9-¥
Yo

o)
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(a) B(u,u) =1, (b) 3B/3u > 0 for u > 0, and (c) 3B/3v < 0 for

v > 0. Hence, B(u,v) > 1 for u, v> 0 1if and only if u > v. We may the

rewrite the victory prediction condition (2.8.3) as

x
0 X Y a
Y will win if and only if %o < B(fBP, fBP) ‘[; . (2.8.11)

Thus, even though for a fixed~force-level-breakpoint battle, the
model (2.2.1) contains six independent parameters (including the two break-

poiunt fractions), it is only the three relative factors, ug > R, and B,

which determine battle outcome. The relative breakpoint factor B(fgp, ng)

explicitly shows the influence of the units' breakpoints on battle outcome.

In particular, when fﬁp = fgp, the victory-prediction coudition (2.8.11)

reduces to the force-annihilation-prediction condition given in Proposition
2.2.1. It seems appropriate for us to point out here that although we have
been able to generalize Proposition 2.2.,1 (i.e. generalize force—annihilatio
prediction conditions) to the case of time-dependent attrition-rate coeffici

we have not been able to do so for the victory-pradiction condition (2.8.11)

for a fixed-force-level-breakpoint battie.

Using the results of Table 2.X, we have constructed Table 2.XI.

In this latter table we show the influence of the values taken for the units

breakpoints om the ocutcome of battle. Parameter values were chosen to be

representative of an attack by the X forces against Y. Frequently, one

hears in military circles that a three-to-one force ratio is necessary for

success in attacking an enemy position. Table 2.XI has been comstructed to

also examine this rule of thumb. Consequently, we have taken a force ratio

of 3.00 (numbers of attackers to defenders) for this examination. Additiona
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one would think chat the defenders (with their established positions and
well-planned "fields of fire") would be relatively more effective (per man)
than the attackers. The input values shown in Table 2.XI reflect this
situation. Also, the values selected for the two breakpoints, aamely f:P
and fgp, reflect the hypothesis that the defending unit (which does not
move and require as close coordination and control for movement as the
attacking unit does) can sustain a higher fraction of casualties than the
attacker before abandoning its mission and "breaking off" the engagement.

Let us now examine the sensitivity of battle outcome to the units'
breakpoints. If the number contained in column 2 of Table 2.XI is smaller
than that contained in column 6, then Y will win according to the above
victory-prediction condition (2.8.3). The contents of column 7 (the
determined victor) show the sensitivity of battle outcome to the breakpoint
values used. Moreover, we should observe that if the battle were to be
fought to the annihilation cf one side or the other, them X (the attacker)
would win. However, since it is usually hypothesized that the attacker can
sustain a smaller casualty fraction than the defender before "breaking
off" the attack, the attacker may not always win, and the attacker will
lose battles for which the 'breakpoints overcome mass.'" For example, X
loses the battle identified as Case 1 in Table 2.XI.

Thus, the examples shown in Table 2.XI tell us that a force may be
able to win a fixed-force-level-breukpoint battle for certain breakpoints,.
even though it would lose a fight-to-the~finish. Figure 2.12 shows the
decay of the force levels in the more '"usual" case in which Y wins with

xO/yo < va/b, i.e. X would be annihilated if the battle were allowed

to proceed until the annihilation of one side or the other. We have also
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Figure 2.12.
in the case of

forces did not disengage at t = Lgp.
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extended, for example, the X force level [computed according to (2.2.13)]
puast the unit's breakpoint at C§P and denote this extended curve with
a dashed line.

From Figure 2.12 we see that the Y force level [computed according
te {2.2.14)] actually increases for t > :i. This should warn the reader
against indiscriminate "plugging in" toc an equation like (2.2.14). 1In other
words, the attrition equations (2.2.1) are only valid for x > Xap and
Y > Ygp- To be precise then, once we have introduced the concept of break-

points and consider a fixed-force-level-breakpoint battle; we should, for

example, write LANCHESTER'S equations for modern warfare as

( dx _ { -ay for x> x, and y >y,
dt 0 otherwise,

< (2.8.12)
dy } { -bx for x > Xpp and y > Ygp °
dt e otherwise.

However, for simplicity we will usually not write out the range of validity
of such equations as above and hope that the reader will understand this
implied restriction. Figure 2.13 shows that a force that wculd otherwise
be annihilated can actually win a fixed~force-level-breakpoint battle. This
situation corresponds to Case 1 shcwn in Teble 2.XI.

Results are similarly obtained when the combat dynamics are given
by LANCHESTER's equations for area fire (2.4.1). In this case Y will

win a fixed-force-level-breakpoint battle if and only if
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The length of battle is finite, however, if and only if fgp > 0. Other
results are obtained by means similar to those employed in the previous
case (i.e. for LANCHESTER's equations for modern warfare). These results
are summarized in Table 2.XII.

From the victory-prediction condition (2.8.13) for combat modelled
by LANCHESTER's equations for area fire, we again explicitly see the parametr
dependence of battle outcome on only three relative combat factors, even
though our combat model (2.4.1) (with battle termination conditions

included) contains six independent parameters. Although the functicnal

dependence in the victory-prediction condition is different from that for
LANCHESTER's equations for modern warfare, we again encounter the same
thrae factors that determine battle cutcome: namely, (F1l) the initial

force ratio, u, = xO/yo, (F2) relative fire effectiveness, R = a/b, and
X

(F3) a relative breakpoint factor B = B(fﬁP, fgp) = (1 - fgp)/(l - fBP)'
The relative breakpoint factor, however, is diffe. -t for the two different
combat dynamics [namely, for combat modelled by (2.2 1) and also (2.4.1)].
For the combat dynamics (2.4.1) the victory-predic.ion condition takes a
particularly simple form in terms of the breakpoint casualty fractions,

denoted as (£ . and (£)) , [see (2.8.7) abovel. Thus, Y will win a

fixed-force-level-breakpoint battle if and oniy 1f

Y
X (£2)
0 a_cBP (2.8.14)

— &

y b X ’
0 (fc)BP

or, equivalently,
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TABLE 2.XIXI. Summary of Battle-~Outcome Results for LANCHESTER's Equations

for Area Fire and Fixed Force-Level Breakpoints

Y

*o a‘l-fBP

Y will win if and only {f — < = | ——==
Yo B |1-£X

When Y wins:

(A) winner's survivors,

Y b [ *o X
L 28— v
(B) winner's fractional loss, (fc)f 2\, (1 fBP)
(C) duration of battle, tf = t; where
1 1
ayo (fx - 1) for o) 1
Y BP
twa
1 1-p
+ { ==
v ) ° {" <fx )} for o 41
BP
and X
-x{3z).
0

NOTE: X will win when 0 < ng <1 -
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X
xo)(a)wap .
— - 1. (2.8.15)
("o )|}

f . In (2.8.15) the victory-prediction condition is expressed in terms of the
product of three relative factors, each the ratio of the X quantity to
] 5 ] that for Y). Let us stress that it is only for LANCHESTER's equations

for area fire (2.4.1l) for which such simple results are possible. This is

even more true when each side's breakpoint is considered to be a random

variable (see Chapter 3).

Let us finally discuss some of the differences between the above
1 results for LANCHESTER's equations for modern warfare (2.2.1) and those for
LANCHESTER's equations for area fire (2.4.1). It seems appropriate to say
that two forces are of equal fighting strength for a particular battle 1if
neither force will win, i.e. either (0l) neithcr side's breakpoint is ever
4 ' reached, or (02) both are reached simultaneously. Table 2.XIII then gives
51 - : the conditlions for equality of fighting strengths for the two attrition

i models (2.2.1) and (2.4.1). From this table we see that equality of
| fighting strengths not only depends on the battle-termination conditions
| K but also in different ways for the two models. Such parity conditions
may be considered to provide a tradeoff between the quantity and the qualit
of weapon systems.
1 Furthermore, Table 2.XIII shows us that such quantity-quality tradeof
are quite different for these two classic combat attrition models. For
LANCHESTER's equations of modern warfare, a four-fold increase in the
relative efrectiveness of enemy (for example, Y) weapons can be offset by

a doubling in the ratio of friendly to enemy forces (i.e. increasing a/b
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TABLE 2.XIII. Conditions for Equality of Fighting Strengths in a

Fixed~Force-Level-Breakpoint Battle for LANCHESTER's

Two Class Models.

(M1) LANCHESTER's Equations for Modern Warfare

Y .2
%0 _ Jl'(fBP) JE
v X .2 b
0 1= (5

(M2) LANCHESTER's Equations for Area Fire

Y
fg . 1- fBP a
y _ X b
0 1 fBP
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by a factor of four can be offset by increasing xolyo by a factor of
two). In a sense then, increasing the number of weapons for a side is
much more effective in maintaining military parity between two forces than
increasing their relative quality. However, for LANCHESTER's equations of
area fire (or, for that macter, any "linear-law" attrition process [see
Section 2.9 helow]) the trading of numbers for quality 1is "one for one,"
i.e. a four-fold increase in the relative effectiveness of enemy weapons
can be offset by a four-fold increase in the ratio of friendly to enemy
forces.

Finally, let us remark that the significant thing is that the battle-
termination model is important and not so much that there is thus and so a
functional relationship between parameters of the battle-termination model
and the force-parity condition. The actual real-worid process of battle
termination is much more complicated than the simple model considered here.
Thus, the most significant aspect of our work here is the fact that battle

termination must be considered in determining force parity.
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2.9. Concentration of Forces Revisited.

One of the half dozen or so principles of war is the principle

of concentration (or mass), which would have a commander concentrate as

many men and means as possible at the decisive point in battle. As we
have seen above in Section 2.1, F. W. LANCHESTER sought to develop in his
now classic 1914 paper, a quantitative justification for the principle

of concentration with an idealized model of the combat process. We will
now examine this topic in more depth than in Section 2.1, however.
LANCHESTER [55, p. 422, columm 1] points out that there are two aspects
of the principle of concentration: (1) mental concentration (i.e.
focusing all mental energy on a single objective), and (2) material con-
centration (i.e. focusing all material means on a single objective).

He will focus on the second aspect of the principle of concentration (i.e.
material concentration), however.

In other words, LANCHESTER hypothesizes that in "modern" warfare
there are substantial benefits to be gained from merely committing more
forces to battle. He will seek to investigate the underlying principles
that cause such "economies of scale" in combat. As we have seen above,
his models of combat (2.2.1) and (2.4.l1) were the result of this investi-
gation. Not only did LANCHESTER show that there were increasing returns
to scale from committing additionmal force to battle, but he also developed
an important tradeoff for quality versus quantity of weapon systems by
means of his famous square law, namely, the condition for equality of

"fighting strength"

<\
0 a
( )-b (2.9.1)
Yo
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Before going further, however, let us point out an important dis-

i e s et i (5 il

|
|
N
:fl tinction between the sense in which we and LANCHESTER use the term "con-

centration" and that used by most military analysts today.29 Today the

term "concentration” of forces is usually used in the context of a single
force aplit into two or more subunits for purposes of massing and/or

economy of force. In this sense, one must consider the cost to the parent

unit of concentration of forces in one sector at the expense of another

sector. As COLONEL VASILIY Y. SAVKIN {71} of the USSR has stated,

s 3 f "To attain victory over.the enemy one must not dissipate
- 1 his forces and means equally across the entire front,
; ;‘ . but the main efforts must be concentrated on the most
: - .7;i important axis or sector and at the right time in order

s to form there the necessary superiority over the enemy
in men and weapons."

K We will not use the term in this more sophisticated sense, but we will

consider only one battle and will examine the consequences of initially

committing additional forces to combat.

Let us now address the question, "What are the benefits to be
'i"f_’?; gained from committing additional forces to battle?' Our problem is to
‘ 4 model and evaluate the consequences of this action. We have given this
quegtion a cursory examination in Section 2.1 above, and we will examine

it in more depth here. In particular, we will contrast results for the

two models (2.2.1) and (2.4.1).
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}f . Let us now consider the question of whether or not to commit
-}1 additional forces tc battle as a decision problem faced by one of two
E commanders about to engage in combat. Without loss of generality, we
may play the role of the Y commander. OQur problem iz to find the
"best" value for the initial number of forces committed to battle by Y,
denoted as Yo In other words, Yo is the decision variable for Y 1in
our decision problem. Let us now ask ourselves what are the factors
affecting Y's decision. The main factors affecting Y¥'s initial commit.
ment of forces appear to be:

(F1) what the Y commander knows about the battlefield situatic

(F2) what the enemy commander {i.e. X) will decide to do,

(F3) nature of the combat attrition processes,

(F4) criterion selected by Y for evaluating the consequences

of his action,

(F5) how the battle will be terminated,

(F6) who will win the battle,

(F7) subsequent combat actions.
For simplicity, we will ignore the last factor (F?) and consider only the
battle at hand. Let us consider the case in which Y will be the victor
(1.e. assume that he has more than enough forces available to "win' the
battle). We will then congider the initial-commitment decision by Y as
a one-gsided optimization problem: we assume that the X-force commander
had adopted a known course of action and consider Y's initial-commitment
decision in this light.

Based on the above consideration, the essential aspects of the

decision process for Y 1in deciding whether or not to concentrate forces
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(1.e. 1niCially commit as many as possible to battle) are the following:
(1) action to be taken (decision variable),
(2) 1information available to decision maker,

]

(3) outcome "yardstick" (decision criterion),
(4) relationship of action to outcome (system dynamics and nature

of planning horizon).

In our initial investigation here let us not consider the inherent uncerta
in the decision problems and assume that Y has perfect knowledge about
X and Yoo the battle dynamics (assumed deterministic) and battle termi-
nation (also assumed deterministic)?o Hence, we will not consider the
information structure here further, although it will certainly play a
major role in actual real-world military decisions. Let us summarize, our

assumptions about our decision problem:

(A1) enemy (i.e. X's) course of action fixed,

(A2) nature of battle dynamics remains the same during the
engagement,

(A3) Y has more than enough forces to "win" the battle and
additional forces can be committed to battle in anry quantity
desired,

(A4) Y knows the numerical strengths and capability of each side

(A5) battle will be terminated by a fixed force-level breakpoint
force level being reached.

As we have discussed in Chapter 1 above, one of the major decision
in evaluating any system or operation is the selection of the appropriate
evaluation criteria or measures of effectiveness. For our idealized
concentration-of-forces decision, we will consider a single measure of
effectiveness (MOE). We are assuming that Y has more than enough forces

available to "win" the battle, so therefore Y will always wind up in
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sole possession cof the battiefield. It therefore seems appropriate

to take some measure of the cost of achieving this victory as the criteric
for deciding whether or not it will be worthwhile to commit additional
forces to battle. A natural measure of the "cost of doing battle" is

the number of casualties sustained by the Y force. Let us denote the
number of casualties as Voo We have then that Yo = YeYor where Ve
denotes the final Y force level at the end of battle when the X break:

point (denoted as xBP) has been reached. We also have then Xe = Xpp
X X
BPT0"

his breakpoint, X's casualties are always the same [namely, X, ® X=X,

= f Le: us note that since the battle is terminated by X reaching
= (l-fgp)], regardless of how many forces Y initially commits to battle.
Thus, we may state in quantitative terms the decision problem of

determining the "best" initial commitment of Y's forces as

minimize C, subject to: ygin‘i Yo < ygax y (2.9.2)

Yo

where C = Y. ™ YeYo denotes the cost of doing combat (i1.e. the decisiorn

criterion or objective function), yO is the decision variable for which

the best (i.e. optimal) value is to be determined, ygin = ygraw +¢e, € > (
and ygraw denotes the value of the initial Y force level that leads tc

a draw in a fixed-force-level-breakpoint battle. We will denote the optin
value of Yo as y;. We have now specified all aspects of our combat
optimization problem except for the combat dynamics. We will consider
the above combat-optimization problem (2.9.2) for two classes of battle
dynamics:

(Cl) '"square-law" battles, and

(C2) "linear-law" battles.
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By a 'square-law battle' we mean any LANCHESTER-type battle for

which LANCHESTER's square-law,

bixZ = x%(0)) = aty - y2(©)), (2.9.3)

holds as the state equation. It follows that the combat dynamics must be

given by

%% = a3y y(t,Xx,y) ,

(2.9.4)

Y o e
dc bx* Y(t,%x,y) .

To insure a militarily realistic situation in which both dx/dt and
dy/dt < 0 for x, y > 0, we assume that v(t,x,y) >0 for x, y >0 and
all t. Lanchester'a equations for modern warfare (2.2.1) aré, of course,
an example of such battle dynamics. However, any battle for which (2.9.3)
holds wiil yield the same results as far as concentration of forces is
concerned, and this is why we consider the wore general combat dynamics
(2.9.4). To insure that the battle terminates in finite time, we assume
that
T
m [ v(t, x(£), y(£)) = += . (2.9.5)
T++> 0
Results for a 'square-law" battle are shown in Table 2.XIV. 1In

this case, Y will win a fixed-force-level-breakpoint battle (in finite

Y .2
X <\/a{_______1' “gp) :
o Vb | T X2
0 1 (fBP)
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A.

B.

TABLE 2.XIV
Variation in Own Casualties for Changes in Initial Number
of Own Forces in '""Square-Law'" Battle with

Fixed Force-Level Breakpoint

dx
3t - "ary (6,x,y)

Combat Dynamics:

d
?1% = -bx'y (t,x,Yy)

X

Y .2
. 0 V/;‘ L - (f5p) }
ot o Vvl x.2{°
Yo ll-(f)

BP

Battle Qutcome: Y wins with

£ “sp¥0

Own Casualties, yc =Y " yf:

2
y - / _b(X%o X 2
7. ™ Yo 1 1 a(yo) 1- (fBP) ]
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When Y wins, the cost of doing battle, namely C = Yor is given by

X \2
c =y, {1 - [ - %(;%) (1 - (fgp)zj’ ; (2.9.6)

Since ac/ayo < 0 always (see Table 2.9.1), yg - ygax’ and the victory

Y should always initially commit a3 many forces as possible to battle,
regardless of what the breakpoints are (as long as Y will win). Further-
more, 82C/8y§ > 0 so there are diminishing returns from committing additiomal
forces to battle. Thus, irrespective of what the breakpoints are (as long
as Y will win), Y should always initially commit as many forces as
possible to battle when combat attrition yields Lanchester's square law
(2.9.3). The reader should recall that in Section 2.1 we said that
Lanchester's square law (2.1.5) ylelds the important implication that a side
can always significantly reduce its own casualties by initially committing
additional forces to battle. However, we did not prove the validity of

this acsertion earlier but merely contented ourselves with a numerical
demonstration of its plausibility.

Similarly, by a "linecar-law battle" we mean any Lanchester-type

battle for which Lanchester's linear law,

b{x0 - x(t)} = a(yo - y(©)}, (2.9.6)

holds as the state equation. It follows that the combat dynamics must be

given by

d
alé' = -a‘u(t,x,y) ,

(2.9.7)

4 .
dt b U(t,xy)') e
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Again we assume that u(t,x,y) > 0 so that both ds/dt and dy/dt < O.

Lanchester postulated (sce Sectioa 2.1 above) that such aquations held for

ancient warfare., He alse poatulated that another case was that for "area"
ire [see equationm (2.4.1)]. To insure that one side or the other is

eventually annihilated, we assume that

td

Yo C_a
e for —’—?__ »
T b Yo b
Mo [ ou(t,x(t),y(t)) dt » (2.9.8)
T++4+o 0 X X
—.0. for __9.. < i .
a v, —b

<0

Results for a "linear-—law' battle are shown in Table 2.XV. In

this case, ¥ will win a fixed-force-level-breakpoint battle 1f and only

i
Y
f2<3“'f?”.
Yo bll-fgpf

When Y wins, the coft of doing combat, nameiy, C = yc, is given by

b X . .
c Y [1 - fBPJxo . (2.9.9;

Since 3C/3yo 2 0 (see also Table 2.XV), C does not depend on Yo at
all, so that the cost of doing comhat is not affected by varying the
initial aumber of friendiy forces committed to battle. 1In other words,
there is no advantage to be gained from concentration of forces in a
"linear-law" battle.

Thus, we have shown that the victor's decigsion as to whether or
not to concentrate forces in a fixed-force-level-breakpoint barttle for
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TABLE 2.XV
Variation in Own Casuulties for Change in Initial Number
of Own Forces in "Linecar-Law'" Battle with

Fixed Force-Level Braakpoint

dx .
'a"t" = -8 W(t’xr}')

Combat Dynamics:

%% - 'b'U)(t’x:Y)

Y
X a 1 fBP
For -—-— < — - ,
YO b 1 fx
BP

A. Barttle Outcome: Y wins with

xg = fgp %o
B. QOwn Casualties, Yo = Yo~ Vgt
b _ X

Ve " a (1 fBP]xo
ayc 0

Byo

2
9 yc

2 =0
ayo
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which (Al) through (AS) hold is fundamentally different for square-law
battles and for linear-law battles: in a square-law battle it is always
best for the victor to initially commit as many forces as possible to
combat, while in a linear law battle there 1s no benefit to be gained from
concentrating forces. If we assume (as Lauchester did) that warfare in
ancient times consisted of linear-law battles (in which "weapon directly
answered weapon'" in one-on-one duels) while under modern conditions 1t
consists of square-law battles (in which fire from many may be concentrated
on a few), then we see that the importance of concentrating forces has
changed appreciably from ancient times to modern times. Under modern con~
ditions, there is then a tremendous advantage to concentrating forces (or

at least Lanchester hypothesized 5031

). These results are independent of
the breakpoints of both sides (as long as the outcome is not changed).
They also hold for any decision criterion, C, which is of the form

Cm= F(yo), where F(v) 1s a strictly increasing function of its argument v.

In general, we would want to include enemy caSualtie332 in Y's
force-concentration decision. However, if we had considered a decision
criterion of the form C = G(xc,yc), where G(u,v) 1is a strictly increasing
function of its second argument for any fixed value of its first argument
u, then we would have reached the same force-concentration decisions as
above (e.g. vector should concentrate forces in square-law battle), since
X, = Xy " Xpp = CONSTANT. Thus, one would make the same force-concentration
decision for other criteria (i.e. measures of effectiveness) such as the
loss difference, Dc = yc - x., or the loss ratio, Rc - yc/xc. Later on,
we see that such insensitivity to changes in the decision criterion is
due to the battle termination rule (fixed force-load breakpoint), and in
other cases the force-concentration decision may depend on the decision
criterion (see also TAYLOR [91]).
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There is, however, a very simple principle that underlies all the

above concentration-of-forces results: namely, the instantaneous casualty-

exchange ratio determines the overall casualty-exchange ratio and related
measures of relative casualty-production effectiveness; in particular, if

fg 7 the instantaneous casualty-exchange ratio (friendly to enemy) always

] decreases as the force ratio (enemy to friendly) decreases, then additional

forces should be committed to battle by the victor (friendly forces). Let

3 us heuristically show why the latter decision rule for initially committing

additional forces to battle is optimal. The key point is that we should

A think of the instantaneous casualty-exchange ratio dy/dx, as the

"eost" to Y of reducing the X force level a unit amount. Thus,

1 d instantaneous "cost" to Y of
r E% = | casualty-exchange | = reducing X force level (2.9.10)
ratio a unit amount
‘ Next, we observe that if Y initially commits more forces to
battle, then the battle is fought at lower force ratios (regardless of the

breakpoints of the two forces). Here we take the force ratio to be the

ratio of the enemy (i.e. X} force level to the friendly force level.
In other words, we have that the force ratio, u, is given by u = x/y.
What happens to the instantaneous casualty-exchange ratio if the battle is

fought at lower force ratios? The answer to this question may be obtained

by considering the following partial derivative

o s -9-
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which tells us hiow the instantaneous casualty-exchange ratio varies as

the force ratio changes. A positive value for this partial derivative
(2.9.11) means that the instantaneous casualty-exchange ratio decreases

as the force ratio decreases. It follows that if (3/5u)(dy/dx) >0 always,
then the Y force (whom we assume will win) can reduce the ''cost" of doing
combat by initially committing more forces to battle and fighting the
battle at lower force ratios with their more favorable exchange ratios.

For the "square-law' battle (2.9.4), we have

%.%.%u , (2.9.12)

| where u = x/y, and hence

3 by, b
=G =20, (2.9.13)

It 1is this result (2.9.13) that explains why it is always a good tactic
for Y to concentrate forces (i.e. make Yo as large as possible in

square-law battles). For the "linear-law" battle (2.9.7), however, we have

Qx.% ) (2.9.14)

so that

(2.9.15)




N
v
h

In this lattsr case, therefore, the instantaneous casualty-exchange racio
cannot be changed by varying the force ratio. Hence, the overall casualty-
axchange ratio cannot be changed by committing more forces to battle, and
there 1is no advantage to concentrating forces in a fixed force-level break-
point battle. In Chapter 8 we will rigorously prove such statements in
general for Lanchester~type combat with two force-level variables.

Some final reflections seem to be in order. Our heuristic
explanation of the underlying reason for wanting to concentrate ZIorces in
square-law battles (namely, to reduce the instantaneous casualtiy-exchange
ratio) has shown us that the instantaneous casualty-exchange ratio conveys
the basic nature of the casualty-exchange process. We immediatcly know
(without having to explicitly determine any type of state ejuation) the
sensitivity of the overall casualty-exchange ratio and related measures to
variations in the initial number of forces committed to battle by deter-
mining this key quantity (namely, the instantaneous casualty-exchange
ratio), and its sensitivity to force-level changes. Thus, important
iuformation about the behavior of our combat model has been obtained

without having to spend tiie time and effort to explicitly compute force~

level trajectories.
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*2.,10. FISKY-Type Equations of Warfare.

H. K. WEISS [10L] has pointed out that LANCHESTER, an Englishman,
was anticipated (in qualitative but not quantitative terms) ia 1905 by
BRADLEY A, FISKE {thun Commander but later Rear Admiral, USN); an American.
FISKE won the Naval Institute Prize for 1905 for his essay entitled
"American Naval Policy." In this work he considered a "fire fighiz" hetweer
two fleets (i.e. shots belng exchanged between the two fleets within ef-
fective gun range of each other) and assumed that both the stremgths of
the forces and damages sustained coculd be given numeral va].ues.33 FISKE
then assumed that the damage dome to one force by the other, in a given
time period, was proportional to the value of the opposing force at the
beginning of the time period. He then developed tables to show "how the

' He found

values of two contending forces change as the fight goes on.'
that the decrease in offensive power of a weaker fleet. fighting a stronger
is geometrical (instead of arithmetical) and that there is a continually
increasing difference between the powers of the two fleets as an action
that favors the stronger fleet) progresses. Although no equations were
given, 1t is clear that FISKE had gone through all of the logical develop-
ment for the model (2.2.1).

J. ENGEL [25] subsequently pointed out that FISKE's verbal model
is equivalent to a system of difference equations. Let us accordingly
consider combat between two homogeneous forces in which casualties are

assumed at discrete points in time. We may think of the engagement as

being fought in distinct volleys (i.e. discrete exchanges of fire).
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Assuming that casualties during a time perind are proporuional to the
number of snergy firers at the beginning of the time period, we find that

the general equations of FISKE's model are3A

x - %X ® -0y s
( n+l n n ) (2.10.1)

3 Yarl = Yn T -an with Y=g ~ Yo *

where the subscript n denotes the nth time period (i.e. just after the
nth volley), the battle begins at n = O, X and Y denote the numbers
of X and Y combatants that are effective at the beginning of the nth
time period, and o and B are positive constants that represent the
effectiveness of each side's fire. For example, o denotes the number of
X casualties produced by a single Y firer during one time period. Let

us refer to the above equatioums (2.10.1) as FISKE's equations for modern

warfare. They are the discrete analogue of LANCHESTER's equations for
modern warfare (2.1.1). The relatiounship between these two models is
examined more closely in Appendix E. Intuitively, we would expect the mod
(2.2.1) and all associated results to be the limiting case of (2.10.1) as
the time between volleys becomes arbitrarily small. For now, however, we
will briefly examine some of the principal properties and results for the
model, with their development deferred until Section 7.5 below.

The X force level at the beginning of time period n, L is

given by

x_ = %’ (xo-yo\/% )[1 + /EE]B +(xo+yoJ§)[l - /Ef?]nf : (2.10.2)
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and siamilarly for cthe Y force level

s

. ™ N a
. ,..12.3(.0- BVEL B f&é‘J . (yc,-hco/i;[l - /JB"] f , (2.10.3)

Let us assume that35 B < 1 g0 that 1 - Yaf > 0. Similar to the proof
of Proposition 2.2,1, it follows that only one of X, and yn can ever
become negative (i.e. if x < 0 for some N, then y > 0 for all n > 0). Since
(L+ vaB]® >0 and - += as n+» and (1~ vaB]" >0 and ~ 0 as

n > o, it follows from (2.10.2) that the following proposition holds.

PROPOSITION 2.10.1: Y will win a fight-to-the-finish in finite

time 1f and only if xo/y0 <'va/B.

Furthermore, it follows from (2.10.1) that

B{x§+l - (l..aB)xi} = a{y§+1 - (1~ aB)yz}, (2.10.4)

from which we obtain the discrete~time state equation for FISKE's model

of modern warfare.

B{xﬁ - (1-—a8)nx3} = a{yi - Q1 - aB)nyg} (2.10.5)

We will also refer to (2.10.5) as FISKE's square law. Let us observe that

FISKE's square law (2.10.5) is somewhat differemt than LANCHESTER's square

1 law (2.2.1) because of the "time-dependent" factor (1 ~- ag)®. However,
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the parametric dependence of force annihilation (compare Propositions
2.2.1 and 2.10.1) 1is exactly the same. In fact most of the solution
properties of (2.2.1) and (2.10.1) and their implications are exactly
the same.

From the above and results given in Sections 2.2 and 2.3, we see
that the models of LANCHESTER and FISKE exhibit the same general behavior.
Thus, it has not been critical whether we model time as being continuous
or discrete. It is reassuring that the representation of time in our
combat model is not the significaat feature, but rather the functional
relationship for casualty trading is the underlying significant feature.
Our model possesses a basic type of invariance that does not depend on
the representation of time. Many scientists believe that such invariance

is the most significant aspect of many physical laws 36
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2.11. Comparison of LANCHESTER's Two Basic Models and Summary.

In this section we collect and compare results for LANCHESTER's two
classic combat models, i.e. his equations for modern warfare and those for
area fire (see Table 2.XVI), with each other. For convenience and also
reasons of hiscérical precedence, we have, for example, referred to (2.2.1
as simply LANCHESTER's equations of modern warfarels, although, of course,
several sets of assumptions have been hypothesized to yield them. 1In the
next section (i.e. Section 2.12), however, we develop a more precise notat:
for referring to such attrition processes.

In table 2.XVII we give an abbrevjated description, denoted as "shor
form," of two alternative sets of assumptions that have been hypothesized t
yleld each of LANCHESTER's two classic combat models. A more chorough
enumeration, denoted as '"long form," of the first set of these assumptions
is given in each of Tables 2.XvIII and 2.XIX for each of these two basic an
clagsic combat models. The reader should observe in Tables 2.XVIII and
2.XIX that the three assumptions above the dotted line are the same for
each model. Alsou, we have given explicit expressions for the attrition-rat

coefficients in each model. To keep these expressions simple, we have made
assumption (A3), which is not essential for the functional form of these
attrition rates (e.g. attrition rate proportional to the number of enemy
firers). Also, WEISS [99, pp. 83-84] has pointed out that assumption (A2)
can be weakened: the same equations apply when two homogeneous forces are
deployed along a front facing each other with uniform troop density on each

side provided that (A2) holds within given force boundaries or ''cells" on

each side of the front.

In Table 2.XVIII, t:ac denotes the time for a Y firer to acquire
XY

an X target. Here the first force subscript, i.e. the X which is the

one closest to the left-hand side of the differential equation, refers to
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Table 2.XVI. LANCHESTER's Two Basic Combat Models.

LANCHESTER's LANCHESTER's
Equations for Equations for
Modern Warfare Area Fire
e — = - 4L,

-dl--a '-Sl-a‘-u_

dt y dt

4y . . dy . .

It bx It bxy
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Table 2.XVII.

First Alternative
Simple Set of
Assuuptions

Second Alternative
Simple Set of

Assumptions

TTmRTTIAT R m T AENTRAY TR TR

SHORT FORM of Alternative Conditions

Under Which LANCHESTER's Two Basic Combat
Models Have Been Hypothesized o Apply.

LANCHESTER's
Equations for

Modern Warfare

LANCHESTER's
Equations for
Area Fire

e

(M1) "aimed" fire

(M2) time to acquire an
enemy target inde-
pendent of enemy
force level (a
special case which
is that in which
target—~-acquisition
time is negligible)

(A1) "“area" fire

(A2) constant-area
defense

[

(M1) "area" fire

(M2) constant-density
defense

n(xl) "aimed" fire

(A2) time to detect an
enemy target in-
versely propor-
tional to enemy

kill an acquired
target

force level and much
greater than time to

b
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Table 2.XVIII. LONG FORM of Conditions Under Which
LANCHESTER's Equations for Modern Warfare
Have Been Hypothesized to Apply.

dx 1 1
It = -ay with 2 = tac + S U
XY Y SSKXY
EQUATIONS:
9Y o bx  with 1=t 4 —t—
dt b ach VXPSSKYX

ASSUMPTIONS (after H. K. WEISS [99]):

(Al) Two homogeneous forces are engaged in a fire fight. In other words,
the units (i.e. weapon systems) on each side are identical (i.e. every
unit on a particular side has exactly the same capability for killing
enemy forces and also exactly the same vulnerability to enemy actionm),
but the units on one side may have a different kill rate than oppoging
enemy units.

(A2) Each unit on either side is within weapon range of all units on the
other sgide.

(A3) The effects of successive rounds in the target areas are independent.

(A4) Each unit is sufficiently well aware of the location and condition of
all eremy units so that it engages only live enemy units (one at a
time) and kills them at a constant rate, which does not depend on the
enemy force level. When an enemy target is killed, search begins for
a new target, with the rate of acquiring a new enemy target being
independent of the enemy's force level.

(AS) Fire is uniformly distributed over surviving enemy units.

NOTE: See text for explanation of notationm.
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Table 2.XIX. LONG FORM of Conditious Uunder Which
LANCHESTER's Equation for Area Fire
Have Reen Hypothuasized to Apply.

av
dx X
TR Wi P(R[H) yy Xy

EQUATIONS:

3y
dy o . X
at Vg PK|H) gy xy

ASSUMPTIONS (After H. K. WiISSE [99]):

(A1)

— —— ——— ————— e —- — - D Gwww WA e e e R i et — . mn me e e e W — o a

(A5)

(46)

NOTE:

Two homogeneous forces are engaged in a fire fight. In other words,
the units (i.e. weapon systems) on each side are identical (i.e. every
unit on a particular side has exactly the same capability for killing
enemy forces and also exactly the same vulnerability to enemy action),
but the units on one side may have a differenc kill rate than opposing
enemy units.

Each unit on either side is within weapon range of all units on the
other side. :

The effects of successive rounds in the target areas are independent.

Each firing unit is aware only of the general area in which enemy
forces are located and fires into this area without feedback about the
consequences of its fire.

Fire from surviving units is uniformly distributed over the area in
which enemy forces are located, i.e. unaimed fire (in the csense of not
being directed at specific enemy targets).

Each unit presents the same vulnerable area to enemy fire. This
vulnerable area is much larger than the effective (or lethal) area of
a single round of enemy fire, e.g. small arms fire at infantry targets.
Additionally, the number of hits required for a kill obeyes a geometric
probability law.

See text for explanation of notation.
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the target (who suffers the attritior), while the second refers to the firer
We will always use this convention when there are double subscripts referrin
to both firer and target. Also, Vy denotes a single Y combatant's firing
rate when he is engaging an acquired target, and PSSK denotes a single-sho
kill probability. Their product is then the rate at which acquired targets
killed by a single firer in this model, In Table 2.XIX, avx denotes the
vulnerable preasented area of a single X cowmbatant, Ax denotes the present
area occupied by the X force (and into which the Y force is assumed to f
and P(K|H) denotes the probability that a target is killed given that it
is hit (i.e. conditional kill probability).

In Table 2.XX we summarize results for LANCHESTER's two classic model

so that we can contrast their properties with each other. The term "aimed"

is used in this table with the understanding that the target forces are "eas

acquired," while the term "area" fire is used with the understanding that tt
target forces maintain a constant-area defense (cf. Table 2.XVII). Table 2.
tells us that we may think of equations (2.2.1), i.e. LANCHESTER's equation¢
for modern warfare, as arising when we fire only at live targets, while (2.¢
arise when we fire at the original target positions with no feedback as to
consequences of our fire (see SCHREIBER [73]). Consequently, equations (2.!
implicitly involve "over-kill" (in the sense that one may continue to fire :
dead targets), while equations (2.2.1) do not. Hence, we are not surprised
that there is no advantage to the victor from concentrating forces in comba:
modelled by LANCHESTER's equations for area fire, but that there is for coml
modelled by LANCHESTER's equations for modern warfare. Other results are
similarly summarized. In the table, x = (x0 + xf)/Z denotes X's "average
force level in the engagement, X, = X9 = Xg denotes X's casualties in the
engagement, and u = x/y denotes the force ratio.
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Table 2.XX.

I b R

Comparison of LANCHESTER's Two Basic

Combat Models.

LANCHESTER's
Equations for
Modern Warfare

LANCHESTER's
Equations for
Area Fire

Simple Statement of
Basic Model Assumption

"Aimed" Fire

"Area' Fire

Feedback Mechanism

Fire at Only
Live Targets

Fire at Original
Targets with No Feedback

Overkill?

NO

YES

State Equation

2_22y = 2_,2
b(xox) a(yoy)

b(xo-x) - a(yO—y)

Concentration of
Forces Advantageous YES NO
for Victor?
Instantaneous Casualty- a a .
Exchange Ratio, <%§ b(x/y) b i
{
Overall Casualty- E
h Ratio, =% 5 b |
E hosund o !
xchange Ratio, Vo b(R/T) é
Victory P;edicted for 1- (fY )2 1__fY
Y When = < 2. BB 2 2P
Yo P 1= (g2 P li-£k
Rate of Changedzf blu - _:_} bx{u-~ %}
Force Ratio, ——
dt
Negative Rate of a
Change for Force J/E 5

X0
Ratio When — <

Yo
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In summary, Table 2.XX liats various rasults for and properties of

LANCHESTER's two classic combat models. We should take these two models

as limiting cases for the mutual attrition of two homogeneous

forces: the modern-warfare equations (2.2.1) represent in some sense the

"mogt. effective”" application of firepower (i.e. perfect feedback as to the
consequences of one's fire), while the area~fire equations (2.4.l) represent
a "less effective” one, with no feedback as to the consequences of one's

fire. 1In other words, we may take equations (2.2.1) to represent the

case 1n which fire is concentrated on individual targets, while equations

(2.4.1) represent the case in which it is not.37 Moreover, TAYLOR [84] has

shown that these two types of target attrition processes yleld quite dif-

ferent structures for optimal time-sequential fire-distribution policies im

a more general model for combat against heterogeneous forces. We have al-

ready seen that these two attrition processes yield quite different returns
to a commander from concentrating his forces.

Thus, these two basic modelg may be considered in some sense to be

limiting cases for possible force-attrition processes. One i1s tempted to

conjecture that they bound most real-world attrition processes, i.e. in

some sense most real-world attrition processes lie between these two extreme
points. Furthermore, they form the basis for essentially all further de-
velopments in the LANCHESTER theory of combat and yield important insights

into the behavior of more complex models.38
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2,12, A Classification Scheme for Homogeneous-Force LANCHESTER-Type Attrition

Processes and Some Additional Functional Forms for Attrition Rates.

As we have seen above for LANCHESTER's two basic combat models,
several different sets of physical assumptions may be hypothesized to yield
the same functional form for an attrition rate. Consequently, it is mdfe con-
venient to refer to a model for combat between two homcgeneous forces in terms
of the functional forms for the two attrition rates than to refer in terms of
the assumptions (as we have done above). Let us now introduce a very convenient
shorthand for referring to such homogeneous-force LANCHESTER-type combat models.
It basically involves using a two-part descriptor XIY, where X describes the
attrition rate for the X force and similarly for Y. X and Y take on their
values according to the type of proportionality for the various terms in a
side's attrition rate. This proportionality is expressed in terms of the
number of firers (denoted as F) and/or the number of targets (denoted as T).
If the attrition rate is independent of the numbers of firers and targets, we
use the letter C (for constant attrition rate). When there 1s more than
one term in & side's attriton rate, the same approach is applied to each term,
with a plus sign separating each component term of the attrition rate.

Let us now consider some examples to illustrate this shorthand. For
example, for LANCHESTER's equations of modern warfare (2.2.1), the X-force
attrition rate is (~dx/dt) = ay so that it 1is proportional to only the
number of enemy firers (and similarly for the Y-force attrition rate). Con-~
sequently, we will refer to it as a F[F LANCHESTER~type attrition process
(or, simply, F]F attrition). Similarly, LANCHESTER's equations for area
fire (2.4.1) represent FT|FT attrition, since each side's attrition rate
is proportional to the product of the number of firers and the number of
targets. As a final example (with two terms in each side's attrition rate),
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the equations

will be said to represent ( 1‘-’\)l Tul + sz ’1‘u2 )l( Fu3 Tv3 + Fu4 Tva)
LANCHESTER-type attrition.

Figure 2.14 shows various attrition-rate functional forms that have
been considered in the literature of the LANCHESTER theory of combat. We
have used the above shorthand notation for referring to these various
attrition processes in the figure. Also shown for each process are the
state equation (if ﬁot‘too complicated) and the first person (known to this
author) to have considered it. Table 2.XXI gives an enumeration of authors
who have studied each of these various ''basie' attrition-rate processes.

Let us now briefly examine the various sets of physical assumptions
that have beern hypothesized to yield the five basic attrition-rate functional
forms shown in Figure 2.14, Conditions hypothesized to yield the FIF and
FT|FT attrition processes have been discussed previously in Section 2.11
(see, for example, Table 2.XVII), and conditions for the F|FT process
(equivalently, the FT]F process), of course, are just a combination of
these two sets, with one set applying for each side. For example, BRACKNEY
{15] has hypothesized that the FlFT attrition process occurs for an assault
by the X forces on defensive Y positions, in which the defenders use
aimed fire (with X targets readily acquired by virtue of their "assault"
posture) and so do the attackers, only their search time for Y targets is
relatively large (and inversely proportional to enemy troop density) by
virtue of the enemy's remaining under cover in their defensive positions.
In other words, assumptions (A1) and (A2) of Table 2.XVII apply to X,
while (M1) and (M2) apply to Y.
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x{t) n y(t)
ATTRITION DIFFERENTIAL STATE
PROCESS EQUATIONS EQUATION
dx LANCHESTER (1914)
El-t- -t 2 o2 2.y2
FIF A b(xy-x%) = a(yg-y*®)
dt
square law
dx LANCHESTER (1914)
a = "
FTIFT & . b(xy=x) = alyy~y)
de linear law
dx BRACKNEY (1959)
, EX o -ay
- dt b
FIFT dy F(x2-x2) = aly,~y)
dt = -bxy mixed law
dx PETERSON (1953)
~= = ~-ax x y
dt 0 0
btn— = atn—
TIT .:l - -by 0 x n y
t logarithmic law
dx MORSE and KIMBALL (1951)
at - -ay - Bx
(F+T) | (F+T) d (generally very complicated)
at - -bx - ay

Figure 2.14. Various functional forms for attrition rates

that have been considered in the LANCHESTER-

combat-theory literature.
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TABLE 2.XXI.
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Authors Who Have Studied Various Basic Attrition-Rate Processes.

Attrition
Procesas
- LANCHESTER (1914)
KOOPMAN (1940's; see MORSE and KIMBALL (1951))
LANCHESTER (1914)
FTIFT MARADUDIN and G, WEISS (1958)
G. WEISS (1963)
1T BRACKNEY (1959)
: DEITCHMAN (1962)
PETERSON (1953, 1967) CLARK (1969}
TIT HELMBOLD (1965)
H. K. WEISS (1966)
MORSE and KIMBALL (1951)
and
BT ET) ISBELL and MARLOW (1956a)

BACH, DOLANSKY, and STUBBS {(1962)
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Also, DEITCHMAN [22] has used the F|FT attrition model for
insurgenny operatious (i.e. guerrilla warfare) to represent the ambush of
¥=-force countaerinsurgents by Y-force guerrillas. He hypothesized that
(M1) and (M2) hold for the Y force, which fires on the X force, "caug
in the cpen," but that the awbushed X force can only return area fire,
since 1ty members do not know the exact positions of individual Y
ambushers and consequently return fire into only the general area known
to be cccupied by the epemy.

PETERSON [69;70] has hypothesized that T|T attrition, i.e.

& e ax, and L= vy, (2.21.1)
characterizes the early stages of a small-unit enpgagement in which the
vulnerability of a force dominates its ability to acquire enemy targets.
In other words, T|T attrition occurs when the exposure of individual
weapons to be acquired as targets determines the occurrences of initial
casualties,

PETERSON [69] introduced this model to extend the available choice
of basic combat models and also because it does fit limited data for a
certain type of engagement, i.e. a tactical situation in which all weapons
of the two forces are within effective range of the enemy but when (due
to cover, concealment, or expert camouflage) no two opposing weapons
are actually intervisible. In such a situation, it is not unreasonable
to assume that the probability that the first unit to betray his cover,
concealment, or camouflage is in the X force 1s given by the ratio
ax/(ax + by), whence follows (2.12.1) (see Chapter &). However, once the

battle actually begins, this model is no longer applicable.
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WEISS (102} has suggested that force vulnerability may become the
dominant factor in causing losses as combat units increase in size and
become increasingly inefficient. G. CLARK [20] has used this TIT attricic
model (2.12.1) for the early stages of a small-unit engagement in his COMAN
model.

The last attrition-rate functional form shown in Table 2.14 is

that of (F + T)|(F + T) attritionm, i.e.

a . | 4y - Y o px -
3t ay - 8x, and it bx - ay. (2.12.2)

Two situations that have been hypothesized to yield the above equations
are (see Figure 2.15):
(S1) F|F attrition in combat between two homogeneous forces
with "operational" losses [3;64],
(s2) F[F attrition in combat between two homogeneous primary
forces (see WEISS [100]) with superimposed effects of
supporting fires not subject to attrition [95].
In the first situation (S1), for example, the term (Bx) 1in
X's loss rate, i.e. (-dx/dt), represents "operational" losses, i.e. losses
due to causes other than enemy action [3] (e.g. losses due to sickness,
accldents, desertions, etc.)?g In other words, the model holds that a
force suffers a certain amount of casualties due to its very size. In
the second situation (S2), it is assumed that F|F attrition holds between
the primary fighting forces, e.g. infantries, and that the supporting weapons
employ area fire against enemy infantry (again see Figure 2.15).
Let us note that the state equation is quite simple (and is trivially
derived) for each of the first four attrition processes shown in Figure 2.1l4.
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(a) operational losses

(b) combat with supporting fires not subject to attrition

B

X-FORCE Y-FORCE
FIRE FIRE
SUPPORT SuPPORT
x(t) y(t)

INFANTRY

Figure 2.15. Two different combat situations that ha' _
been hypothesized tc yield (P+T)|(F+T)
attrition.
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However, the state equaticn for the last one, the (¥ + T)|(F + T)
attrition process, is generally quite complicated, namely [95]
-q

y(e){8 + (ﬁz—n-bx(c) -

y.(8 - (5299} + bx X
0 2 0

B-a
[y lo+ (5=} - bx,] — , (2.12.3)
0 2 O yeorte - &2+ bx(o)

where 8 = ng + [(B-—a)/2]2 and v = {8 - (a+B)/2}/{6 + (a+B)/2}. However,
as first noted by Taylor and Parry [95], when ab = o8, then 6 = (a+8)/2

and v = 0, so tnat (2.12.3) becomes

8y(t) - bx(t) = Byo - bxo for ab = a8 , {2.12.4)
which is a totally unexpected result, Later in this book we will give some
insights as to why this complicated state equation (2.12.3) for the
(F+ T)|(F+T) model (2.12.2) reduces to the "linear law" (2.12.4) in
this special case.

A general form for homogeneous-force attrition rates (which yields
the square, linear, and logarithmic laws as special cases) has been given
by HELMBOID [36], whc hypothesized that the larger force suffers inefficiences
of scale when force sizes are grossly unequal.(“0 He has emphasized that
LANCHESTER's classic equatiomns for modern warfare (2.2.1), i.e. the F|F
attrition model, imply that no matter how unequal the opposing strengths
may be, the full destructive capability of each side can be focused with

undiminished effects on the enemy. However, sheer limitations of available
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space, to say nothing of terrain~masking and reaction-time effects, may
well prevent the larger force from using its full destructive capability.
In consonance with the above line of reasoning, HELMBOLD [36]
has suggested the following LANCHESTER~-type equations
% o o ag®yey and L v e, (2.12.5)
dt y dt X
where, for exampla, g(x/y) 1is a function that is used to modify the
fire effectiveness cf an individual Y combatant at extreme force ratlos
and similarly for h(y/x). HELMBOLD argued that the effectivenss-modifi-
cation functions should satisfy the following three requireuwents
(R1) g(l) = h(1) = 1 ((2.12.5) reduces to (2.2.1) for forces
of equal size),
(R2) g(q) = h(q) (same inefficiencies of scale for each side),
(R3) g(g) 1is a strictly increasing function of its argument.

Hence, (2.12.5) becomes

—d—)-sa—. E. iila_- X- Y
It a h(y) v, and e b h(x) X , (2.12.6)

which we will refer to as the equations for gemeralized HELMBOLD-type

combit (see Figure 2.16). Here, the effectiveness-modification function
h(z) has the following properties:

(P1) h(z) 1is a strictly increasing function of its argument,

(P2) h(1) = 1.

HELMBOLD [36] also considered the special case of (2.12.6) in
which h(z) 1s a power function of its argument,41 i.e. h(z) = u®.

Then, (2.12.6) becomes
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HeLmBoLp (1965)

a* h(x/y)

i -~
|
| Y
l
|
§ x(t) b+ b(y/x) y(e)
|
!
|
; d d >4
‘ x P

-&E‘ = —ah(;) Y a% - -bh(x) X

Figure 2.16. Generalized Helmbold-type combat
which incorporates inefficiencies
of scale for the larger force when

force gizes are grossly unequal.
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-dl-—ol(-cn i‘-l-..cl)c'
a (y) ¥ an@ TS b (x X , (2.12.7)

which we will refer to as the equations for HELMBOLD-type combat42 (see

Figure 2.17). It follows that the instantaneous exchange ratio, dx/dy,

is given by43

i a(xPl 4 (y)t |
“'B’(“) ’F(x) , (2.12.8)

where d = 2(l-c). Hence, the state equation may be written (for d # 0)

as
b(xd - xd) a a(yd - yd) , (2.12.9)
0 0
and for d = 0
X y
b tn -2 =atn 2 . (2.12.10)
X y

Thus, the equation for HELMBOLD~type combat yield the square law when
¢ = 0, the 1linear law when ¢ = 1/2, and the logarithmic law when ¢ =1
(see Figure 2.17).

Moreover, there is an intimate relationship between the equations
for HELMBOLD-type combat (2.12.7) and those of LANCHESTER for modern
warfare (2.2.1). It is convenient, however, to first introduce the

"Weiss parameter"” W defined by

W=4d/2 =1 -¢c , (2.12.11)
and to write (2.12.7) as
dx x 1-W dy X_l—w
Tt -a-(;) 'Y and It - -b: ( x) - , (2.12.12)
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. dx & 2N A
Model: at a(y) Y, 3t b(x) x

dx _ .8.(3‘_)2°'1 - E.(l)d"l

Instantaneous Exchange Ratio: dy " o'y 5 G

State Equation: b(xg-xd) = a(yg-—yd)

EXPONENTS LAW COMMENTS
c d
SPECIAL 0 2 SQUARE CONCENTRATE
CAsES 1/2 1 NEAR
(Werss. 19668) LINEA
3/4 | 1/2 SQUARE ROOT | EXERCISE ECONOMY OF FORCE
1 0 LOGARITHMIC | "aLL FORCES ARE EQuAL”

Figure 2.17. HELMBOLD-type combat which incorporates
inefficiencies of scale for the larger force

when force sizes are grossly unequal.
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where W ¢ (0,1] for c ¢ [0,1). Introducing the force ratio u ™ x/y,

we obtain the force-ratio equation

du W oW

Tc - a) . (2.12.13)

| The form of the equation (2.12.13) suggests letting v = uw. Doing this,

- *'f% we may transform the force-ratio equation into the following RICCATI
ﬂ equation
L owuy? - a) (2.12.14)

with initial condition v(0Q) = xg/yg. Since we have encountered a RICCATI
ﬁ?- f  equation for v = xw/yw, we know that both xw and yw satisfy linear
differential equations (see Appendix A.3). Setting p = xw and q = yw,

we find that

‘ QE - - - W
¢ 1 it Waq with p(0) X5
N (2.12.15)
g& - I n - W
N ’ it Wbp with g(0) Yo -

The result (2.12.15) 1s highly significant, since it shows that
the nonlinear differential-equation model of HELMBOLD-type combat (2.12.7)
can be transformed into the familiar linear model (2.2.1) so that all
- /  ;1 the known results for the linear model can be invoked. 1In particular, it

= ! fcllows that (2.12.9) holds (since p = xd/2 and q = yd/Z) and
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() = xg cosh W vab t ~ yg ~j%€sinh W /ab t . (2.12.16)

Thus, for the model of HELMBOLD~type combat, one can readily answer
questions (Ql) through (Q7) posed in Section 2.2 above. For example, Y

will win a fixed~force~level-breakpoint battle in finite time 1f and

only if
X RGNS
—= < = T (2.12.17)
Yo {1 - (fgp)"}

As we pointed out in Section 2.9, many different differential-
equation combat mudels can yield LANCHESTER's linear law (2.4.3) (includir
the (F + T)|(F + T) model (2.12.2) when ab = aB). We did not call
(2.4.1) the equations for a linear-law attrition process for this reason.
Whemn ¢ = 1/2 and consequently d = 1, (2.12.9) becomes the linear law,

but the X force level as a function of time is given (implicitly) by

/x(t) = /25 cosh(/ab t/2) - J&O a/b sinh(/ab t/2) , (2.12.18
which should be contrasted with the corresponding result (2.4.7) for the
FTIFT attrition process. In particular, it should be noted that (2.12.1
implies that, for example, the X force can be annihilated in finite tin
whereas this outcome is impossible for "linear-law' combat modelled

with (2.4.1) (see Proposition 2.4.2).

Let us finally note that the above transformation of the non-
linear equations for HELMBOLD~type combat (2.12.12) (equivalently, (2.12

into a linear differential-equation model also holds for time-dependent
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attrition-rate coefficients. Moreover, (2.12.7) 1s the only such non-
linear combat model with a '"separable" efficiency factor (i.e. h(x/y) =
£(x)/g(y) 1in (2.12.6)) that can be transformed into the F|F attrition

model (see Section 6.11 below).
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PROBLEMS for Chapter 2

What did F. W. LANCHESTER hope to prove with his simple mathematical

models of combat?

What are three important characteristics of a good analytical model?

(Short answer in words is all that is sought. You may want to refer back

to Chapter 1.)

With reference to LANCHESTER's original work, what is the major differ-

ence between the conditions under which the FT[FT attrition process

F attrition process?

has been hypothesized to occur and those for the ¥

(A single rhrase for each will suffice here.)

Fill in the missing entries in the below table that illustrates how

under '"modern conditions" of warfare there is an advantage from coucen-

trating forces. For these computations assume:

a
5 E = 0.25, x0 100, and Xe 0,

where xo denotes the initial value for the X force level and Xg

denotes its final value.
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200 250 300 400 500 1000
Ye 0 === 2236 = = meee

Y's loss 200 B 41.7 ~——=

5. Redo the table that you constructed for Problem 4, but inatead of a

fight to the finish, consider a fixed-force-level-breakpoint battle
X Y X

with fBP = fBP = (.25, where Xgp * fBP X, and similarly for Ygp*
- Thus, your input data will be a/b = E = (0.25, Xy = 100, Xe = Xp ™ 25,
T and fﬁ? - ng = 0.25, with the table containing entries for y, = 200,

250, 300, 400, 500, and 1000.

6. Consider combat between two homogeneous forces modelled by the following

t

F|F LANCHESTER-type equations (for x and y>0)

dx

dc - &Y with  x(0) Xy
dy . _ -
at bx with  y(0) Yo+

where a and b denote positive constants.

Part a. What assumptions have been hypothesized to yield the above

combat dynamics? (Only one set of simple assumptions sought.)
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Part b. What are the constants a4 and b called in the above LANCHESTER-

type combat model?

Part ¢. What are the dimensions of a?

Part d. What is the quantity Yab called? The quantity a/b?

]
|
g |
;|
|
.4

Part e. What is the X force level given by?

Part f. Let Y attack the X force, which defends. How are X's
fractional casualties per unit time related to the force ratio
of the attacker to the defender? Sketch a plot of this rela-
tionship. How is the constant a related to this plot?

:f [HINT: Observe that X's fractional casualties per unit time

are given by (~1/x) dx/dt. ]

7. Let us further consider the LANCHESTER-type combat model of Problem 6.

Part a. If a = 0.06 X Q;Pualties/minute/Y combatant, b = 0.01 Y

‘ = casualties/minuté/x combatant, X, = 200, and Yo " 100,

I
|

who will win a gight to the finish?

4
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Part b.

Part c.

Part d.

Part e.

Part f.

For the data given in Part & above, how long will it take

for the loser to be annihilated?

For the data given in Part a above, plot the X force level
x(t) as a function of time. What is x(t) for ¢ = 60

minutes?

For the data given in Part a above, plot the Y £force level
7(t) as a function of time. What is y(t) for t = 60

minutes?

If a reserve force of 70 X combatan<s (assume that these
reinforcements are identical to the original members of the
X force) arrives after 30 minutes and 1is immediately com-
mitted to battle, who will win this fight to the finish?
What would have been the outcome {f X could have Iinitially

committed his reserve?

Who will win a fight to the finish 1f a = 0.09 X casualties/
minute/Y combatant, b = 0.02 Y casualties/minute/X combatant,
X = 300, and Yo " 106? What 18 x when y = 757 When
y = 50?7 When y = 25? When y = 07
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Part g.

If a = 0.01 X casualtias/minute/Y combatant, b = 0.01 Y
casualties/minute/X combatant, Xq * 300, and Yo " 100,
who will win a fight to the finish? W%Who will win if Xy " 3507

1f X, ® 400? If X, = 5007

Let us further consider the LANCHESTER-type combat modal of Problems 6

and 7, only this time we will assume that the engagement is a fixed-

force-level breakpoint battle. As usual, we will represent the force-

level breakpoints as x,, = fi? x, and yg, © f:P Yo'

Part a.

Part b.

Part c.

If a = 0.0l X casulaties/minute/Y combatant, b = 0.04 ¥

casualties/minute/X combatant, x, = 100, YG = 225, fgp = 0.5,

and E:P = 0,7, who will win a fixed-force-level breakpoint

bactle?

For the data given in Part a above, how long will it take for

the loser to read his breakpoint?

For the data given in Part a above, plot the X force level
x(t) as a function of time. What is x(t) for t = 45

minutes?
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Part d.

Part e.

Part f.

Part g.

For the data given in Part a above, plot the Y force level
y(t) as a function of time. What is y(t) for ¢t = 45
minutes?

Who will win a fixed-force-level-breakpoint battle if a = 0.01

X casualties/minute/Y combatant, b = 0.05 Y casualties/minute/X

combatant, x. = 100, = 300, fxp - 0.5, and fgp . 0.77

0 Yo B

Who will win if Yo = 2507

Who will win a fixed-force-level-breakpoint battle if a = 0.001

X casualties/minute/Y combatant, b = 0.01 Y casualties/minute/X

X Y
combatant, X, = 100, Yo " 400, fBP = 0.4, and fBP = (0.65?

Who will win 1if Vo " 3507

If a = 0.06 X casualties/minute/Y combatant, b = 0.01 Y
casualties/minute/X combatant, ng = 0.65, and f:P = 0.5,
what initial force rctio is required for X to win a fixed-
force-level-breakpoint battle? What do these numbers suggest
to you as far as who 18 the attacker and who 18 the defender?

If you were the commander of the X force, what initial force

ratio would you want before you engaged the enemy? Why?
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9, Now lat both sides receive replacements continuously over time at

constant vates. The above comhat model then beomes

dx -ay+r with x(0) = x

dt 0’

-g—x L -

3t bx+s with x(0) Yo
where the positive constants r and 8 denote the replacement rates
for the X and Y forces, respectively. What is the state equation
for the above LANCHESTER-type combat model with continuous replacements?

10. The model of the previous problem possesses the conceptual shortcoming
that both sides have essentially been assumed to possess unlimited
reserves., How would you modify the model of Problem 9 to reflect the
situation in which both sides have available only limited pools of
manpower out of which to draw replacements? Let Ro denote the total
number of replacements that X can commit to battle, and similarly let
SO denote the total number of replacements available to Y.

11. S. J. DEITCHMAN ([22] has proposed the following LANCHESTER~type model to
represent the ambush of X-force counterinsurgeats by Y-force guerrilla
in guerrilla-warfare operations

dx
it - ay with x(0) Xy
%% = - bxy with y(0) = Yor
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e F e PN U S O ke N




"

12.

where a and b denote LANCHESTER attrition-rate coefficients that

are positive constanta. He hypothesized that the ambushers (i.e. the

Y force) would use aimed fire from well-chosen and concealed positions,
and that the ambushees (i{.e. the X force) would only be able to return
area fire into the general region occupied by the enemy because they
(i.e. the ambushees) have been "caught in the copen' and do not know the

positions of individual Y ambushers.

Part a. What is the state equation for DEITCHMAN's ambush model given by?

Part b. What condition on the initial force levels predicts victory for

the abmugher in a fight to the finish?

Consider combat between homogeneous X and Y forces

X - FORCE
ARTILLERY

in which the artillery of the X force delivers area fire against the
Y force, which occuples a constant aresz. This artillery is out of
firing range of the Y force and hence suffers no attrition. Conse-~

quently, the LANCHESTER-~type equation that describes this combag¢-

attrition process is
189
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4y . . -
T a(t)y with y(0) Yor

where a(t) denotes a time~dependent LANCHESTER attrition-rate

coefficient.

Part a. What is the Y force level y(t) given by?

Now let the fire effectiveness of the X-force artillery be constant
’ (i.e. let a.= constant) and let the Y force withdraw from their

E‘ original positions at a variable rate, denoted as W(t), to new posi-
tions that are free from the effects of the enemy's artillery fire.

The corresponding LANCHESTER-type combat equation then becomes (for y>0)

n.l@.
ot

= - gy~ W(t) with y(0) = Yo *

where W(t) > 0.

Part b. What is the Y force level y(t) now given by?

i

i

/

i Part ¢. Denote the number of casualties of the Y force as c(t). What
!

i is c(t) given by?

%’

!
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Now let the withdrawal rate of the Y force be constant so that the

LANCHESTER-type combat model becomes

~-ay ~W for y > 0,
4 . with y(0) = Yoo

0 for y =0,

where W > 0.

Part d. What is the Y force level y(t) now given by?

Part e. If a = 0.1 Y casualties/minute/Y combatant, W = 10 men/

minute, and Yo = 100; will an air strike after 7.5 minutes

help the X force?

Part f. If & = 0.1 Y casualties/minute/Y combatant, W = 10 men/
minute, and Yo " 100; how many casulaties will the Y

force suffer?
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13.

To each of the entries on the left below, match the entry on the right to
which it 1s most closely related.
appropriate entry on the right in the answer apace on the left.

L

(2)

(3)

(4)

(5)

(6)

)

(8)

9

(10)

dx

a.

b.

gl ee -ty

Do this by placing the latter of the

T|T attrition process,
FT|T attrition process,
FT|F attrition process,

"aimed-fire' combat with supporting
fires not subject to attrition,

gtate equation,

force-ratio equation for F|F

attrition process,

force-ratio equation for (F+T)](F+T)

attrition process,

force-ratio equation for FT|FT

attrition process,

force~annihilation-prediction condition
for F|F attrition process,

force~level change per unit time,
casualties per unit time,

fractional casualties per unit time,
overall casuaities for X force,
total replacements,

LANCHESTER-type equations for a skirm]
instantaneous casualty-exchange ratio
unit deterioration due to attritionm,
Y force ambushing the X force,

inefficiencles of scale for larger fo
when force sizes are grossly unequal,

overall casualty-exchange ratio for
F|F attrition process,

overall casualty-exchange ratio for
FT|FT attrition process,

relative fire effectiveness,

intensity of combat.
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Consider the ambush of a homogeneous Y force by a

a(t)

"aimed" fire

X - FORCE
ARTILLERY

'area" fire
AMBUSHERS a(t) AMBUSHEES

homogeneous X force, both of which are armed with small arms. The X
force uses aimed fire, with an associated time-dependent LANCHESTER
attrition-rate coefficient denoted as b(t); and the Y force returns
area fire, with an assoclated time-~dependent LANCHESTER attrition-rate
coefficient denoted as a(t). In other words, the X force ambushes
with aimed fire, the Y force returns area fire, and on each side the
fire effectiveness of an individual firer changes over time during the
fire fight. Moreover, the X force has called for supporting fire from
artillery that is out of range of any return fire from the Y force and
that consequently suffers no attrition. This artillery causes attrition
to the Y force at a rate proportional to the Y force level with an
associated "constant" of proportionality a(t). This attrition-rate
coefficient is time depeident and accounts for the number of firing tubes
(1.e. artillery pieces). Because of the ambush and also this fire support
the Y force wants to terminate the engagement, and consequently it

gradually disengages from combat with the X force (including its fire
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support). Let W(t) > 0 denote the time-dependent rate at which the Y
force withdraws from this engagement to a position that is out of range
of all enemy firers. Let x(t) denote X's force level (with initial
value denoted as xo), and similarly let y(t) denote Y's force level
(with initial value denot?d‘gs yo). Consider only that phase of the
engagement during which both x and y > 0. What are appropriate .
LANCHESTER-type equations for ﬁhe rates of change of the X and Y

force levels?

15. Consider LANCHESTER-type combat between homogeneous
c
X - FORCE Y - FORCE
ARTILLERY ARTILLERY

INFANTRY INFANTRY

X and Y 1infantry forces with supporting artillery not subject to
attrition. Each member of the Y force uses aimed fire to destroy the

X force at a rate a. Similarly, each member of the X force uses aimed
fire to destroy the Y force at a rate b. Both sides have artillery,
which does not suffer any attrition and delivers "area' fire against the

enemy infantry. The Y-force artillery fires at a constant rate and
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causas attrition to the enemy infantry at a rate proportional to the X
force level with an associated constant of proportionality c¢ (which
accounts for the constant number of firing tubes). Similarly, the X-
force artillery fires at a constant rate and causes attrition to the
enemy infantry at a rate proportional to the Y force level with an
assoclated constant of proportionality d (which accounts for the con-
stant number of firing tubes). Let x(t) denote the force level of

X's {infantry (with initial value denoted as xo), and similarly let
y(t) denote the force level of Y's infantry (with initial value
denoted as yo). Consider only that phase of the engagement during which
both x and y > 0. What are appropriate LANCHESTER-type equations for

the rates of change of the X and Y force levels?

Consider LANCHESTER~type combat between an X force and a Y force

x(t) y, (®) 7,(0)

X - FORCE
ARTILLERY

~,

(initially ali in bunkers). Denote the initial Y force level as Yo
Also, denote that part of the Y force which is in the fortified positior

(i.e. in the bunkers) as Y Each member of the X force uses aimed

1°
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17.

fire to destrov the Yl force at a rate denoted as b. Similarly, each

member of the Yl force uses aimed fire to destroy the X force at a
rate denoted as a. Additionally, the Yl force withdraws from the
bunkers at a rate W to become withdrawing troops, denoted as Yz. The
Y2 force does not exchange fire with the X force, but Y2 is subject
to receive supporting fire from X's artillery. Members of the Y2

force retreat further to positions that are not vulnerable to the X-force
artillery fire. Let the rate at which the vulnerable Y2 force 1s dimin-
ished by this retreat by denoted as R (where 0<R<W). The artillery
of the X force does not suffer any attrition and divides its area fire
between Y, and Y2. Firing at a constant rate, the artillery causes

1

attrition to Y at a rate proportional to the Yl force level with an

1
associated constant of proportionality ¢ (which accounts for both the
constant number of firing tubes and the allocation of fire) and similarly
to Y2 with an associated constant of proportionality Cye Let x(t)
denote X's force level (with initial value denoted as xo), yl(c)
denote Yl's force level, and yz(t) denote Yz's force level. Conside:
only that phase of the engagement during which x, Yy» and ¥, > 0.
Whatlare appropriate LANCHESTER-type equations for the rates of change of

and ¥ force levels?

the X, Y 2

1’

Consider a homogeneous X force that attacks in two echelons a homogeneou
Y force in a hasty-defense position. Assume that the F[F LANCHESTER-

type equations {2.2.1) describe the attrition procass of the firar achalon
of the X force against the Y defenders in this attack. The two echelo

of the X force move in such a way that the second echelon does not infli
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nor sustain any casualties while the first echelon is fighting, but that
the second echelon can quickly replace the first at the appropriate time
during the attack (assume that the time required to effect this replace-
ment is negligible). Furthermore, assume_that for this attack a = 0.05

X casualties/minute/Y combatant, b = 0.0l Y casualties/minute/X combatant,
the initial strength of the first echelon of the X force is 2000, that
of the second echelon of the X force is 1250, that the Y force will
withdraw when it has suffered 75 percent casualties, and that the first
echelon of the X force fights until it reaches 25 percent of its initial
strength at which time it is replaced in toto by the second echelomn, which
fights on with the same combat effectiveness (and vulnerability) per man
and also the same engagement-terminaticn conditions as the first echelon.
Plot the X and Y force levels x(t) and y(t) as a function of time

for this two-echelon attack of X against Y.

COL. T. S. SCHREIBER (73] has proposed the following simple LANCHESTER-
type model in order to quantitatively relate the efficlency of intelli-

gence and command and control systems to firepower and numerical strength

dx { Xy }

- = -g - — with x(0) = x_,
dt X eY(x0 x) 0
dy . ,b{___xz__} with y(0) = y
dt yo-ex(xo-x) 0’

where a and b denote constant LANCHESTER attrition-rate coefficients

and ex and eY denote constants that are called the '"command efficien-

cies" of the X and Y forces, respectively. Here both ey and
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19,

20.

ey,e[o,ll. It should be noted that for 'perfect"” command efficiency for
the Y force (i.e. eY'-l.O) the X force undergoes attrition at a rate
proportional to only the number of enemy firers, while for ey ™ 0 this
attrition rate is proportional to the product of the numbers of firers
and targets. What is the state equation for SCHREIBER's LANCHESTER-type

model given by?

Consider the following HELMBOLD-type equations for combat between two
homogeneous forces in which the larger force suffers inefficiencies of

scale when force sizes are grossly unequal.

dx «\F Y
Friat ;) y with x(0) = Xy
dy FAn
T -b(x x with y(0) = Yo

where W denotes a comstant and W¢ [0,1]. What is the state equation

for the above LANCHESTER-type combat model given by?

The model of the preceding problem treats both forces symmetrically with
respect ‘o their inefficiencies of scale in producing casualties in
combat operations. Consider now the apparently less symmetric form for

such combat with inefficiencies cf scale for the larger force
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dx X 1-d
dc 7 (?) 7 with x(0) = %y,
dy y l-e
it - -b x) X with y(0) = yo,
where d and e are constants satisfying 0 <d, e = 1. What is

the state equation for the above LANCHESTER-type combat model given
by? How do you account for the complete symmetry between the two

opprosing forces in this state equation?

Consider a skirmish between homogeneous X and Y forces in which

the X Fforce is supported by artillery which delivers area fire
against the Y forre. This artillery is out of the firing range of
the Y force, and hence it suffers no attrition. The Y force with-
draws at a constant rate W. Assume that the following LANCHESTER-type

equations nodel the attrition process for this engagement (for x and

y>0)
dx
Tt ay with x(0) Xq »
Y o lbx ~ay- -
r: bx ~ay-W with y(0) = y,,

where a, b, a, and W are all positive constants. Assume that

x and y>0. What is the Y force level y(t) given by?

199

TR e T S
e st i i . e AR S e e xmefE maseden sk

| SR At L Ut ome e



22. Consider the following LANCHESTER-type equations for "two-versus-one"

aimed-fire combat

(L eay with x (0) = x5,

< i;t.z. - -8,y with x,(0) = xg ’

\ %% = -bx, ~b,x, with y(0) = y,,
where a;, 4, bl’ and b2 are positive constants.

Part a. What is the Y force level y(t) given by?

Part b. Show that the state equation for the above LANCHESTER-type
2 2 2 2
model is given by 25 -2 (alb14-a2b2)(yo y), where

z = blxl + bzxz.

We will now generalize the above results by considering the following

LANCHESTER-type equations for "n-versus-one' aimed-fire combat

dxi 0
T t with xi(O) - X for 1 =1,2,...n,

i
l.

n
g'x B - -
at kzl b X, with y(0) = y,,

where a, and bi for i =1,2,...,n are positive constants.
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Part c. What is the state equation for "n-versus-one' combat?

Part d. For "n-versus-one" combat, what is the X, 6 force level xi(t)

given by?

23. Consider the following LANCHESTER-type equations for aimed-fire combat
between two homogeneous forces with superimposed effects of supporting

fires that are not subject to attrition (see Figure 2,15 above)

dx ‘ -
it -ay~8x with x(0) Xq »
Y w g -

3t - " bx-ay with y(0) MR

where a, b, a, and g are all positive constants. Assume that

x and y > 0.

Part a. What is the X force level x(t) given by?

Part b. What equation is satisfied by the force ratio uv = x/y?
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24, Consider S. DEITCHMAN's [22] LANCHESTER-type model

it ay with x(0) Xy

(1)
91 B e - >
at bxy with y(0) Yo

for the ambush of a homogeneous X counterinsurgent force by a homogeneous
Y guerrilla force. Here an individual ambushee returns area fire agalast
aimed fire of the ambushers, since he is '"caught in the open by surprise"
and only aware of the general region occupied by the ambushers. Consider

only that phase of the engagement during which x and y > 0.

Part a. Combine the above two LANCHESTER-type equations (I) to obtain a
single second-order nonlinear differential equation for the X

force level x(t).

Part b. Tntegrate the second-order equation obtained in Part a to obtain
a first-order monlinear differential equation for x(t), 1i.e. an
equation involving only the X force level x(t) for the rate

of change of the X force level %%(t).

Part c. Integrate the first-order equation obtained in Part b to obtain

the X force level x(t).
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l.

FOOTNOTES for Chapter 2

H. K. WEISS [10l]has pointed out that LANCHESTER, sn Englishman, was
anticipated (in qualitative but not quantitétive terms) in 1905 by
BRADLEY A. FISKE (then Commander, but later Rear Admiral, USN), an
American. For a sketch of the life aad accomplishments of BRADLEY
ALLEN FISKE (1854-1942), see [66, pp. 298-299). J. ENGEL [25] sub-
sequently showed that FISKE's verbal model is equivalent to a sys-
tem of difference equations (in contrast to LANCHESTER's differential
equations) and examined some of the mathematical consequences of
these Figke-type equations of warfare. See Section 2.10 for further

details.

FREDERICK W. LANCHESTER (1868~1946) was a leading English automotive
and aeronautical engineer. In his lifetime, LANCHESTER won the high-
est honors that his assoclates could award him [0 ): Fellow of the
Royal Society, Honorary Doctor of Laws, Honorary Member of the Insti-
tution of Mechanical Engineers, Honorary Member and President (1910)
of the Institution of Automotive Englneers, and Honorary Fellow of
the Roval Aeronautical Society; recipient of the Gold Medzl of the
Royal Aeronautical Society (1926), of the Duniel Guggenhezim Medal
(1931), of the Ewing Medal of the Institution of Civil Engineers
(1941), and of the James Watt International Medal of the Institu-
tion of Mechanical Engineers (1945). For further information about
his many scientific and engineering contributions, see McCLOSKEY [60].
In recognition of LANCHESTER's pioneering 1914 contribution (55]
(also, again see [60]), which elegantly used mathematical methods

for developing insights into the solution of operational prcblems
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long bafore the term "operations research" was coined, the Operations
Research Society of America annually uwards the Lanchester Prize
"for the paper cn operations research judged to be the best of the

calendar year."

3. The influential 19th-century German military philosopher, Carl von

Clausewitz (1780-1831), stated in his classic work Omn War (Vom Kriege)

[21, p. 276], "The best strategy is always to be very strong, first

generally then at the decisive point. . . . There is no more im-

perative and no simpler law for strategy than to keep the forces

concentrated."

4. However, such analytical models may be enriched in detail to become
useful operational models through the inclusion of additional state
variables, use of more complicated functional relationships between
model parameters, etc. (see, for example, W. T. MORRIS [63] for
further discussion of the process of such enrichment). Examples of
such enriched models that have been used for defense planning are

BONDER/IUA, DIVOPS, VECTOR-2, etc. (see Sectiom 1.3).

5. C. ANCKER [1] has pointed out that in 1832 KARL von CLAUSEWITZ
[21, p. 101] said that "war is nothing but a duel on an extensive

scale."

6. LANCHESTER (55, p. 422] did point out, however, that there were some

situations In ancient warfare in which concentration was advantageous.
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10.

11.

It is still worthwhile to read LANCHESTER's lucid verbal description
of combat. The most accessible source is probably MORSE and KIMBALL
[64, p. 64] (see also NEWMAN [ 67, pp. 2138-2140] or, of course,

LANCHESTER's original paper [55, column 1 of p. 422]).

However, the appropriate equations for such ancient warfare appear
in MORSE and KIMBALL [ 64, p. 65] (see also DOLANSKY [23, p. 346]).

These equations are
dx/dt = -1/(1 + E) with x(0) = Xy
dy/dt = -E/(1 + E) with y(0) = Yor

where all symbols are as defined in the main text.

Such an examination does not appear in LANCHESTER's [55] original

paper or elsewhere.

It should be noted, however, that the concept of equality of fighting
strengths must be operationally defined, and such a definition in-~
variably involves a model of battle termination, i.e. the specifica-
tions of "victory" and "draw" conditions. With this in mind, we
observe that LANCHESTER (implicitly) developed (2.1.6) for a "fight-
to-the-finish," and the condition for equality of fighting strengths

must be modified in other cases (see Section 2.8 and Chapter 3).

In fact, LANCHESTER [55] did not develop (2.1.5) at all. Equation

(2.1.5) was apparently first given by MORSE and KIMBALL [64, p. 65]
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12,

13.

14,

3o

and called "'LANCHESTER's square law'" by them.

In his original 1914 paper [55], LANCHESTER did not explicitly give

the force-ratio equation (2.1.7) iu his development of the "square law"
(2.1.6), but he enigmatically determined conditions under which
(1/x)dx/at - (1/y)dy/dt = (L/u)du/dt = O. Thus, LANCHESTER himself
only implicitly considered the force-ratio equation (2.1.7) in the

development of his famous square law (2.1.6).

In modelling combat with two such differential equations for the two
force levels, one is implicitly assuming that the force levels are

the gstate variables, i.e the future course of combat may be predicted

from knowledge of only the current values of the force levels (assuming
that the attrition-rate coefficients a and b are known) (see Sec-
tion 1.6 above). There is, moreover, far from universal agreement as
to what are the significant (i.e. state) variables for modelling milita:

combat. For some other views, see HAYWARD [30] or LIDDELL HART [561.

Corresponding stochastic combat formulations (i.e. MARKOV-chain ana-
logues) are for all practical purposes analytically intractable. Fur-
thermore, very nearly the same trends for the combat dynamics are ob-
tained from deterministic and corresponding stochastic models although
some caution must be exercised in considering only the deterministic
model for small numbers of combatants or when the forces are '"near
parity" (see Chapter 4 below). Moreover, BONDER and FARRELL [11] have
reported excellent agreemen: between Monte Carlo or stochastic simula-

tion results and those for a corresponding deterministic LANCHESTER-

type model.
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16.

17.

18.

Initially, we were tempted to call (2.2.1) "LANCHESTER's equations

for a 'square-law' attrition process,'" since they do yield the quadrati
state equation (2.2.5) (see TAYLOR [82; 84]). However, there are

many differential combat models besides (2.2.1) that yield (2.2.5)

(see Section 2.9 below). Consequently, we have chosen the name "LAN-
CHESTER's equations for modern warfare," although the equations (2.2.1)
have been hypothesized to apply under other conditions. Sometimes it
will be more convenient to refer to (2.2.1) ae a F|F LANCHESTER-type
attrition process (or, simply, FIF attrition) when greater preciseness

is required (see Section 2.12).

Of course, the exact information to be extracted from a model (even a

simple one) depends on the purpose of the study under consideration.

Except for the special case of quasi-autonomous equations in which
case the equations may be transformed to constant-coefficient ones

by a change of the time scale (see Section 6.3 below).

Actually, if we recall (2.2.2), the X force level is given by

I. when xo/yo = /a/b:

x(t) = x for 0 < t< +=>,

-/ab t
e
II. when xo/y0 < Ya/b:

xocosh/a_bt-yo‘/ésinh/zt for 0<t <t

x(t) =

where
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a 1 r ( /& Yo + /b X,
X Wab

Ya Yo ~ b X,
I1I. when xo/y0 > Ya/b:

xocosh/a_5t~yo‘/?§-sinh/;l;t for Of_tits,

x(t)=

xg V1 = (a/b) (v /xg)? for &> ¢,

where

b x, + Va y
t2 - l_ ln( Q 0 .
2/ab b xy - /3y,

It will be convenient in subsequent developments to relax the requirement
that =x, y > 0.

19. To see this, consider the solution to (2.2.1) for ¢t > t, > 0 with in-

termediate condition x(ta) = 0 and y(ta) = 0 but Xq¥g # 0. Clearly,

x=y =20 is a solution to (2.2.1). By a standard uniqueness theorem,
it is the solution, and we must have Xy =Yg = 9, which is a contra-
diction. Hence, it is impossible to have both x(t) and y(t) equal

to zero at any finite time if x,y, # 0.

20. Of course, the easlest way to determine wu(t) 1is to form the ratio

x(t)/y(t) with x(t) given by (2.2.13) and v(t) given by (2.2.15).

21. Or, equivalently, a gquasi-autonomous model, i.e. one that may be trans-

formad into a comstant-coefficient model by a transformation of the

battle's time scale.
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22. TInitially, were tempted to call (2.4.1) "LANCHESTER's equations for a

'linear~law' attrition process,” since they do yield the linear state
equation (2.4.3) (see TAYLOR [82; 84]). However, there are many dif-~
ferential combat models besides (2.4.1) that yield (2.4.3) (see Sectio
2.9 below). Consequently, we have chosen the name "LANCHESTER's equat
for area fire," although the equations (2.4.1) have been hypothesized
to apply under other conditions. Sometimes it will be more convenient
to refer to (2.4.1) as a FT|FT LANCHESTER-type attrition process‘(or,

R simply, FT|FT attrition) vhen greater preciseness is required (see

;ﬁ Section 2.12).

gi ,.?; 23. Namely, the class of differential equations of the form

B dzw
SRR E ——2' = F(z,w,w') ,
T dz

where F 1is rational in w and w', and analytic in 2z, which have

4&”'% all their critical points (i.e. branch points and essential siangu-
'.‘ i larities) fixed (see IMN'E [41, p. 3351).

24. We again caution the reader that the attrition-rate coefficients a
and b, however, represent different physical quantities in the two

[ models (2.2.1) and (2.4.1).

25. In general, we have

'A¢l A gg
B _.dt - o dx
_ldy YT
y dt
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26,

27.

28,

T TR S TR T ¢ e

which (assuming that dy/dt < 0) shows that the difference between
the force ratio u and the differential force-change rati