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PREFACE 
\, 

The Twentieth Century has been character ized by innumerable 

attempts t o  use the  S c i e n t i f i c  Method a s  a b a s i s  f o r  po l icy  planning 

i n  na t iona l  and in t e rna t iona l  a f f a i r s .  The emergence of the f i e l d  of 

operat ions research (OR) out of a t tempts  of s c i e n t i s t s  in the Western 

Democracies t o  apply the S c i e n t i f i c  Method t o  m i l i t a r y  problems during 

World War I1 is w e l l  known. Since World War I1 there  has been a 

dramatic growth i n  both the  i n t e r e s t  i n  and use of OR and systems- 

ana lys is  techniques f o r  such purposes within the U.S.  defense es tab i i sh-  

ment, e spec i a l ly  s ince  the beginning of the so-called McNamara Era of 

defense planning. A concomitant trend has been an equal ly dramatic 

increase i n  both the number and v a r i e t y  of mathematical models used t o  

support these ana ly t i ca l  a c t i v i t i e s .  

Unfortunately, professional  communications within the  defense 

a n a l y t i c a l  community have not  kept pace with t h i s  dramatic growth i n  

modelling and ana lys i s  a c t i v i t i e s .  I n  p a r t i c u l a r ,  there  has been a 

r e l a t i v e  lack  of s c i e n t i f i c  communicatio~ and organizat ion of knowledge 

concerning the foundations of defense analyses  and associated defense- 

ana lys is  technology. However, even t h i s  important pa in t  has not been 

e x p l i c i t l y  a r t i c u l a t e d  i n  severa l  f a i r l y  recent c r i t i c a l  a p y r a i s a . 1 ~  of 

the foundations of defense analyses  t . To be sure ,  research progress on 

these f ~ u n d ~ ~ t i o n s  has been made, but i t  has not  always been e f f i c i e n t l y  

and e f f ec t ive ly  communicated t o  i n t e re s t ed  pa r t i e s .  This i n a c c e s s i b i l i t y  

-
t ~ npa r t i cu l a r ,  JACOB A.  STOCKFISCH, "Models, Data, and War: A 

Crit ique of the Study of Conventional Forces, " R-1526-PR, The RAND 
Corporation, Santa Monica, Cal i forn ia ,  March 1975 and a l s o  U.S. General 
Accounting Office,  "Models, Data, ar,d War: A Cri t ique  of the Founda- 
t i on  f o r  Defense Analyses," PAD-80-21, Washington, D.C. ,  March 1980. 



of s c i e n t i f i c  informat ion concerning combat-modelling methodologies 

h a s  con t r ibu ted  t o  t h e  e x i s t i n g  gap between theory and p r a c t i c e .  Some 

undes i rab le  consequences of t h i s  communications d e f i c i e n c y  between 

a n a l y s t s  and r e s e a r c h e r s  inc lude  (1) d u p l i c a t i o n  of e f f o r t ,  (2) models 

being i n e f f i c i e n t l y  used (or  even misused), (3) l a c k  of t h e  a p p r o p r i a t e  

i n t e l l e c t u a l  environment f o r  e f f e c t i v e  p r o f e s s i o n a l  review by p e e r s ,  and 

(4) l a c k  of any "road map" t o  provide d i r e c t i o n  (and purpose) f o r  

methodological  developments. 

Thus, a l though t h e r e  h a s  been a g r e a t  need, informat ion about  

combat-modelling methodologies,  t h e i r  s t r e n g t h s  and weaknesses, l i m i t a -

t i o n s ,  e t c .  has  n o t  been very  widely disseminated i n  a c c e s s i b l e  form. 

Na t iona l  s e c u r i t y  ( i . e .  material being c l a s s i f i e d )  h a s  n o t  r e a l l y  been a 

f a c t o r  i n  producing t h i s  s i t u a t i o n  i n  which t h e  q u a n t i t a t i v e  foundat ions  

o f  de fense  a n a l y s e s  have n o t  been r e a d i l y  a v a i l a b l e  t o  t h e  a n a l y s i s  

community f o r  s c i e n t i f i c  s c r u t i n y .  Without such g e n e r a l l y  a v a i l a b l e  

methodological  m a t e r i a l ,  l i t t l e  s c i e n t i f i c  progress  can be made, s i n c e  

open s c i e n t i f i c  d i s c u s s i o n  is  hampered by such v i t a l  informat ion n o t  

being r e a d i l y  a v a i l a b l e  t o  a l l  i n t e r e s t e d  p a r t i e s .  Consequently, t h i s  

monograph h a s  been w r i t t e n  i n  an a t tempt  t o  f i l l  eome of t h i s  vo id  by 

o rgan iz ing  t h e  c u r r e n t  s t a t e  of knowledge about a c e r t a i n  type of combat 

model, so-cal led  LANCHESTER-type equa t ions  of warfare .  H u p e f d l y ,  i t s  

appearance w i l l  a l s o  s t i m u l a t e  d i s c u s s i o n  and debate  concerning assess -

ment of e x i s t i n g  c a p a b i l i t i e s  and f u t u r e  needs i n  t h i s  one s p e c i f i c  a r e a  

of comba t-modelling methodology. 

A t  t h e  pe rsona l  l e v e l ,  t h e  r e a d e r  may be  i n t e r e s t e d  i n  kn.owing how 

t h e  au thor  h a s  become drawn t o  t h i s  s u b j e c t :  t h e  au thor  h a s  been 

i n t e r e s t e d  i n  t h e  s u b j e c t  o f  LANCHESTER-type combat models s i n c e  t h e  l a t e  



1960'8,  when R. NICHOLS HAZELWOOD introduced him t o  combat models and, 

i n  p n r t l c u l a r ,  t o  t h e  work of HERBERT K.  WEISS. He has  been f o r t u n a t e  

enough t o  have subsequent ly  had such i n t e r e s t s  nur tured at  t h e  Naval 

Postgraduate  School (NPS) and h a s  had t h e  oppor tun i ty  t o  do resea rch  on 

combat models and t each  graduate- level  c c u r s e s  about them t o  s t u d e n t s  

(p r imar i ly  U.S. Army and U.S. Marine Corps o f f i c e r s )  i n  t h e  OR curr iculum 

a c  NPS s i n c e  1970. The t r e a t i s e  a t  hand (and its p e t i t e  predecessor  

Force-on-Force A t t r i t i o n  ~ o d e l l i n ~ ' )  has  evolved from t h e s e  a c t i v i t i e s .  

This  monograph i s  a comprehensive t r e a t i s e  on LANCHESTER-type models 

of warfare ,  i.e. d i f f e r e n t i a l - e q u a t i o n  a o d e l s  of a t t r i t i o n  i n  force-on- 

f o r c e  combat opera t ions .  Its goa l  i s  t o  provide both  an  i n t r o d u c t i o n  t o  

and current-s ta te-of- the-ar t  overview of LANCHESTER-type models of war fa re  

a s  w e l l  as a comprehensive and u n i f i e d  in-depth t r ea tment  of them. Both 

d e t e r m i n i s t i c  as w e l l  a s  s t o c h a s t i c  models a r e  considered.  Such models 

have been widely used i n  t h e  United S t a t e s  and elsewhere f o r  t h e  model- 

l i n g  of force-on-force a t t r i t i o n  over  t h e  complete spectrum of combat 

opera t ions ,  from combat between platoon-sized u n i t s  through t h e a t e r - l e v e l  

air-ground combat. Th i s  m a t e r i a l  should be o f  i n t e r e s t  p r i m a r i l y  t o  

i n d i v i d u a l s  concerned wi th  de fense  planning,  q u a n t i t a t i v e  a s p e c t s  of 

m i l i t a r y  a n a l y s i s ,  m i l i t a r y  OR, war gaming, o r  combat modell ing,  a l though 

i t  may a l s o  be of i n t e r e s t  t o  t h e  reader  concerned wi th  t h e  modell ing and 

a n a l y s i s  of o t h e r  dynamic systems. It should a l s o  be  of i n t e r e s t  to  t h e  

concerned c i t i z e n  who is i n t e r e s t e d  i n  t h e  foundation6 f o r  defense  

a n a l y s i s  and h a s  t h e  a p p r o p r i a t e  t e c h n i c a l  background. 

t t ~ h e  f u l l  c i t a t i o n  h e r e  is JAMES G. TAYLOR, Force-on-Force A t t r i t i o n .  
Modellinq, M i l i t a r y  Appl ica t ions  Sec t ion  o f  t h e  Operat ions  Research 
Soc ie ty  of America, Ar l ing ton ,  V i r g i n i a ,  1980. 



I have t r i e d  to  make t h i s  monograph p a r t i c u l a r l y  s u i t a b l e  f o r  t h r ee  

opec i f ic  groups of readers:  (1) the  beginning s tudent  of  m i l i t a r y  OR, 

(2) t h e  p rac t i c ing  m i l i t a r y  OR ana lys t ,  and (3) t h e  research worker i n  

OR, appl ied mathcmatics, models, o r  systems ana lye is  and evaluat ion.  For 

t he  f i r s t  group ( i . e .  beginning e tudea ts  of m i l i t a r y  OR), 1 have included 

much exposi tory and explanatory mater ia l :  each major t op i c  is  preceded 

by a general  d i scuss ion  of t h e  contextual  s e t t i n g  in which i t  arises 

(with f i g u r e s  depic t ing  important conceptual ideas  and t y p i c a l  numerical 

r e s u l t e ) .  For these readers  I have supplied motivation and overview. 

For t he  second group ( i . e .  p r ac t i c ing  m i l i t a r y  OR ana lys t s ) ,  1 have 

emphasized those t h e o r e t i c a l  and appl ied concepts t h a t  a r e  bas ic  f o r  t he  

bui lding and running of opera t iona l  combat models (e.g. the  numerical 

determination of valuea f o r  LANCHESTER a t t r i t i o n - r a t e  c o e f f i c i e n t s )  and 

have provided a br idge between such cu r r en t  opera t iona l  combat models and 

the  a b s t r a c t  no t ions  t h a t  form t h e i r  conceptual bases.  For these  readers  

I have suppl ied examples from cur ren t  opera t iona l  combat models. For the  

t h i r d  group ( i .  e. OR and o ther  r e sea rche r s ) ,  I have surveyed the  cur ren t  

s t a t e  of t he  a r t  o f  pe r t i nen t  q u a n t i t a t i v e  methodologies concerning 

LANCHESTER-type cornbat models, p a r t i c u l a r l y  mathematical results f o r  

a n a l y t i c a l l y  i nve r t i ga t i ng  the  q u a n t i t a t i v e  behavior of r e l a t i v e l y  simple 

LANQ:LSTER-type d e l a .  For these readers  I have included numerous 

reference8 t o  the  l i t e r a t u r e  and a comprehensive bibliography on the  

LANCHESTER theory of combat. This  book, however, is  p a r t i c u l a r l y  s l an t ed  

toward the  b e g b n i n g  military-QR s tudent  who is In te res ted  i n  force-on- 

fo rce  combat modele, s i nce  i t  is through him ( p a r t i c u l a r l y  i f  he is an 

o f f i c e r  i n  one of the  m i l i t a r y  s e rv i ce s )  and h i s  education about combat 

models t ha t  t he  g r e a t e s t  long-term improvements in defense decis ion 



making may be achieved by t h e  U.S. Department o f  Defense (DoD). It 

s t r i v e s  t o  g i v e  t h e  reader  ( r e g a r d l e s s  of h i e  o r i e n t a t i o n )  an apprecia-

t i o n  of t h e  complex o p e r a t i o n a l  models t h a t  a r e  today used f o r  

i n v e s t i g a t i n g  l a r g e - s c a l e  simulated air-ground combaz o p e r a t i o n s  by DoD. 

Mathematical p r e r e q u i s i t e s  have been kep t  t o  a minimum, wi th  more 

mathemat ical ly  o r i e n t e d  s e c t i o m  t h a t  a r e  n o t  necessa ry  f o r  t h e  under- 

s t a n d k g  of t h e  s e q u e l  being i d e n t i f i e d  as " s t a r r e d  sec t ions . "  Through-

o u t  t h i s  monograph, modelling a s p e c t s  have been emphasized. Anyone w i t h  

a background i n  c a l c u l u s  good enough t o  understand t h e  phys ica l  

i n t e r p r e t a t i o n  of an o r d i n a r y - d i f f e r e n t i a l  equat ion model should have no 

t r o u b l e  i n  read ing  most of i t .  However, t h e  few s t a r r e d  s e c t i o n s  do 

r e q u i r e  more mathematical  sophistication t o  be understood. 

Th is  monograph i d  organized i n t o  t.w volumes of f o u r  chap te r s  

each. The monograph begins wi th  a d i s c u s s i o n  i n  Chapter 1 about the  

genera l  n a t u r e  of rcodels ( p a r t i c u l a r l y ,  combat models), t h e i r  use i n  OR, 

and p a r t i c u l a r l y  t h e  c o n t e x t u a l  s e t t i n g  f o r  t h e  use  of such models as 

planning t o o l s  i n  t h e  U.S. DoD. Chapter 2 ,  which begins  by reviewing 

FXEDERTCK W. LANCHESTER1s pioneer ing work on q u a n t i t a t i v e l y  j u s t i f y i n g  

the  P r i n c i p l e  of Concentra t ion,  examines LANCHESTER1s c l a s s i c  combat 

models and t h e  many subsequent v a r i a n t s  of them. The models are k s p t  

simple and d e r e r m i n f e t i c  he re ,  but  t h e  s t a g e  is  set f o r  subsequent model 

enrichments considered later  i n  t h i s  monograph. The d i scuos ion  of 

LANCHESTER1s c l a s s i c  combat models is se l f -con ta ined ,  with backgrov.nd 

material on t h e  r e l e v a n t  mathematics being conta ined i n  an appendix. 

This  m a t e r i a l  is fundamental and very  important n o t  only  i n  i t s  o m  r igh t  

b u t  a l s o  f o r  unders tanding subsequent developments i n  t h i s  book: it  

forms t h e  b a s i s  f o r  t h e  many ex tens ions  c o n ~ i d d r e d  l a t e r  i n  t h e  book. A 



selection of vroblems has bee~ provided in Chapter 2 for the enhancement 


of the reader's familiarity with these basic models. 

Chapter 3 rontaias a comprehensive examination of some simple 


models af battle termination. It considers both the empirical foundations 


of such models and also the mathematical analysis of their properties. 


Both deterministic and stochaetic battle-termination processes are 


examined, although only deterministic LANCHESTER-type attritio? processes 


are considered. This chapter is essentially a state-of-the-art survey of 


battle-termination modelling and focuses on work by H.K. WEXS and R.L. 


HELMBOLD. It culminates by examining HELMBOLD'S empirical investigation 


of the validity of breakpoint hypotheses. Chapter 4 examines stochastic 


versions of the simple deterministic homogeneous-force models considered 


in Chapter 2. Continuous-time MARKOV-chain models of LANCHESTER-type 


attrition processes are exclusively considered. After examining 


analytical results for such models and noting their complexity, the 


reader will certainly appreciate the fact that except for small numbers 


of combatants, rhe expected course of combat (at least for MARKOV-chain 


models of homogeneous-force combat) is well approximated by deterministic 


LANCXESTER-type equations. Not surprisingly, such deterministic 


LANCHESTER-type models are consequently frequently referred to as 


expected-value models. Herein ends Volume I. 


Volume TI begins with Chapter 5 .  In order to use a LANCHESTER-type 

model in any actual military OR study, numerical values must be determined 


for the attrition-rate coefficients, which represent the single weapon- 


system-type kill rates. Chapter 5 considers in detail approaches and 


methodologies for determining such numerical values for LANCHESTER 


attrition-rate coefficients for various types of weapon systems. The 




two main approaches t h a t  are c u r r e n t l y  used Ln t h e  Unit& S t a t e s  t o  

determine such single-system k i l l  r a t e s  a r e  bssad on us ing (1) a "free-

s tanding"  a n a l y t i c a l  submodel of an  i n d i v i d u a l  f i r e r  engaging a s i n g l e  

enemy t a r g e t ,  and (2)  a s t a t i s t i c a l  e s t i m a t e  based oa  "combat" d a t a  

generated by a d e t a i l e d  Monte Car lo  combat s imula t ion .  Such methodology 

is a b a s i c  e s s e n t i a l  i n g r e d i e n t  f o r  t h e  b u i l d i n g  of any o p e r a t i o n a l  

LANCHESTER-type combat model. Chapter 6 cons iders  LANCHESTER-type 

models f o r  combat between two homogeneous f o r c e s  and emphasizes t h e  

a n a l y s i s  of such models. bor s e v e r a l  important c l a s s e s  of homogeneous- 

f o r c e  models, a n a l y t i c a l  r e s u l t s  a r e  g iven  t h a t  make t h e  a n a l y s i s  

( inc lud ing  determining t h e  f o r c e  l e v e l s  a s  f u n c t i o n s  of time and p r e d i c t -  

ing  the  b a t t l e ' s  outcome) of such v a r i a b l e - c o e f f i c i e n t  combat models 

almost aa convenient as t h a t  of LANCHESTER's o r i g i n a l  constant-coefficic: l t  

ones.  Tables  of s p e c i a l  new mathematical f u n c t i o n s  ( i . e .  t h s  LCS 

f u n c t i o n s  developed by t h e  au thor )  a r e  provided Lor t h s  r e a d e r ' s  use  i n  

ana lyz ing  c e r t a i n  important c l a s s e s  of "aimed-fire" b a c t l e o  hetween two 

homogeneous f o r c e s .  

Chapter 7 c o n s i d e r s  modell ing t a c t i c a l  engagements and surveys  

approaches c u r r e n t l y  used i n  t h e  United S t a t e s  f o r  a s s e s s i n g  c a s u t l l t i e s  

i n  s imulated t a c t i c a l  engagements between general-purpose m i l i t a r y  

f o r c e s  i n  convent ional  air-ground combat opera t ions .  It reviews t h e  

v a r i o u s  d i f f e r e n t  modelling a l t e r n a t i v e s  a v a i l a b l e  t o  t h e  m i l i t a r y  OR 

worker and then expounds oa both d e t a i l e d  d e t e r m i n i s t i c  LANCHESTER-type 

models o f  a t t r i t i o n  i n  t a c t i c a l  engagements and a l s o  aggregated-force 

models based on index numbers (e.g. f i repower  s c o r e s ) ,  wi th  h i e r a r c h i c a l  

modell ing approaches a l s o  being b r i e f l y  d i scussed .  Model formulat ion 

and methodologic$.  a s p e c t s  a r e  emphasized, wi.th simple a u x i l i a r y  models 

v i i i  



being used t o  i l l u s t r a t e  modell ing p o i n t s  f o r  developing and understandin1 

complex o p e r a t i o n a l  models. Examples of c u r r e n t  o p e r a t i o n a l  models t h a t  

use t h e  two main t h e o r e t i c a l  approaches of c a s u a l t y  assessment ( i . e .  

d e t a i l e d  LANCHESTER-type force-change represenca t ions  and aggregated-forcc 

c a s u a l t y  assessments based on index numbers) a r e  given.  Recent develop- 

ments by a u t h o r s  such as L.B. ANDERSON, D.P. DARE, and R.M. THRALL f o r  

determining f i repower  s c o r e s  ( i . e .  weapon-syatem-type va lues )  from a  

l i n e a r  model t h a t  imputes v a l u e s  t o  weapon-system types  based on t h e i r  

LANCKESTER a t t r i t i o n - r a t e  c o e f f i c i e n t s  a r e  reviewed and d i scussed ,  as 

wel l  a s  t h e  important  (and e l u s i v e )  problem of h i s t o r i c a l  v a l i d a t i o n  of 

a t t r i t i o n  models. Next, Chapter 8 reviews work on developing i n s i g h t s  

i n t o  t h e  s t r u c t u r e  of optimal t a c t i c a l  d e c i s i o n s  by applying t h e  

a p p r o p r i a t e  op t imiza t ion  theory t o  a combat model wi th  m i l i t a r y  s t r a t e g y  

and t a c t i c s  q u a n t i f i e d  through t a c t i c a l - c h o i c e  v a r i a b l e s .  Gaming 

a s p e c t s  are a l s o  b r i e f l y  considered.  Th is  chap te r  is e s s e n t i a l l y  a 

comprehensive overview and review of work on t h e  q u a n t i t a t i v e  s tudy of 

m i l i t a r y  s t r a t e g y  and t a c t i c s  by us ing op t imiza t ion  theory i n  conjunct-  

ion wi th  combat-modelling theory.  Again, s imple  a u x i l i a r y  LANCHESTER- 

type models a r e  used t o  s tudy  t h e s e  complex o p e r a t i o n a l  problems. A s  

be fore ,  model fortuulation and i n s i g h t s  gained i n t o  t h e  s t r u c t u r e  of 

opt imal  t ime-sequent ia l  d e c i s i o n s  a r e  s t r e s s e d ,  wi th  opt imizat ion- theory 

( i . e .  d i f fe ren t i a l -game)  p r e r e q u i s i t e s  being kept  a t  a minimum ( i . e .  t h e  

r e s u l t s  of such op t imiza t ion  s t u d i e s  a r e  given but  no t  t h e  d e t a i l s  i n  

the  a p p l i c a t i o n  of t h e  op t imiza t ion  theory) .  F i n a l l y ,  ti comprehensive 

bibl iography on che LANCHESTER theory of combat is included i n  an  

appendix f o r  t h e  reader  who is i n t e r e s t e d  i n  f u r t h e r  informat ion abcut  i t .  

Th is  wnograph h a s  evolved o u t  of a t u t o r i a l  on LANWSTER-type 



models of war fa re  t h a t  t h e  au thor  was i n v i t e d  t o  d e l i v e r  by t h e  M i l i t a r y  

Appl icat ions  Sec t ion  of t h e  Operat ions  Research Soc ie ty  of America (ORSA 

a t  the  46 th  Nat ional  ORSA Meeting on Thursdhy October 17 ,  1974 i n  San 

Juan,  Puer to  Rico. Th is  t u t o r i a l  w d s  w e l l  r ece ived ,  and i t  was eubse-

quen t ly  repeated at  t h e  35th  M i l i t a r y  Operations Research Symposium i n  

J u l y  1975 and a t  t h e  1 5 t h  Annual U.S. Army Operations Research Symposium 

i n  October 1976, After  a t t e n d i n g  t h i s  t u t o r i a l  i n  J u l y  1975, CDR JAMES . 
MARTIN, USN, then Chairman c f  t h e  MORS P u b l i c a t i o n s  Committee, expressed 

s t r o n g  i n t e r e s t  i n  t h e  a u t h o r ' s  expanding t h e  t u t o r i a l  m a t e r i a l  i n t o  a 

monograph on LANCHESTER-type models of warfare.  The w r i t i n g  of t h i s  

monograph was consequently begun under t h e  sponsorship  of t h e  O f f i c e  of 

Naval Research (Code 431, Naval Analysis Programs) i n  J u l y  1976. 

Continued encouragement by D r .  MARTIN (now r e t i r e d  from t h e  U.S. Navy) 

has been apprec ia ted .  I have used e a r l i e r  d r a f t s  of t h e  beginning 

p o r t i o n s  of t h i s  m a t e r i a l  ( p r i m a r i l y  Chapters 1 and 2 and occas iona l ly  

Chapter 3) i n  g radua te  courses  on combat models f o r  OR s t u d e n t s  a t  t h e  

Naval Pos tg radua te  School. 

The au thor  would l i k e  t o  thank a l l  t h e  o rgan iza t ions  and 

i n d i v i d u a l s  who have helped f a c i l i t a t e  t h e  appearance of t h i s  monograph. 

Although a l l  thoee who have helped me a r e  f a r  too numerous t o  mention, 

I would l i k e  t o  e x p l i c i t l y  express  my thanks t o  s e v e r a l .  I n  p a r t i c u l a r ,  

t h e  w r i t i n g  of t h i s  monogr~ph has  been f i n a n c i a l l y  supported by t h e  

Of f ice  of Naval Research (both through d i r e c t  funding by Code 431 and 

a l s o  through t h e  Foundation Research Program a t  t h e  Naval pos tg radua te  

School) ,  t h e  U. S. Army Research Of Pice  (ARO) , Durham, North Carol ina ,  

and t h e  Keadquarcers of t h e  USAF, S t u d i e s  and Analysis Group. Addition-

a l l y ,  ARO supported some s e p a r a t e  resea rch  dur ing t h i s  per iod on 



LANCHESTER-type modele of war fa re ,  and r e s u l t s  from t h i s  work have bean 

incorpora ted  I n t o  t h e  monograph a t  hand. Most of t h e  a u t h o r ' s  r esea rch  

on LANCHESTER-type modela o f  warfare ,  however, hae been supported over  
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NPS). The au thor  would l i k e  t o  thank Provoet JACK R. BORSTING of NPS 
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Chapter 1. BACKGROUND AND INTRODXTION 

1.1. Operations Reeearch and Models. 

Looeely speaking, LANCHESTER-type models of warfare a r e  d ik ' fe ren t ia l -  

equation models of combat operatione. I n  one form o r  another,  euch models 

a r e  f a i r l y  widely ueed i n  operat ions research (OR) s tud ie s  by t h e  Depart- 

ment of Defenea (DoD) i n  t h e  United S ta tes .  The use  of t hese  combat models 

f o r  planning purposes hae been made po r s ib l e  by modem large-scale  d f g i r a l -

computer technology. However, t he re  a r e  competing methodologies ( f o r  

example, ao-called high-reeolution Monte-Carlo simulation) f o r  combat model 

l i ng ,  and there  has been much debate1 by advocates about t he  advantages 

of t h i s  method o r  t h a t  one f o r  defense planning. To place such discussion 

about t h e  use (and misuse of combat models, t h e i r  realm of a p p l i c a b i l i t y ,  

and t h e i r  s t rengths  and weaknesses i n  proper perspect ive,  it seems apprs- 

p r i a t e  t o  b r i e f l y  d iscuss  t h e  na ture  of OR, combat models, and t h e i r  use 

by DoD. The reader  ehould keep i n  mind, however, t h a t  t h i s  book w i l l  
1 

focus on LANCHESTER-type models o 1 warfare. 

1.1.1. The General Nature of Operations Research. 

Operations research  (OR) o r ig ina ted  out  of quest ions a r i s i n g  i n  

m i l i t a r y  a c t i v i t i e s  during World War 11. After  t he  w a r ,  t h e  approach 

and techniques of OR were appl ied t o  business and non-mi l i ta ry  government 

problems. OR has expanded g r e a t l y  during the  t h i r t y  o r  more years  s ince  

the  end of World War 11. What exac t ly  is OR? Although the re  is f a r  from 

universa l  agreement2 as t o  t h e  exact  na ture  of OR, t h e  author  p re fe r s  t o  

3th ink  of OR i n  the  following terms : opera t ions  research  is a s c i e n t i f i c  

method of providing executive departments with a q u a n t i t a t i v e  b a s i s  f o r  

decis ions regarding t h e  operat ions under t h e i r  control .  



The above d e f i n i t i o n  of OR is not new, but  the  author f e e l s  t h a t  

i t  i e  ahportant because t h i s  d e f i n i t i o n  focuees on what is  being done and 

not the  techniques ueed. Moreover, one should expact t o  f i n d  t h a t  d i f f e r e n t  

methodologies rece ive  d i f f e r e n t  amounts of smphasia i n  d i f f e r e n t  f i e l d s  of 

appl ica t ion  of OR. For example, i n  t h e  p r i v a t e  ( i . e .  burinass)  eec tor  of 

t h e  economy one f i n d s  t h a t  t he  "theory of t h e  firm" and r e l a t e d  sub jec t s  

(such as p r o f i t  maximization, e f f i c i e n t  d i s t r i b u t i o n  of products,  invest-

ment planning, inventory managemant, e tc . )  play a c e n t r a l  r o l e  i n  OR applica-

t i ons  and r equ i r e  t he  uae of c e r t a i n  OR theory and techniques (such a s  

inventory theory, queueing theory, l i n e a r  and in t ege r  programming, diecounted 

cash flow, e t c . ) ,  One would expect q u i t e  a d i f f e r e n t  phenomenological bas i s  

f o r  defense planning, wi th  poseAbly d i f f e r e n t  OR techniques receiving 

emphasis. It is  the  author 's  hypothesis that defense planning should be 

based as much ae  pors ib le  on the  s c i e n t i f i c  study of warfare. Unfortunately,  

t h i s  is  not  t h e  caee i n  p rac t i ce  today (s,f o r  example, SHUBIK and BREWER 

[86, pp. 9-10] f o r  a discuesion of t h i s  po in t ) .  For f u r t h e r  discussion 

of the  na ture  of OR, t h e  i n t e re s t ed  reader  should consul t  t h e  l i t e r a t u r e  4. 
Four concepts of fundamental importance t o  t h e  p r a c t i c e  of OR a r e  

(-s e e  HERRMANN and MAGEE [38]) : 

( ~ 1 )  t he  modal, 

(C2) t he  measure of e f fec t iveness  (MOE) , 

(C3) decis ion making, 

( C 4 )  t h e  r o l e  of experimentation. 

Models ( i n  p a r t i c u l a r ,  so-called LANCHESTER-type models of warfare) a r e  t h e  

c e n t r a l  theme of t h i e  book. W e  should bear  i n  mind, however, that t h e  de- 

velopment and appl ica t ion  of a model i n  an OR study is  only one of s eve ra l  

e s s e n t i a l  ingredient8 f o r  a successful  study. Each of t h e  t h r e e  o ther  aspect  



l i s t e d  above can significantly cont r ibu te  t o  t h e  f a i l u r e  of a defense-

planning study. It i s  t h e  au thor ' s  opinion t h a t  paople unfamil iar  wi th  

q t lan t i ra t ive  models a r e  quick t o  blame an  unfamil iar  modelling methodology 

f o r  de f i c i enc i e s  i n  t he  appl ica t ion  (e.8. data-base q u a l i t y  o r  e r ro re ,  in-

co r rec t  implementation, e t c . )  of a p a r t i c u l a r  model. The p r a c t i t i o n e r  should 

not blame t h e  model (pa r t i cu l a r ly ,  a LANCRESTER-type model) i f  t h e  wrong MOE 

is  used I n  a etudy, nor should he blame t h e  modelling methodology i f  t h e  

model i s  inco r rec t ly  appl ied o r  exercieed wi th  low-quality da ta ,  o r  i f  t h e  

scenario i a  wrong. Thus, t h e  development of a combat model i s  only one 

f a c e t  of a m i l i t a r y  OR study, a l b e i t  a very important aspec t .  

During World War I1 most OR concerned a c t u a l  ongoinf; mi l i taq opera-

t i ons ,  Some people prefer  t o  uee the  term opera t ions  ana lys i s  (OA) f o r  

such a c t i v i t i e s .  In  1976 (with t h e  end of U.S. involvement i n  Southeast 

Asia) moat appl ied m i l i t a r y  OR a c t i v i t i e s  concerned some type of planning. 

I f  a m i l i t a r y  system does not  phys ica l ly  e x i s t  (and even when it  does) ,  

i ts e f f ec t iveness  must be evaluated "on paper." Thus, f o r  example, f o r  

a s s i s t ance  i n  system-acquisition decis ions,  one would expect t o  use  i n  

t he  advanced planning phase same type of combat model t o  he lp  quan t i t a t i ve ly  

explore t h e  poss ib le  bene f i t s  from a proposed system. Even i f  a prototype 

has been b u i l t  and "operational" da t a  has  been co l l ec t ed ,  some type of 

combat model may be required t o  a s sees  t he  system's m i l i t a r y  worth based 

on the  obaerved performance data.6 I n  o the r  words, the  na ture  of m i l i t a r y  

OR has changed s i n c e  World War I1 when few opera t iona l  models were r e a l l y  

7
used, and today combat models are an e s e e n t i a l  (and expensive ) p a r t  of 

DoD planning a c t i v i t i e s .  

1.1.2. The General Nature of Modele. 

It seeme appropriate  f o r  11s t o  b r i e f l y  d iscuss  t h e  general  na tu re  of 



models i n  order t o  be t t e r  place combat models i n  proper perspective, 

Models a r e  bas ica l ly  representa t io~s , ,  They may be r rpresenta t ions  of 

s t a t e s ,  objects ,  or  events. Models a r e  ideal iza t ions  (i.a. abstract ions)  

i n  the eenae tha t  they a r e  l e s s  complicated than r e a l i t y  (and hence po- 

t e n t i a l l y  eas ie r  t o  w e  f o r  reeearch purposes). The U.S.  Army Models 

Review Committee [ 4 2 ,  Appendix B t o  Chapter XI has defined a model a s  "an 

abs t rac t  representation of r e a l i t y  which 1.8 used f a r  the  purpose of pre- 

d ic t ion  and t o  develop understanding about the  r e a l w o r l d  proceus." 

Thus, models a r e  e a s i e r  t o  maniphate  and "carry about1' than the  

r e a l  thing. They a re  r e l a t ive ly  simple compared with r e a l i t y  because only 

the  relevant fea tures  of r e a l i t y  have been represented. For the  person 

unacquainted with t h i s  basic property of models, however, i t  is  easy t o  

confuse relevance wi th  realism. Thus, many DoD decision makers who are 

removed from tho modelltng business f ind simulations t o  be  more credible  

models of combat opera t lms  than ana ly t i ca l  models because of the  much 

la rger  amount of d e r a i l  t h a t  is present i n  a simulation. Additionally, 

models allow one t o  transcend one's environment and make inferences about 

things and events that have not been experienced d i rec t ly .  I n  the  analys is  

of combat operations (par t icular ly  possible fu tu re  ones), t h i s  aspect is 

qu i t e  important. 

There a r e  many ways t o  c l a s s i f y  models. Three d i f fe ren t  basic 

types of models a r e  the  following: 

(TI) iconic model s, 
(TZ) analogue models, 

(T3) symbolic models. 

An iconic d e l  i s  a large- o r  small-scale repreeentation of s t a t e s ,  object;  

o r  events. They "look l ike" what they a r e  supposed t o  represent with only 



a t ransfonnat ion of sca le .  Examples of i con ic  madele a r e  a flow c h a r t ,  

b luep r in t ,  road-map (or any o ther  type of p i c tu re  o r  diagram t h a t  looks 

l i k e  t h e  real th ing) ,  p i l o t  p l an t ,  o r  a wind tunnel.  I n  each case  only 

t h e  s c a l e  of t he  system o r  operat ion has been changed. 

An analogue model uses  one property t o  repreeent  another d i f f e r e n  

property. For example, we can represent  the  t h i r d  dimension ( i . e .  e l eva t  

on a two-dfnransional map by meana of contour l i n e s ,  which represent  i n fon  

eion about change8 in e l eva t ion  (i.e. elopes) by t h e i r  d i s t ance  apar t .  

Another s imi l a r  example i~the  use of co lo r s  t o  represent  d i f f e r e n t  types 

of t e r r a i n  on a map. Since one property is used t o  represent  another ,  a 

legend is required t o  remind t h e  reader  of t h e  transformation of p r o p e r t i  

Other examples of analogue models are t h e  s l i d e  r u l e  and an e l e c t r i c a l  sy 

tern represented by a hydraul ic  system. 

The last general  type of model ts the ~ m o ~ i o l i cmodel, which repro 

p rope r t i e s  symbolically. Verbal descriptions of procesam o r  systems qua 

a s  symbolic models Wheu symbols represent  quan t i t i e s ,  t h e  model is  ueua 

ca l l ed  a mathematical model. We w i l l  focus on mathematPca1 models of con 

b a t  ( I n  p a r t i c u l a r ,  combat a t t r i t i o n )  ip.this book. Here w e  hove indicar 

t o  t he  reader ,  however, t h a t  ozher types of models c e r t a i n l y  exist. 

Although they a r e  t h e  most a b s t r a c t ,  Lire dis t inguish ing  f e a t u r e  

of mathematical models is the  r a s e  wPth which they m y  be  manipulated fol 

t h e  ex t r ac t ion  of information. Iconic  and analogue models are much l e s s  

f l e x i b l e  i n  t h i s  respect .  I n  terms of combat operat ions,  we should point 

out t h a t  f i e l d  exerc ises  a r e  b a s i c a l l y  i con ic  models, while map exercise]  

a r e  b a s i c a l l y  analogue models. Rowever, both t h e m  two types of combat 

models a r e  d i f f i c u l t  t o  manipulate ( p a r t i c u l a r l y  t he  f i e l d  exe rc i se ,  whic 

is  a l s o  very cos t ly ) .  Thus, although they may requi re  some time and cos 

t o  develop, mathemt ica l  models a t e  r e l a t i v e l y  easy t o  manipulate and he  



respond t o  the demands of ana lys i s .  

Mnny o ther  c l a s s i f i c a t i o n s  of models a r e  but  f o r  our 

purpose of studying combat modelling we need only d i s t i ngu i sh  here  between 

two bas ic  types of mathematical models: 

(TI) de te rminis t ic  model. 

and (T2) s tochas t i c  model 

A de te rminis t ic  model is one t h a t  conta ins  no element of chance. Hence, i t s  

output is  uniquely d e t e d n e d  by i t s  input  i n  t he  sense t h a t  the  same input 

always produces the output.  A s t o c h a s t i c  model contains  an elearent of 

chance (or uncertainty 9) so  t h a t  i t s  output is not uniquely determined i n  
*mb 

this sense. by input ,  but  r a t h e r  one must t a l k  about t h e  chances of observint 

var ious outputs  f& a given input .  I n  o ther  words, one must consider t h e  

probabi l i ty  d i s t r i b u t i o n  over t h e  s e t  of posa ib le  outcomes f o r  a given s e t  

of inputs.  In  t h i s  book we w i l l  consider  both de t e rmin i s t i c  and s tochas t i c  

LANCZESTER-type models of warfare. 

d 


1.2. Defense Planning, Combat Models, and the  S c i e n t i f i c  Study of Warfare. * 
ThL Twentieth Century has been character ized by at tempts  t o  use t h e  

S c i e n t i f i c  Method i n  policymaking, i n  p a r t i c u l a r  f o r  m i l i t a r y  and defense 
r) 


problems. Many wr i t e r a lo  have stramsad t h e  importance of applying quanti-  

t a t i v e  OR methodologies t o  defense planning. Enlightened defense planning 

is, of course, important f o r  both the  short-run and a l s o  the  long-run 

na t iona l  s ecu r i ty  of t he  United states.'' What a r e  t y p i c a l  d e f e n s t p l a n n i a  

problems? According t o  STOCKFISCH [go], they are as follows: 

(Pl) How do we assess  a poss ib le  opponent's m i l i t a r y  capab i l i t y ,  anc 

huw l a rge  should our m i l i t a r y  forces  be t o  meet t he  perceived 

th rea t ?  



(P2) How should the  t o t a l  force  be s t ruc tured  between major s e rv i ces ,  

such a s  land forces  and t a c t i c a l  a i r  forces? 

(P3) How should the  land forcee be s t ruc tured  with respec t  t o  (1) com-

ba t  branches, such a s  i n fan t ry  and tanks, and (2) s e rv i ce  

s p e c i a l t i e s  t h a t  provide l o g i s t i c  and personnel support? 

(P4) What should be t h e  technica l  performance and physical  spec i f ica-  

t i o n s  of new weapons t h a t  w i l l  be t he  objec t  of engineering 

development programs? Given the  a v a i l a b i l i t y  of new weapons, 

what should be t h e i r  t a c t i c a l  usage, how many of them should be 

procured, and i n  what organiza t iona l  and command context should 

they be employed? 

Such quest ions concern the  evaluat ion of weapon-system and force- level  

planning a l t e r n a t i v e e  i n  f u t u r e  t i m e  frames. I n  order  t o  determine the  

bene f i t s  t o  be gained from a p a r t i c u l a r  a l t e r n a t i v e ,  one is invar iab ly  faced 

with t h e  problem of pred ic t ing  t h e  e f fec t iveness  of spec i f ied  m i l i t a r y  f o r c e s  

i n  poss ib le  f u t u r e  m i l i t a r y  engagements. Since such forces  and/or weapon 

. systems only e x i s t  "on paper,'' some type of combat model (seeSection 1.3 

f o r  f u r t h e r  d e t a i l s )  must be used i n  such s tudies .  In  way of summary, then,  

combat models a r e  valuable  i n  many aspec ts  of defense planning: (1) f o r  

evaluat ing "on paper" proposed weapon systems during advanced planning: 

(2) f o r  extending, i n t e rpo la t ing ,  and in t e rp re t ing  opera t iona l  t e s t  d a t a  

during f i e l d  t e s t i ng ;  etc. (=[I041 f o r  a f u l l e r  discussion) .  

Thus, combat models have been used ae decis ion  a i d s  f o r  defense plan- 

ning. They have a c t u a l l y  been used by ana lys t s  t o  study such major sub jec t s  

(-see STOCKFISCH [go]) as :  

(Sl) the  design spec i f i ca t ion  and se l ec t ion  of new weapons, 

(S2) t h e  a l l o c a t i o n  of resources between a i r  and land fo rces  and, 

wl th in  land forces ,  between in fan t ry  and a r t i l l e r y ,  



(S3) how t a c t i c a l  a i r  capab i l i t y  might be  a l loca t ad  among d iverse  

missions, 

6 4 )  the  amount of l o g i s t i c  support t h a t  the  combat elements of 

f i e l d  fo rces  should have, 

(S5) the  rate a t  which forces  might be mobilized and deployed, 

and (S6) t he  i s s u e  of how l a r g e  t h e  fo rces  ehould ba. 

The kinds of models t h a t  a r e  used f o r  such s tud ie s  should be r e l a t e d  t o  t he  

type of information t h a t  is  deeired from the  ana lys is .  We w i l l  d i scuss  t h e  

various types of combat models i n  t he  next sect ion.  

Sf one c o n t r a s t s  World War I1 operat ions research with today's prac-

t i c e ,  then i t  is c l e a r  t h a t  a major change haa occurred i n  the  p rac t i ce  

of m i l i t a r y  OR and t h e  use of models i n  defense planning. OR has ceased 

t o  be a purely s c i e n t i f i c  d i s c i p l i n e ,  and some, i n  f a c t ,  f e e l  t h a t  i t  has 

become a purely specula t ive  a c t i v i t y  (see, f o r  example, BONDER [ 9 ] ) .  

During World War If, operat ions research was pr imari ly  concerned with the  

engineering (i.e. designing and planning) of on-going operat ions.  Con-

sequently,  some combat da t a  could be co l lec ted  as needed f o r  use i n  s tud ie s .  

Hypotheses about such m i l i t a r y  operat ions might ac tua l ly  be s c i e n t i f i c a l l y  

v e r i f i e d  by t e s t i n g  aga ins t  t h i s  data.  Thus, World War I1 OR w a s  many 

times a t r u l y  s c i e n t i f i c  d i sc ip l ine .  Today m i l i t a r y  operat ions research  

is  primari ly  concerned wi th  planning of some type; and, a s  emphasized by 

BONDER [9 1, i t  has ceased t o  be a t r u l y  s c i e n t i f i c  discipline1* because 

of t h e  absence of combat da t a  (ea l s o  HOWLAND [46]). 

I n  t h i s  vein,  SETH BONDER [ l o ]  has emphasized t h a t  t h e r e  a r e  almost 

na empir ical ly  v e r i f i e d  models of most combat processea. Besides t h e  

inherent  problem of opera t iona l  d e f i n i t i o n  and measurement, t h e  major 

insuperable  d i f f i c u l t y  i n  empir ical ly  ver i fy ing  any combat model is  t h a t  



the historical data base is too poor: it is not rich enough in detail to 


pennit the classic ecientific verification of combat models, since nations 


fight wars for other reasons than to collect combat data. Unfortunately, 


in the past military hietoriana have been eurprisingly reluctant to prov1.de 


information on battles such as the ~wmber of forces of each kind partici- 


pating on both eides and the losses. H. K. WEISS [I151 feels that "the 


average military historian is particularly susceptible to the criticism 


aimed by VAGTS [lo21 (E also [1031) at the 'average military officer ' 
of avoiding 'ballometrics' 'as someting too materialistic and derogatory 


to military art. '" 


This shortage of historical and other empirical data for combat models 


and analysis is apparently not as widely acknowledged, articulated, or ap- 


preciated by the policy-making conuuunity (and even some parts of the analysis 


community) as it should be ( ~ e a l e o  STOCKFISCH [go]). Moreover, one can- 


not expect accurate point estimates of combat effectiveness from these 


models. Rather, such nonempirically developed models should only be used 


for analysis purposes to provide defense management with [9]: 


( R l )  insights into directions and trends thereby increasing under- 

standing of the system dynamics, 

(R2) guidelines for the development of data-collection plans - what 

data is important and how accurate it must be, 

(R3) guidelines for the development of technological and modelling 


research plans. 


It is in this spirit of developing insights that simplified LANCHESTER-type 


models of warfare are considered in this book. In the same vein, KARL von 

cLAITsENITz~~
[20 ,  p. 1911 stated many years ago in his classic work On War 

that if theory caused a more critical study of war, then it had achieved its 


purpose. 




Underlying the engineering (1.e. designing and planning) of m i l i t a r y  

operat ions,  evaluat ion of mi l i t a ry  systems, and o ther  prohleme of defense 

planning, however, should be the  sc i emt i f i c  study of c o n f l i c t  ( i n  p a r t i c u l a r  

warfare).  Just a s  most branches of engineering ( f o r  example, mechanical 

engineering) a r e  besed on NCWTONW physics,  so should m i l i t a r y  operat ions 

research be based on the s c i e n t i f i c  study of warfare. Unfortunately,  

appal l ing ly  l i t t l e  bas ic  research on c o n f l i c t  and warfare has apparent ly 

been conducted.14 No science of "bellometrics" 1102; 1151 has a s  ye t  

emerged. Later  i n  t h i s  book we w i l l  b r i e f l y  d iscuss  what has been done with 

respect  t o  t h e  s c i e n t i f i c  v e r i f i c a t i o n  of LANCHESTER-type models of warfare. 

A s  mentioned above, t p e  q u a l i t y  and ex ten t  of t h e  h i s t o r i c a l  da t a  baae have 

been severely l i m i t i n g , f a c t o r s  f o r  such important inves t iga t ions .  

1.3. Di f fe ren t  Types of Combat Models. 

A s  w e  have discussed i n  Section 1.1.2. above, modele a r e  representa t ions  

of r e a l i t y ,  and w e  have seen t h a t  d i f f e r e n t  types of such representa t ions  a r e  

poesible .  With respect  t o  combat operat ions,  Figure 1.1 shows t h e  v a r i e t y  of 

forms t h a t  combat models may take. One can a s soc i a t e  t rends  i n  model 

c h a r a c t e r i s t i c s  such as degree of opera t iona l  real ism,  abs t r ac t ion ,  and 

convenience and a c c e s s i b i l i t y  with t h i s  spectrum of combat models. As 

Figure 1.1 shows us,  opera t iona l  real ism and degree of abs t r ac t ion  a r e  con-

f l i c t f n g  q u a l i t i e s .  

For present  purposes, l e t  us focus on the  th ree  sight-most types 

of combat models depicted i n  Figure 1.1. Following BONDER [ l a ] ,  we w i l l  

l i m i t  our  discussion of combat models t o  the  following three  general  types: 

(TI) war games, 

(T2) simulations , 

(T3) a n a l y t i c a l  models. 
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Figure 1.1. The spectrum of types of combat models. 



Addit ional ly,  i n  t he  ensuing disrcussion w e  w i l l  genera l ly  emphaeize ground 

combat modela (1.e. models of warfare between ground combat un i t e ) .  A l -

though o ther  c l a s s i f i c a t i o n s  a r e  c e r t a i n l y  poss ib le ,  the  above is adequate 

f o r  now. 

According t o  PAXSON [ 7 0 ] ,  "a war game is  a model of m i l i t a r y  r e a l i t y  

s e t  up by a judicious process of s e l e c t i o n  arrd aggregation, y ie ld ing  t h e  

r e s u l t s  of t he  i n t e r a c t i o n s  of opponents with con f l f c t inn  ob~ l r c t ivee  a s  

theae r e s u l t s  a r e  developed under more o r  l e e s  d e f i n i t e  r u l e s  enforced by 

a con t ro l  o r  umpire group." The dis t inguish ing  f e a t u r e  of war games i n  

r e l a t i o n  t o  simulations and a n a l y t i c a l  models, however, is that: a c t u a l  

human beings a r e  used t o  s imulate  dec is ion  processes by having people 

play t h e  r o l e s  of decis ion makers and uee t h e i r  own judgments i n  making 

dec is ions  (sa l s o  [ 4 2 ] ) .  This d i s t i n c t i o n  is graphica l ly  depicted i n  

Figure 1.2. 

War games may be c l a s s i f i e d  as being e i t h e r  "rigid" o r  "free", 

depending on whether o r  not  the  assessment r u l e s  a r e  r i g i d l y  prescr ibed 

and completely cover a l l  p o s s i b i l i t i e s .  These two types of war games 

(i.6:. the  r i g i d  and f r e e  war games) correspond t o  t h e  opposing demands 

of r e a l i s t i c  games and playable games. The r i g i d  war games a r e  somewhat 

s imi l a r  t o  simulations i n  t h e i r  assessment of combat outcomcs i n  t h a t  

combat i n t e rac t ions  a r e  considered i n  d e t a i l .  Before t h e  age of large-

s c a l e  computers, the sheer  imtaensity of t h e  volume of t he  d e t a i l s  f o r  such 

r i g i d  assessments w a s  overwhelmi,ng: i t  was not  uncommon f o r  many volumes 

( i .e .  books) of r u l e s  and cambat-results t ab l e s  t o  be required f o r  t h e  

running of a r i g i d  war game. A s  a reac t ion  and revulsion t o  such over- 

whelming d e t a i l ,  "free" war games were developed, with the  assesement of 

combat outcomes being judgmentally determined by umpires. It is  i n t e r -

e s t i n g  t o  note  t h a t  modelling i s s u e s  such a s  degree of reso lu t ion ,  
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Figure 1.2. Distinction between different types of combat 


models according to how decision making is 


represented. 




appropriate  technique of aggregation, amount of d e t a i l ,  e t c .  were a l l  con- 

aidered i n  t he  pas t  by war g a m r e  of the  19th and 20th centur ies .  

Today many computer-assisted war game8 e x i s t ,  with the  computer doing 

t h e  bookkeeping and assessing combat outcomes. To a c e r t a i n  ex t en t ,  t he  

modern large-scale  d i g i t a l  computer has neut ra l ized  some of t he  shortcomings 

of r i g i d  war games. Teams of p layers  t y p i c a l l y  represent  t h e  commanding 

o f f i c e r s  auld t h e i r  s t a f f s .  However, t h i s  type of model, 1.e. t h e  r i g i d  

(computer-assisted) war game, i a  very expensive i n  terms of time and money 

t o  develop, ua in t a in ,  and use. BONDER [lo] poin ts  out  t h a t  it t y p i c a l l y  

m y  take something l i k e  four  t o  e igh t  years  t o  develop such a r i g i d  war 

game. H e  a l s o  notes  [lo, p. 731 t h a t  a s  r ecen t ly  a s  1971 it took s i x  months 

t o  ob t a in  one r e a l i z a t i o n  of ten  hours of b a t t l e  with a p a r t i c u l a r  war game. 

War games may be a n  exce l l en t  vehic le  f o r  developing general  i n s i g h t s  and 

ident i fy ing  c r i t i c a l  elemeats f o r  f u r t h e r  more de t a i l ed  ana lye is ,  bu t  

m y  f e e l  t h a t  t h i s  type of model is not  a f e a s i b l e  veh ic l e  f o r  system- 

a t i c a l l y  analyzing a wide v a r i e t y  of system a l t e r n a t i v e s  i n  a responsive 

manner [ lo] .  

To simulate  means t o  a c t  like. Simulations a r e  models i n  wkich pro- 

cesaes and a c t i v i t i e s  a r e  "acted out .  " Systems are microscopically analyzed 

and modelled by analogue dupl icat ion.  Because of t h e  l a r g e  amount of 

bookkeeping involved i n  auch minute dupl ica t ion ,  a l a rge-sca le  d i g i t a l  com- 

puter  is a necessi ty .  In f a c t ,  the development of t he  modern d i g i t a l  computer 

has led  t o  t he  widespread use  of simulation as a n  ana lys i s  technique. Such 

simulation of combat operat ions is  the modernday automated version of t h e  

c l a s a i c  sand t a b l e  f o r  m i l i t a r y  analysis .  I n  essence, such a combat simu- 

l a t i o n  i s  an analogue model, which r ec rea t e s  the  sand t a b l e  with t h e  help of 

the  d i g i t a l  computer, and b a t t l e s  are acted out on t h i s  automated sand t ab l e .  

Simulation may o r  may not involve a c t u a l  human beings playing some 



of the decision-making r o l e s  i n  the  system modelled. For t h e  purposes of 

our present  discussion, we w i l l  l i m i t  ourselves t o  so-called machine simu- 

15
l a t i o n  t h a t  runs on a computer e n t i r e l y  without human pa r t i c ipa t ion .  

Moreover, f o r  convenience w e  w i l l  henceforth r e f e r  t o  machine s imulat ion 

simply as &simulation. 

Simulation is  probably t h e  most widely used technique f o r  m i l i t a r y  

systeme analyais .  To develop a s imulat ion of combat operat ions,  t h e  

m i l i t a r y  system and assoc ia ted  a c t i v i t i e s  a r e  microscopically s tudied  and 

decomposed i n t o  a set of bas ic  eventa,  which i n  t u rn  a r e  ordered i n  sequence 

of occurrence (much l i k e  a network). When such a model is run t o  pred ic t  

combat outcome8 such a s  numbers of c a s u a l t i e s  of var ious types,  t e r r i t o r y  

l o s t ,  resources expended, e t c ;  t he  b a t t l e  i a  e s s e n t i a l l y  "acted out  on 

the  computer," wi th  the csequence and flow of events  and combat a c t i v i t i e s  

followed i n  the  s-ame microscopic sequencing as determined by previous 

ana lys is .  Human dec is ion  making i n  t he  combat is  simulated with pre-

determined dec is ion  t a b l e s  o r  ru l e s .  

Moreover, t h e r e  a r e  some problem a r e a s  t h a t  a r e  more o r  less unique 

t o  the  s imulat ion of combat operat ions.  A major problem a r e a  is  the  re-  

presenta t ion  of t e r r a i n ,  e spec i a l ly  t he  modelling of the l ine-of-s ight  

process. A high-resolution s imulat ion such as DYNTACS [7 ;  191 may spend 

as much as 60 percent  of i t s  running t i m e  i n  checking f o r  i n t e r v i s i b i l i t y  

(i.e. t he  existence of l ine-of -s ight )  between weapon systems, and usua l ly  

a t  l e a s t  about 20 percent of i t s  running time is s o  spent  1691. Thus, an 

inord ina te ly  l a r g e  amount of time is  usua l ly  spent  i n  eimulating t h e  l i ne -  

of-sight process i n  combat simulations.  Ter ra in  modelling sometimes re-

ceives a t t e n t i o n  i n  books on stmulation (=EVANS, WAUANCE, and SUTHERLAND 

[26]), but usua l ly  i t  does not (zee, f o r  example, FISHMAN [29]).  Other 



problem area8 (not only f o r  s imulat ion but  f o r  combat modelling i n  general) 

a r e  the  modelling of b a t t l e f i e l d  i n t e l l i gence ,  rou te  s e l ec t ion ,  and t a c t i c a l  

dec is ion  processes (espec ia l ly  thoae r e l a t i n g  t o  t he  management of la rge-

s c a l e  warfare [ lo])  . 
Most combat s imulat ions used i n  defense planning a r e  so-called Monte 

Carlo s imulat ions because s t a t i s t i c a l  sampling techniques (involving t h e  

generation of pseudorandom numbers [ 2 9 ] )  a r e  used t o  determine t h e  outcomes 

of random events ,  such as t h e  outcome of f i r i n g  a t  a t a r g e t .  Because of 

t h e  tremendous quant i ty  of computatiuns and o the r  information processing 

requirements i n  such a simulation, the  use of a modern high-speed d i g i t a l  

computer is e s s e n t i a l .  Probabi l i ty  d i s t r i b u t i o n s  f o r  a l l  t he  random element] 

( i .  e. random var iab les )  i n  the  s imulat ion a r e  required a s  inputs ,  and con- 

sequently a high-resolution Monte Carlo s imulat ion such a s  DYNTACS requ i r e s  

a r a t h e r  extensive da t a  base f o r  i t s  running.16 The d i f f i c u l t i e s  and c o s t s  

of da t a  base preparat ion a r e  considerable  and a r e  i requent ly  underestimated. 
-

The aimulation then. empir ical ly  generates  t h e  p robab i l i t y  d i s t r i b u t i o n  f o r  

the  s e t  of poss ib le  combat outcomes. Each run of t he  simulation f o r  a 

given s e t  or' input  da t a  is e s s e n t i a l l y  a sample from t h e  d i s t r i b u t i o n  of 

outcomes, and the simulation must be run repeatedly t o  obta in  accura te  

s t a t i s t i c a l  information about t h i s  d i s t r i b u t i o n  af combat outcomes. 

The s t rong point of Monte Carlo combat s imulat ion is t h a t  such a 

simulation may contain a l o t  of d e t a i l  and the re fo re  may be more c red ib l e  

than a more a b s t r a c t  model t o  many people. ~ x a m p l e s ' ~of such Monte Carlo 

sirnufations a r e  ASW 11, CARMONETTE, DYNTACS, and S U P ,  Some people 

(seeSRUBIK and BREWER [86] ,  f o r  example) f e e l ,  however, t h a t  such simula-

t i o n s  make a " f e t i sh  of realism." The l a r g e  amount of d e t a i l ,  moreover, 

causes a s i g n i f i c a n t  amount of computer time t o  be required f o r  a s i n g l e  

run of such a elmulabion, and t h i s  c h a r a c t e r i s t i c  i s  e s s e n t f a l l y  t h e i r  un-

doing a s  f a r  a s  being a v iab le  ana lys i s  technique f o r  exploring t h e  limits 



of system capab i l i t y ,  

There a r e  a number of s e r ious  shortcomings t o  t h e  use  of Monte Carla  

F i r s t ,  such s imulat ions a r e  q u i t e  c o s t l y  s imulat ion f o r  defense a n a l y s i s  .la 

t o  bui ld .  It is not unreasonable t o  expect t o  spend 5 t o  10 man-years of 

e f f o r t  t o  develop a de t a i l ed  s imulat ion of t a c t i c a l  combat. Second, 

they are coo t ly  t o  run, with t y p i c a l l y  10-20 minutes of  computer time 

(IBM 360167) required per  r e p l i c a t i o n  of about t h e  same length  of  b a t t l e  

time, and one needs 10-60 r e p l i c a t i o n s  f o r  s t a t i s t i c a l  o t a b i l i t y  in t h e  

r e s c l t s  (=,f o r  example, ZTMERMAN [120, p. 7411). Addit ional ly ,  because 

of t h e  amount of d e t a i l  involved, the data-base requirements are q u i t e  

demanding. For example, S t  is not  unheard of  t o  have s e v e r a l  a n a l y s t s  

spend about t h r ee  months preparing a new set of input  da t a  and t h e  cor- 

responding d a t a  deck f o r  DYNTACS. Not only i s  a so-ca l led  high-resolut ion 

combat s imulat ion c o s t l y  t o  bu i ld  and run, but  it is a l s o  c o s t l y  t o  main- 

t a in :  a s t a f f  of f a i r l y  highly t r a ined  personnel must be  maintained t o  

i n su re  t h a t  the computer program s t a y s  running and debugged a s  changes 

are con t inua l ly  implemented. For s eve ra l  reasons (e.g. s i z e  of t h e  com- 

puter  program, complexity of t h e  model, etc.), changes may be  q u i t e  d i f -  

f i c u l t  t o  ilnplement i n  such a combat simulation. The tremendous amount of 

detail ( i . e .  t h e  l a r g e  number of va r i ab l e s  and o ther  parameter%) presen t  

i n  a s imulat ion e s s e n t i a l l y  precludes t h e  running of parametric s t u d i e s  

t o  examine t h e  s e n s i t i v i t y  of t h e  model t o  changes i n  s imulat ion aseumptione 

and inpu t  da ta .  Because of t h i s  Pack of  c a p a b i l i t y  t o  run parametric 

e tud ies ,  it is e a s e n t i a l l y  impossible t o  use  s imulat ion by i t s e l f  a s  a 

veh ic l e  f o r  determining those system c a p a b i l i t i e s ,  t a c t i c e ,  wad eaviron- 

menta, c h a r a c t e r i s t i c s  t h a t  s i g n i f i c a n t l y  in f luence  the system's e f f ec t i ve -

ness. As S. BONDER po in t s  ou t  i l l ,  Chapter 11, s imulat ion is  e s s e n t i a l l y  

t oo  d e t a i l e d  t a  be by i t s e l f  a usefu l  t o o l  f o r  ana lys i s .  These disadvantag 



of Monte Carlo s imulat ion a r e  summarized i n  Table 1.1. 

Analyt ical  modela ( l i k e  machine simulation) do not involve human 

p a r t i c i p a t i o n  during running. They may, of course,  be e i t h e r  de t e rmin i s t i c  

o r  wtochastic i n  nature.  Their d i s t inguish ing  c h a r a c t e r i s t i c  i s  t h e i r  de- 

g ree  a f  abs t rac t ion :  as Figure 1 ahows, a n a l y t i c a l  models a r e  amre a b s t r a c t  

than simulations.  I n  f a c t ,  a good a n a l y t i c a l  model bs usua l ly  q u i t e  ab-

a t r a c t ,  poor in the  number of va r i ab l e s  e x p l i c i t l y  considered, but r i c h  i n  

ease of manipulation and c l a r i t y  of i n s igh t  ($61. Before t h e  advent of 

high-speed d i g i t a l  computers, a n  a n a l y t i c a l  model consis ted of a t  most a 

few equations (sMCHESTER's  [51] c l a s s i c  models discuseed i n  Chapter 2) .  

Today large-scale processes and system8 can be modelled by many equations 

wi th  t h e  help of a d i g i t a l  computer. The process under study is  analyzed 

and abs t rac ted  ( i . e .  decomposed i n t o  bas i c  events and a c t i v i t i e s ) .  Then 

mathematical submodels of events  and a c t i v i t i e s  a r e  developed and in tegra ted  

i n t o  an ove ra l l  s t ruc tu re .  

Analyt ical  models of any degree of complexity usua l ly  do not  y i e l d  

convenient a n a l y t i c a l  so lu t ions  but  r equ i r e  numerical approximation methods 

and a d i g i t a l  computer f o r  t he  generat ion of numerical r e s u l t s .  However, 

i n  those cases i n  which an e x p l i c i t  a n a l y t i c a l  so lu t ion  can be obtained, one 

has obviously s implif ied the  process of understanding t h e  model. Ins ights  

i n t o  the  dynamics of combat may be obtained by, f o r  example, examining 

e x p l i c i t  r e l a t i o n s  between t h e  independent va r i ab l e s ,  t h e  model's para-

meters, and t h e  dependent va r i ab l e s  (which a r e  u sua l ly  r e l a t ed  to t h e  MOEs). 

Such in s igh t s  a r e  much more d i f f i c u l t  t o  acqui re  when the  so lu t ion  is not  

simply expreseible  i n  terms of elementary funct ions and, f o r  example, finite, 

di f fe rence  methods must be used t o  generate  numerical (approximate) r e s u l t s ,  

although the modelrs bas ic  s t r u c t u r e  is e x p l i c i t l y  contained i n  equations 

t h a t  a r e  r ead i ly  examined. %us, although reare a b s t r a c t  than s imulat ions,  



TABLE 1.1. Disadvantages of Write Carlo 

Simulation of Combat 


(Dl) Costly to build 


(D2) Costly to run 


(D3) Costiy to maintain 


(D4) Lack of flexibility for change 


(D5) Essentially impossible to perform 

sensitivity and other parametric 

studies 




analytical models are characterized by their transparency (i. e . ease, of 
revealing their basic structure and aseumptions). We will focus on such 


models in this book. 


Analytical models, particu2arly simple ones, help clarify the relation- 


ship between theoretical models, empiricism, and data gathering. An ana-


lytical model is usually too aimple and restricted to directly solve an 


actual operational problem. But because of its transparency, the analyti- 


cal model can warn about potential problem areas, indicate where additional 


meansuresments are most needed, and identify and order important omissions 


fram the model (E SWBIK and BREWER [86] for a fupther discussion). 

There is one further general type of combat model that merits our 


attention, a mixture of two of the above types called the hybrid analyticial- 


simulation m o d s  [lo]. It has been developed in response to the needs for 


parametric analysis coupled with the long preparation and run times for 


Monte Carlo simulations. It combines the strength8 of these two modelling 


approaches by representing some processes in one way and others in the other. 


Again, the modern high-speed digital computer makes possible the integration 


these model types. For example, in battalion-level combat models such 
y f  

as BONDEB/ZUA (see [92]; also [ll; 121) (and its various derivatives 'such 

as BISM, FAST 1131, AMSWAG [36], IHA [104]) and C O W  [la], attrition and 

target acquisition (and sometimes allocation) processes are modelled 


analytically, while simulation is used to model battlefield movement pro- 


cesses [lo]. The same general approach has been applied to large-scale 


combat (i.e. combat between division-size and large units) with models such 


as DIVOPS [lo61 and VECTOR-2 [I071 in which the attrition, maneuver-unit- 

element and ffre-support-eensor acquisition, and terrain-line-of-sight pro- 


cesses are modelled analytically [lo]. Such hybrid models use LANCHESTER-


type equations (i. e. deterministic differential equations) to represent the 




combat a t t r i t i o n  process.  

A r e l a t e d  (but ye t  d i s t i n c t )  c l a s s i f i c a t i o n  of combat: models would 

according t o  how they a s s e s s  t h e  outcomes of t a c t i c a l  engagements ( i r r e sp  

of how tactical decis ion making is modelled). Three cur ren t  approaches f 

p red ic t ing  t h e  e f f ec t iveness  of combat u n i t s  i n  such engagements a r e  a s  

follows (see -BONDER and FARRELL I l l ]  f o r  f u r t h e r  d e t a i l s ) :  

(Al) firepower scores  (mSTOCKFISCB [go, pp. 6-27]) , 

(A2) Monte Carlo s imulat ion [33; 1201, 

(A3) a n a l y t i c a l  models (e. g. d i f f e r e n t i a l  equations) [ll]. 

A l l  th ree  approaches have been used t o  assess the  outcomes of combat engag 

ments i n  w a r  games. We have a l ready  discussed Monte Carlo s imulat ion and 

a n a l y t i c a l  models above so i t  remains t o  d iscuss  t h e  o the r  combat-assessme 

approach, firepower scores.  We w i l l  a l s o  say some add i t i ona l  words about 

a n a l y t i c a l  modele i n  t he  context of assess ing  t h e  outcomes of t a c t i c a l  

engagements. F ina l ly ,  we w i l l  b r i e f l y  d iscuss  t he  r e l a t i o n  between the  

s c a l e  of combat operat ions and these  mode.!ling approaches. 

Tho f irepover-score20 approach is  b a s i c a l l y  a t eehnlque f o r  aggre- 

gat ing heterogeneous forces  ( i .  e. tanks, a r t i l l e r y ,  i n fan t ry ,  e t c .  ) i n t o  a 

s i n g l e  homogene.0~~ force  on each s ide .  It is an index-number approach, 

which develops one number ( r e f e r r ed  t o  a s  t h e  firepower index) t o  represent 

the  "combat poten t ia l"  of a u n i t .  A l i n e a r  model is used t o  develop t h i s  

index number, i . e .  t h e  firepower index, from t h e  scores  of individual  wea- 

pon systems a s  Table 1.11 shows. Moreover, a s  emphasized by STOCKFISCH 

[90 ,  p. 71, the wards s c o r e  and index should not  be regarded a s  bding 

synonymous. I t  is more prec ise ,  therefore ,  t o  use  t h e  term firepower score 

t o  r e f e r  t o  t he  m i l i t a r y  capab i l i t y  o r  value of a s p e c i f i c  weapon system 

and t o  use the term firepower index -- which i a  obtained by summing scores  -



-- - - - - - - - -- - - 

TABLE 1.11. Hypothetical Example of Determination 
of Firepower Index f o r  a Combat Unit 

Firepower Total  Contribution 
Weapon Type Number Score t o  Firepower Index 

-

Ri f l e ,  M-16, 5.56- 6,000 

MG, M-60, .3O c a l  150 

MG, M-2, .50 c a l  25 0 

Mortar, M-125, 81m 50 

Howitzer, M-109(SP), 155m 50 

Howitzer, 8" 8 

Tank, M6OA2 200 

TOTAL FIREPOWER INDEX 32,640 

Firepower Index f o r  U.S. Army's 7th In fan t ry  Divis ion 



to refer to the military capability or value of aoms aggregation of diverse 


weapone. In other words, the firepower-score approach provides a camon 


denominator for aggregating the many dif,ferent types of weapons on a battle- 


field, and military combat is characterized by such "combined-arms" opera- 


tions consisting of many different weapon systems. 


How is the basic firepower score for a weapon system determined? There 


are apparently almost as many different answers to this crucial question 


ns there are di fferent firepower-score methods .21 Many methods state that 

the firepower score of a weapon system is essentially the product of a ma-


sure of single-round lethality multiplied by the expected expenditure of 


ammunition during a fixed period of time. Although Chis procedure appears 


to yield an objective measure of weapon-system capability, STQCKFISCH [go, 

pp. 23-78, especially pp. 23-27 and 76-78] points out that actually varying 


amounts of subjectivity are cranked into various such firepower scoresw 


Moreover, the firepower-score approach probably dates back to World War 11, 


although documentation about it is generally somewhat difficult to come by 


(-see STOCKFISZH [ 9 ]  for introduction to the scanty firepower-score literature). 

In large-scale (i.e. division-level and above) ground-combat models, 


firepower indices are used as a surrogate for unit strength. They are :hen 


22
in general used to: 


(Ul) determine engagement ontcomee , 

(U2) assess casualties, 


(U3) deternine FEBA mvzment. 


['FEBA stands for Fornard Edge of the Battle hrea. It is the contact zone 

between two opposing forces.] The farce ratio is the significant factor in 


such determinations. Here the term fo rce  ratio means the ratio r,f the fire- 

power index (i.e. ,the aggregation of all the fl.repower scares in the unit) 




the attacker to that of the defender. Let us consider a hypothetical 


example to illustrate this point. Consider, for example, the 7th Division 


of the U.S. Army and aeeme that the firepower scores shown in Table 1.11 


apply. Then the 7th Division has a firepower index of 32,640. If an 


attackingenemy A m y  Group were to have a firepower index of 146,880, 


then we would have a force ratio of 4.50 (AID), where A refers to the at- 

tacker and D to the defender. 


Although the firepower-score approach has been widely used for top- 


level planning, it has received increasing criticism in recent years (=, 

for example, STOCKF'ISCH [ 9 0 ]  or [Ill). Significant deficiencies of the 

index-number approach are the following (from [PI]): 


(Dl) it does not measure the accomplishment of unit missions, 

(D2) it ignores most of the significant factors that affect mission 

accomplishment (1.e. weapon system characteristics, threat 

variables, organizational structures, tactics employed, en- 

vironmental conditions, etc.), 

(D3) it oftentimes bears little relation to the physical combat 

or other processes under study. 

STOWZSCH 190, p. 1281 claims that no satisfactory simple technique for 

aggregating modern conventional forces currently exists, Although the 


firepower-score approach has been thus Par much criticized, conventional 


forces must be aggregated in many analyses, and until a better alternative 


i e  developed, firepower scores will continue to be used. 

Analytical models have been discussed in general terms above. We 


will now discuss their use specifically for assessing the outcomes of corn: 


bat engagements. In particular, differential-equation models have b e m  


fairly widely used for the assessment of combat outcomes. Such models are 




used t o  represent  the  decay i n  numbers of weapon syateme ( l e e ,  t h e  a t t r i t i o n  

process) and requi re  aubmodels (again usua l ly  a n a l y t i c a l  ones) f o r  various 

subordinate processes such AS t a r g e t  de tec t ion ,  t a r g e t  loca t ion ,  f i r e  a l -  

loca t ion ,  e t c .  The modern large-scale  d i g i t a l  computer has  made poss ib le  

t h e  development of large-scale l r ia ra rch ica l  system models, with submodels 

feeding information i n t o  a master coordinat ing madcl. In  t he  f i e l d  of 

combat modelling, t he  bas ic  ca l cu la t ion  is one of fo rce  a t t r i t i o n ,  and con- 

sequently is usua l ly  done with the a i d  of some type of d i f fe ren t ia l -equat ion  

model. The use of such models a s  p r a c t i c a l  ana lys i s  t o o l s  i a  pr imari ly  due 

t o  t h e  e f f o r t s  of S. BONDER and h i s  col leagues formerly a t  t h e  Universi ty  of 

Michigan and now at Vector Research, Inc. Their main cont r ibu t ion  has been 

the development of f a i r l y  de t a i l ed  aubmodels f o r  t h e  p red ic t ion  of l o s s  

r a t e s  from engineering and opera t iona l  da t a  f o r  such d i f fe ren t ia l -equat ion  

models. We w i l l  r e f e r  t o  such a d i f fe ren t ia l -equat ion  model t h a t  represents  

a t t r i t i o n  from enemy ac t ion  through a system of d i f f e r e n t i a l  equations f o r  

t he  force  l e v e l s  a s  a LANCHF,STER-type model of warfare (a l so  commonly 

ca l l ed  a d i f f e r e n t i a l  combat model [16]).  The r e s t  of t h i s  book concerns 

such models. 

Each of t he  above combat-assessment approaches ( i .  e .  firepower scores ,  

Monte Carlo simulation, and ~ i n a l y t k c a l  models) may be thought of as cor-

responding t o  a d i f f e r e n t  s c a l e  of combat operat ions,  d t h  t h e  firepower- 

score  approach and Monte Carlo s imulat ion being a t  opposi te  ends of t he  

spectrum of t h e  s c a l e  of combat operat ions (1.e. t h e  s i z e  of the u n i t s  in-

volved). This corroopondence is s h m  i n  Table 1.111. The contents2' of 

Table 1.111 a r e  only genera l ly  t rue ,  wi th  exceptions c e r t a i n l y  ex i s t i ng .  

Aa we s e e  from t h i s  t ab l e ,  t h e  firepower-score approach has been prfmari ly  

used for edgagement a s se smen t s  An large-scale  (i.e. theater- level)  combat 



TABLE 1.111. Combat-Assessment Approach Related 

to Scale of Combat Operations 


~xaatpla~~
of
Modelling of - Model
Approach Combat 


firepower score theater - iTLAS, CEM 

Monte Carlo infantry: platoon - ASARS I1 
simulation amor: company/battalion -

DYNTACS, CAREEONETTE 

battalion - BONDER/IUA
LANCHESTER-type division - DXVOPS
model theater - VECTOR-2, TWSB, 

BALFRAM, DMEW 
-



models. Alqhough there are exceptions, high-resolution Monte-Carlo simu- 


lation has been a feasible assessment approach only when there have been 

\ 

no more than dout 100 elements e . .  individual tanks, crew-served weapons, 

\ 

etc.) on each sihp. On the other hand, LANCHESTER-type models have been 


\
developed for the full spectrum of combat operations, f ram combat between 

companylbattalion-sized units to theater-level combat operations. 


241.4. The Influence of Elodern-Digital Computer Techaolos. 


Without the madern high-speed digital computer both high-resolution 


Monte Carls simulations such as DYNTACS and CARMONETTE and also differential 

\ 

combat models such as BONDER)FUA and its many derivatives would be impos- 

\ 

sible. The modern computer not only Large-scale memory capacity 

but. also the ability to of arithmetic operations per 
\ 

second. In such a computational environment, the numerical integration 


of a system of hundreds of ordinary differential equations becomes possible. 


Today LANCHESTER-type complex system models, which rely on modern digital 


computer technology for their implementation (see,for exampla, BONDER and 

EONIG [l2]), have been developed for various levels of combat, from combat 


between battalion-sized units (E BOSTWICK et al. [13] or HAWKINS [3(5]) 

to theater-level operations (e
CORDESMAN [211, FARREU [28], or [105; 1071). 

1.5. The Purpose of This Book. 


As indicated above, there currently appears to be a trend toward increas 


interestin LANCEIESTER-type models of warfare. However, information about 


the nature of such models, their strengths and weaknesses, etc., unfortu- 


nately does not appear to be widely disseminated beyond a relatively small 


group of research workers. Moreover, there have been eseentially no readily 




acces s ib l e  sources of general  information about LANCHESTER-type models: 

t he re  has been no book, textbook, o r  uonograph on LANCIIESTER-tppe models 

of warfare,  and the one and only survey a r t i c l e  by D0)LANSKY [23] appeared 

i n  1964. Considering contemporary developments, DOLANSKY's a r t i c l e  is q u i t e  

ou t  of d a t e  today. Furthermore, r e e u l t s  and developments have been 'widely 

sca t t e r ed  i n  t h e  l i t e r a t u r e ,  and it has been difficu1.t  ( i f  not imposeible) 

f o r  an  ana lys t  t o  obta in  general  information and an overview of LANCHESTER-

type models of warfare. 

The purpose of t h i s  book is t o  provide a comprehensive survey of 

LANCHESTER-type models of warfare. By LAITCHESTER-type modela of warfare 

we mean d i f fe ren t ia l -equat ion  models t h a t  deacribe changes over time in t h e  

fo rce  l e v e l s  of t h e  combatants and o the r  s i g n i f i c a n t  va r i ab l e s  t h a t  descr ibe  

the  combat process. Our ob jec t ive  is  t o  present a un i f ied  treatment of 

such models and of t h e i r  behavior, with emphasis on the  i n s i g h t s  t h a t  may 

be  consequently obtained i n t o  t h e  dynamics of combat. W e  hope t o  t ie to-

gether  much of t h e  knowledge about LANCHESTER-type models t h a t  has been here- 

t o f o r e  widely sca t t e r ed  i n  t h e  l i t e r a t u r e .  

In  the pas t  (say up u n t i l  about 1970), LANCHESTER-type models of war -

f a r e  were only used by a small group of the  leading ana lys ts :  a s  a conse-

quence of pioneering work by F. W. LANCHESTER~' 1511 done about t he  time of 

World War I, a few m i l i t a r y  operat ions ana lys t s  have used s impl i f ied  de- 

t e r n i n i s t i c 2 6  d i f  f erent ial-equat ion models t o  develop i n s i  gh t s  i n t o  t h e  

dynamics of combat from about t h e  end of World War 11 (E, f o r  example, 

[8; 11; 12; 23; 94; 110-1121). The advent of t h e  modern high-speed d i g i t a l  

computer has made f e a s i b l e  t h e  development and use of q u i t e  complicated 

vers ions  of such LANCEIESTER-type (a l so  f requent ly  ca l l ed  d i f f e r e n t i a l )  

models a s  p r a c t i c a l  defense planning t o o l s  [lo]. Thus, today m i l i t a r i l y  



r e a l i s t i c  computer-based LANCHESTER-type models of q u i t e  complex combat sya 

teme have been developed and are f a i r l y  widely used by a much l a rge r  numbex 

of ana lya ts  than ever used the  simple d i f fe ren t ia l -equat ion  modeler. Thus, 

the  modern d i g i t a l  computer has made much more exteneiva use  of t hese  model 

poeaible.  Such models cu r r en t ly  exist f o r  almost t h e  e n t i r e  spectrum of 

combat operat ions,  from combat between bat ta l ion-sized [13] and divis ion-  

s ized  [1.6] u n i t s  t o  thea ter - leve l  operat ions [21: 281 The study of t h e  

bas i c  na ture  and behavior of such d i f f e r e n t i a l  combat models is the  subjec t  

of t h i s  book. Our goal  is  t o  promulgate a b e t t e r  understanding of such 

models. 

Two divergent  a spec t s  of LANCHESTER-type combat models a r e  the  

following: 

(All i n s i g h t s  t h a t  they provide i n t o  tne  dynamics of cumbat, 

(A2) t h e i r  enrichment in order  t o  b e t t e r  model real-warld combat 

a c t i v i t i e s .  

As is always t h e  case,  a book r e f l e c t s  t h e  t a s t e s  and i n t e r e s t  of i ts authol 

Inspired by t h e  works of F. W. LANCIESTER and H. K. WEISS, I have been more 

in t e re s t ed  i n  obta in ing  i n s i g h t s  i n t o  the  dynamics of combat from r e l a t i v e l )  

simple models than enriching such models i n  d e t a i l s  (see. W. T. MORRIS 1631 

f o r  a discussion of t he  processes of such enrichment). Hence, t h i s  book 

emphasizes studying r e l a t i v e l y  simple combat models i n  order  t o  l ea rn  t h e i r  

bas ic  na ture  and to ,hopefu l ly ,  perceive s i g n i f i c a n t  i n t e r r e l a t ionsh ips  t h a t  

a r e  d i f f i c u l t  t o  d iscern  i n  more complex models. Such i n s i g h t s  can provide 

valuable  guidance f o r  more de t a i l ed  computerized inves t iga t ions  (E WEISS 

[112]). We w i l l  a l s o  consider t h e  uee of LANCHESTER-type models of warfare 

f o r  developing quan t i t a t i ve  Ins igh t s  i n t o  optimal time-sequential combat 

s t r a t e g i e s  (E Chapter 8).  



1.6. Dynamic Systems and S t a t e  Variables.  

The LANCHESTER-type combat models considered i n  t h i s  book may be 

viewed from t h e  vantage poin t  of system theory (E PADULO and ARBIB 1681). 

We w i l l  f i nd  it convenient t o  do 80 i n  order  t o  b e t t e r  understand the  

phi losophical  underpinnings of such models. Let us  t he re fo re  introduce 

t h e  reader  t o  some i n t u i t i v e  notiona and ideas  r e l a t e d  t o  systems. We 
I 

w i l l  not attempt t o  g ive  e x p l i c i t  and p rec i se  de f in i t i ons .  For our pur- 

27poses i n t u i t i v e  and r a the r  vague termircolsgy w i l l  s u f f i c e .  

A physical  system is  defined as an  interconnect ion of physical  element 

ox objec ts .  The not ion of a system is r a the r  broad: i t  app l i e s  not  only 

t o  simple mechanical and e l e c t r i c a l  devices  but a l s o  t o  more e s o t e r i c  and 

complex systems such a s  automobiles and (espec ia l ly)  weapons systems. I n  

p a r t i c u l a r ,  one can v i e w  m i l i t a r y  u n i t s  such as companies aud b a t t a l i o n s  

a s  systems. 

Systems may be e i t h e r  s t a t i c  o r  dynamic. This book concerns dynamic 

combat systems. For our purposes, %dynamic system is  one whose inputs  and 

outputs  a r e  r e l a t ed  by a s e t  of d i f f e r e n t i a l  (or  d i f fe rence)  equations. Thr 

system evolves dynamically over t i m e .  The set of d i f f e r e n t i a l  equations prc 

vides a node1 f o r  :he system's evolution, We requ i r e  that s x h  a model. be  

va l id  i n  t he  sense t h a t  the  present  p red ic t s  t h e  fu ture .  Let u s  informally 

therefore,  introduce the  not ion of cause and e f f e c t  o r ,  more formally,  t h e  

p r i n c i p l e  of casual ty.  Consider t h e  following example: i n  NEWTONIAN 

mechanics, t h e  f u t u r e  motion of a system of p a r t i c l e s  i s  completely de t e rnh  

i f  t h e  present  pos i t ions  and moments are known, along with the present and 

f u t u r e  forces.  Future forces  have no a f f e c t  on t h e  present  (nonanttcipator:  

system), 2nd how the  system reached its present s t a t e  is not  important.  



Knowledge of the present allows us t o  predict  the future.  what we muat tcac 

about the preeent (beaidee the  equations tha t  d e s c r i b ~  the  evolution of euc 

q w n t f t i t e s )  is cal led tha -of the  eyetern. In tu i t ive ly ,  the  s t a t e  of 

system is chu m i n i m  amount: of present information about the  hiatory of th  

system tha t  allows one t o  ~ r e d i c t  t h e  e f f e c t  of the vaat upon the futura.  

var iables  tha t  a r e  used t o  describe t h e  s t a t e  of a system are cal led the  st 

variables.  

The above terminology is convenient f o r  c ~ m i c a t i o n  about LANCHESTEl 

type models of warfare. Later when w e  consider the-sequential combat s t r a -

tegies,  it w i l l  be convenient t o  introduce the  system-theory notions of clor 

loop and open-loop controls .  A s  we w i l l  see in the  next chapter,  one may vJ 

LANCHESTER's c l a s s i c  combat t h e x y  a s  saying tha t  force l eve l s  a r e  the  s ta tc  

var iables  f o r  combat between two mi l i t a ry  systems. We re turn  t o  t h i s  theme 

l a t e r .  

1.7. F inal  Remarks. 

Thus, w e  see tha t  we may say tha t  LANCHESTER-type models of warfare r e  

present dynamic combat systems whose o t a t e  var iables  a r e  typica l ly  force l e v  

I n  t h i s  introductory chapter we have established a framework fo r  studying su 

differential-equation models of combat: we have examined the  general nature 

of models, the use of combat models In defense planning i n  the  United S ta tes  

and the various types of combat models tha t  a r e  i n  current use. Based on oui 

examination of the  s c i e n t i f i c  study of conf l i c t  and warfare, we f e e l  t h a t  mot 

of the  shortcomings usually a t t r ibu ted  t o  LMICHESTER-type modelsZ8 are a l s o  r 

shortcomings of any combat model. 

Moreover, w e  f e e l  t h a t  LANCRESTER-type modols a r e  an i d e a l  vehicle f o r  

studying combat dynamics because of the  r e l a t i v e  ease of extractfng informati 

from them and the  f a c t  tha t  usually no other  type of model is  b e t t e r  j u s t i f i e  



Our concluslon l e  baesd on a careful axamination of the state-of-the-arc 

of conf l ict  and combat modelling. In the next chapter w e  w i l l  eee how 

LANGESTeR-type models readily provide many important Insights into the 
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1. Unfortunately, l i t t l e  sf this debate has reached the  open l i t e r a t u r e .  

See however, t h e  crxcellent report by the U .S. Army Models Review .~urn-

m i t  tee [42], BONDER m d  FARReIJ, [ l l, Chapter 1 1, and BONDER, [ lo]  . 

2. For some d i f f e r i n g  views on the  na ture  of operatlorre research, eee 

BARISH [4],BONDER [q,CHURCliMGN, ACKOFF, and ARNOIFF 1171, GOODEVE [34 

KLEIN and BUTKOVICH [SO], MICSER [ 5 9 ;  601, and rer'erences contained t h e r  

in .  

3, Although t h i s  d e f i n i t i o n  opens t h e  cPassic  book by MORSE and KIMBALL [61 

the  d e f i n i t i o n  apparent ly goes back t o  KITTEL [49] (as reported by 

GOODEVE [35 1 ) . 

4. &, f o r  example, MORSE and KIMBALL [64],CHURCmAN, ACXOPF, and ARNOFF 

[17], HILLIER and LIEBERMAN [40], o r  WEISS [113]. a l s o  t h e  referenc: 

c i t e d  i n  Footnote 2. 

5.  Here t h e  letter C 5s used phonet ical ly  t o  denote t h a t  we are enumerating 

-concepts i n  th3s list, For t h e  next ouch enumeration i n  this book,, t he  

l e t t e r  T is used t o  denote t h a t  we a r e  l i o t f n g  D e s  (of models). 

6 .  The effectiventlsa of any m i l i t a r y  system may be deflned a s  t h e  ex ten t  

t o  which t h e  system may be expected t o  achieve a set of ob jec t ives  [ log]  

and the quan t i t a t i ve  expression of t h e  ex ten t  t o  which s p e c i f i c  mission 

requirements a r e  a t t a ined  by t h e  system i s  r e fe r r ed  t o  a s  a measure of 

e f fec t iveness  (HOE). In OR work, i t  i s  important to d i s t i ngu i sh  between 

the  performance (e.g. r ~ u n d s  f i r e d  per  minute, s i n g l e  shot  k i l l  probabi l :  



e t c . )  of a weapon system and its effectiveness (e.8. decis ive ly  winning 

a f i r e  f i g h t ) ,  o r  m i l i t a r y  worth. Fa i lu re  t o  choose appropriate  measurc 

of e f fec t iveness  can lead  t o  completely wrong conclusions as t o  preforrr 

a l t e r n a t i v e s  (B tft3RSE and KIMBAU [641). As s t a t e d  in t h e  main t e x t ,  

although performance da t a  f o r  a weapon syseem m y  be co l lec ted  in. "opers 

t iona l"  t e s t s ,  a combat model i s  tleually required ( fo r  example, due t o  

s a f e t y  considerat ions)  t o  "put it  a l l  together" aga ins t  an enemy t h r e a t  

i n  an operat ing environment t o  est imate system ef fec t iveness  (see,f o r  

example, RUDWICK [80, p. 571). I n  o the r  words, t he  combat model t rans-  

forms performance measures (e.g. t a r g e t  acqu i s i t i on  capab i l i t y ,  r a t e  of 

f i r e ,  e t c .  ) i n t o  r?Lf ec t iveness  measures (e. g. b a t t l e  outcome, FEBA move-

ment). 1 

7. About $30 t o  $40 mi l l i on  i s  apparent ly spent  each year f o r  j u s t  the  

cons t ruc t ion  of such models. Unfortunately,  i t  is very d i f f i c u l t  t o  

est imate how much money is ac tua l ly  being spent  annually on combat model-
I 

l i n g  a c t i v i t i e s  because of t h e  nonexistence of cost-accounting d e f i n i t i o n  

and procedures [86]. 

8. See, f o r  example, QUADE and BOUCHER [74, pp. 221-2253. 

9. I n  the decis ion sciences,  the  word "uncertainty" has a s p e c i a l  t echnica l  

meaning (E, f o r  example, LUCE and RAIFFA [54]). However, we are using 

t h i s  word as being synonymous with "having an element of chance involved. 

LO. See, f o r  example, HITCH and McKEAN [41], QUADE [73], ENKE [251, QUADE and 

BOUCHER [74], or  BONDER 191. 



Here we are brought face to face with the disagreeable paradox pointed ( 

by M. HOVARD [45, p. 101 that ''war might be necessary as au inetrument 


of policy to insure the sux,~ivtnl 
of a society in which it was possible 


to renounce war as an instnment of policy." Speaking about World War I 


he went on to say 145, pp. 10-111, "Good will and international organizd 

tions were apparently not enough in themselves to eliminate violence as 


an element in international affair!." In the mfd-1960'8 and early 1970' 


a wave of sentiment (remarkably similar to that reported by HOWARB [45, 


p, 101 for post-World-War-I England) arose within American academe (and 


especially within the OR community) that war was not a problem to be 

examined but an evil to be shunned. The parallel with the intellectual 


climate of the 1920's and 1930's (as reported by HOWARD) is uncanny. 


12. There is a special problem which has gone largely unnoticed, for those 


who wish to test the validity of models of defense/military systems and/ 


or operations: the data base for the testing of such a model is from th 


real world (past and present), whereas the prediction from the model is 


for the real world (future). The physical sciences are based on the pri 


of uniformitarianism, which holds that physical and biological processes 


conditions, and operations do not change over time (i.e. uniformity over 


time). For example, in geology the doctrine of uniformitarianism holds 


that the present ie the key to the past [61]. This principle, of course 


does not hold for planning models of new future environments (z,for 
example, HOWLAND 1 4 6 1 ) .  What is meant by the validity of such a plannin 

model is in need of critical examination. 


13. For a discussion of von CLAUSEWITZ and the other major writer of the 


NAPOLEONIC age on the art of war (namely, General Baron de JOMINI) , eee 

EDMONDS [24 ] . 



14. Concerning t h e  s c i e n t i f i c  study of warfare,  le t  us note e m  of t h e  work 

t h a t  has been done i n  the f i e l d s  of arms races  and warfare i n  general.  

LEWIS FRY RICHARDSON did  pioneering work i n  both f i e l d s  [78; 791. For a 

l uc id  and a u t h o r i t a t i v e  discussion of RImBRDSON's mathematical theory of 

war (Including arms r a c e s ) ,  eee RAPOPORT [75]. For an  in t roduct ion  t o  

the  s c i e n t i f i c  study of arms races,  see INTRILIGATOR and BRIT0 [47!, 

RATTINGER [76], SAATY 1811 and WEISS [113]. H. K. WEISS [I141 hae pointed 

out t h a t  although more books have been wr i t t en  about war than about almost 

any o ther  human experience, the  number of quan t i t a t i ve  analyses  i s  ex-

tremely small. The most notable  of these  a r e  t he  pioneering s tud ie s  by 

QUINCY WRIGHT [I171 and L. F. RICHARDSON [79]. 

SAATY [81] poin ts  ou t  t h a t  i n  1965 a Nowegian s t a t i s t i c i a n  used a 

computer t o  organize a data  base f o r  14,531 wars i n  s9560 years of recorded 

h is tory .  This da t a  suggests t h a t  RI~HARaSONts 1791 pioneering quant i ta-  

t i v e  study of 315 wars t h a t  ended between 1800 and 1952 may w e l l  b e  re-

presenta t ive  of t h e  e n t i r e  recorded h i s t o r y  of man on ear th.  H. K. WEISS 

[114] has taken RLC'HARDSON's da t a  a s  a point  of departure f o r  developing 

severa l  s tochas t i c  models f o r  t he  durat ion and magnitude of wars. HORVATH 

[44], however, has c r i t i c i z e d  t h i s  work and suggested an a l t e r n a t i v e  

model based on the  theory of extreme values.  A l l  t h i s  da t a  suggests t h a t  

unfortunately,  war h a s  been q u i t e  an  es ta5 l i shed  human i n s t i t u t i o n .  More-

over,  the  author  f e e l s  t h a t  one should v i e w  the  s c i e n t i f i c  study of w a r  

( including Lanchester-type and o ther  combat models) much as one views the  

study of, f o r  example, a d i sease  l i k e  cancer: t he  subjec t  a r ea  may be  

unpleasant but somebody must understand the  phenomenon t o  be  a b l e  t o  

r e a l i s t i c a l l y  suggest what t o  do about it .  

15. One, f o r  example, develops simple decis ion t ab l e s  o r  r u l e s  t o  model t he  



rxmplex human d e c i e i o n d i ~  procesrr. 

16. However, Monte Carlo combat eimulations a r e  not  appreciably more demanding 

i n  t h e i r  input  requiremente than de t a i l ed  hybrid analytical-airnulation 

combat models such a s  BONDERfIUA and i ts  various de r iva t ives  discussed 

below. 

Evan when it e x i s t s ,  documeataelon of a combat model may be poor [86]. 

However, the  following documentation and in fomar ion  is except ional ly 

good f o r  this f i e l d .  Further information about CARMONETTE may be found 

i n  Z I M M E W  [I201 o r  ADAMS, FORRESTER, KRAl?'J!, and OCISTERHOUT [3]. 

CARMONETTE w a s  an  e a r l y  e f f o r t  in ground combat simuXation and won t h e  

Lanchester P r i ze  (aee Footnote 24) f o r  R I C W  E. ZIJWEJUWV [I191 i n  1956. 

Yurther information about DYNTACS is t o  be found i n  17; 191, while  t h a t  

about SIAF is  i n  [ 9 9 ] .  Gcneral information about cur ren t  combat modal8 

(mainly Monte Carlo simulations) is ava i l ab l e  i n  [ 9 2 ;  1011. 

18. Our d iscuss ion  here follows BONDER [ l o ] .  

19. CARMONETIIE, a pioneering combat simulation, took about 20 man-years of 

e f f o r t  t o  develop [3, p. 61. For more recent  da t a  on t h e  cos t  of simu-

l a t i o n  development, see SIflJBIK and BREWER [86]. 

20. Indices  of t he  r e l a t i v e  combat c a p a b i l i t i e s  of m i l i t a r y  u n i t s  (based on 

a "scoring system" f o r  t h e  weapons employed i n  t h e  un i t s )  have been used 

by m i l i t a r y  gamers and force  planners f o r  years.  We a r e  here gener ica l ly  

r e f e r r ing  t o  such indices  a s  firepower scores ,  i . e .  using the  term firepower 

acores t o  refer t o  any one of a l a r g e  family of such ind ices .  Other 
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member8 of t h i e  family of ind ices  and r e l a t a d  t a m e  a r e  firspowar potent ie  

(FP), f irepower po ten t i a l  score (FPS) , u n i t  firepower p o t e n t i a l  (UR) , 
index of firepower p o t e n t i a l  (In), index s f  combat e f f  ect lveness  (ICE) , 
weapon ef f ectiveneee indedweighted un i t  value (WEI/WW) , waapon e f f ec t ive  

nees value (WEV) , e t c .  (* STOCKFISCH [go, pp. 6-27] f o r  f u r t h e r  re- 

ferences and a guide t o  the  l i t e r a t u r e  about firepower scores) .  

21. Names of var ious firepower-score methods a r e  given i n  Footnote 20. See 

STOCKFISCH [go] f o r  f u r t h e r  information. 

22. The exac.t d e t a i l 8  vary from model t o  model. Sometimes (Ul) and (U2) 

are combined. 

As pointed out i n  Footnote 1.7, documentation of corubat models is 

genera i ly  poor. The following documentation and information i e ,  however, 

except ional ly good f o r  t l u s  f f e l d  . Gereral inf  onaa t l o n  about contemporary 

combat models (mainly Monte Carlo simulations) is  ava i l ab l e  i n  [92; 1011 . 
Further information about ATLAS may be found in KERLXN and COLE [46] o r  

[33],  while t h a t  about CEM may be found i n  [15] o r  [53]. Documentation 

of both DYNTACS and CARMONETTE has been discussed above i n  Footnote 17. 

Information about BONDER/IUA and its various da r iva t ive  models ray be 

found i n  [ l l ;  12; 36; 92; 1041, while  t h a t  about DIVOPS may be found i n  

[106]. The t h a t e r - l e v e l  combat model named VECTOR is documented i n  

[21; 105; 1071. DMEW (see, [ loo])  is a l s o  3 thea ter - leve l  model, as is 

TKSP ( 5 ~[21] o r  [27]) . 

24. For an exce l l en t  general  discussion of compr!tors and na t iona l  s ecu r i ty ,  

s e e  PAXSON [71].-




25. FtWuDERICK W ,  LIWCHESTER (1368-1945) was an eminent English automotive and 

aaronautical  enghoer .  Fc:: a br ief  sketch of h i s  a n y  e c i e n t i f i c  and en-

=ginemring contrihutione, McCLOSKEY 1551. Tile Lanchsater P r i ze  is named 

aitar him an3 is awarded anaually by t h e  Operatlono Resoarch Society of 

America "fox the papar on o p e r a t i ~ n s  research judged t o  be the  beet of 

the c elcndar gear. I' 

26. Correepondinp etochaetlc  formulation8 (i.e. Markov-chain analogues) are 

for a l l  ?rrlcc.ical purposes ana ly t i ca l ly  in t rac tab le  (!=Note 1 of 

TAYLOR and BROWN [93, p. 65)) .  

27. See, PADULO and iARBXB [68] or  I"1CMOTHY and BONA [98 j  f o r  more prec ise  and 

extensive diecweiona. 

28, &, f o r  example, the ~ h o r t c o d n g s  given i n  Section 2.6 for WINCHESTER'S 

c lase ic  (constant-coefficient) combat forumlatione. 



NOTES and REMARKS f o r  Chapter 1 

Our discuseion of models i n  Section 1.1.2 is s imi l a r  t o  t h a t  of ACKOFF 

12, Chapter 41. Further diecussion i n  a simi?ar ve in  is t o  be found i n  

CHURCYrMAN, ACKOFF, and AXlIOFF [17, Port  1111 Our d iscuss ian  of the d i f -

f e r e n t  t-ypes of combat models i n  Sect ion 1 .3  owes much t o  BONDER and FARRELL 

[ll, Chapter 1 1  and BONDER [ 9 ;  101. 

World-War-I1 Operati=Rc&earch. Further information about World-War-I1 

operations-research a c t i v i t i e s  may be found i n  McCLOSKEY and TREIFETHEN [57] 

and McCLOSKEY and COPPINGER [56]. For some idea  about t he  subsequent develop- 

ment of OR, = ( f o r  example) DAVIES, EDDISOM, acd PAGE [22],  ACKOFF [ I ] ,  

HERTZ and EDDISON [39], and any recent  textbook on OR (see,f o r  example, 

the  f a i r l y  extensive references given i n  WAGNEB [lo]!. The book by STOCK- 

FISCH [89] conta ins  not  only a very good descr ip t ion  of World-War-I1 OR 

a c t i v i t i e s  but a l s o  an outstanding d e s c r i ~ t i o n  and ana lys i s  of the  subsequent 

development and use  of OR, cost-effect iveness  ana lys i s ,  and t h e i r  m a ~ y  

v a r i a n t s  by DoD. 

Defense Planning. For discussions ( the  c l a s s i c  ones) of defense planning, s e e  

HITCH and McKEAN [ 4 l ] ,  ENKE [25], QUADE [73],  and QUADE and BOUCFER [74].  For 

an o lder  account of t h e  weapons-acquisition process,  see PECK and SCHERER 

[72]. Overall  discussion of American defense pol icy is  t o  be found i n  HEAD 

and ROW [37]. Information about t he  yearly Planning-Progranrming-Budgeting-

Gyatem (PPBS) Cycle and i t s  evolut ion is  t o  be found i n  ENKE [25] and NOLAN 

1671. STOCKFIBCH [89] has given a pene t ra t ing  ana lys is  of weapon-system 

development and procurement by DoD. Be has postulated flaws t h a t  lead t o  

t h e  m i l i t a r y  bureaucracies operat ing under "perverse incent ives"  i n  t h e  cur- 



r en t  defense system, and he has a l so  made suggeetions for  improving DoD 

mnagememt ("a l s o  STOCKFfSCH [go; 911). For d i e c u e i o n s  of contemporary 

defenee-policy iaeues,  eee varioua publ icat ioua of The Brookinge I n s t i t u t i o n  

( for  example, L A W N C E  and RECORD [52 ] ,  o r  RECORD [77]), Iaauea f o r  the  

f i s c a l  year 1977 a r e  diecussed i n  SCHNEIDER and HOEBER [82].  

Systems Analysis. For v a r i o w  views on the  na ture  of systems ana lye i s ,  Its 

r o l e  i n  defense plarming, and i ts  r e l a t i o n s h i p  to  OR, eee QUADE [73], QUADE 

and BOUCHER [74], RUDWICK [ 8 0 ] ,  and NOLAN [67]. For a c r i t i c a l  d i scuss ion  

of systems ana lys i s  i n  nonmilitary contex:s, see HOOS (431. In f a c t ,  t h e  

study ~f "systems" has become q u i t e  a f i e l d  of study t n  its own r i g h t  (s, 

f o r  example, von BERTALAKPFY [ 6 ] ) .  Unlike the  v a r i e t y  of systems sna lye i s  

pract iced i n  t he  defense coun~~unity (see t he  above references [67: 73-74; 801 

the  brand of systems theory espoused by von BERT- and o thers  of this 

general school of systems ocience (see, moreover, HOOS [ 4 3 ,  pp. 15-41] f o r  

a b r i e f  and penet ra t ing  survey of t h e  d iverse  meanings of t he  word "system" 

as ased i n  many d i f f e r r n t  d i sc ip l ines )  uses  d i f fe ren t ia l -equat ion  models as 

the  bas i c  vehic le  f o r  studying t h e  dynamical behavior of systems. I n  t h i s  

respec t ,  see ( f o r  example) the  work of FORRESTER [3O-32I .  Moreover, 

FORRESTER1s work, in c o n t r a s t  to t h e  work a t  hand, has s t r e s sed  an "experi-

mental" a ~ p r o a c h  t o  understanding system behavior through t h e  repeated 

running of coatinuous-rime aimuSations ( i .e .  numerical i n t eg ra t ion  af  sys-

teme of d i f f e r e n t i a l  equat ions,  Monte Carlo simulation) . This work ha 

not  been without its c r i t i c s ,  though (z,f o r  example, SHUBIK [83], BREWE 

and HALL [14], and BERLINSKI [5  1) . Moreover, t he  analogue i n  t he  defense 

comnunity of FDBRESTeR'e work has been t h a t  of PAUL CHAIKW of t he  Stanfol 

Research I n s t i t u t e  (e,f o r  example, [58 j ) . 



Simulation and CAming. For an ea r ly  general  account of s imulat ion,  eer 
MORGENTHALER [62]. More recent  accounts a r e  contained i n ,  For example, the  

books by NAYLOR, BALINTFY, BURDICK, and CHU [66], EVANS, WALLACE, and SLITHER-

LAND [26], and FISHMAN [29]. ma l a t t e r  book [29] (=a l s o  NAnOR 1651) 

contains  f a i r l y  extensive references t o  t h e  s imulat ion l i t e r a t u r e .  Most of 

this l i t e r a t u r e ,  however, is  i r r e l e v a n t  t o  our cu r r en t  examination of combat 

models and defense planning: a very small  port ion of the  contemporary 

l i t e r a t u r e  on simulation (one exception being the  book by EVANS, WALLACE, 

and SUTHERLAND [26]) considers  the simulation of m i l i t a r y  combat o r  o the r  

m i l i t a r y  operat ions and is  the re fo re  re levant  t o  t h e  ana lys i s  of d e f e n s e  

planning problems. Along these  l i n e s ,  ZIMMEW?'s 1960 a r t i c l e  [I191 i s  

probably s t i l l  the  b e s t  a r t i c l e  ava i lab le  on the  s imulet ion of ground combat. 

Although t h e  l ist  of combat s imulat ions t h a t  we have given above (w,f o r  

example, Footnote 17) is  r a t h e r  sho r t ,  i t  does include most of t h e  p r inc ipa l  

ones t h a t  a r e  being used by DoD today. 

We probably have not  done j u s t i c e  t o  t he  top ic  of gaming. For recent  

general discussions of var ious a spec t s  of gaming, see SHUBIK [84; 851 ( s e e  

a l s o  SHUBIK and BREWER [87] and SHUBIK, BREWER, and SAVAGE [88] ) .  The l a t -  

t e r  book [85] contains  exce l l en t  guides t o  var ious p a r t s  of the  gaming 

l i t e r a t u r e .  For a very readable and informative popular account of war gamir 

s e e  WILSON [116]. We agree, moreover, with SHUBIK and BREWER [86, p. 81-
t h a t  "the amcunt of pub l i c i t y  given free-form, political-diplomatic-military 

games has been enormously disproport ionate  t o  t he  f i n a n c i a l  and i n t e l l e c t u a l  

investments i a  them. Popular accounts a s i d e  (such a s  [116]),  research on 

the  intellecturn1 foundations and uses of t h i s  type of work has been neg l ib l t ?~  

The c l a s s i c  work on " t rad i t iona l"  war gaming is by YOUNG [I181 and contains  

a comprehensive h i s t o r y  of t h e  development of war gaming. For accounts of 

opera t iona l  gaming and i ts  r o l e  i n  m l l i t a r y  operat ions research,  see THOMAS 



and DEEMER [97 ] ,  THOMAS [95; 961, and PAXSON [701. Although eomwhat dated 

the ref  srenceu 195-971 are still  an exce l lent  introduction t o  gaming, probal 

the best  twhnica l  one i n  the mil i tary f i e l d .  A orore recant vsrsion of t h i ~  

material (but not a s  daep or comprehsneive i n  the mil i tary area) is to  ba 

found i n  the book by S W I K  [84 ] .  
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Chapter 2. LANCIIESTER'S CLASSIC COMBAT FORMULATIONS 

2.1 Lanchea&er1a Original  Work. 

1 2In 1914 B. W. LANCHESTER 1551 conaidered h io  now c l a s s i c  mathematical 

formulations of combat betbxien two homogeneous fo rces  in order  t o  quanti-

t a t i v e l y  j u s t i f y  the  prlriple of concen~ra t ion3  under "modem condit ions ." 
When viewed i n  t h i s  l i g h t ,  h i e  simple d i f f e r e n t i a l  equation modalp a r e  

q u i t e  reasonable. With the elegance of e imp l i c i tp  , they convinclrtgly 

show t h a t  concentration 02 forces  i s  much more Important under "maden 

cond i t ims"  than under "ancisat  conditions." 

Ve should, perhaps, be more amzed t h a t  tluch simpxe mocieia y i e l d  

i n t u i t i v e l y  appealing t e g u l t s  than be c r i t i c a l  because s f  the f a c t o r s  

omitted from them (seeWEISS [ 9 8 ,  p. 151). A s  is  usua l ly  t he  case with  

simple a n a l y t i c a l  models (E Section 1 .3  above), they may b e  tno abs t r ac t  

t o  solve any s p e c i f i c  r e a l  opera t iona l  problem. They can, however, 

i l l u s t r a t e  a general p r inc ip l e  such a s  concentrat ion,  c l e a r l y  delineate 

modelling i ssues ,  warn about po ten t i a l  d i f f i c u l t i e s ,  and s e n e  a s  a 

bas i s  f o r  communication among ana lys t s  (E S H U B X  and BREWZR [74, pp. 2-31 

f o r  f u r t h e r  discussion) .  I n  o the r  worde, such simpls a n a l y t i c a l  models 

can provide valuable  i n s i g h t s  i n t o  the  dynamics of combat, although they 

may be f a z  too simple t o  be ab l e  t o  address any s p c c i f i c  opera t ione l  

4

prablem. 

LANCIBSTER's [ 5 5 ]  hypothesis was simply t h e  following. IE "ancient 

tlmas," warfare was e s s e n t i a l l y  a sequence of one-on-one duels5 so t h a t  

t he  casualty-exchange r a t i o  d u r i ~ g  any period of b a t t l e  did n o t  depend 

on the  combat.ar,te' fo rce  leve ls .  But under "modern condit ions,"  however, the  ' 

firepower of weaponn widely separated in f i r i n g  loca t ion  can be concen- 

t r a t e d  on surviving t a rge t8  s o  t h a t  each s i d e ' s  casua l ty  r a t e  i s  proport ional  

52 



- -  - 

t s  t he  number of enemy f i r e r s  an, d t he  casualty-exchange r a t i o  consequently 

dapends invarsa ly  on the  Force r a t i o .  Hence, under modern ( i .0 .  1914) con- 

d i t i o n s  the re  is a d e f i n i t e  advantage t o  be gained from concentrat ion of 

forceo; t h i s  has not  alwayu been t r u e  s i u c e  in anc ien t  times there  was no 

6
euch advantage t o  be usual ly goined from concentrat ion . LANCHESTER 

ratreased thac "modern" technology had r a d i c a l l y  chmurged the fundamental 

na ture  of warfare from wha: i t  was i n  the  pas t .  Xu ancien t  times, weapons 

such as swords and b a t t l e  axes had t o  d i r e c t l y  engage each o the r  so  t h a t  

warfare was e s s e n t i a l l y  a sequence of one-on-one duels .  However, i n  

modern times, t he  long-range de l ivery  c a p a b i l i t y  of contemporary weapons 

allows t h e  concentrat ion of firepower by weapons widely separated i n  

f i r i n g  loca t ion .  Consequently, many weapons may f i r e  a t  a few with 

devastat ing e f f e c t s .  

LANCHESTER's [ 5 5 ]  main  cont r ibu t ion  w a s  t o  t r a n s l a t e  t he  above verba l  

7model i n t o  mathematical terms. Because of t he  r e a l l y  pioneering na ture  

of h i s  work, LAMCHESTER provided much motivation and l o g i c a l  (but no t  

s c t e n t i f i c )  justification f o r  h i s  aimple mathematical developments. He 

65, p.  4221 very i n s i g h t f u l l y  comments t h a t  "the defense of modern times 

i n  ind i r ec t :  t e r s e l y ,  the  enemy is  prevented from k i l l i n g  you by your 

k i l l i n g  him f i r s t  , and the  f igh t ing  is e s s e n t i a l l y  co l l ec t ive .  I' The 

model t h a t  LANCHESTER formulated f o r  combat under modern condit ions re- 

f l e c t s  t h i s  considerat ion.  H e  then used t h i s  model t o  convincingly 

shcw the  advantage from concentration of fo rces ,  i . e .  t he  advantage of 

not  c o d  t t i n g  forces  "piecemeal. " 

Conditions of Ancient Warfare. A s  we have seen above, LANCHESTER -
hypothesized t h a t  ancient  warfare was e s s e n t i a l l y  composed of a s e r i e s  



of one-to-cne d u s h  bezwean men f igh t ing  with weapone such ar sworde, 

b a t t l e  axes,  e t c .  He argued t h a t  i f  two equal-sized forces  composed of 

combatants with equal f i gh t ing  a b i l i t y  were t o  meet i n  b a t t l e ,  then aach 

s i d e  would l o s e  about tha eame number of men. Let us  denote oue s i d e  a s  

the X t o r ce  and the  o ther  as the  Y force.  Then LANCIiESTER reasoned t h a t  

i f  lQOO members of the X f a r ce  and 1000 of the  Y force  meet i n  b a t t l e ,  

i t  l a  of l i t t l e  con.sequence whether, f o r  txample, t he  1000 X meet the 

e n t i r e  Y force: a t  once, o r  he l f  now and the  a the r  ha l f  l a t e r .  LANCHESTER 

reaeoned (imp1,icitiy) t h a t  those who do not have duel opponents would have 

t o  wait i n  l i n e  f o r  the opportunity t o  do b a t t l e  and could not  "gang up" 

on the  enemy. Ir?other  words, .here is no advantage t o  be gained from 

concentration of rstces. 

MCHESTER d i d  not give any equat ions f o r  anc ien t  warfarea, bu t  i t  

is d e a r  from reading h i s  paper t h a t  he had i n  mind a combat a t t s3 . t ion  

grocess f o r  ~ R i c h  the  (instantaneous) casualty-exchange r a t i o  i s  independent 

of the numbers of combatants, i.e. 

where x ( t )  and y ( t )  denote the  numbers of X and Y coiabatants at: 

time t ,  and E denotes t,he couotant exchange r a t i o .  If  w e  denote t he  

i n i t i a l  number of X combatai~tsa t  the beglaning of b a t t i e  a t  t = 0 a s  

xO, l . e .  x(0) = xo, and edmilarly f o r  che Y force ,  then in t eg ra t ion  

of (2.1.1) y i e l d s  ILAMCHESTER's l i n e a r  l a w  

xo - x( t )  = EIyo - y ( t ) }  . (2.1.2) 

The s i g n i f i c a n t  i n s igh t  i n t o  the  dynamics of combat, which the above 

simple a n a l y t i c a l  combat model r ead i ly  y i e lds ,  is t h a t  under ~ u c h  anc ien t  



9 

cosditions of warfare there was no advantage to be gained from concen- 
-
tratfng forces. We can see that this important reault is an immediate 
-
consequence of LANMESTER's linear law (2.1.2) by considering how a aide' e 

casualties depend on the number of his forces initially committed to bat- 


tle . Consider, for simplicity, a fight-to-the-finish in which the X 

force will be annihilated. [In Section 2.10 below, we will consider this 


topic again with more realistic battle-termination conditions after we 


have briefly considered the topic of modelling the battle-termination 


procese.] Let us denote the final force levels at the end of battle with 


the subscript "f," and then xf = 0. Let us also assume that the ex- 

change ratio E is equal to unity, i.e. E = 1, and that X starts 

with 100 men, i.e. xo = 100. Then, we can take different values for 

Y's initial strength, use (2.1.2) to compute xf ,  and determine Y'A 

loss for each different initial commitment of forces. As Table 2.1 shows 


us, we find that Y's loss is aPuays the same (provided that Y wins, 


i.e. Yo -> loo), irrespective of how many men he cornits to battle. Al-

though we have demonstrated this result only for specific numerical values, 


it is true in general (see Section 2.10 below). Thus, there is no ad- 

vantage under conditions of ancient warfare to concentrating forces. 


Modern Condftione Investigated. LANCHESTER hypothesized that under 


"modern conditions," a side's casualty rate would be proportional to the 


number of enemy combatants due to the firepower-delivery capability of 


modern weapons. In mathematical terms, we have 

with x(0) = xo, 

(2.1.3) 


with y(O) = Yo' 



TABLE 2 .1  Numerical Result6 That Illuetrate That Under "Ancient Conditions" 

of Warfarle There Waa No Advantaga to Concentrating Forcee (1.e. 

No Reduction in Own Cisualties From Committing More Men to 


Battle). 

"ANCIENT WARFARE" 

xo - xf = E (yo - yf) 

Set Xf = 0 

Then 


I ' s  foes 100 100 100 100 100 100 

NO ADVANTAGE TO CONCENTRATING FORCES 




where t denotes t he  b a t t l e  time, the  b e e t l e  begins a t  t - 0, and a 

and b a r e  conetants  t h a t  a r e  today ca l led .  LANCHESTER a t t r i t i o n - r a t e  

-.
 These a t t r i t i u n - r a t e  coe f f i c i en t s  represent  the  e f fec t ive-  

ness  of each a i d e ' s  f i r e  (1.e. i ts firepower).  This simple combat ei tua-  

t i on  considered by LANCHESTER is  diagrammatically represented in  Figure 

In  con t r a s t  t o  the  previous s i t u a t i o n  f o r  anc ien t  warfare,  it now 

make8 a tremendous d i f f e r ence  how the  Y force  of 1000 combatants is 

committed aga ins t  t h e  X fo rce  of 1000 combatants. I f  a l l  1000 Y w e t  

the 1000 X of equal  f i g h t i n g  a b i l i t y  (1.e. we assume t h a t  t he  r e l a t i v e  

BLf i r e  e f fec t iveness ,  -b' is equal t o  un i ty ,  namely 8 I), then the  bat- 

t le would be  fought t o  a draw, wi th  both s i d e s  being simultaneously 

annih i la ted .  However, i f  ha l f  t he  Y force ,  i.e. 500 combatants, meets 

t he  e n t i r e  X force,  t h e  r e s u l t  would be t h e  annih i la f ion  of a l l  t h e  

Y forces  committed at a coat  of about 134 c a s u a l t i e s  t o  X. Plo t s  of the d 

of the  force  l e v e l s  axe shown i n  Figure 2.2. If t h e  566 X surv ivors  

now engage t h e  remaining 500 Y ,  t h e  r e s u l t  would again be t h e  ann ih i l a t i on  

of t he  Y combatnats, t h i s  time a t  a cos t  of about 159 add i t i ona l  casual- . 
t i e s  t o  X (E Figure 2.33. Thus, i f  X can d iv ide  the  Y fo rce  and 

concentrate  a l l  h i s  forces  aga ins t  each ha l f  i n  two sequen t i a l  b a t t l e s ,  ther 

en t l . re  Y force  of 1000 men can be annih i la ted  by X with a loas  of only 

293 men. LANCHESTEB 1551 gave t h i s  example and then went on t o  examine 

severa l  o ther  examples of the  "weaknees of a divided force." Thus, we 

see  t h a t  under the  "conditions of modern warfare" ( a t  l e a s t  as modelled 

by (2.1.3)) JULIUS CAESAR'S famous dictum "divide and conquer" has been 

quan t i t a t i ve ly  jue t i f ed  ( a t  l e a s t  i n  a h e u r i s t i c  sense) .  

From equations (2.1.3) w e  may obta in  t h e  instantaneous casualty- 

exchange r a t i o  

5 7 









where: the constant  exchange-ratio coe f f i c i en t  E - a / b  has  been in t ro-  

duced s o  t h a t  we can r ead i ly  compare (2.1.1) and (2.1.4). In tegra t ion  

of (2.1.4) y i e l d s  LANCHESTER'S square l a w  

which (as  we have p a r t i a l l y  seen above) has  the important consequence 

t h a t  a s i d e  can s i g n i f i c a n t l y  reduce its own casua l t i e8  by i n i t i a l l y  com-

mi t t ing  more forces  t o  b a t t l e  (E Table 2.11 and compare with Table 2.1) 

LANCHESTER, however, re f  e r red  t o  the "conditiou f o r  equa l i t y  of 

f i gh t ing  s t rengths lO,  " namely 

a s  the  "square law." It is i n t e r e s t i n g  t o  note t h a t  he d id  not 

deduce (2.1.6) from (2.1.5), l1 but LANCHESTER 

[55, p. 422, column 11 reasoned tha t , two  forcecl are of equal s t r eng th  

when t h e i r  f o r c . . r a t i o  does not change-during the  course of b a t t l e .  For-
example, l e t  an X fo rce  of1OOOcombatants, each armed with an M-16, en-

gage a Y force of 500 men, each armed with a l i g h t  machine gun. I f  

a f t e r  a given time, X dl1 have l o s t  200 men aga ins t  o l o s e  of 100 f o r  

Y,  then the  force  r a t i o  has remained constant  and the  fo rces  may be re- 

garded a s  being of equal s t rength .  Introducing the  force r a t i o ,  u = x/y, 

we f i n d  t h a t  i t  s a t i s f i e s  the  RICCATI equaticti 

Xowith u(0) = uo 
y0 . (2.1.7) 

From (2.1.7) we  s ee  t h a t  the  fo rce  r a t t o  docen't change over time 
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TABLE 2.11 Numerical Results That 1llustrat:e That Under "Modern Conditione" 

of Warfare There Is an Advantage to Concentrating Forces ( i . e .  

Reduction i n  Own Casualtie8 From Committing More Man to 

Battle). 

Set 


Then 

ADVAYTAGE TO CONCENTRATING FORCES 



( i . e .  du/dt  z 0) i f  and only i f  (2.1.6) holds.  It was indeed insighl 

12 
t h a t  LANCHESTER deduced h i s  famous "square law" i n  t h i s  fashion.  

Area-Fire Model. LANCHESTER a l s o  considered the  case  In  which each 

s i d e  f i r e s  i n t o  t h e  general  a r ea  occupied by the  enemy and n o t  a t  par- 

t i c u l a r  t a rge t s .  H e  assumed t h a t  t h i s  a r e a  is independent of t h e  number 

of t a r g e t s  p resen t  in t h e  area. Imp l i c i t  i n  LANCHESTERts development is  

the  assumption t h a t  f i r e  is  uniformly d i s t r i b u t e d  over t h i s  area. I n  

t h i s  case,  LMCHESTER hypothesized t h a t  the  f o l l o w h g  equat ions would 

hold 

with x(0) a xO, 

Again, (2.1.2) is  a consequence of (2.1.8) wi th  E = a/b,  s o  t h a t  i n  

such cases  of a rea- f i re  b a t t l e s  t he re  t~ no p a r t i c u l a r  advantage from 

concentrat ion (again, see Table 2. I )  . 
Fina l  Remarks. The l e v e l  of matbematics is kept a t  a minimum 

i n  LANCHESTERfs o r i g i n a l  paper [ 5 5 ] ,  yet  i f  one c a r e f u l l y  reads t he  paper 

i t  becomes c l e a r  t h a t  LANCHESTER had explored f a i r l y  deeply t he  mathe- 

mat ical  p rope r t i e s  and opera t iona l  implicat ions of his simple models. 

I n  the  next couple of s ec t i ons  w e  w i l l  examine the  p rope r t i e s ,  behavior,  

and opera t ioha l  impl ica t ions  of these c l a s s i c  models. 

2.2. Constant-Coefficient LANCHESTER-Type Equations f o r  Modern Warfare. 

We have seen t h a t  i n  h i s  o r i g i n a l  1914 paper,  LANCHESTER [55 1 

hypothesized tha t  combat between two homogeneous fo rces  under "modern con 

d i t ions"  could be modelled by 
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with x(0)  = xo , 

Even though combat i&a c o q l e x  random process,  such d e t e d n i s t i c  d i f f e r -  

ent ia l-equat ion models a t e  comonly used i n  t he  ana lys io  of mi l i t a ry  

In t h i s  simple combat model, the a t t r i t i o n  r a t e  f o r  eeeh force ,  

e.g. I;-dxldt) f o r  the  X force ,  is assumed to  be proport ional  t o  only 

the! number of enemy f i r e r s .  A s  we have seen above, t he  constants  a and 

h represent  the e f f ec t iveness  of each s ide ' s  f i r e ,  i . e .  its firepower, 

and ore ca l l ed  UNCHESTER a t t r i t i o n - r a t e  coe f f i c i en t s .  In  o the r  words, 

the  a t t r i t i o n - r a t e  coe f f i c i en t  a represents  t he  f i r e  e f fec t iveness  of 

a s ing le  Y f i r e r ,  i . e .  t he  r a t e  a t  which he k i l l s  X t a rge t s .  

This simple combat model is  very s i g n i f i c a n t  because almost a l l  develop- 

ments i n  t he  LANCHESTER theory of combat [ including cur ren t  operat ional  

models such as BONDER/ZUA, BLDM, VECTOR-2, e t c .  (see Sect ion 1.3) 1 may 

in one sense o r  another  be considered t o  take (2.2.1) a s  a point  of 

departure.  In  p a r t i c u l a r ,  much can be learned about developing a n a l y t i c a l  

so lu t ions  and gaining i n s i g h t s  i n t o  the  dynamics of combat by studying 

it.  Consequently, we w i l l  study t h i s  p a r t i c u l a r  model i n  some d e t a i l .  

For convenience, we w i l l  r e f e r  t o  the  equation (2.2.1) a s  LANCHESTER's -
e q u t i o n s  f o r  modern warfare ,I5 although they have been hypothesized t o  

apply under o ther  circumstances. I n  f a c t ,  two sets of physical  circum- 

s tances  under which these equations have been hypothesized t o  apply a re :  

(C1) both s ides  m e  "aimed" f i r e  and ta rge t -acquis i t ion  times a r e  
constant ,  independent of the force l e v e l s  (a s p e c i a l  case of 
which i s  when t a r g e t  acqu i s i t i on  times a r e  negl ig ib le )  [99], 

(C2)  both s:Ldes use "area" f i r e  and a constant dens i ty  defense [15]. 



A more complete discucrsion of these hypothesee is to be found in the 


papers by BRACWEY [15] and WEISS [99] and in Section 2.11 below. 

The above equations (2.2.1) otlly make sense for x,  y 0, since 

negative force levels are physically meaningless. If we coneider the 


physical process of two military forces exchanging fire, then it is clear 


that equations (2.2.1) can only be valid for x, y > 0 and require modi- 

fication for x = 0 or y = 0 .  For example, the first becomes dx/dt = 0 

for x = 0. To be more precise, we should write LANCHESTER's classic 

model of modern warfare as 

for x > 0 , 

for x = 0 , 

for y > 0 , 

0 for y = 0 . 

To avoid inessential complications, however, we will not do so with the 


understanding that when we write the differential equations for some model 


like (2.2.1), we implicitly imply that the equations are "turned off" when, 


for example, one side or the other is annihilated. The reader should also 


observe from (2.2.2) that a LANCHESTER-type differential-equation combat model 


need not always have the same "right-hand sides." 


The next aspect to conuider is to determine what we can learn from 


LANCHESTER's model of'modern warfare about the dynamics of combat between 


two homogeneous forces. In particular, one is interested in answering 


such ques tions16 as : 

(Q1) Who will "win"? Be annihilated? 

(42) What force ratio is required to guarantee victory? 




(43) How many eurvivors w i l l  t,he winner have? 

(Q4) Hov long w i l l  the  b a t t l e  l a s t ?  

(Q5) How do the fo rce  l e v e l s  change over time? 

(96) How do changes i n  parameters [ i . e .  i n i t i a l  force  l e v e l s ,  x and yo, 
and a t t r i  t ion-rate  coef f i c i r n t a ,  a and b ]  a f f e c t  the out~ome 
of b a t t l e ?  

(47) Is concentrat ion of forces  a good t a c t i c ?  

In the remainder of t h i s  s ec t ion  we w i l l  consider answering the  above 

questions.  

The two bas ic  vehiePes f o r  answering t h e  above quest ions a r e  (1) the  

s t a t e  equation, and (2) t he  -X(0t.Y) force  l e v e l  a s  a funct ion of time. Additional- 

l y ,  we w i l l  s e e  t h a t  w e  can a l s o  determine who w i l l  be annih i la ted  from t h e  

f orce-rat io  equation and obta in  fu r the r  i n s i g h t s  i n t o  the  dynamics of combat. 

A s t a t e  equation is  an equation s a t i s f i e d  by the  s t a t e  var iab les .  

S5nce time t is  not  a s t a t e  va r i ab l e ,  the s t a t e  equation f o r  combat between 

two homogeneous forces  takes the general form 

where x and y denote the  force  l e v e l s  of X and Y ,  r espec t ive ly .  

To obta in  the  s t a t e  equation f o r  the combat model (2.2.1) , w e  d iv ide  the  

f i r s t  equation by t h e  second t o  obta in  the  i n s t a n t a n e ~ u s  (or  d i f f e r e n t i a l )  

casualty-exchange r a t i o  

Separating var iab les  and in t eg ra t ing ,  we obta in  the s t a t e  equation f o r  

LANCHESTER's model of modern warfare  



X 

We w i l l  a l s o  r e f e r  t o  (2.2,5) a s  LANCHESTER's square Paw. 

Let us now see how w e  may use t h e  above state equat ion t o  ob ta in  t he  

force  l e v e l  a s  a func t ion  of t i m e ,  denoted au x ( t ) ,  f o r  combat modelled 

by (2.2.1). Solving f o r  x and s u b s t i t u t i n g  i n t o  t h e  f i r a t  d i f f e r e n t i a l  

equat ion of (2.2.1) , w e  ob ta in  

a=-& w i t h i n i t i a l c o n d i t i o n  x ( r - 0 ) - x o ,  (2.2.6)d-r 

2where = t and k = (a/b)yo2 - xo. Separat ing v a r i a b l e s  and in to-

g ra t i ng ,  w e  f i nd  t h a t  

Raising e t o  t h e  power of each s i d e  of (2.2.7), w e  ob t a in  t he  X fo rce  

l e v e l  x ( t )  a f t e r  some a lgeb ra i c  manipulation 

I n  terme o f  t he  so-called hyperbolic funct ions (wAppenddx A.l) ,  w e  may 

w r i t e  t he  X fo r ce  l e v e l s  a s  

x ( t )  xO cosh 6 t - yo& a inh  & t (2.2.9) 

For t he  genera l  case  of time-dependent a t t r i t i o n - r a t e  coef f i c i a n t s  ,17 

there  is no s t a t e  equat ion of.the form S(x,y) 0. With t h i s  f a c t  i n  mind, 



l e e  us seek another method t h a t  d ~ e s  not depend on using such a s t a t e  

equation to  develop the X force  Level. We m y  d i f f e r e n t i a t e  the f i r s t  

equation of (2.2.1) with respect  t o  t and combine the r e s u l t  with the 

second equation t o  obta in  a second order  l i n e a r  ordinary d i f f e r e n t i a l  

equacion t h a t  contains  only the  X force  l e v e l  

dLx- - abx = 0 , 
d t 2  

with i n i t i a l  condi t ions 

and 

We w i l l  c a l l  (2.2.10) the X force- level  equation. Using s tandard so lu t ion  

methods (9Appendix A .  2 ) ,  w e  again obta in  (2.2.8) [or ,  equivalent ly,  

(2.2.9)] f o r  the  X fo rce  leve l .  Again, t h i s  so lu t ion  approach of develop- 

ing an  X force-level equation is s i g n i f i c a n t  because it genera l izes  t o  

cases of v a r i a b l e  coe f f i c i en t s ,  whereas the  approach based on the s t a t e  

equation i n  general does no t ,  

I n  Figures 2.4 and 2.5 is p lo t ted  the decay of t he  X and Y force  

l eve l s .  For convenience, we record these r e s u l t s  here ssl8 

yoisr ( t )  = ro c o s h a  t - s inh  6 t , 

and 

The force l e v e l s  a r e  most conveniently expressed i n  terms of the hyperbolic 

funct ions when pargmetric s t u d i e s  a r e  desired.  We w i l l  gee below t h a t  repre- 

s en ta t ion  of the force  l e v e l s  i n  t e r m  of the exponential  funct ions provides 

c e r t a i n  important i n s igh t s .  In  Figure 2.4 t he  smaller  force  i s  eeen t o  be 

annih i la ted ,  whereas I n  Figure 2.5 the l a r g e r  force  is annih i la ted .  In 

both cases,  we have "etopped" the  b a t t l e  a s  soon a s  one s i d e  o r  the o the r  
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Figure 2.4. Force-level trajectories of X and Y forces for combat 


modelled by LANCHESTER's equations of modern warfare. For 


these calculationa, a = 0.04 X casualties/(minute=number of 

Y combatants) and b = 0.04 Y casuirlties/(minute'number of 

X combatants). 
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Figure 2.5. Force-level trajectories of X and Y force8 for combat 


modelled by ~ C l ! E S T E R ' s  equations of modern warfare.. For 

these calculations, a = Q. 01 X casual ties/ (minute-number of 

Y combatants) and b = 0.1 Y caeualties/(minutewnumber of 

X combatants). 
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I 

hae been annihilated, i,e. we have not computed the force levels past the 

time at which one side is firat annihilated. 


To more clearly exhibit the parametric dependence of the force- 


level trajectors, we normalize the force level by considering the fraction 


of the initial strength x(e)/x0 given by 

cosh a t - Yg&a= sinh a f . 
X~ Xo 

From (2.2.12) we see that the X Corce level depends on the following three 


quantities (although the model (2.2.1) contains the four independent 


parameters, a, b, xo and y o ) :  

(1) initial force ratio, uo = xO/yO, 

(2) intensity of combat, I -a, 
(3)  relative fire effectiveness, R = a / b .  

We observe that uo and R are relative quantities (without units), whereas 


is an absolute quantity. It is the so-called geometric mean of the attri- 


tion-rate coefficients. It seems appropriate to call I = Ja' the intemity 

of combat, since the course of combat for the model (2.2.1) more quickly 


reaches its conclusion the larger that 1 is. In other words, I controls 


the time scale of battle. 


To determine who will "win" the battle, one munt specify battle- 


termination conditions, with "victory" conditions also being given for each 


side. In other words, one must have a model for the battle-termination 


process. The simplest, but albeit somewhat unrealistic in the light 


of historical evidence, model of battle termination is to consider that each side 


fights until it is annihilated. Let us assume that this is true. 


We will consider a more realistic model below in Section 2.8. 




Thus, we consider a "f~ght-to-the-fi~lish," which can have three 


possible outcomes: 


(XW) X wius with xf > 0 and yf O , 

(YW) Y wins with yf > 0 and xf - 0, 

(D) draw with xf yf 0 , 

where xf denotes the final X force level and similarly for yf. For 

any particular battle (i.e. for particular specified values of the attrition- 


rate coefficients a and b a ~ d 
the initial force levels xo and yo) we 

can always plot the decay of the force levels x(t) and y(t) versus time t 


and consequently determine who will be annihilated and who will win the 


fight-to-the-finish (see Figures 2.4 and 2.5) . ' his is, however, a time-consumir -- . 

procedure, and doesn't provide any deep understanding of the dynamics of 


combat, i.e. how weapon-system capabilities (as quantified by the attrition- 


rate coefficients a and b) and the initial force levels xo and yo 

determine the outcome of battle. However, it is of considerable interest 


to determine force-annihilation-prediction conditions, i.e. conditions that 


allow US to datennine battle outcome (hers, force annihilation) without 


having to spend the time and effort of explicitly computing force-level 


trajectories. Let us, therefore, now determine conditions that are necessary 


and sufficient for Y to win a fight-to-the-finish in finite time, i-e. X 


be annihilated in finite time. 'Thereare. several ways in which we can do 

this. Here we will only consider the easiest way, with a more in depth 


examination being given in the next section. 


' 

Probably the easiest way to determine f orce-annihilation-prediction 

conditions is to consider the X and Y force levels expressed in terms 


of the exponential func tions, namely 




0 

and 

We observe t h a t  the second term i n  brackets  f o r  both x ( t )  and y ( t )  is  

always pos i t ive ,  s i n c e  t h e  negat ive exponential  funct ion is always positivc 

It is s t r i c t l y  decreasing a s  a funct ion of t and becomes neg l ig ib l e  f o r  

l a rge  t. Thus, both x ( t )  and y ( t )  > 0 and l i m t + + o o x ( t )  l i m t  + d ( l  

i f  and only i f  xO/yO= a.I n  o ther  words, w e  have a draw when 

(and only when) xO/yO= m. Furthermore, y ( t )  > 0 f o r  a l l  t 2 0 and 

l i m t + + j ( t )  > 0 i f  and only i f  the  f i r s t  term i n  brackets  f o r  (2.2.14) i r  

pos i t i ve ,  1.e. the c o e f f i c i e n t  of the  increasing exponential  i n  (2.2.14) i s  

pos i t i ve .  This i s  equivalent  t o  xg/yg < m. In  t h i s  ca re  (1.e. 

X o / ~ o< m) the f i r s t  term i n  brackets  af (2.2.13) f o r  x ( t )  is negativ 

and decreases without bound as t -+ + -. Hence, a t  some point  i n  time 

x Y1 0 when the  two terms i n  brackets  j u s t  cancel  out .  Thus, we have shown 

PROPOSITION 2.2.1: Y w i l l  win a fight-to-the-finish i n  f i n i t e  

time i f  and only i f  xO/yO < a. 

Proposi t ion 2.2.1 is p a r t i c u l a r l y  s i g n i f i c a n t  because i t  shows us 

t h a t  the outcome of b a t t l e  (here,  the  ann ih i l a t i on  of one s ide )  is determin 

by only two r e l a t i v e  f a c t o r s  (namely: (I) the i n i t i a l  force  r a t i o  uo 
= x0/yO, and (11) r e l a t i v e  f i r e  e f fec t iveness ,  R = a /b)  and not  absolute  



quan t i t i e s .  Thus, even though the model (2.2.1) contains  the four  inde- 

pendent parameters, i t  is  the  only two r e l a t i v e  q u a n t i t i e s  uo and R 

t ha t  determine fo rce  annih i la t ion .  It is a l s o  very important f o r  u s  t o  

point out  t h a t  (except f o r  the  so-called quasi-autonomoue case i n  which 

a ( t ) / b ( t )  i s  constant)  although LANCHESTER'S square law i n  the  form (2.2.5) 

does not  general ize t o  cases of time-dependent a t t r i t i o n - r a t e  coe f f i c i en t s ,  

the  force-annihilation-predicti.on condit ion of Proposi t ion 2.2.1 does 

general ize t o  such cases.  

Rewriting (2.2.14) a s  

we c l e a r l y  s ee  from (2.2.13) and (2.2.15) t h a t  at most one of X and Y 

can ever be annih i la ted  I n  f i n i t e  t i m e  ( i . e .  a t  most one of x ( t )  and 

y ( t )  can ever be dr iven t o  zero i n  f i n i t e  time). h i s  is an  important 

property of t h e  modal (2.2.1), s i n c e  i t  allows us t o  consider  only 

one of x ( t )  and y ( t 1  i n  order t o  determine fo rce  a m i h i l a t i o n  f o r  both 

Xcombatants. In  o ther  words, i f  x ( ta )  - 0 with tz > 0 and f i n i t e ,  then 

we know tha t  y ( t )  > 0 f o r  a l l  t 2 0. Thus, i f  we can compute the  time 

f o r  X t o  be annih i la ted ,  we know t h a t  y ( t )  w i l l  always be grea te r  than 

zero. I n  more mathematical terminology, equivalent ly,  we have shown t h a t  

t he  X force-level equat ion (2.2.10) possesses a nonosc i l l i a tory  so lu t ion  

x ( t ) ,  i . e .  x ( t )  has a t  most one zero f o r  t E (0,  + a). Furthermore, 

the  same is t rue  f o r  (dxldt)  ( t ) .  

I n  view of t he  importance of t he  f a c t  t h a t  a t  most one of x ( t )  

and y ( t )  is ever equal t o  zero, l e t  us deduce t h i s  property of t he  



force  leveJ. t ra jec tor ie i r  from the  bas i c  d i f f e r e n t i a l  equations themselves 

F i r s t ,  a few h e u r i s t i c s .  Looking a t  the f i r s t  equation of (2.2.1). we 

see  t h a t  i f  y ( t )  becomes negat ive,  then x ( t )  begins t o  increase.  

Thus, i t  i s  i n t u i t i v e l y  obvious t h a t  i f  y ( t )  goes t o  zero and then 

becomes negat ive,  t he  corresponding p l o t  of x ( t )  versus t w i l l  have r 

pos i t i ve  minimum corresponding t o  t he  time ta a t  which y ( t )  = 0. his 

s i t u a t i o n  is shown i n  Figure 2.6. Thus, i f  we forge t  t o  ''turn o f f "  

equations (2.2.1) a t  tY ( i .e .  don ' t  use (2.2.2)),  then the  X 
a 

Y
force  l e v e l  w i l l  a c t u a l l y  increase  a s  time t increases  when t > ta. 

Let us  now give  an a n a l y t i c a l  demonstration of t he  f a c t  t h a t  a l l  

the so lu t ions  t o  (2.2.1) are nanosc i l la tory  (see -HILLE [38, p. 37311, i.1 

a t  most one s f  x ( t )  and y ( t )  can vanish i n  f i n i t e  time. Multiplying 

the  f i r s t  equation of (2.2.1) by y, the second by x, adding, and 

in t eg ra t ing  the r e s u l t  between 0 and t ,  we obta in  

It is impossible f o r  both x ( t )  and y ( t )  t o  be equal t o  zero a t  

any f i n i t e  time, s ince  then they would have t o  be equal t o  zero f o r  

t 2 2
a l l  time. l9 Hence, the  i n t e g r a l  term ( i . a .  1 {ay ( s )  i bx (s)}ds)  

0 
is s t r i c t l y  increasing and pos i t i ve  fo r  t > 0. Since xOyO> 0,  i t  

follows t h a t  x ( t )  y ( t )  has a t  most one f i n i t e  zero f o r  t 2 0 .  Thus, 

w e  have deduced the des i red  property,  which w e  record here a s  

Proposi t ion 2.2.2. 

PROPOSITION 2.2.2: For t h e  model (2,2.1),  a t  most one of the  

two force  l e v e l s  x ( t )  and y ( t )  can ever vanish i n  f i n i t e  time. 
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Figure 2.6. Force-level trajectories for combat modelled by the 


differential equations (2.2.1). The dashed lines 


extend the X and Y force levels computed by (2.2.13) 


and (2.2.14) past ta. The valuee of a and b are 


the same as for Figure 2.5. 




Since t he  force-annihi la t ion-predict ion cmdic fon  contained i n  

Proposi t ion 2.2.1 involves  t he  i r d t i a l  fo rce  r a t i o  and not  a fo rce  level  

we a r e  motivated t o  consider the  fo rce  r a t i o  and ask what happens t o  i t  

over the  course of b a t t l e .  Furthermore, many aggregated combat w d e l s  

(such a s  ATLAS) have both casua l ty  r a t e s  and a l s o  FEBA movement depend 

on the  force  r a t i o  (of firepower ind ices  o r  t h e i r  equiva len t ) .  I n  order  

t o  determine how t h e  force  r a t i o  changes over time, w e  seek a d i f f e r e n t i  

equation fo r  i t .  Introducing the  force  r a t i o  u = x/y, we consequently 

consider Rn u = Iln x - Rn y and d i f f e r e n t i a t e  with respec t  t o  t i m e  t o  

Using the d i f f e r e n t i a l  equat ions (2.2.1), w e  f i nd  t h a t  f o r  the  combat 

dynamics of (2.2.1) the  force  r a t i o  u = x/y ~ a t i s f i e st h e  following 

R lcca t i  equat ion (see Appendix A.3) 

with ~ ( 0 )  uo - x ~ / Y ~ -

Although we could s epa ra t e  v a r i a b l e s  in ( 2 . 2 J 7 )  and i n t e g r a t e  

(-see INCE [41, pp. 311-3121) t o  ob t a in  20 

the  .main uee of t h e  force- ra t to  ea- (2.2.17) i s  not  t o  so lve  exp l i c l  

f o r  u ( t )  but  t o  ob ta in  q u a l i t a t i v e  information about t h e - s o l u t i o n  u ( t )  

For a f ight- to- the-f inish,  we observe t h a t  (a) X wins a t  t = T when 

u(T) = + -, and (b) Y wins when u(T) = 0. Thus, i t  seems appropr ia te  



t o  say t h a t  " the course of  b a t t l e  is moving towarda a Y vic tory"  when 

du/dt  < 0 (or ,  eimply, t h a t  "Y is  winning"). Moreover, du /d t  < 0 i f  

and only i f  

Let us now examine the  q u a l i t a t i v e  behavior of t he  fo rce  r a t i o  over 

time a s  determined by the  force- ra t io  equat ion (2.2.17). We w i l l  s ee  t h a t  

we need not  solve (2.2.171, i.e. consider  (2.2.181, i n  order  t o  qua l i -  

t a t i v e l y  determine how u ( t )  changes over t i m e .  It seem appropr ia te  

t o  c a l l  du/dt t h e  force- ra t io  ve loc i ty .  For convenience w e  consider  t h a t  

(2.2.17) holds f o r  -= -< u 2 + -. Let us now examine how t h e  force- ra t io  

ve loc i ty  du/dt depends on t h e  force  r a t i o  u.  For such an examination 

w e  hold t constant  and consider du/dt  t o  be a funct ion of only u, 

denoted a s  du/dt(u) . We def ine  u+, = and u- = - It folLovs 

from (2.2.17) t h a t  du/dt(u)  < 0 f o r  u < u < u+* The minimum of -
du/dt(u) occurs a t  umin = 0 ,  and we have du/dt(umin) = -a < 0.  

Usually, however, we w i l l  l e t  t vary, and then du/dt may be  considered 

t o  be a func t ion  of t ,  denoted as d u / d t l r ) ,  s i nce  t h e  dependent va r i -  

ab l e  u depends on t .  

I n  Figure 2.7 the  force- ra t io  ve loc i ty  du/dt  i s  p l o t t e d  aga ins t  

the  fo rce  r a t i o  u. It should be r eca l l ed  t h a t  a negat ive force- ra t io  

ve loc i ty  has  t h e  i n t e r p r e t a t i o n  t h a t  Y is  "winning" t he  b a t t l e  (2.2.1). 

Also shown by means of arrows drawn along t h e  u a x i s  i n  Figure 2.7 i s  the  

d i r e c t i o n  of movement of t he  force  r a t i o ,  with t h e  l eng th  of t h e  arrow 

r e f l e c t i n g  t h e  magnitude of  the  force- ra t io  ve loc i ty .  From Figure 2.7 

it is c l e a r  t h a t  i f  du /d t  ( t  = 0 )  < 0, then u ( t )  decreases and du /d t ( t )  

becomes more negat ive (as  long a s  u 2 0 ) .  Thus, w e  have proved 



Flgure 2.7. Force-ratio velocity as a function of the force 


ratic for combat modelled by LANCHESTERfs 

equations of modern warfare. 




PXOPOSITION 2.2.3: Lf du/dt(t - 0) 0, then du/dt(t) < 0 
--.---I-

for a31 t 0. If u -> 0, then dzl/dt(t) (du/dt(t - 0) < 0. 

Thus, if uo .; m,the force-ratio always will decrease during the 
course of battle; it will always increase if u . For the 

constant-coefficlcnt: model of "modern varfare" (2.2.1), we see from 

(2.2.17) that if xO/yO - m,then the force ratio remains constant 

during tho course of battle although the force levels exponentially declhe. 


We state this result as Proposition 2.2.4. 

PROPOSITION 2.2.4: If du/dt(t = 0) O (i.e. x / y  = &/b), than 
0 0 


the force ratio remains constant during the coursc of battle (i.e. 


u(t) - x(t)/y(t) = a),althwgh the force levels exponentially 

decrease, i.e. x(t) = xo exp(-fi t) and y(t) - yo exp(-& t) . 

We observe that such force-level behavior only holds for a constant- 


cod ficient 21 model. 


Let us now show how the force-annihilation-prediction condition of 


Proposition 2.2.1 may be deduced from the force-ratio equation (2.2.17). 

This result is particularly significant because it generalizes to certain 


cases of time-dependent attrition-rate coefficients and yields simple 


' force-annihilation-prediction results that do not involve any higher 


transcendeataZ functions. We observe that du/dt(t - 3) < 0 if and only 

if xO/yO < m. Thus, by Propositio.~ 2.2.3 u(t) is strictly decreasing. 

It remains to show that u(t) beccmes zero in finite time. We readily 


show this by considertng for u 1 0  




t h e  last i n e q u a l i t y  holding by Propoe i t ion  2.2.3. Hence, u ( t j  + 0 

in  f i n i t e  time, s i n c e  du/dt(O) < 0. 

We a r e  now i n  a p o s i t i o n  t o  e a s i l y  answer t h e  q u e s t i o n  of how 

long t h e  b a t t l e  w i l l  last .  Again, t h e  r e s u l t s  g iven here w i l l  be l i m i t e d  

t o  a f igh t - to - the - f in i sh .  By p r o p o s i t i o n  2.2.1 w e  know t h a t  X w i l l  be  

a n n i h i l a t e d  i f  and on ly  i f  xO/yO < m. The t i m e  a t  which X is 

a n n i h i l a t e d ,  denoted a s  t:, may be determined from Xx( ta )  = 0. I n  t h i s  

de te rmina t ion  w e  may express  t h e  X f o r c e  l e v e l  i n  terns of e i t h e r  t h e  

exponen t ia l  f u n c t i o n s  [see equa t ion  (2.2.8)]  or t h e  hyperbo l ic  f u n c t i o n s  

s e e  equat ion (2.2.911. Thus, w e  have1-

o r ,  e q u i v a l e n t l y ,  

The number of s u r v i v o r s  f o r  t h e  winner ( h e r e  Y) of t h i s  f ight- to- the-  

f i n i s h  map be determined by s u b s t i t u t i n g  t h e  a n n i h i l a t i o n  time tt given 

by (2.2.20) i n t o  (2.2.14). Doing t h i s ,  we o b t a i n  f o r  t h e  f r a c t i o n a l  

s u r v i v o r s  

X

t -where yf denotes  t h e  f i n a l  Y f o r c e  l e v e l  a t  t .  1 4  a l s o  could 

have deduced (2.2.22) from LANCHESTER1s square  law (2.2.5) (1 .e .  t h e  s tat? 

equa t ion  f o r  'LANCHESTER1s model cf modern war fa re )  by s e t t i n g  x ( t )  = x f =  0 

and y ( t )  y f .  We observe t h a t  t h e  s t a t e  equa t ion  (2.2.5) i s  u s e f u l  f o r  I 

such de te rmina t ions  only  when w e  alread"] know one of t h e  f o r c e  l e v e l s .  
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In general, for x, y 2 0 we have 

The principal results that  we have developed above are summarized 

.in Table 2.111. 



TABLE 2.111. Summary of Principal Results for LANCHESTER'e Model 


of Modern Warfare 


LANCHESTER's Equations for Modern Warfare 


with x(0) - xo 

dx
Differential Casualty-Exchange Ratio, -: d x . ~  
dy dy bx 


2 2
State Equation: a{yo - y 
2

( c ) }  = b{xo - x 
2 
(t)} 

Differential Equation Satisfied by the X Force Level: 

d2x
-- abx = 02dt 


with initial conditions 


x(0) a xo and 


X Force Level: 


Differential Equation Satisfied by the Force Ratio, u = z: 
Y 


Force-Annihilation-Prediction Condition_: X will be annihilated in 


finite time if and only if xO/yO < m. 



*2.3. AFurthrr Look at Predicting Force Annihilation. 


It is important for the military operations analyst to have a clear 


understanding of how force-level and weapon-system-performance factors 


interact to determine the outcome of battle. Victory-prediction condi- 


tions (i.e. conditlons that predict the outcome of battle without re- 


quiring the expenditure of time and effort to explicitly compute the 


force-level trajectoriee) provide important insights Into the dynamics 


of combat by explicitly relating the initial force ratio and weapon-


system capabilities to the outcome sf battle. Consequently, we will 

examine In greater depth here the development of force-annihilation- 


prediction conditions for LANCHESTER'a (constant-coefficient) equations 


for modern warfare (2.2.13. Our reasons for doing this are twofold: 


( R l )  to extend such victory-prediction conditions to ~ther 

models [particularly the variable-coefficient version of 

(2.2-11 I, 

(R2) to develop other types of outcome-prediction conditions 

[e.g. victory-prediction conditions for a fixed-force- 

level-breakpoint battle (sSection 2.8 below)]. 
In other words, examining the various approaches for developing force- 


annihilation-prediction conditions provides us with important clues for 


extending such conditions to other cases of interest. 


In Table 2.IV we list the s i x  different approaches for developing 

force-annihilation- prediction conditions. For the combat: model (2.2.1) , 

the force-annihilation-prediction condition is given by Proposition 2.2.1 


*Starred sections are not required for the understanding of the sequel an( 


shou1.d be omitted at first reading. They usually require more mathe-


matical sophistication to be understood. 
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which we restate here for convenience. 


PROPOSITION 2.3.1 : Y will win a fight-to-the-f inlsh in finite 
X 

time if and only if 


The list given in Table 2.IV is exhaustive, i.e. we do not know of any 


other way to develop conditions that predict force annihilation. Moreover, 

it is approach (3b), determining the time to annihilation with the farce 


levels represented in  terms of the hyperbolic functions, that provides a 

computational means for determining force-annihilation-prediction condi- 


tions for the general case of time-dependent attrition-rate coefficients 


for the model (2.2.1). All the other approaches are not capable of being 


generalized to such cases of variable coeificimts. 


In all but the next to last approach ( 4 ) ,  manipulation of the 

state equation (2.2.5) , we will ultimately discover the nonoecillation 

of all solutions to (2.2.1), i.e. at most one of the force levels x(t) 


and y(t) can ever become zero (E Proposition 2.2.2). Since its 

proof does not depend on force-annihilation determination, let us assume 


that this important property of all solutions to (2'2.1) has been establiahe, 


Knowledge of the existence of the nonoscillation property 


simplifies the development of force-annihilation-prediction 


conditions. Let us note, however, that this impartant nonoscillation 


property no longer generally holds when continuous replacerllents and/or 


withdrawals are added to the model (2 "2 .l) . 
Sjsce approaches (1) and (2) of Table 2.IV have been considered 


in Section 2.2 above, we wikl not consider them furcher here except for 


making a few additional comments. First, we observe that analysis of the 




TABLE 2 ,  I V  Approacheei for Develophg Force-Annihilation-Prediction 

Cmditions 

THESE APPROACHES ARE TO CONSIDER: 

(1) X force l eve l  represented i n  terms of exponential functions 

(2) force-ratio equation 

(3) time to annihilation with force l eve l s  represented i n  

terms of 

(a) exponential functions 
.. . 

(b) hyperbolic functione 

(4) s tate  equation 

(5) HJ%MB0LD1s monotonicity condition (Method B of Section 3.3) 



force-rat io  equation (2.2 .l6) (sFigure 2,5) leads  t o  another  proof 

of the  n o n o s c ~ l l a t i o n  of a l l  so lu t ions  t o  (2.2.1). Secondly, 

by both approaches (1) and (21, we readi ly  e s t a b l i s h  t h a t  an-

n i h i l a t i o n  occurs i n  f i n i t e  time (except f o r  the  case of a draw). 

Approsch (3a) cons is to  of considering the X force  l e v e l  expressed 

In t e rns  of the exponential  funct ions [ ~ E Sequation (2.2.8) ] and solving 

f o r  the time f o r  the  X fo rce  to  be annih i la ted ,  denoted aa tt, a e  

X

determined by the  equation ~ ( t , )  - 0. Consequently, w e  f ind  t h a t  

I n  order  f o r  tz t o  be w e l l  defined and pos i t i ve ,  the  argument of the  

l q a r i r h m  must be g rea t e r  than one (but f i n i t e ) ,  and hence xO/yO > a i b  

i n  order  f o r  X t o  be annih i la ted .  By the  nonosc i l la t ion  of all so lu t ions  

t o  (2.2.1) ( i . e .  Proposi t ion 2.2.2), we know t h a t  y ( t )  > 0 f o r  a l l  

X 

t 2 0 i f  there  e x i s t s  a f i n i t e  $ such t h a t  x(t,) = 0 ,  whence fo l -  

lows Proposi t ion 2.3.1. We a l s o  observe t h a t  the  nonoeci l la t ion  of a l l  

so lu t ions  t o  (2.2.1) may a l s o  be proven by observing t h a t  

and comparing t h i s  r e s u l t  with (2.3.1) . 
Approach (3b) cons i s t s  of considering the  X force  l e v e l  expressed 

i n  terms of the  hyperbolic funct ions [seeequation (2.2.8) 1 and again de- 

X X

termining ta from x(t,) - 0. Hence, 

Proposition 2.3.1 follows by observing t h a t  the  hyperbolic tangent ,  i . e .  
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tanh 5 ,  is a strictly increasing function with range [0,1] corresponding 

to ( E [ O ,  + m ] .  It is this property of the hyperbolic tangent that may be 

generalized to cases of time-dependent attrition-rate coefficients in orde: 


to develop the sought force-annihilation-prediction conditions. 


Approach (4) consisto of considering the state equation (2.2.5) 

and setting x xf = 0 and y = yf > 0 to obtain 

which means that we must hove xO/yO < a in order that X will be 

annihilated. Thus, we have shown that x /y < is a necessary 0 0 

condition for the X force to be annihilated. However, to show that 


this condition is also sufficient is much more difficult. Elren if we 


assume that Proposition 2.2.2 has been proven, it is still not a trlvial 


task to show that the condition xO/yO ' a is sufficient to guarantee 

that X will be annihilated (and much less that it will occur in finite 

time). The difficulty is that we have not shown that there must be one 


(and only one) zero for x(t) and y(t) in finite time if xO/y0 f a. 
To prove the latter proposition, however, one uses an approach that is 


essentially equivalent to proving Proposition 2.2.1 by apprach (1) of 


Table 2.IV. Thus, we reach the conclusion that although the state-equatior 


approach to developing force-annihilation-prediction conditions yields the 


shplest way of guessing the desired conditions, this approach is totally 


unsatisfactory for proving that the condition is indeed sufficient to 


guarantee the occurrence of force annihilation in finite time (even for the 


simple constant-coefficient model (2.2.1)). 


Approach (5) cmsists of showing that one force level may be express 




as  a s t r i c t l y  increas ing  funct ion of the  o the r  one. This monotonicity 

condition is usua l ly  developed, however, by using the  s t a t e  equatian. 

The des i red  force-annihi la t ion condit ion may then be r e a d i l y  deduced from 

re la t ionship ,  but  we w i l l  defer  f u r t h e r  d i scuss ion  of t h i s  approach, which 

apparent ly due t o  HELMEOLD [37], u n t i l  the next  chapter  (seeSect ion 3.3).  

Let us conclude t h i s  s ec t ion  by showing t h a t  f o r  the  combat model 

(2.2.1) t he re  must be exac t ly  --one zero f o r  x ( t )  and y ( t )  i n  f i n i t e  

time i f  xO/yO# m. A s  i n  t h e  proof of Proposi t ion 2.2.2, l e t  u s  mu l t i  

ply the  f i r s t  equation of (2.2.1) by y ,  the  second by x,  and add t o  obta  

S imi la r ly  from (2.2.1) we a l s o  f ind  t h a t  

Thus, the system of d i f f e r e n t i a l  equations (2.2.1) is equivalent  t o  

2where n * xy and u = ay + bx2. It follows t h a t  the  product a f  the 

force l e v e l s  n e a t i e f i e s  the following d i f f e r e n t i a l  equation 

with i n i t i a l  condi t ions 

2and (0) = - (ay: + bxo) .
d t  



Solving (2.3.7) we f ind  tha t  

whence it i s  obvious tha t  r(0) > 0 but n( t )  must besom negative ae  

c + + a i f  %/yo + . Thuai, we have proved the amor t ion  tha t  there 

is exactly one f i n i t e  zero for x ( t )  and y ( t )  . L e t  ue note, however, 

tha t  eolving (2.3.7) in terms of exponential functions is eseen t i a l ly  

equivalent t o  developing (2.2.$), whence our comment tha t  ahowing t h a t  

<
X ~ ' y ~  

is euff ic ient  t o  guarantee force anafhi la t ion  in f i n i t e  

time by uaing the  state-arquation approach (i.e. approach (4) of Table 2 .IV) 

is equivalent t o  proving Proposition 2.3.1 by approach (1) of Table 2.IV. 

Let us f i n a l l y  note that  from (2.3,6) we may similarly deduce tha t  

d 2- (02 - 4abn ) - 0 , (2.3.8)
d t  

which is equivalent t o  the s t a t e  equation (2.2.5). 



2.4. Constant-Coefficient LUCHESTER-Type Equations-for Area Fire. 


WINCHESTER [55] also hypothesized that under "conditions of long-


range fire with fire concentratsd on a certain area,'' combat between two 


homogeneous forces could be modelled by 


where a and b are again called LANCHESTER attrition-rate coefficients, 


This time, however, such an attrition-rate coefficient represents both the 


effectiveness of a side's fire and also the vulnerability of enemy targets 


to taat fire. Thus, the a's and b's (i.e. the LANCHESTER attrition rate 


coefficients) are different in equations (2.2.1) and (2.4.1) and may be 


related to different physical quantities (seeChapter 5). For simplicity, 

however, we have chosen to denote, for example, "X's attrition-rate coef- 


ficient" as b in both (2.2.1) and (2.4.1) , and we caution the reader that 

b therefore has a different meaning in these two equations. 


In this simple combat model (2.4.11, the attrition rate for each 


force, e.g. (-dx/dt) for the X force, is assumed to be proportional to 


the product of the numbers of firers and targets. For convenience, let us 


refer to the equations (2.4.1) as LANCHESTER's equations for area fire,20 


although they have been hypothesized to also apply under other circumstances. 


In fact, two sets of physical circumstances under which these equations 


have been hypothesized to apply are: 




(Cl) both rlides use "area" f i r e  and a constant  a r ea  defense [l5,99 1 . 
(C2) both s i d e s  uee "aimed" f i r e ,  and t a r g e t  acqu i s i t i on  times a r e :  

(a)  inverse ly  proport ional  t o  t he  number of enemy t a r g e t s ,  and 
(b) t he  dominant f a c t o r  i n  the a t t r i t i o n  process [Is]. 

A more complete d i scuss ion  of these hypotheses is again t o  be found i n  t h e  

papers by BRACKNEY [15] and WEISS [gg]  and i n  Section 2 .11  below. 

Let  u s  now consider what w e  can l e a r n  from our model (2.4.1) about 

t h e  dynamics of combat Letween two homogeneous forces .  We w i l l  do t h i s  

aga in  by consider ing t h e  seven quest ions (41)-(Q7) posed i n  Sect ion 2.2 

above. We begin by aga in  developing (1) t h e  s t a t e  equat ion,  and (2) t he  

X fo rce  l e v e l  a s  a func t ion  of t ime, x ( t ) .  

To develop the  s t a t e  equat ion f o r  t h e  combat model (2 .4 . l ) ,  we 

d iv ide  t he  f i r s t  equation by the  second t o  ob ta in  the  instantaneous (or  

d i f f e r e n t i a l )  casualty-exchange r a t i o  

Separat ing va r i ab l e s  and i n t e g r a t i n g ,  w e  ob t a in  t he  s t a t e  equat ion f o r  

LANCHESTER's equations f o r  a r ea  f i r e  

We w i l l  a l a o  r e f e r  t o  (2.4.3) a s  LANCHESTER's l i n e a r  law. Salving f o r  y 

and s u b s t i t u t i n g  i n t o  the  f i r s t  d i f f e r e n t i a l  equat ion of (2.4.1), w e  ob ta in  

the  following RICCATI equat ion f o r  t he  X fo rce  l e v e l  



- -  

where 60 - bxo - aye. For 60 j 0 ,  a p a r t i a l  f r a c t i o n  expansion y i e l d b  

(-eaa INCE 14.1, pp. 311-312 1) 

which r e a d i l y  y i e l d s  our d e s i r e d  r e s u l t  f o r  x ( t ) .  For 60 = 0, (2.4.4) 

becomes 

d g - b d t ,  (2.4.6) 
X 

which ts a l s o  r e a d i l y  i n t e g r a t e d .  Hence, w e  f i n d  t h a t  

"x0 - BYo 
f o r  bxo + ayo,bxO - ayo exp [-(bxo-ayo) t ] I 

f o r  bxo = aye. 

La te r ,  i t  w i l l  be of i n t e r e s t  t o  cons ider  t h e  v a r i a b l e  c o e f f i c i e n t  

v e r s i o n  of (2.4.1) f o r  which no state equa t ion  such a s  (2.4.3) g e n e r a l l y  

holds.  With t h i s  i n  mind, w e  would l i k e  t o  be  a b l e  t o  develop ( 2 . 4 . 7 )  by 

a method t h a t  does n o t  invo lve  t h e  state e q u a t i o n  (2.4.3) and can conse- 

quen t ly  be extended t o  t h e  v a r i a b l e - c o e f f i c i e n t  c a s e .  We have discusaed 

such a p o i n t  p rev ious ly  i n  Sec t ion  2.2 above. Accordingly,  we again d i f f e r -

e n t i a t e  t h e  f i r s t  equa t lon  of (2.4.1) w i t h  r e s p e c t  t o  t and combine thc. 

r e s u l t  wi th  t h e  second equa t ion  t o  o b t a i n  a second o r d e r  non l inear  o rd inary  

d i f f e r e n t i a l  equa t ion  t h a t  c o n t a i n s  only t h e  X f s r c e  l e v e l ,  namely 



with I n i t i a l  condi t ions 

and 

We w i l l  c a l l  ( 1 . 4 . 8 )  the  X force- level  equation. It is  the  analogue of 

equation (2.2.10) . This nonl inear  d i f f e r e n t i a l  equation (2.4.8) is one of 

f i f t y  s tandard forms f o r  a c e r t a i n  c l a s s  of nonlinear second order  equations 

Unfortunately,  there  apparent ly  is no a n a l y t i c a l  technique f o r  solving 

(2.4.8) d i r e c t l y ,  and thus hope f o r  t he  a n a l y t i c a l  treatment of t h e  var iab le  

c o e f f i c i e n t  v e r ~ i o n  of (2.4.1) appears dim. However, t he  term l / x  is an 

i n t c g r a t i n g  f a c t o r  f o r  ( 2 . 4 . 6 )  and w e  f i nd  t h a t  

whence in t eg ra t i on  y i e l d s  the  RICCATI equation (2.4.4). Thus, without use 

of any approximation, t h e  X force- level  equation (2.4.8) is not  as use fu l  

' a s  t he  corresponding equat ion (2.2.10) was f o r  the model (2.2.1) . 
The decay of t he  X and Y fo rce  l e v e l s  i n  p lo t t ed  i n  Figures 

2.8 and 2.9. For convenience, we  record these r e s u l t s  here  as 

(2.4.10) 

f o r  bxo = aye, 



Figure 2.8. Force-level trajectories of X and Y forces 

for combat modelled by LANCHESTER's equations for 

area fire. For these calculations, a = 0.004 X 

casualties/(minute number of X combatants number 

of Y combatants) and b = 0.004 Y casualties/ 

(minute- number sf X combatants- number of P 

combatants). 



Figure 2.9. Force-level trajectcries of X and Y forces for combat 

modelled by LANCHESTER's equations for area fire. For 

these calculations, a = 0.001 X casualties/(minute 

number of X combatants number of Y combatants) and 

b = 0.01 Y casualties/(minute number of X combatants 

number of Y combatants). 



and 

f o r  bx0 + ay0 , 
(2.4.11) 

f o r  bxo - ayo . 

I n  Figure  2.8 t h e  s m a l l e r  f o r c e  is seen t o  be a n n i h i l a t e d .  In c o n t r a e t  t o  

t h e  model (2.2.1) '  however, f o r c e  a n n i h i l a t i o n  i s  seen  t o  be an  asymptotic 

r e s u l t ,  i .e.  i t  t a k e s  " i n f i n i t e  time" t o  occur.  Thus, x ( t )  and y ( t )  r 0 

f o r  a l l  f i n i t e  t, and we do n o t  have t o  " tu rn  o f f t '  t h e  equa t ions  (2.4.1) 

t o  avoid  n e g a t i v e  f o r c e  l e v e l s  as we had t o  do f o r  t h e  model (2.2.1) [see 
i n  t h i s  r e s p e c t  (2 .2 .2)] .  In Figure  2.8 t h e  smaller f o r c e  is a n n i h i l a t e d ,  

whi le  i n  Figure  2.9 t h e  l a r g e r  one is. 

To more c l e a r l y  e x h i b i t  t h e  parametr ic  dependence o f  t h e  fo rce -  

l e v e l  t r a j e c t o r i e s ,  we a g a i n  "normalize," f o r  example, t h e  X f o r c e  l e v e l  

by c ~ n s i d e r i n g  t h e  f r a c t i o n a l  X f o r c e  l e v e l ,  namely x ( t )  /xo, given by 

where = bxo/ayo and e ( t )  = exp [-ay,,t (p-1) 1. From (2.4.12) we see 

t h a t  t h e  X f o r c e  l e v e l  depends on t h e  fo l lowing  t h r e e  q u a n t i t i e s  (a l thoug l  

t h e  model (2.4.1) c o n t a i n s  the  f o u r  independent parameters a, b ,  xo, and 

yo) : 

(1) i n i t i a l  f o r c e  r a t i o ,  uo xO/yO, 

(2) r e l a t i v e  f i r e  e f f e c t i v e n e s s ,  R = a l b ,  

(3) i n i t i a l  volume of enlmy f i r e ,  V0 = aye. 



The initial force ratio uo and the relative fire effactivene~s~~ art
R 


the same two relative quantities that we encountered in our study of the 


model (2.2.1), whereas the initial volume of enemy fire Vo, is an absolut 


quantity that corresponds to the intensity of combat 1 = 6 for the mod 

(2.2.1). 


Let us now consider the determination of who will "win" the battl 


Again, for simplicity, we will consider here only a "fight-to-the-finish," 


with a more realistic model of battle termination being considered in Sect 


2.8 below. From considering (2.4.10) and (2.4.11), we can make a number o 


important observations: (1) x(t) and y(t) > 0 for all finite t 2 0, 

+oo(2) limt++= x(t) = 0 if and only if xO/yO < a/b, and Urnt-+x(t) a 

+if and only if limt+ y(t) = yo - (bla)xo. Thus, we have shown 

PROPOSITION 2.4.1: Y will win a fight-to-the-finish if and only 


if xO/yO c a/b. The time required to annihilate X is not finite, 

however. 


Furthermore, 


PROPOSITION 2.4.2: For the model (2.4.1) , we have x ( t )  and y(t) > 

for all finite t -> 0. Consequently, both x(t) and y(t) are 

always strictly decreasing, positive functions. 


- As we have pointed out in section 2.2 above (see also Section 1.3), 

most aggregated models of ground combat (far example, ATLAS) use the force 


b 



r a t i o  t o  determine both casua l ty  r a t e s  and a l s o  F D A  movement, Consequec 

i t  is of considerable  i n t e r e s t  t o  i nves r iga t e  how t he  fo rce  r a t i o ,  e.g. 

u = x/y, changes during the course of b a t t l e  f o r  our simple combat model 

( 2 . 4 .  We f i r s t  observe t h a t  i n  genera l  logari thmic d i f f e r e n t i a t i o n  of 

fo rce  r a t i o ,  u = x/y, y i e ld s  

whence for the model (2.4.1) we obta i& 

Thus, w e  see t h a t  un l ike  the case of the  model (2.2.1), there  is  no f i r s t  

o rder  d i f f e r e n t i a l  equation involving j u s t  t h e  fo rce  r a t i o  fo r  t h e  model 

( 2 . 4 . )  We can a r t i f i c i a l l y  achieve t h i s  s i t u a t i o n ,  however, by l e t t i n g  

r = b X(S) ds ,  and then 

Followilig an ana lys i s  s i m i l a r  t o  t h a t  given i n  Sect ion 2.2 f o r  the  force- 

r a t i o  equation (2.2.161, w e  can e a s i l y  prove Proposi t ion 2.4.3. 

PROPOSITION 2.4.3: I f  du/dt(O) c 0, then du /d r ( t )  < 0 f o r  

a t 2 0. 

Thus, i f  uo = xO/yO < a /b ,  the force  r a t i o  w i l l  always decrease during the 



course of b a t t l e ;  i t  w i l l  remain constant  i f  and only i f  xO/yO a/b a l t h  

the force  l e v e l s  continuously decay, of course [e.g. x ( t )  = x O / ( l  + bxot)l. 
It is  very itnportant t o  note  t h a t  du/dt < 8 f o r  a l l  t 2 0 does nog i n  

t h i s  case imply t h a t  u ( t )  + 0 i n  f i n i t e  t i n e ,  s ince  i t  i s  no longer t r u e  

t h a t  d u l d t ( t )  5 du/dt(O) when duIdt(0) < 0. 

From (2.4.10) and (2.4.11) i t  i s  c l e a r  t h a t  ne i the r  s i d e  can ever 

be annlh i la ted  i n  f i n i t e  time. Thus, our model says  t h a t  a fight-to-the-

f i n i s h  w i l l  be of i n f i n i t e  durat ion.  We do f ind  from (2.4.10) t h a t  f o r  

bxO )( ay8 i t  takes t i m e  tf f o r  the X force  l e v e l  t o  decay t o  a given 

value x namelyf '  

where p = bxo/ayo 1 and the following r e s t r i c t i o n s  must be placed on xi 

O l xf ( x O  f o r  p < 1 ,I aXo - g Yo 2 Xf I.XO f o r  p > 1 .  

The number of survivors ,  expressed a s  a f r a c t i o n  of i n i t i a l  s t r eng th ,  f o r  

the winner (here Y f o r  xO/yO < a/b) of such a  f ight- to- the-f inish is 

read i ly  obtained from the  s t a t e  equation (2.4.3) t o  be 

where yf denotes the f i n a l  Y fo rce  l c v e l  a t  t = + =. This equat ion 

shows us q u i t e  c l e a r l y  t h a t  f r a c t i o n a l  ca sua l t i e s  a r e  determined e n t i r e l y  

by r e l a t i v e  f ac to r s .  For any o ther  (nonnegative) va lue  of the  X fo rce  

l eve l ,  we (of course) have 



The prinrApal r e s u l t s  that we have developed above are summarized 

i n  Table 2.V. 



TABLE 2.V. Summary of Principal Results for LANCHESTER1s Model 

of Combat with Area Fire by Both Sides. 


WCHE8TER1s Equations for Area Fire 


with x(0) = xu 

dx dx-5Differential Casualty-Exchange Ratio, -' dy' dy b 


State Equation: a(yo - y(t) 1 = b(xo - x(t)) 

Differential Equation Satisffed by the. X Force Level: 


with initial conditions 


x(0) = xo and 

X Force Level: 


bxo - aYo 

bxo - ayo exp[-(bxo-ayo) t] 
for bxo # ayoI 

for bxo = ay0 

XDifferential Equation Satisfied by the Force Ratio, u = -:..- Y 

ae-bx(u - ~1 with u(Od * -x0dt 
 Yo 


--Force-Annihilation-Prediction Condition: X will be annihilated (in 

infinite time) if and only if xO/yO < a/b. 
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*2.5. A Further Look a t  the Area-Fire Model. 

I n  t h i s  s ec t ion  we present  a more i n  depth ana lys i s  of LANCHESTER' 

model f o r  a r ea  f i r e  (2.4.1). In  p a r t i c u l a r ,  we w i l l  c ~ n s i d e r  the followir 

top ics  : 

(Tl) a so lu t ion  approach tha t  can be general ized to  cases  of time-

dependent a t t r i t i o n - r a t e  c o e f f i c i e n t s ,  

and (T2) determining the q u a l i t a t i v e  behavior of t he  force-?.eve1 

t r a j e c t o r i e s  f o r  the model (2.4.1) without having t o  exp l i c i t l y  

so lve  :he system of d i f f e r e n t i a l  equat ions.  

As note  above, f o r  the  general case of time-dependent a t t r i t i o n -

r a t e  coe f f i c i en t s ,  there  is  no s t a t e  equation of t he  form S(x,y) = 0. 

With t h i s  f a c t  i n  mind, l e t  u s  seek a  method of sa lv ing  ( 2  4.1) t h ~ tdoes 

not depend on using such a  s t a t e  equation. Accordingly, we w i l l  develop a 

method of solving (2.4.1) chat has t h i s  property and consequently f o r  case 

of t imedependent a t t r i t i o n - r a t e  coe f f i c i en t s ,  w i l l  allow us t o  determine 

two approxisate  so lu t ions  t h a t  many times bound the  exact  so lu t ion ,  f o r  

example, f o r  the X force  l eve l .  

We begin by providing motivation f a r  a  key transformation t h a t  

" l inear izes"  our nonlinear combat model. Let u s  rewr i te  the RICCATI  

equation s a t i s f i e d  by the X force l e v e l  x ( t ) ,  namely 

where 60 = bxo - Byo. Since there i s  no constant  term on the right-hand 

side of (2.5.1), i t  is  a s p e c i a l  case of a p a r t i c u l a r  kind of RICCATI 

equation ca l l ed  a  BERNOULLI equation (see,f o r  example, HISLE [ 3 9  , pp. 

104-1051). The nonl inear  BERNOULLI equation, moreover, can be transformed 



t o  a l i n e a r  equat ion by a s u b s t i t u t i o n  f o r  t h e  dependent v a r i a b l e .  For 

(2.5.1) t h i s  s u b s t i t u t i o n  t akes  t h e  form w - l/x. Let  us t h e r e f o r e  make 

t h e  s u b s t i t u t i o n  

w - l l x  and z = l/y (2.5.2) 

i n  (2.4.1) t o  o b t a i n  

wi th  w(0)  = l / x
0 '  

with z ( 0 )  = l / y o  . 

The f i r s t  equa t ion  of (2.5.3) may be rearranged and d i f f e r e n t i a t e d  t o  y i e l d  

We may a l s o  manipulate (2.5.3) t o  o b t a i n  t h a t  - ( l / z  
2
) d z l d t  = ( b / a ) d ( l / w ) d t ,  

whence (2.5.4) becomes 

I n t e g r a t i n g  (2.5.5) ,we o b t a i n  

du + (bxo - ~Y,,)w= b , 

whence R second i n t e g r a t i o n  y i e l d s  

f o r  bxo - ayo . 



Recal l ing (2.5.2) , w e  r ead i ly  ob ta in  ( 2 . 4 . 7 )  from (2.5.7) . Moreover, t h i s  

so lu t ion  approach may be used t o  develop some very u se fu l  approximations 

i n  cases  of time-dependent a t t r i t i o n - r a t e  c o e f f i c i e n t s ,  sfwe w e  d id  no t  

make e s s e n t i a l  use of the s t a t e  equat ion (2.4.3). 

L e t  us next determine some important s o l u t i o n  p rope r t i e s  f o r  t he  

model (2.4.1) without having t o  develop an e x p l i c i t  so lu t i on .  We begin by 

emmining t h e  q u a l i t a t i v e  behavior of t he  X fo rce  l e v e l  x ( t )  a s  

determined d i r e c t l y  from t h e  RICCATX equat ion (2.5.1). We w i l l  show t h a t  

much valuable  information (e.g. fo rce-annih i la t ion  pred ic t ion)  about t h e  

force- level  t r a j e c t o r i e s  of t he  model (2.4.1) may be obtained d i r e c t l y  

from (2.5.1) without e x ? l i c i t l y  so lv ing  f o r  x ( t ) .  Let us  accordingly 

focus on the  RICCATI equation (2.5.1) 

It seems appropr ia te  t o  e a l l  dx/dt  the  force- level  ve loc i ty .  Let us 

denote t h e  two roots  of the  equat ion bx2 - (bxo - ayo)x = 0 a s  xl 

and x2, with xy = xO - (a/b)yo and x2.= 0. Then the  maximum of 

-
dx/dt considered as a func t ion  s f  x occurs a t  x = (xl + x2)/2.  The 

corresponding RICCATI equat ion s a t i s f i e d  by the Y fo rce  l e v e l  y ( t )  is  

and w e  s imi l a r ly  de f ine  yl and y2 with yl = yo - (b/a>x, and y 2  = 0.  
V 

We observe t h a t  xl = -(a/b)yl so t h a t  xl and yl always have opposi te  

s igns  except when they a r e  both equal t o  zero. There a r e  now th ree  cases  

It o  be considered: (I) xO/yO < a / b  , (11) xo/y0 a / b ,  and (111) xO/yO> a / b .  



In  Figure 2.10the force-laved ve loc i ty  i s  p lo t t ed  aga ins t  the  

fo rce  l e v e l  f o r  each of t he  X and Y fo rces  i n  Case ( I ) :  xO/yO' a lb .  

The "direct ion" of movement f o r  t he  force  l eve l  i e  shown i n  Figure 2.10 by 

maus of a r r w s  drawn along the  force- level  axi6, with t he  length  of t he  

arrow r e f l e c t i n g  t h e  magnitude of t h e  force- level  ve loc i ty .  In t h i s  case,  

x1 xO - (a/b]yg < x2 y2  x y1 yo - (b/a)xo. We always have 1 xl 1 < x0 

and l y l l  < yo. From Figure 2 . lOi t  18 c l e a r  t h a t  y ( t )  + yo - (bla)xO and 

x ( t )  + 0 a s  t + + Q,and a l s o  t h a t  x ( t )  and y ( t )  j0 f o r  a l l  t 0 .  

Thus, by p l o t t i n g  the force- level  v e l o c i t y  versus  t he  fo rce  l e v e l  f o r  each 

of t h e  combatants, t h e  q u a l i t a t i v e  behavior of t he  fo rce  l e v e l s  becomes 

obvious. I n  Case (11) both x ( t )  and y ( t )  + 0 as t -c + -. Case (111) 

i s  symmetric t o  Case (I) ,  with t he  r o l e s  of X and Y interchanged. 'Rtua, 

w e  s e e  that: i n  a l l  cases  x ( t )  and y ( t )  2 0 f o r  a l l  t 2 0. 

Let us now show t h a t  fo r  the model (2.4.1) [without any modif i ca -  

t i a n  of the right-hand s i d e s ,  c f .  ( 2 . 2 . 2 ) ]  x(t) and y ( t )  > 0 f o r  a l l  

f i n i t e  t~ 0. The e a s i e s t  way t o  do t h i s  without e x p l i c i t l y  so lv ing  the  

d i f f e r e n t i a l  equations is  t o  introduce funct ions n ( t )  and a ( t ) ,  analogous 

t o  those introduced i n  Sect ion 2.3 above. To t h i s  end, l e t  us mult iply t he  

f i r s t  equation of (2.4.1) by y, the second by x, and add t o  ob ta in  

0T (XY) = - xy(ay + bx) . (2.5.9) 

S imi la r ly ,  

d- (ay + bx) - -2abxy .
d t  

Let us rewr i te  t he  above as 

da du-= -nu , and -= - 2ab n ,  (2.5.11)d t  d t  

where n = xy and a = ay + bx. We observe t h a t  a s  a consequence of 

(2.5.11) we have 
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which is  equ iva len t  t o  t h e  s t a t e  equa t ion  (2.4.3). 

By cons ider ing  t h e  f i r s t  equa t ion  of (2.5.11),  w e  w i l l  now show 

thde ~ ( t )and y ( t )  > 0 f o r  a l l  f i n i t e  t 2 0. R e c a l l  t h a t  we have 

shown above by cons ider ing  the two RICCATI equa t ions  (2.5 . I )  and (2.5.83 

t h a t  x ( t )  and y ( t )  2 0 f o r  a l l  t~ 0. It fo l lows  t h a t  n ( t )  1 0  and 

from (2.5.11) t h a t  a ( t )  is a decreas ing  f u n c t i o n  of time. Hence, 

a ( t )  5 uO = a (0) f o r  a l l  t 2 0 s o  t h a t  

whence 

l 'his  l a s t  r e s u l t  (2.5.13) shows t h a t  x ( t )  and y ( t )  > 0 f o r  a l l  f i n i t e  

t ,  since ~ ( t )> 0 f o r  a l l  f i n i t e  t 2 0. Thus, we have proven Propos i t io r  

2.4.2 wi rhout  expLici  t l y  so lv ing  t h e  equa t ions  (2.4.1) . It is d e s i r a b l e ,  

however, f o r  extending t h i s  r e s u l t  t o  t h e  c a s e  of time-dependent a t t r i t i o n -

r a t e  c o e f i i c i e n t s  t o  use  t h e  fol lowing a r g m e n t .  

Another (however, much more important)  way t o  prove P r o p o s i t i o n  

2.4..2 is t o  cons ider  the system sf equa t ions  (2.5.3) s a t i s f i e d  by w L/x 

and z = l / y .  We w i l l  prove t h e  fol lowing p r o p o s i t i o n  (which is  e q u i v a l e n t  

t o  Propos i t ion  2.4.2) . 

PROPOSITION 2.5.1: The s o l u t i o n  w(t)  , z ( t )  t o  (2.5.3) i s  p o s i t i v e  

and bounded f o r  a l l  f i n i t e  t 0. 



PROOF: F i r s t ,  w e  show t h a t  no component of the so lu t ion  t o  (2.5.3) can 

becone negative by passing through zero. WE prove t h i s  by cont rad ic t ion :  

l e t  tl-- i n f ( t l w ( t )  - 0 o r  z ( t )  - 0 f o r  t > 0 and assume t h a t  tl 

is  f i n i t e .  Then w(t)  and z ( t )  > 0 f o r  t c [O,tl) ,  and dw/dt( t )  aud 

d z / d t ( t )  > 0 by (2.5.3), which is impossible i f  a component of t h e  so lu t ion  

is  t o  have n f i n i t e  zero. The only o ther  way i n  which a component of the  

so lu t ion  can become negat ive wauld be f o r  i t  f i r s t  t o  become i n f i n i t e .  

Let t2 - i n i I t l w ( t )  - w o r  z ( t )  = for t 0 We w i l l  now show t h a t  

i t  l a  impoesible f o r  t2 t o  be f i n i t e .  I f  t h i s  were indeed t h e  case,  then 

w(t)  and t > 0 f o r  t e [O,tZ) so  t h a t  dw/dt( t )  and d z / d t ( t )  > 0. 

It s u f f i c e s  t o  show t h a t  w(tp)  cannot be unbounded f o r  any f i n i t e  t2 > 0. 

Let us note  t h a t  z ( t )  2 z0 .0 f o r  t~ 0. Hence, we have from (2 .5 .3 )  

t h a t  

Thus, f o r  any f i n i t e  t > 0,  w e  have 

Hence, the so lu t ion  t o  (2.5.3) i s  p o s i t i v e  and bounded f o r  a l l  f i n i t e  



2.6. Shortcomings of Lanchastar'r Original Mndals. 

Viewad in the light that LANCHESTER /55j developed hie vary simple 


models of combat (2.1.1) , (2.1.3) , and (2.1.8) to provide insight into 

the dynamics of combat under "modern conditions" and to quantitatively 


justify the principle of concentration, LANCM~STER'~ 
simple differential 


equation madels are quite reasonable. They yield results that are in 


consonance with military judgement. Although such simple analytical 


models can provide valuable insights into the dynamics of cambat, they 


are far too simple to be able to solve by themselves any specific opera- 


tional problem. hug,  from the point of view of a weapon-system designer 

or defense planner, who is interested in more than just insights26, diffe~ 


ent demands are made on a model. In particular, the "realities of the 


real world" must be "adequately" treated in the model in order that sound 


recommendations be based on the information that it generates. According1 


we will now examine what factors are not "adequately" treated in LANCHESTE 


original models, i.e. their shortcomings. 


Speaking about the shortcomings of LANCHESTER1s classic combat for- 


mulations, WEISS [98, p. 151 has eloquently stated, 

"While we should, perhaps, be more pleased that such simple 


formulae yield reaso~able results than critical because of 


the elements omitted from them, we must look beyond the LAN-

CHESTER expressions to see how they differ Prom reality, and 


what may be added to them" 


With this in mind, we have listed some of the major shortcomings of 


LANCHESTER's original models (2.1.1) , (2.1.3) , and (2.1.8) in Table 2 .VI. 

These shortcomings are listed roughly in order of decreasing i~portance, 


with the most important ones appearing first in the list. 




TABLE 2.VI. Shortcomings of LANCHESTER'e Original Models 

SHORTCOMINGS: 

Constant attrition-rate coefficients 


No force movement (a.g. no advance or retreat of forcee) 

Homogeneoue forces 


Battle termination not modelled 


No element of chauce 


Not verif led by history 


No way to predict attrition-rate coefficients 

Tactical decision processes not considered 


Battlefield intelligence not considered 


Command, control, and communications not considered 


Logistics aspects not conaidered 


Suppressive effects of weapons not considered 


Effects of terrain not considered 


Spatial variations in force capabilities not considered 


No replacements or withdrawale 


Symmetric form of attrition 


Target prlarity/fire allocation not explictly considered 


Target acquisition f orce-level independent in modern-warf ate 


model 


All troops assumed to fire in combat 


Noncombat losses (e.g. surrenders, desertions) not considered 




Let us now b r i e f l y  d iscuss  the f i r s t  ten shortccrdags of WCHESTER' 

c l a s s i c  models given i n  Table 2.VI. 

(Sl) Constant a e t r i t i o u - r a t e  c o e f f i c i e n t r  e s e e n t i a l l y  mean t h a t  

the  k i l l  r a t e  of each and every weapon system doaan't change 

over time due t o  changea i n  range between t a r g e t  and f i r e r ,  

t a r g e t  posture,  f i r i n g  rate, vulneaaLiPity of t he  t a r g e t ,  

t a r g e t  acquio i t ion  r a t e ,  e t c .  

(S2) No provision is  e x p l i c i t l y  made f o r  movement, r e t r e a t  o r  

advance. In pa r t i cu l a r ,  t h e  movement of contact  zones 

( i .e .  FEBA movement) is not  considered. 

(S3) A l l  fo rces  on one s i d e  a r e  considered t o  be the  same.. Ir. 

combined a m  engageltents, one usual ly ha s  various d i f f e r e n t  

force  types,  such as infant ry ,  a r t i l l e r y ,  armor, mortars,  

mechanized infantry combat vehic les ,  t a c t i c a l  a i r c r a f t ,  e t c .  

Also, there  a r e  o ther  f a c t o r s  such a s  minefields ,  f o r t i f i c a -

t i ons ,  b a r r i e r s ,  smoke, etc. Furthermore, s p a t i a l  va r i a t i ons  

ia the  e f fec t iveness  of forces  a r e  nor: considered. 



(S4) No r u l e s  f o r  b a t t l e  tcrminat lon axe @van, W Z S S  [98, p. 1( 

emphasized tha t  "engagements t h a t  con t i t~ue  u n t i l  one a ide  11 

wiped out  a r e  ra re .  Retreat  begins when the  number of casw 

t i e s  approaches the  order  of 10%. If  

(S5) The equatiansl a r e  d e t e n a i n i a t i c  and do no t  por t ray  the  randc 

na tu re  of combat. MBny of the  f ac to re  i n  combat a r e  of a 

random nature ,  and the  uncertainty2 '  i n  b a t t l e  outcome is l o  

when one models combat with such de t e rmin i s t i c  equatiana. 

(S6) A p r i o r i  w e  have no confidence t h a t  combat (even i n  a gross  

sense) a c t u a l l y  behaves as postuiated by WCHESTER. Emyiri 

c a l  v e r i f i c a t i o n  would g r e a t l y  enhance the  a c c e p t a b i l i t y  of 

such a b a s i s  f o r  opera t iona l  models by users  and dec is ian  

makers. 

(S7) One doesn't  luxow how t o  develop r~umerical values f o r  the  

a t t r i t j o n - r a t e  c o e f f i c i e n t s  such t h a t  the performance charac* 

t e r i s t i c s  of the weapon systems and the  operat ing environmen 

a r e  adequately r e f l ec t ed  i n  t hc  model. 

(S8) Dec i s ims  t o  i n i t i a t e  cambat, commit f a r c e s  and/or reserves ,  

a l l o c a t e  f i r e s ,  a l l o c a t i o n  of e f f o r t  searching f o r  t a r g e t s ,  

e t c .  are not  e x p l i c t l y  considered. 

( S 9 j  The a b i l i t y  t o  l o c a t e  and i d e n t i f y  t a r g e t s ,  c o r r e c t l y  sense 

k i l l e d  t a r g e t s ,  e t c .  a r e  no t  e x p l i c t l y  considered. 

(Sl0) The paswing of information up and down the  chain of command 

is not considered. 



We could go on and on. However, Table 2.VI and our b r i e f  discussion here 

should give the reader  some f l avo r  of the  shortcominge of WLNCHESTER1s 

c l aos i c  w d e l a .  

Tlne reader should recognize t h a t  many such shortcomings a r e  not  

a t r l z r l y  l imi t ed  t o  only Lachea ter - type  models. If  one dsesn ' t  b o w  

how, for example, coarmand and cont ro l  inf luences weapon-system k i l l  r a t e s  

fa a particular combat environment, then t h i s  is not  necessar i ly  a short-

colaing of Lanchaster-type models. It w i l l  a l s o  apply t o  t h e  firepower-score 

and mte-Carlo-simulat ion combat-modelling approaches. The author be- 

l i e v e s  t h a t  i f  a combat process can be modelled at  a l l ,  then i t  can u l t i -  

mately be modelled with a d i f f e r e n t i a l  equation modal of some type. 

In s p i t e  of a l l  these. sho r t codngs ,  the amazing thing is t h a t  such 

simple d i f fe ren t ia l -equat ion  models (or t h e i r  equivalent)  are f requent ly  

used even today, It is frequent ly the  case, however, t h a t  one does not  

r e a l i z e  t h a t  t h e  combat model he is  using e i t h e r  is equivalent  t o  o r  snap 

be nos t  f r u i t f u l l y  viewed a s  a d i f f e r e n t i a l  combat model (see, f o r  example, 

Chapter 8 below) . 
From the point  of view of the  subsequent development and enrich- 

ment of dYfferentia1-equation models of combat ( i . e .  t he  so-called Lan-

cheater  theory of combat), t he  above shortcomings of LANCHESTER'So r i g i n a l  

1914 models have played a c e n t r a l  ro l e .  Namctly, subsequent developments 

in the  Lanchaster theory of combat have evolved t o  overcome these  short-  

comings. 



2.7. Subsequent Development of t h e  LANCHESTER Theory of Combat: A 
Preview of Things t o  Come. 

As we have j u s t  discussed i n  t he  previous oect ion,  the development 

of the so-called LANCHESTER theory of combat is probably b e s t  understood 

by considering the  shortcomings of LANCHESTERfs o r i g i n a l  1914 models. 

Various authors  from the  1940's on have subsequently sought t o  overcome 

the shortcomings l i s t e d  i n  Table 2.PX above, and these ind iv idua ls  have 

accordingly made var ious  extensions t o  WCHESTER's c l a s s i c  combat models 

A l ist  of such e x t e a a i m s  is given i n  Table 2.VlI. The extensions l i s t e d  

i n  Table 2,VII a r e  given i n  more o r  less chronological order ,  with t he  

reZerence(s) given represent ing i n  most ca8es the  e a r l i e s t  work on the  

top ic  known t o  t h i s  author.  References ava i l ab l e  i n  the  open, unclassi-

f i e d  l i t e r a t u r e  are emphasized. 

Let us now make some remarks about the  various extensions l i s t e d  

i n  Table 2.VII. The f i r s t  extensions of LANCHESTERfs [55] o r i g i n a l  work 

appeared i n  MORSE and KINBALL'S c l a s s i c  book [ 6 4 ] ,  which r epor t s  various 

invest igat lonn undertaken during World War XI by American wartimz analysis  

groups. In  p a r t i c u l a r ,  replacements were added t o  a model of aggregated 

force combat, and some implicat ions of the  r e s u l t a n t  model vere  s tudied  

i n  1641 (3a l s o  URNS 1471) .  Equations (bath the  forward Kolrnogorov 

equations and a l s o  "randon! walk" ones) f o r  a s tochas t i c  combat-at t r i t ion 

process were developed, and r e s u l t s  from the s tochas t i c  model were com-

pared with those from the  usual de te rminis t ic  model i n  the  s p e c i a l  case 

~f very few combatants on each s ide .  R. SNOW [78] summgrized and ex-

tended work done a t  RAND i n  the l a t e  1940's. In p a r t i c u l a r ,  he examined 

a LANCHESTER-type, MARIE.OV-chain model of combat and heterogeneous-force 

combat formulations. Both the  assumptions f o r  LANCHESTER-type combat 
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TABLE 2.VZI. Extensions of LANCHESTER's Classic Combat Models 


Replacements (an/or withdrawals) [47 ; 64 1 

Heterogeneous forces [78] 


Inclusion of random effects in the attrition process [64; 781 

FEBA movement conrridered 128; 65; 991 

Fire-support effects included [28 1 

Optimization of  tactical decisions [281 

Comparison with historical data [24; 32; 991 


Attrition structures other than LANcHESTER's classic models 115; 361 


Unspetric formulations for attritions [15; 221 


Time- (or range-) dependent attrition-rate coefficients [a; 99 1 

Operational losses considered C3] 


Rough effects of intelligence and command and control 1731 

Attrition-rate coefficients that depend on force s k e s  [36] 


Models of guerrilla warfare activities [22;721 


Prediction of attrition-rats coefficients [4;9; 201 


Noncombat losses (e.g. surrenders and desertions) [72]  

Suppressive effects of weapons [ 7 2 ]  

Modelling of battle termination 137; 1021 


Interfacing with high-resolution Monte Carlo simulations [20] 


Large-scale, complex planning models [19; 261 


-
t~umbers in brackets refer to references at the end of this chapter. 




between heterogeneous forces and analytical solution procedures were con-


sidered by SNOW 1781, although tho special structure of the combat equatj 


was not fully exploited for developing analytical solutions in this pio- 


neering work. 
 \The RAND memorandum by GAIMBONI, MENGEL, and DISBINGTON [28] con- 

tains a number of extensions of LANCHESTER's classic combat 


formulations: (El) FEBA-movement modelling, (E2) inclusion of fire- 


support (particularly tactical airpower) effects, and (E3) optimization 


of the time-sequential allocation of aircraft to tactical targets. This 


report memorandum is still worthwhile reading today, even though it was 


written in 1951, MULHQWIANI) and SPECHT I651 examined some Vorld War I1 


data and developed a rough model for FEBA movement in theater-level opera 


tions (seealso WEISS [gg]). Pioneering efforts at comparing the theo- 


retical prediction6 of LANCHESTER-type models with historical. data have 


been by J. ENGEL [24] and H. K. WEISS [99 1 (seealso the work by R. L. 
HELMBQLD [32-35; 371). 


A benchmark paper, which is still worthwhile reading today although 


it is somewhat inaccessible, is B. K. WEISSfs 1957 paper, "~anchester- 


Type Models of Warfare. " Many innovative ideas were introduced, includin 

the foilowing: (1) range-dependent attrition-rate coefficients, (2) 


comparison of model results with historical data, (3) a model of combat 


amcmg emall groups, (4) a model of FEBA movement, and (5) a differential-

game examinat ion of optimal f ire-support strategies. WEISS 's [99 ] paper 

is probably the second most referenced paper in the field after LANCHESTE 


oriqinal paper. Furthermore, all of 8 .  K. WEISS's work has been charac- 

terized by imaginative innovation,,coupled w3th deep ineights into the 


scientific analysis of combat operations. 


117 




Other models for the mutual attrition of two homogeneoua forces in 

combat: have been proposed by BRACKNEY [15 1 and HELMBOLD [36]. BRACKNEY 

[15] introduced target acquisition considerations and hypothesized that 


the time to acquire a target is related to the targst'e tactical poesure. 


HELMBOLD [36] has proposed a modification of I,ANCHESTER1e equations for 


modern warfare, which Incorporatea inefficiencies of scale for the larger 


force when force sizes are grossly unequal. S. BONDER 181 did the pioneer- 


ing work on the prediction of attrition-pate caefficien~s from weapon- 


system performance characteristics (=also BONDER [ 9 ;  101 and BARFOOT 

[ 4 J ) ,  and, motivated by such developments, he. examined the effects of 

range-dependent attrition-rate coefficients and sobility on battle outcome. 


Operational losses were considered by BACH, 'DOLANSKY, and ST'UBBS 

[3 ] ,  who shared that if operational losses were "large enough," then it 

would no longer be "beneficial" to concentrate forces (i..e. friendly 


casualties would increase if more friendly forcea were initially comitted 


to battle). LANCHESTER-type models of guerrilla-whrfare engagements were 


considered by DEITCHMAM [22] and Schaf fer [ 7 2 ] .  DEITCHIWT [ 2 2 ]  developed 

a LANCHESTER-type model of an ambush in order to explain the observed 


high overall force ratios of regulars to guerrillas insurgency operations. 


WEISS's [99] model for combat among smaJ.1 groups is DEITCHMAN1s point of 


departure. SCHAFFER [72] later developed models of several types of 


guerrilla-warfare engagements in insurgency warfare. He considered noa- 


combat losses (such as surrenders and desertions) and included suppressive 


effect8 for supporting weapons in several of these models. 


The above very rough sketch and Table 2.VII should give the reader 


a general idea of the development of the so-called LANCHESTER theory 


of combat. Although we haven't discussed every reference cited in Table 


2.V11, we have touched upon the high points. Figure 2.11 depicts the 
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LANCHESTER (1914) 


Figure 2 . 1 1 .  Chronology of developments i n  

UCHESTER theory of combat. 



chronology of them deaalopmmts. In  t h i s  f igure,  the arrowe depict t h i s  

author's beet gueas aa t o  how the works of various authors have influenced 

each other .  

Another way t o  look a t  developments i n  the  LANCHESTER theory of 

combat is t o  c l a s s i fy  them in to  sevaral  broad areae. Tabla 2.VIII l i s t e  

the  major areas of development f o r  the LANCEIESTER theory of combat In to  

which most of the  extenaione, f o r  example, l i s t e d  ia Table 2,Vlf f a l l .  

In Table 2.IX, we enumerate variourr papers tha t  f a l l  i n t o  these eight  

major areas. In Table 2.IX, we give the authors'  names and date  of the  

publiehed work fo r  each major (or benchmark) piece of work i n  these 

areas.  The exact reference t o  each piece of work m y  be obtained by con-

su l t ing  the  l i s t  of references a t  the  end of t h i s  chapter. 

Thus, we hope tha t  Tables 2.VIT through 2.IX, Figure 2.11, and these 

br ief  comments w i l l  provide a rough idea of how the  LANCHESTER theory of 

combat has developed. In the  remaining chapters of t h i s  book, we w i l l  

examine i n  more d e t a i l  some of the  more important topics  on combat model- 

l i n g  and/or analysis .  



TABLE 2.VIII. Major Area& of D~valopment for 
LAVCHESTER Thaory of Combat 

Stochartic combat model. 

Oprirael f ire-distribution strategies 

sr. o p t h l  air-war strategies 


b. optimal fire-support atrategieo 


Empirical verification 


Different functional forme for attrition rates 


Applfcations to guerrilla war faze 


Prediction of attrition-rate coefficients 


Variable attrition-rate coefficieuts 


Large-scale, complex planning models 



TABLE 2.IX. Development of the Xajor Areas of the  LANQLESTZR Theory of Combat. 

S t o c b t i c  Combat W e l g  Variable A t t r i t i o n - h t e  Coefficients  

K O O W  (1940's; see 10DILSE an& K I W (1951)) K O O P W  (1940's: s ee  WBSE and K I M M L L  (1951)) 
SNOU (1949) "~~ (1955. 1963) l3. K. VBISS ( 1 9 5 7 r  KWDER (1964) 
G. UEISS (1963 SnrTU (1965) P A R W U  (1970) TAYLOPt (1971, 1 9 7 1 ~ )  
KISI and HIROSE (1966) HELllcAN (1965) TAYUkB and PARRY (1975) TAYLOR and BROW (1976) 
SPRINCUL (1968) CLAW (1969) TAYLOR .nd C ( ~ ~ ~ S M C Y(1977) 
GYUBBS a d  SINR)RD (1973) KARR (1974, 1975a, 1975b, 1976) 
StIuPoao and GRUEBS (1975) UATSOEl (1976) 

A. General b. O a b i P l e l  Air-War S t r a t eg i e s  C. O p t h a 1  Ffre-Su?port S t r a t eg i e s  

\ - ISBELL and M U O U  (19Mb) MORSE and KllIBAU (1951) B. K. UEISS (1957, 1959) 
TAYLOR (1973, 1974a. 1974d, 1975) GUMBONI, HENGEL, and DISHINGTON (1951) U U A  (1973) 

IIENGEL (1953, 1954) I S M S  (1954, 1955, 1965) TAYLOR (1974, 1977)>.? x*, 9 
N lW.KEBSON and JOHNSON (1957) BELLMAN and DREYPUS (1958) TAmS and (1978) 
h) BEaKoVITZ and DRESHER (1959, 1960) BBACW (1973) 

9XACKE6, PALK, and KARR 119?5) 
% ANDEXSON, BRACKEN, and SCHWARTZ (1975) 

Different  Punctiuna1 Furma f o r  A t t r i t i o n  2a tes  Empiriccll Verif icat ion Rppllcations t o  Guerr i l la  Warisre 

PETERSON (1953, 1967) ENGEL (1954) DeIT(XMU (1962) 
BRACUEY (1959) B. K. UEISS (1951, 1966) U S 1  and HIROSE (1966) 
HELMBOLD (1965) HELHBOLD (196La, 1961b. 1964a, 1964b, 1971) SceaPVEP (1968) 

WILLARD (1962) 

Predict ion of d t t r i t i o ~ i i a t e  Coefficients  Large-Scale, Complex Planning Wels  

SLIACQW (1959) BONDER (1964. 1967, 1970) GW[BONX, MENGEL, Pnd DISLlMCMES (1951) 
SCliMFEE (1968) BABP08T (1969) SISKA, GUMBOP?, and LIHD (1954) 
CIARK (1969) WHDER and FAPBEU (1970) BONDER (i964) CIARK i lW9) 
YIlIBLEIY)W (1971) BONDER and FhaaBLL (1970) BOEmeE and W I G  (1971) 

FAERELL (1975) CBEPBY (1975) 

'2lere TAYLOR (1974~)  ;. the rh i rd  paper published by TAYLOR i n  1974. 



2.8. A Simple Model of Battle Termination. 


For asseseing the outcomes of combat engagements between unite in war 


games and simulations, one needs some type of "combat results table" that 

relates the initial conditions of combat to prabahle outcomes. The military 


operations analyst is faced with constructing such a table. Let us recall 


that the first question that we posed in Section 2.2 about the dynamics of 


combat between two homogeneous forces was (Ql): "Who will 'win'? Be annihi- 


lated?" It turns out that the determination of battle outcome depends on 


not only the dynamics of combat (i.e. differential equations such as (2.2.11, 


which model the force-attrition processes) but also the battle-termination 


rules used. 


Of even more interest to the military operations analyst is how the 


means and tactics for waging war are related to the outcome of battle. 


Specifically, one desires to have a clear understanding of how force-level 


and weapon-system performance parameters interact to determine a battle's 


outcome. What is the tradeoff between quality and quantity of weapon 


systems? When are two forces of equal strength? All such determinations 


require the specification of a model for battle termination. We will now cons 


a simple model of battle termination and briefly study its lmplicati0nS for co 


ditions of force superiority. We had to defer the discussion of battle- 


outcome determina tionlpredic tion (i.e. the answering of questions (Ql) 

through (44) of Section 2.2) until now when we will examine battle-terminatioc 


modellhg . 
As H. K. WEISS [ 9 8 !  has emphasized, engagements that continue until 

one side is wiped out are rare. Although we are well aware that battle 


termination is a complex random process for which it is by no means certain 


that force levels are the only significant variables (i.e. the state 
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variables)28, we w i l l  assume t h a t  combat ends when e i t h e r  of two given 

"breakpoint" force  l e v e l s  is f i r e t  reached. In Chapter 3 we w i l l  d i scuss  

the modelling of b a t t l e  ttmni.nation more thoroughly. Accordingly, f o r  

present  purposee, let us def ine  a force-level breakpoint a8 t h a t  po in t  (1.e. 

force  l eve l )  a t  which a u n i t  ( e i t h e r  of fens ive  o r  defensive) can no longer 

perform i ts  miseion during a f i r e  f i g h t .  We w i l l  assume t h a t  when a un i t ' s  

breakpoint force  l e v e l  (or ,  simply, i t s  breakpoint) is reached, t he  u n i t  

w i l l  "break o f f "  the  engagement and leave the enemy force  i n  possession of 

the f i e l d  of b a t t l e .  In  o ther  words, w e  consider t h a t  when a u n i t  reaches 

its breakpoint before the enemy has, t h a t  u n i t  has l o s t  the b a t t l e .  

Thus, the s implest  model of b a t t l e  termination is  t h a t  b a t t l e  outcome 

depends (de te rminis t ica l ly)  only on the force  l eve l s .  In  other  wordo, we 

a r e  considering a purely de t e rmin i s t i c  model of b a t t l e  termination (with 

no element of chance). I n  Chapter 3 we w i l l  d i scuss  t h e  modelling of 

b a t t l e  termination a s  a s tochas t i c  (or  random) process. Let us conslder 

combat between two homogeneous forces  (denoted as X and Y) and denote 

X ' S  breakpoint fo rce  l e v e l  a s  xBp, with yBP being s imi l a r ly  defined. 

Hence, f o r  example, the  following three  condit ions hold f o r  a Y v ic tory :  

(C1) Xf a xBp , 

Y wins when (C2) yf > ygp , (2.8.1) 

(C3) x ( t )  > xgp and y ( t )  > ygp f o r  0 2 t < t f ,  

where x ( t )  and y ( t )  denote the X and Y fo rce  l e v e l s  a t  time t ,  

and t f s  xi x ( t f ) ,  and yf - y ( t f )  denote f i n a l  values.  Let us  a l s o  

write t h a t ,  f o r  example, 



Xwhere f Bp denotes a given f r a c t i o n  of X ' s  i n i t i a l  s t r eng th .  This break- 

po in t  f r a c t i o n  fgp  (o r ,  equiva len t ly ,  the  u n i t ' s  breakpoint) is usually 

aeoumed t o  depend on the  t a c t i c a l  pos ture  of the u n i t ,  its s i z e ,  e t c .  Typica 

values  f o r  a company-sized u n i t  a r e  the following: 

* - 0.7 f o r  an a t t ack ing  fo rce ,  %P 


and - 0.5 f o r  a defending force.  BP 


For any p a r t i c u l a r  b a t t l e  ( i . e .  f o r  p a r t i c u l a r  spec i f i ed  va lues  of 

a tt r i t i o n - r a t e  c o e f f i c i e n t s  and i n 1  t i a l  f o r ce  l eve l s )  between two homogeneou~ 

forces  with assumed fixed-force-level breakpoints ,  w e  can always, of course,  

determine the outcome simply by p l o t t i n g  t he  decay of t he  force  l e v e l s  x ( t )  

and y ( t )  and observing which s i d e  f i r s t  reaches i t s  breakpoint.  This 

approach is, however, a time-consuming procedure, and i t  does not provide 

any deep understanding o f  t he  dynamics of combat ( i . e .  how weapon-system 

c a p a b i l i t i e s  and numbers of fo rces  determine the  outcome of b a t t l e ) .  It is 

the re fo re  of i n t e r e s t  t o  have a v a i l a b l e  victory-predict ion condi t ions ,  which 

e x p l i c i t l y  por t ray  the  r e l a t i onsh ip  between these va r i ab l e s  ( i . e .  weapon-

system-capabili ty and force- level  va r i ab l e s )  and the  outcome of b a t t l e .  

Thus, w e  w i l l  give v ic tory-pred ic t ion  condi t ions f o r  LANCHESTER's 

c l a s s i c  combat formulations wi th  fixed-force-level breakpoints.  We w i l l  

s t a t e  these  r e s u l t s  without proof;  d e t a i l s  of t h e i r  development a r e  given 

i n  Chapter 3. Xn o the r  words, w e  now w i l l  g ive battle-outcome-prediction 

r e s u l t s  t h a t  answer quest ions (Ql) through (44) posed i n  Sect ion 2.2 above 

f o r  the two c l a s s i c  models: 



I 

(M1) LANCHESTER1s equa t ions  f o r  modern war fa re  (2.2.1) , 

and (M2) LANCHESTER1e equat ion8 f o r  a r e a  f i r e  (2.4.1) . 
Let us t h e r e f o r e  f i r s t  cons ider  t h e  c a s e  i n  which t h e  combat dynami, 

a r e  g i w n  by LANCHESTER'EI equat ion% for modern war fa re  2 2 1 . I n  t h i s  

Y - - - .w i l l  win a f ixed-force- level-breakpoint  b a t t l e  ( i n  f i n i t e  time) i f  and 

only i f  

When (2.8.3) holds  and Y wins,  t h e  number of h i s  s u r v i v o r s  fs l lowa from 

LANCBESTER's square  law (2.2.5) and (2.8.2) , and i t  is g iven  by 

It i s  a l s o  of i n t e r e s t  t o  compute t h e  winner ' s  t o t a l  c a s u a l t i e s  

f(denoted as yc) and a l s o  h i s  f r a c t i o n a l  l o s s  (denoted a s  ( f r ) f ) ,  s i n c e  

t h e s e  q u a n t i t i e s  are measuras of h i s  "cost" for doing combat and achieving 

v i c t o r y .  I n  g e n e r a l  f o r  c a s e s  wi th  no replacements and no wi thdrawals ,  

Y ' s  t o t a l  c a s u a l t i e s ,  denoted a s  yc, a r e  g iven by 

s o  t h a t  (2.8.4) y i e l d s  t h a t  t h e  v i c t o r ' s  l o s s e s  are given By 



whrre yf denotes Y ' s  2ilul ,~nualtim at the end of battle at tf. 
c 

Similarly, Y's casualty fraction is defined (in auch caeee of no replace- 


ments and withdrawals) by 


Yo - Y
fY I-- , (2.8.7)
C 


yo 


eo that (2.8.6) yields that the victor'e fractional loss is given by 

Y
where (fc) denotes the final casualty fraction. 


We denote the time for X to reach his breakpoint as t;p, with 


tip being similarly defined. The time t& may be determined by solving 

the equation 


and accordingly we obtain using (2.2.8) that 




We can obta in  a sixailor r e a u l t  f o r  Y Then che victory-predict ion con-
tgp. 

a 

d i t i o n  (2.8.3) follows from requi r ing  t h a t  Since the b a t t l e  

ends upon X 'S  fo rce  l e v e l  reaching h i s  breakpoint [H (2.8.1) above], t k  

X
tima a t  which the b a t t l e  ends, t f ,  is  equal c6 
tBp. Thus, the  time f o r  

Y
t o  win such a b a t t l e ,  denoted a s  $, i s  given by $Y t f .  These r e s u l t s  

a r e  all. s ~ ~ a r i z a di n  Tabla 2.X. I n  summary, the  information contained i n  

t h i s  t a b l e  provide8 the  answers to  the  quea t iom (Ql )  through (44) posed 

above i n  Section 2.2. 

These r e s d t s  a r e  p a r t i c u l a r l y  s i g n i f i c a n t  because they show t h a t  

tha outcome of b a t t l e  is determined by only th ree  r e l a t i v e  f a c t o r s  (and no 

absolute  q u a n t i t i e s ) ,  even though our  cornbat model (2.2.1) (with b a t t l e  

termination condit ions included) ccntains  s i x  independent parameters : name 

X Y 
. a ,  b, XO, Yo, fB*, and fBp. In  p a r t i c u l a r  the victory-predict ion cond i t i  

(2.8.3) e x p l i c i t l y  shows t h e  parametric dependence of b a t t l e  outcome on 

various combat fac tors .  We s e e  t h a t  the outcome of a fixed-force-level-

breakpoint b a t t l e  depends on three  f ac to r s :  

(Fl) the i n i t i a l  force  r a t i o ,  uo = xO/yO 

(F2) r e l a t i v e  f i r e  e f fec t iveness ,  R = a /b ,  

and (Fa) a r e l a t i v e  breakpoint f a c t o r ,  B X = B(fgp, 

where 

A l l  th ree  f a c t o r s  a r e  r e l a t i v e  f ac to r s .  The f i r s t  two a r e  simply r a t i o s ,  

invar ian t  f o r  c e r t a i n  types of changes i n  the absolu te  b a t t l e  condi t ions 

(namely, the graup of s i m i l a r i t y  transformations,which leaves these  r a t i o s  

unchanged). The r e l a t i v e  breakpoint f a c t o r  has the following proper t ies :  



TARLE 2.X. Summary of Battle-Outcome Results for IIWCHESTERtsEquations 

for Modern Warfare and Fixed Force-Level Breakpoints 

When Y wins: 


(A) winner's survivors, 

Y

(B) winner's fractional loss, (f;)f = 1 - a 



(a) B(u,u) = 1, (b) aB/au > 0 for u > 0,and (c) aB/av < 0 for 

v > 0. Hence, B(u,v) > 1 for u, v z  0 if and only if u > v. We may the] 

rewrite the victory prediction condition (2.8.3) as 

Thus, even though for a fixed-force-level-breakpoint battle, the 

model (2.2.1) contains six independent parameters (including the two break- 


podat fractions), it is only the three relative factors, uo, R, and B, 


X Y

which determine battle outcome. The relative breakpoint factor B(fgp, fBp) 


explicitly shows the influen'ze of the units' breakpoints on battle outcome. 


X Y
In particular. when fBp = fgp, the victory-prediction condition (2.8.11) 

reduces to the force-annihilation-prediction condition given in Proposition 


2.2.1. It seems appropriate for us to point out here that although we have 

been able to generalize Proposition 2.2.1 (i.e. generalize force-annihilatio 


prediction conditions) to the case of time-dependent attrition-rate coeffici 


we have not been able to do so for the victory-przdiction condition (2.8.11) 


for a fixed-force-level-breakpoint battie. 


Using the results of Table 2.X, we have constructed Table 2.XI. 


In this latter table we show the influence of the values taken for the units 


breakpoints on the outcome of battle. Parameter values were chosen to be 


representative of an attack by the X forces against Y. Frequently, one 


hears in military circles that a three-to-one force ratio is necessary for 


success in attacking an enemy position. Table 2.XL has been constructed to 


also examine this rule of thumb. Consequently, we have taken a r'orce ratio 


of 3.00 (numbers of attackers to defenders) for this examination. Additions 






X 

one would think chat the defenders (with t h e i r  ea tab l i shed  pos i t ions  and 

well-planned " f i e ld s  of f i r e " )  would be r e l a t i v e l y  more e f f e c t i v e  (per man) 

than the  a t t acke r s .  The input valuee shown i n  Table 2.XI r e f l e c t  this 

s i t u a t i o n .  Also, the values se lec ted  f o r  the two breakpoints,  aamely BP 
Y

and fgpr r e f l e c t  the hypothesis t h a t  the defending u n i t  (which does not , 

move and requi re  a s  c lo se  coordinat ion and con t ro l  f o r  movement a s  the 

a t t ack ing  u n i t  does) can s u s t a i n  a higher f r a c t i o n  of c a s u a l t i e s  than t h e  

a t t a c k e r  before abandoning its mission and "breaking of f"  the  engagement. 

Let us now examine the s e n s i t i v i t y  of b a t t l e  outcome t o  the  u n i t s '  

breakpoints.  I f  the number contained i n  column 2 of Table 2.XL is  smaller 

than t h a t  contained i n  column 6, then Y w i l l  win according t o  the  ~bove  

victory-predict ion condit ion (2.8.3). The contents  of column 7 ( t h e  

determined v i c to r )  show the s e n s i t i v i t y  of b a t t l e  outcome t o  the breakpoint 

values used. Moreover, we should observe t h a t  i f  the  b a t t l e  were to  b e  

fought to  the ann ih i l a t i on  of one s i d e  o r  the o the r ,  then X ( t h e  a t t acke r )  

would win. Bowaver, s ince  i t  is usual ly hypothesized t h a t  the a t t acke r  can 

s u s t a i n  a smaller  casua l ty  f r a c t i o n  than the  defender before "breaking 

of f"  the a t t a c k ,  the actacker  may not  always win, and t h e  a t t acke r  w i l l  

l o s e  b a t t l e s  f o r  which the "breakpoints overcome mass." For example, X 

l o ses  the b a t t l e  i d e n t i f i e d  as Case 1 i n  Table 2.XI. 

Thus, the  examples shown i n  Table 2.XI t a l l  u s  t h a t  a fo rce  may be 

ab le  t o  win a fixed-force-level-breakpoint b a t t l e  f o r  c e r t a i n  breakpoints,  

eve,n though i t  would l o s e  a fight-to-the-finish. Figure 2.12 shows the  

decay of the force  l e v e l s  i n  t he  more "usual" case i n  which Y wins with 

Xo"'o < m, i . e .  X would be annih i la ted  i f  the  b a t t l e  were allowed 

t o  proceed u n t i l  the ann ih i l a t i on  of one s i d e  o r  the  o ther .  We have a l s o  
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Figure 2.12. Decay of the  fo rce  l e v e l s  f o r  IUICHESTER's equat ions of 
Y tipc tip i nmodern warfare  f o r  0 5 ( 5 ty = t h e  c a m  of 

a Y v i c t o r y  when %/yo c m. The dot ted  line shows 

what t h e  decay of t h e  Y fo rce  l e v e l  would be i f  t he  

*forces  did not  disengage a t  t = tgy. The dashed l i n e s  

extend t h e  X and Y force  l e v e l s  computed according 

t o  (2.2.13) and (2.2.14), respec t ive ly .  



-- 

extended, f o r  example, t h e  X f o r c e  l e v e l  [computed according t o  (2.2.13)] 

A
p a s t  t h e  u n i t ' s  breakpoint  a t  

tgp 
and denote  t h i s  extended cuxve wi th  

a dashed l i n e .  

From Figure  2.12 we see t h a t  t h e  Y f o r c e  l e v e l  [computed according 

X.
t o  (2.2.14) 1 a c t u a l l y  i n c r e a s e s  f o r  t > ta. This  should warn t h e  r e a d e r  

a g a i n s t  i n d i s c r i m i n a t e  "plugging in"  t o  a n  equa t ion  l i k e  ( 2 . 2 . 1 4 ) .  In  o t h e r  

words, t h e  a t t r i t i o n  equa t ions  (2.2.1) a r e  on ly  v a l i d  f o r  x > %p and 

y > yBp. To be  p r e c i s e  then,  once we have in t roduced t h e  concept of break- 

p o i n t s  and cons ider  s f ixed-force- level-breakpoint  b a t t l e ;  w e  shou ld ,  f o r  

example, w r i t e  LANCHESTER's equat ions  f o r  modern war fa re  as 

f o r  x > xgp and y > y BP ' 

otherwise ,  

f o r  x > XBP and Y > YBP ' 
o t h e m i s e  . 

However, f o r  s i m p l i c i t y  w e  w i l l  u s u a l l y  n o t  w r i t e  o u t  t h e  range of v a l i d i t y  

of such equa t ions  a s  above and hope t h a t  t h e  reader  w i l l  understand t h i s  

implied r e s t r i c t i o n .  F igure  2.13 shows t h a t  a f o r c e  that would otherwise  

be a n n i h i l a t e d  can a c t u a l l y  win a f ixed-force- level-breakpoint  b a t t l e .  Th i s  

s i t u a t i o n  corresponds to  Case 1 s h s n  i n  Table  2.XI. 

Resu l t s  are s i m i l a r l y  ob ta ined  when t h e  combat dynamics are given 

by LANCHESTER's equa t ions  f o r  area f i r e  (2.4.1). I n  t h i s  c a s e  Y w i l l  

win a f ixed-force-level-breakpoint  b a t t l e  i f  and only i f  
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Figure 2.13. Decay of the force l e v e l s  for MTCHESTER's equations of 
Y X Y

modern warfare for 0 5 t l t Wa tgpc t B p  i n  the case of 

e Y victory when x O / y O > a.The dotted l i n e  shows 

what the decay of the Y force level. would be if the 
Xforces did not disengage a t  t = tBp. The dashed l i n e s  

extend the X and Y torce l e v e l s  computed according 

t o  (2 .2 .13)  and ( 2 . 2 . 1 4 ) .  respcctivcly. 



XThe length of b a t t l e  is f i n i t e ,  however, i f  and only i f  fgp > 0. Other 

r e s u l t s  a r e  obtained by means s imi l a r  t o  those employed i n  the previous 

casa ( i . e .  f o r  LANC?IESTER1s equations f g r  modern warfare) .  These r e s u l t s  

a r e  summarized i n  Table 2.XII. 

From the v i c  tory-prediction condit ion (2.8.13) f o r  combat modelled 

by LANCHESTER'S equations f o r  a r ea  f i r e ,  we again e x p l t c i t l y  s e e  the  parametr 

dependence of b a t t l e  outcome on only three  , r e l a t i v e  combat f a c t o r s ,  even 

though our combat model (2.4.1) (with bat tLe termination condit ions 

included) contains  s i x  independent parameters. Although the  f unc t iana l  

dependence i n  the  victory-predict ion condition i s  d i f f e r e n t  from t h a t  f o r  

MCHESTER1s equations f o r  modern warfare,  w e  again encounter the same 

tbrze  f a c t o r s  t h a t  determine b a t t l e  outcome: namely, (F1) t he  i n i t i a l  

force  r a t i o ,  u0 = x /y , (F2) r e l a t i v e  f i r e  e f fec t iveness ,  R = a /b ,  and0 0  

X Y Y X

(F3) a r e l a t i v e  breakpoint f a c t o r  B a B ( f B p ,  fBP? = ( 1  - f B p ) / ( l  - fBp).  

'Fha r e l a t i v e  breakpoint f a c t o r ,  however, is  d i f fe ;  -t f o r  the  two d i f f e r e n t  

combat dynamics [namely, f o r  combat modelled by (2.2 1 )  and a l s o  (2.4.1)].  

For the  combat dynamics (2.4.1) the victory-predic.ion condit ion takes a 

p a r t i c u l a r l y  simple form i n  terms of the breakpoint casua l ty  f r a c t i o n s ,  

X Y s e e  (2.8.7) above]. Thus, Y w i l l  w i ndenoted a s  (fc)8p and (fcIep C 
fixed-force-level-breakpoint b a t t l e  i f  and only i f  

o r ,  equivalent ly,  



TABLE 2.XII. Sumnary of Battle-Outcome Results for UIVCHESTER'a Equations 


for Area Fire and Fixed Force-Level Breakpoint6 


xo a llof;p 

Y will win if and only if -< -

When Y wins: 


(A) winner's survivors, 


X
(8) winner's £ractional loss, ( £ 1  = 1 - iBp)($1 
( C )  duration of battle, tf a < where ' 

for p a l  


far 0 2 1  

and 


X
NOTE: X will win when 0 5 fBp < 1 - -1 . 
P 



I n  (2.8.15) the  victory-predict ion condi t ion is expreeaed l a  terms of t he  

product of t h r ee  r e l a t i v e  f ac to r s ,  each t h e  r a t i o  of t h e  X quant i ty  t o  

t h a t  f o r  Y). Let ue stress t h a t  i t  i s  only f o r  LANCHESTER1s equation6 

f o r  .area f i r e  (2.4.1) f o r  which such simple r e s u l t s  a r c  poss ib le .  This i s  

even more t r u e  when each s i d e ' s  breakpoint is considered t o  be a random 

v a r i a b l e  (seaChapter 3) .  

Let us f i n a l l y  d i scuss  some of the  d i f f e r ences  between t h e  above 

r e s u l t a  f o r  LANCHESTER1s equations f o r  modern warfare (2.2.1) and those fo r  

LANCHESTER1s equations f o r  a r ea  f i r e  (2.4.1). It seema appropr ia te  t o  say 

t h a t  twoforces  a r e  of equal  f i g h t i n g  s t r eng th  f o r  a p a r t i c u l a r  b a t t l e  i f  

ne i t he r  force  w i l l  win, i . e .  e i t h e r  (01) n e i t h c r  s i d e ' s  breakpoint is ever  

reached, o r  (02) both a r e  reached simultaneously.  Table 2.XIT.I then gives  

the  condi t ions fo r  equa l i ty  of f i gh t ing  s t r eng ths  f o r  the  two a . t t r i t i o n  

models (2.2.1) and (2.4.1). From t h i s  t a b l e  w e  see t h a t  equa l i t y  of 

f i gh t ing  s t r eng ths  no t  only depends on t h e  ba t t le - te rmina t ion  condi t ions 

bu t  a l s o  i n  d i f f e r e n t  ways f o r  the two models. Such p a r i t y  condi t ions 

may be considered t o  provide a t radeoff  between the  quant i ty  and the qua l i t  

of weapon systems. 

Furthermore, Table 2.XIII showo us t h a t  such quant i ty-qual i ty  tradeof 

a r e  q u i t e  d i f f e r e n t  f o r  these two c l a s s i c  combat a t t r i t i o n  models. For 

LANCHESTER's equations of modern warfare ,  a four-fold i nc rease  i n  t he  

r e l a t i v e  e f i ec t i venes s  of enemy ( f o r  example, Y) weapons can be  o f f s e t  by 

a doubling i n  the  r a t i o  of f r i e n d l y  t o  enemy fo rces  ( i . e .  increas ing  a / b  



TABLE. 2.XIII. Conditiona for Equality of Fighting Strength8 in a 

Fixed-Force-Level-Breakpoint Bat tla for LANCHESTER ' 8  

Two Claw Models. 


(Ml) LANCHESTER's Equatione for Modern Warfare 


(M2) LANCHESTER's Equations for Area Fire
-




by e f ac to r  of four  can be o f f e e t  by increasing xO/yO by a f ac to r  of 

two) . I n  a sense then, increas ing  the  number of weapone f o r  8 side is 

much more e f f e c t i v e  i n  maintaining m i l i t a r y  p a r i t y  between two forces  than 

incraaeing t h e i r  r e l a t i v e  qua l i t y .  However, f o r  kWCUSTER's equations of 

a r ea  f i r e  (or ,  f o r  t h a t  matter ,  any "linear-law" a t t r i t i o n  procese [ m e  

Section 2.9 below]) the t rad ing  of numbers f o r  qua l i t y  is "one f o r  one," 

i . e .  a four-fold increara  i n  the r e l a t l v a  e f fec t iveness  of enemy waapow 

con be o f f s e t  by a four-fold increase  i n  the  r a t i o  of f r i end ly  t o  enemy 

forces .  

Final ly ,  l e t  us  remark t h a t  the s i g n i f i c a n t  thing is  t h a t  the b a t t l e -  

termination model & important and not s o  much t h a t  there  is thus and s o  a 

func t iona l  r e l a t i onsh ip  between parameters of the  bat t le- terminat ion model 

and the  force-parity condition. The a c t u a l  real-or ld process of b a t t l e  

termination is much more complicated than the  simple model considered here.  

Thus, the most s i g n i f i c a n t  aspec t  of our work hare is the f a c t  t h a t  b a t t l e  

~termination m ; be considered i n  determining fo rce  pa r i t y .  



2.9. !.&ncenetation of Forces Rev is i t ed .  

One of t h e  h a l f  dozen o r  s o  p r i n c i p l e s  of war is t h e  p r i n c i p l e  

of concen t ra t ion  ( o r  mass), which would have a commander c o n c e n t r a t e  aa -
many men and means as p o s s i b l e  a t  t h e  d e c i s i v e  p o i n t  Pn battle. Aa we 

have seen  above i n  Sec t ion  2.1, F. W. LANCHESTER sought. t o  develop i n  h i s  

now c l a e a i c  1914 paper,  a q u a n t i t a t i v e  j u s t i f i c a t i o n  f o r  t h e  p r i n c i p l e  

of c o n c e n t r a t i o n  w i t h  a n  i d e a l i z e d  model, of  t h e  combat process .  We will 

now examine t h i s  t o p i c  i n  more depth  than i n  Sec t ion  2.1,  however. 

LANCHESTER [ 5 5 ,  p. 422, column 1 1  p o i n t s  o u t  t h a t  t h e r e  a r e  two a s p e c t s  

of t h e  p r i n c i p l e  o f  concen t ra t ion :  (1) mental  c o n c e n t r a t i o n  ( i .  e. 

focus ing  a l l  mental  energy on a s i n g l e  o b j e c t i v e ) ,  and (2) material con-

c e n t r a t i o n  ( i . e .  focus ing  a l l  m a t e r i a l  means on a s i n g l e  o b j e c t i v e ) .  

He w i l l  focus  on t h e  second aspec t  c f  t h e  p r i n c i p l e  o f  c o n c e n t r a t i o n  (i.e. 

a a t e r i a l  concen t ra t ion)  , however. 

I n  o t h e r  words, LANCHESTER hypo t h e s i z e s  t h a t  i n  "modern" war£ a t e  

t h e r e  a r e  s u b s t a n t i a l  b e n e f i t s  t o  be gained from merely committing more 

f o r c e s  t o  b a t t l e .  H e  w i l l  s eek  t o  i n v e s t i g a t e  t h e  under lying p r i n c i p l e s  

t h a t  cause  such "economies of s c a l e "  i n  combat. As w e  have seen  above, 

h i8  models of combat (2.2.1) and (2.4.1) were t h e  r c s u l t  of this Pnvesti-

ga t ion .  Not only  d i d  LANCIIESTER show t h a t  t h e r e  ware i n c r e a s i n g  returns 

t o  s c a l e  from coramitting a d d i t i o n a l  f o r c e  t o  b a t t l e ,  b u t  he  a l s o  developed 

an important  t r a d e o f f  f o r  q u a l i t y  v e r s u s  q u a n t i t y  o f  weapon systems by 

means of h i s  famous square  law, namely, t h e  c o n d i t i o n  f o r  e q u a l i t y  of 

" f i g h t i n g  s t r e n g t h "  



Before going fu r the r ,  however, l e t  ua point  out an  important d i s -  

t i n c t i o n  between the sense! i n  which we and LANCHESTER use the  term "con- 

centrat ion" and that used by most m i l i t a r y  ana lys ts  today.29 Today the  

& e m  "concentration" of forces  is usual ly used i n  the context of a s i n g l e  

force  s p l i t  i n t o  two cr more subunits  f a r  purposes of massing and/or 

economy s f  force. In t h i s  sense,  one must consider the cos t  t o  the parent 

u n i t  of concentrat ion of forces  i n  one sec to r  a t  the expense of another 

sec tor .  As COLONEL VASILIY Y .  SAVKIN [71] of the  USSR has s t a t e d ,  

"To a t t a i n  v i c to ry  over the enemy one must not d i s s i p a t e  

h i s  forces  and means equal ly acrase  the e n t i r e  f ron t ,  

but  the main e f f o r t s  must be concentrated on the most 

important a x i s  o r  s ec to r  and a t  the r i g h t  time i n  order  

t o  form there  the  necessary supe r io r i t y  over the enemy 

i n  men and weapons." 

We w i l l  not  use the term i n  t h i s  more sophis t ica ted  sense,  but w e  w i l l  

consider only one b a t t l e  and w i l l  examine the consequences of i n i t i a l l y  

committing add i t i ona l  forces  t o  combat. 

Let us  now address the quest ion,  "What a r e  the bene f i t s  t o  be 

gained from committing addi t ional  forces  t o  ba t t l e?"  Our problem is  t o  

model and evaluate  the consequences of t h i s  ac t ion .  We have given t h i s  

quest ion a curaory examination i n  Section 2 . 1  above, and we w i l l  examine 

i t  i n  more depth here. In  p a r t i c u l a r ,  we w i l l  cont ras t  r e s u l t s  f o r  t he  

two models (2.2.1) and (2.4.1). 



Let ua now cansider the question of whether or not to commit 


additional forces tc battle as a decision problem faced by one of two 


commanders about to engage in combat. Without loss of generality, we 


m y  play the role of the Y commander. Our problem is to find the 


"best" value for the initial number of forces committed to battle by Y, 


denoted as yo. In other words, yo is the decision variable for Y in 

our decision problem. Let us now ask ourselves what are the factors 


affecting Y's decision. The main factors affecting Y's initial. commit. 


ment of forces appear to be: 


what the Y commander knows about the battlefield situatic 


what the enemy commander Ci.e. X) will decide to do, 


nature of the conbat attrition processes, 

criterion selected by Y for evaluating the consequences 


of his action, 


how the battle will be terminated, 


who will win the battle, 


subsequent combat actions. 


For simplicity, we will ignore the last factor (F7) and consider only the 


battle at hand. Let us consider the case in which Y will be the victor 


(i.e. assume that he has more than enough forces available to "win" the 


battle). We will then consider the Initial-commitment decision by Y as 


a one-sided optimization problem: we assume that the X-force commander 


had adopted a known course of action and consider Y Is initial-commitment 


decision in this light. 


Based on the above consideration, the essential aspects of the 


decision process for Y in deciding whether or not to concmtrate forces 




( i . e .  i n i t i a l l y  comanit a s  many a s  poss ib le  t o  b a t t l e )  a r e  the following: 

(1) a c t i o n  t o  be taken (decis ion va r i ab l e ) ,  

( 2 )  information ava i l ab l e  t o  dec is ion  maker, 

(3) outcome "yardstick" (decis ion c r i t e r i o n ) ,  

(4) r e l a t i onsh ip  of ac t ion  t o  outcome (slystem dynamics and na ture  

of planning horizon).  

In  our i n i t i a l  i nves t iga t ion  here  le t  us  not consider the inherent  uncerta  

i n  the decis ion problems and assume t h a t  Y has per fec t  knowledge about 

xC and yo, the  b a t t l e  dynamics (assmed de terminis t ic )  and b a t t l e  termi- 

nat ion ( a l s o  assumed de terminis t ic )  ?' Hence, we w i l l  not  consider the 

infortnation s t r u c t u r e  here fu r the r ,  although it w i l l  c e r t a i n l y  play a 

major r o l e  i n  a c t u a l  real-world m i l i t a r y  decis ions.  Let us summarize, our 

assumptions about our dec is ion  problem: 

enemy ( i . e .  X's) course of ac t ion  f ixed ,  

na ture  of b a t t l e  dynamics remains the  same during the  

engagement, 

Y has more than enough fo rces  t o  "win" the  b a t t l e  and 

add i t i ona l  forces  can be committed t o  b a t t l e  i n  any quant i ty  

des i red ,  

Y knows the  numerical s t rengths  and capab i l i t y  of each s i d e  

b a t t l e  w i l l  be terminated by a f ixed  force-level breakpoint 

fo rce  l e v e l  being reached. 

Aa we have discussed i n  Chapter 1 above, one of t he  major decis ion 

i n  evaluat ing any system o r  operation i s  the  s e l e c t i o n  o t  the appropriate  

evaluat ion c r i t e r i a  o r  measures of e f fec t iveness .  For our idea l ized  

concentration-of-forces decis ion,  we w i l l  consider a s i n g l e  measure of 

e f fec t ivenese  (MOE). We a r e  assuming t h a t  Y has more than enough forces 

ava i l ab l e  t o  "win" the  b a t t l e ,  so therefore  Y w i l l  always wind up i n  



X 

s o l e  possess ion o f  t h e  b a t t l e f i e l d .  It t h e r e f o r e  seems a p p r o p r i a t e  

t o  t ake  some measure of t h e  c o s t  of ach iev ing  t h i s  v i c t o r y  a s  t h e  c r i t e r i c  

f o r  dec id ing  whether o r  n o t  i t  w i l l  be  worthwhile t o  commit a d d i t i o n a l  

f o r c e s  t o  b a t t l e .  A n a t u r a l  measure of t h e  "cost  of doing b a t t l e "  i s  

t h e  number of c a s u a l t i e s  s u s t a i n e d  by t h e  Y f o r c e .  Le t  us denote  t h e  

number of c a s u a l t i e s  as yc. We have then t h a t  yc = yf-yo, where yf 

denotes  t h e  f i n a l  Y f o r c e  l e v e l  a t  t h e  end of b a t t l e  when t h e  X break 

p o i n t  (denoted a s  xgp) has  been reached. We a l s o  have then  xf = xgp 

= fBpxO. Let  us n o t e  t h a t  s i n c e  t h e  b a t t l e  is te rmina ted  by X reaching 

h i s  b reakpoin t ,  X ' s  c a s u a l t i e s  a r e  always t h e  same [namely, xc xf-xo 
X 
= (1-fgp)],  r e g a r d l e s s  of how many f o r c e s  Y i n i t i a l l y  commits t o  b a t t l e  

Thus, we may s t a t e  i n  q u a n t i t a t i v e  terms t h e  d e c i s i o n  problem of 

determining t h e  "best" i n i t i a l  commitment of Y ' s  f o r c e s  a s  

minimize C ,  s u b j e c t  t o :  yo 
max , (2.9.2)

min 2 yo :yo 

yo 

where C = yC = yf-yo denotes  t h e  c o s t  of doing combat ( i . e .  t h e  decis iol  

c r i t e r i o n  o r  o b j e c t i v e  f u n c t i o n ) ,  yo is t h e  d e c i s i o n  v a r i a b l e  f o r  which 

min = draw
t h e  b e s t  ( i . e .  opt imal)  va lue  i s  t o  be determined, yo yo + € , € > I  

draw 
and Yo denotes  t h e  v a l u e  of t h e  i n i t i a l  Y f o r c e  l e v e l  t h a t  l e a d s  t l  

a draw i n  a f ixed-force-level-breakpoint  b a t t l e .  We w i l l  denote  t h e  o p t i ~  

* 
va lue  of y a s  yo. We have now s p e c i f i e d  a l l  a s p e c t s  of our  combat0 

opt imiza t ion  problem excep t  f o r  t h e  combat dynamics. We w i l l  cons ider  

t h e  above combat-optimization problem (2.9.2) f o r  two c l a s s e s  of b a t t l e  

dynamics : 

(Cl) "square-law" b a t t l e s  , and 

(C2) "linear-law" b a t t l e s .  



By a "square-law b a t t l e "  w e  mean any LANCHESTER-type b a t ~ l e  f o r  

which LANCHESTER's square-law, 

2 2
b { x i  - x 

2 
( t ) )  = a{y0 - Y ( t ) ~ .  (2.9.3) 

holds  as t h e  s tate equat ion.  It fo l lows  t h a t  t h e  combat dynamics must be 

given by 

To i n s u r e  a m i l i t a r i l y  r e a l i s t i c  s i t u a t i o n  i n  which both  d x l d t  and 

dy/dt  2 0 f o r  x ,  y 2 0 ,  w e  assume t h a t  y ( t ,x ,y )  2 8 f o r  x, y 1 0  and 

a l l  t .  Lanchestar 'a  equa t ions  f o r  modern war fa re  (2.2.1) a r e ,  o f  course ,  

an example of such b a t t l e  dynamics. However, any b a t t l e  f o r  which (2.9.3) 

holds  w i i l  y i e l d  t h e  same r e s u l t s  as far as concen t ra t ion  of f o r c e s  is  

concerned, and t h i s  i s  why we consider  t h e  wore genera l  combat dynamlcs 

(2.9.4). To i n s u r e  t h a t  t h e  b a t t l e  t e rmina tes  i n  f i n i t e  t i m e ,  w e  assume 

t h a t  

R e s u l t s  f o r  a "square-law" b a t t l e  are shorn  i n  Table  2.XIV. In 

t h i s  c a s e ,  Y w i l l  win a f ixed-force-level-breakpoint  b a t t l e  ( i n  f i n i t e  

t ime) i f  an3 only i f  



TABLE 2.XTV 


Variation in Ovrn Caeualtias for Changes in Initial Number 

of Own Forces in "Square-Law" Battle with 


Fixed Force-Level Breakpoint 


Combat Dynamics: 

7 1% = -bx*y (t ,x,y) 

A. E t l e  Outcome: Y wins with 'i 

B. Own Casualties, 


7,  'Yo 



When Y wins, the cost of doing battle, namely C - yc, is given by 

+! 
Siuce aC/ayO < 0 always (see Table 2.9.1) , yo = y y ,  and the victory 

Y should alway~ initidly commit aa many forces as possible to battle, 


regardless of what the breakpoints are (as long as Y will win). Further-


more, a2~/ay; > 0 so there are diminishing returns from c o ~ t c i n g  additional 

forces to battle. Thus, irrespective of what the breakpoints are (as long 


as Y will win), Y should always initially commit as many forces as 


possible to battle when combat attrition yieldo Lanchester's square law 


(2.9.3). The reader should recall that in Section 2.1 we said that 


Lanchester 's square law (2.1.5) yields the important implication that a side 


can always significantly reduce its own casualties by initially committing 


additional forces to battle. However, we did not prove the validity of 


this assertion earlier but merely contented ourselves with a numerical 


demonstration of its piausibility. 


Similarly, by a "linear-law battle'' we mean any Lanchester-type 


battle for which Lanchester's linear law, 


holds as the state equation. It follows that the combat dynamlcs must be 


given by 




Again we aesuma t h a t  u ( t , x , y )  2 0 ao t h a t  both d x / d t  and dy/de 5 0. 

t a n c h e s t s r  yoe tu la ted  (tpa S e c t i o : ~2 . 1  above) t h a t  acch nqucrtions he ld  f o r  

ancient warfare .  lie A ~ S Pp m t u l a t e d  t h a t  ano ther  cone was t h a t  f o r  "area" 

f i r e  Caeca equa t ion  ( 2 . 4 . l ) I .  'To i n s u r e  t h a t  one side o r  t h e  o t h e r  As 

even tua l ly  annihrlatcrll,  we aseume t h a t  

Results f o r  a "linear-law" b a t t l e  are  ahown i n  Table  2 . W .  I n  

t h i s  c a s e ,  Y w l . 1 1  win a f ixed-force- level-breakpoint  b a t t l e  i f  and only 

PE 

-- < -

When Y wins, t h e  COE E of doing combat, naaeLy, C * yc,  i s  e;3.\en by 

Since 3C/3ya I (1 ( s e e  a l s o  Table 2 . X V ) ,  C does noC depend on y o  a t  

a l l ,  eo t h a t  t h e  c o s t  ai doing combat is m t  a f f e c t e d  by vary ing  t h e  

I n i t i a l  mmber of f r i e n d i y  f o r c e s  committed t o  b a t t l e .  Tn o t h e r  words, 

t h e r e  is  no advaneage t o  be gained from concenzrat ion of f o r c e s  i n  a 

"l inear-law" b a t t l e .  

Thus, we have shown t h a t  t h e  vic-tor's d e c i s i o n  as t o  whether o r  

n o t  t o  concen t ra te  f o r c e s  i r r  a f ixed-farce- level-breakpoint  b a t t l e  f o r  
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TABLE 2.XV 


Variation i.n Own Casudties ior Change in In i t ia l  Number 

of Own Forces i n  "Linear-Law" Battle wi th  

Fixed Force-Level Ereakpoint 

X
0 aFor ---

v 0  < 6 

A. Barrla_Ou-t,c=: Y wins with { 

B. Qwn Casualties, yc a yo - yf : 



which (Al) through (AS) hold is fundamentally different for square-law 

battles and for linear-law battles: in a square-law battle it is always 


best for the victor to initially commit as many forces as possible to 


combat, while in a linear law battle there is no benefit to be gained from 


concentrating forces. If we assume (as Lanchester did) that warfare in 


ancient times consisted of linear-law battles (in which "weapon directly 


answered weapon" in one-on-one duels) while under modern conditions it 


consists of square-law battles (in which fire from many may be concentrated 


on a few), then we see that the importance of concentrating forces has 


changed appreciably from ancient times to modern times. Under modern con- 


ditions, there is then a tremendous advantage to concentrating forces (or 


at least Lanchester hypothesized so3' ). These results are independent of 

the breakpoints of both sides (as long as the outcome is not changed). 


They also hold for any decision criterion, C, which is of the form 


C a F(yO), where F(v) is a strictly increasing function of its argument v. 


32In general, we would want to include enemy casualties in Y's 


force-concentration decision. However, if we had considered a decision 


criterion of the form C G(X~,Y~), where G(u,v) is a strictly increasing 

function of its second argument for any fixed value of its first argument 


u, then we would have reached the same force-concentration decisions as 


above (e.g. vector should concentrate forces in square-law battle), since 


xc - xO = xBP = CONSTANT. Thus, one would make the same force-concentration 

decision for other criteria (i.e. measures of effectiveness) such as the 


loss difference, Dc = yc - x c ' or the loss ratio, R = yc/xc . Later on, 
C 


we see that such insensitivity to changes in the decision criterion is 


due to the battle termination rule (fixed force-load breakpoint), and in 


other cases the force-concentration decision may depend on the decision 

criterion (malso TAYLOR [91]). 
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There is, however, a very simple principle that underlies all the 


above concentration-of-forcea results: namely, the instantaneous casualty- 


exchange ratio determines the overall casualty-exchange ratio and related 


measures of relative casualty-production effectiveness; in particular, if 


the instantaneous casualty-exchange ratio (friendly to enemy) always 


decreases as the force ratio (enemy to friendly) decreases, then additional 


forces should be committed to battle by the victor (friendly forces). Let 


us heuristically show why the latter decision rule for initially committing 


additional forces to battle is optimal. The key point Is that we should 


think of the instantaneous casualty-exchange ratio dy/dx, as the 


"cost's to Y of reducing the X force level a unit amount. Thus, 


ins tantaneous "~ost" to Y of 
a = ( casualty-exchange reducing X force level (2.9.10)
dx 
 ratio a unit amount 


Next, we observe that if Y initially commits more forces to 


battle, then the battle is fought at lower force ratios (regardless of the 


breakpoints of the two forces). Here we take the force ratio to be the 


ratio of the enemy (i.e. Xj force level to the friendly force level. 


In other words, we have that the force ratio, u, is given by u = x/y. 

What happens to the instantaneous casualty-exchange ratio if the battle is 


fought at lower force ratios? The answer to this question may be obtained 


by considering the following partial derivative 




which tel ls  us haw the  inatsntaneous caclualty-exchange r a t i o  va r i e s  ae  

the force  r a t i o  changes. A pos i t i ve  value fo r  thl.8 p a r t i a l  de r iva t ive  

(2.9.11) means t h a t  t he  i n s  tantanoous casualty-exchange r a t i o  decreaaea 

a8 the fo rce  r a t i o  decreases.  It follow8 t h a t  i f  (a /au) (dyldx) > 0 always, 

then t h e  Y fo rce  (whom w e  assume w i l l  win) can reduce t he  "cost" of doing 

combat by i n i t i a l l y  committing more fo rces  t o  b a t t l e  and f i g h t i n g  t h e  

b a t t l e  a t  lower fo rce  r a t i o s  with t h e i r  more favorable  exchange r a t i o s .  

For the  "square-law" b a t t l e  (2.9.4), w e  have 

where u = X/Y, and hence 

It is t h i s  r e s u l t  (2.9.13) t h a t  explains  why i t  is always a good t a c t i c  

f o r  Y to concentrate  fo rces  ( i . e .  make y0 a s  l a r g e  a s  poss ib le  i n  

square-law b a t t l e s )  . For the  "linear-law" b a t i l e  (2.9.7) , however, w e  have 

s o  t h a t  



In t h i s  l a t t e r  case,  therefore ,  t h e  instantaneous casualty-exchange r ae lo  

canuot be changed by varying the  fo rce  r a t i o .  Hence, the  o v e r a l l  casualty- 

exchange r a t i o  cannot be changed by soPrmitting more forces  t o  b a t t l e ,  and 

the re  is  no advantage t o  concentrat ing forcee i n  a fixed force- level  break-

poin t  b a t t l e .  I n  Chapter 8 we w i l l  r igorous ly  prove such ets tements  i n  

general  f o r  Lanchester-type combat with two force- level  va r i ab l e s .  

Some f i n a l  r e f l e c t i o n s  seem t o  be i n  order .  Our h e u r i s t i c  

explanation of the  underlying reason f o r  wanting t o  concentrate  2otces i n  

square-law b a t t l e s  (namely, t o  reduce t he  instantaneous caeualry-exchange 

r a t i o )  has ahown us t h a t  t h e  instantaneous casualty-exchange r a t i o  conveys 

the  bas ic  na ture  s f  the casualty-exchange process.  We immediacaly know 

(without having t o  e x p l i c i t l y  determine any type of s t a t e  equation) the 

s e n s i t i v i t y o f  the  o v e r a l l  casualty-exchange r a t i o  and r e l a t e d  measures t o  

var ia t iorrs  i n  the  i n i t i a l .  number of forces  committed t o  b a t t l e  by de t e r -  

mining t h i s  key quan t i t y  (namely, t he  i n ~ t a n t a n e o u e  casualty-exchange 

r a t i o ) ,  and i t s  s e n s i t i v i t y  t o  force- level  changes. Thus, important 

iuformaeion about t h e  behavior of our combat model has been obtained 

without having t o  spend the  time and e f f o r t  t o  e x p l i c i t l y  compute force-  

l e v e l  t r a j e c t o r i e s .  



h2.10. FISW-Typa Equations of Warfare. 

H. K. WEYSS [lOTIhaa pointed out  t h a t  LANCHESTER, an Englishman, 

waa an t i c ipa t ed  ( i n  q u a l i t a t i v e  but not quan t i t a t i ve  terms) t n  1905 by 

BRADLEY A. FXSKE ( t h n  Commander but l a t e r  Rear Admiral, USM), an American< 

FISKE won the  Naval. I n e t i t u t e  P r i ze  f o r  1905 f o r  h i s  essay e n t i t l e d  

"American Naval Policy." I n  t h i s  work he considered a " f i r e  fighc" betweer 

two fleets ( i . e .  sho t s  being exchanged between the  two f l e e t s  wi th in  e f -  

f e c t i v e  gun range ~f each o ther )  and assumed t h a t  both the  s t r eng ths  of 

the  Porcea and damages sus ta ined  could be given numeral FISKE 

then assumed t h a t  the  damage done t o  one fo rce  by the  o the r ,  i n  a given 

time period, w a s  p ropor t iona l  t o  t he  value of the  opposing force  a t  the  

beginning of t he  time period. H e  then developed t ab l e s  t o  show "how the  

values  of two contending forces  change a s  t he  f i g h t  goes on." Be  found 

t h a t  the decrease i n  of fens ive  power of a weaker f l e e t .  f i gh t ing  a s t ronger  

Is geometrical ( ins tead  of a r i t hme t i ca l )  and t h a t  there  is  a cont inual ly  

increas ing  d i f f e r ence  between the  powers of the  two f l e e t s  a s  an ac t i on  

t h a t  favors  the  s t ronger  f l e e t )  progresses.  Although no equations were 

given, i t  is c l e a r  t h a t  FISKE had gone through a l l  of t he  l o g i c a l  develop- 

ment for  t he  model (2.2.1). 

J. ENGEL [25]  subsequently pointed out  t h a t  FISKE1sve rba l  model 

is equiva len t  t o  a system of d i f fe rence  equations.  L e t  us accordiaglv 

conaider combat between two homogeneous forces  i n  which c a s u a l t i e s  a r e  

assumed a t  d i s c r e t e  po in t s  i n  t i m e .  We may think of t he  engagement as 

being fought i n  d i s t i n c t  vo l leys  ( i . e .  d i s c r e t e  exchanges of f i r e ) .  



Aoauminp chat  caaualtiesl during a time parind arts puopar~l .ona1TO the 

n m b e r  of energy f i r e r s  a t  t h e  beginning of t h e  r ime,  period, wa find t h a t  

t h e  gcner?l  equeLions of FISME'e model are'74 

vhere  t h e  s u b s c r i p t  n denotes  t h e  n t h  time p e r i o d  ( i . e .  j u s t  a f t e r  t h e  

n t h  v o l l e y ) ,  t h e  b a t t l e  beg ins  a t  n * 0, xn and yn denote  t h e  numbers 

of X and Y combatants t h a t  a r e  e f f e c t i v e  a t  t h e  beginning of t h e  n t h  

time per iod,  and a and 0 a r e  p o s i t i v e  c o n s t a n t s  t h a t  r e p r e s e n t  t h e  

e f f e c t i v e n e s s  of each s i 6 e ' s  f i r e .  For example, a denotes  t h e  number of 

X c a s u a l t i e s  produced by a s i n g l e  Y f i r e r  d u r i n g  one t i m e  per iod.  Let  

u s  r e f e r  t o  t h e  above equa t ions  (2.10.1) as FISKE's equa t ions  f o r  modern 

warfare.  They are t h e  d i s c r e t e  analogue of LANCHESTERfs equa t ions  f o r  

modern war fa re  (2.1.1).  The r e l a t i o n s h i p  between t h e s e  two m d e l s  is 

examined more c l o s e l y  i n  Appendix E.  I n t u f t i v e l y ,  w e  vould expect t h e  mod 

(2.2.1) and a l l  a s s o c i a t e d  r e s u l t s  t o  be t h e  l i m i t i n g  c a s e  of (2.10.1) as 

t h e  time between v o l l e y s  becomes a r b i t r a r i l y  s m a l l ,  For now, however, w e  

w i l l  b r i e f l y  examine some of t h e  p r i n c i p a l  p r o p e r t i e s  and r e s u l t s  f o r  t h e  

model, wi th  t h e i r  development d e f e r r e d  u n t i l  S e c t i o n  7.5 below. 

The X f o r c e  l e v e l  a t  t h e  beginning of t i m e  per iod a, xn, is 

given by 



and s imi lar ly  fo r  the Y force  l e v e l  

Lee us  assume a0 " 1 ao t h a t  1 - m. 0. Similar  t o  t he  proof 

of Proposi t ion 2.2.1, i t  followe t h a t  only one of xn and yn can ever 

become negat ive ( i . e .  if 5 < 0 f o r  gone N,  then yn > 0 f o r  a l l  n  2 0) .  Since 

z 0[ l  + 61"and -c + a s  n + and [I - Ja i ln  > 0 and -t 0 a s  

n -c rn, i t  follows from (2.10.2) t h a t  the following proposi t ion holds.  

PROPOSITION 2.10.1: Y w i l l  win a fight-to-the-finish i n  f i n i t e  

t i n e  i f  and ouly i f  xO/yO < ' m. 

Furthermore, i t  follows from (2.10.1) t h a t  

-

from which we obta in  the discrete-time s t a t e  equation f o r  FISKE1s model 

of modern warfare.  

We w i l l  a l s o  refer t o  (2.10.5) a s  FISKE'S square law. Let us observe t h a t  

FISKE's square law (2.10.5) is somewhat d i f f e r e n t  than LANcHESTER'S square 

law (2.2.1) because of the "time-dependent" f a c t o r  (1 - a@)". However, 



the  parametric dependence of fo rce  ann ih i l a t i on  (compare Proposi t ions 

2.2.1 and 2.10.1) is exac t ly  the same. In  f a c t  most of t he  so lu t ion  

proper t ies  of (2.2.1) and (2.10.1) and t h e i r  implicat ions a r e  exac t ly  

the same. 

From t h e  above and r e s u l t s  given i n  Sections 2.2 and 2.3, we s e e  

t h a t  the models of LANCHESTER and FLSKE exh ib i t  the  same general  behavior. 

Thus, i t  has not  been c r i t i c a l  whether we model time a s  being continuous 

or d i sc re t e .  It is reassuring t h a t  the representa t ion  of time i n  our 

combat model is not the s i g n i f i c a n t  f ea tu re ,  bu t  r a t h e r  t he  func t iona l  

r e l a t i onsh ip  f o r  casua l ty  t rading is  the  underlying s i g n i f i c a n t  fea ture .  

Our model possesses a bas ic  type of invariance that does not  depend on 

the representa t ion  of t i m e .  Many s c i e n t i s t s  be l ieve  t h a t  such invariance 

is t h e  most s i g n i f i c a n t  aspec t  of many physical  laws. 36 



2.11. Comparison of LANCHESTERts Two Basic Models and Summary. 


In this section we collect and compare results for LANCHESTER's two 

classic corcbat models, i.e. his equations for modern warfare and those for 


area fire (B Table 2.XVI1, with each other. For convenience and also 

reasons of historical precedence, we have, for example, referred to (2.2.1 


as simply LANCIIESTER1s equations of modern warfare15, although, of course, 


several sets of assumptions have been hypothesized to yield them. In the 


next section (i.e. Section 2.12), however, we develop a more precise notat] 


for referring to such attrition processes. 


In tabla 2.XVII we give an abbrevl.atad description, denoted as "shor 


form," of cwo alternative sets of assumptions that have been hypothesized t 


yield each of LANCHESTER's two classic combat models. A more chorough 


enumeration, denoted as "long form," of the first set of these assumptions 


is given in each of Tables 2.XLIII and 2.XIX for each of these two basic an 


classic combat models. The reader should observe in Tables 2.XVIII and 


2.XIX that the three assumptions above the dotted line are the same for 


each model. Also, we have given explicit expressions for the attrition-ratc 


coefficients in each model. To keep these expressions simple, we have made 


assumption (A3), which is not esser~tial for the functional form of these 


attrition rates !e.g. attrition rate proportional to the number of enemy 


firers). Also, WEISS [99, pp. 83-84] has painted out that assumption (A21 


can be weakened: the same equations apply when two homogeneous forces are 


deployed along a front facicg each other with uniform troop density on each 


side provided that (A2) holds within given force boandaries or "cells" on 

each side of the front. 


In Table 2.XVII1, t denotes the time for a Y firer to acquire 
a C ~ Y  

an X target. Here the first force subscript, i.e. the X which is the 

one closest to the left-hand side of the differential equation, refers to 




Table 2..WT. LANCEIESTERta Two Basic Combat Modele. 

LAIJMSTER' s LANCHESTER 's 

Equations for Equations for 

Modern Warfare Area Fire 



Tabla 2.WII. SHORT FORM of A1tornatj.w Conditions 

Under Which W C H E S T E R 1 s  TGfo Basic Combat 

Models Have Been Hypothesized to Apply. 


LANCHESTER 'e LANCHESTERVs 

Equations for Equations for 


Modern Warfare Area Fire 


1. First Alternative (Ml) "limed" fire (Al) "area" fire 

1 

Simple Set of 


Assup t ion 9 
(M2) time to acquire an (A21 constant-area 

enemy target iude- defense 1 
pendent of enemy 1 
force level (a 

special case which 

is that in which 

target-acquisition 

time is negligible) 


2. Second Alternative (fh)"area" fire (h)
" a i m e d "  fire 

Simple Set of 


Ass~unpt ions (%2) constant-density (z2) tfme to detect an 
def enae enemy target in-


versely propor- 

tional to enemy 

force level and much I 

greater than time to ; 

kill an acquired 

target 
 i 




Table 2.XVIII. LONG F'ORM of Conditions Under Which 

LANCHESTEB's Equations for Modern Warfare 


Have Been Hyporhesized to Apply. 


1 1
with - = tac + a 


EQUATIONS: 


ASSUMPTIONS (after H. R. WEISS [gg]): 


Two homogeneous forces are engaged in a fire fight. In other words, 

the units (i.e. weapon systems) on each side are identical ( i . e .  every 
unit on a particular side has exactly the same capability for killing 

enemy forces and also exactly the same vulnerability to enemy action), 

but the units on one side may have a different kill rate than opposing 

enemy'units. 


Each unit on either side is within weapon range of all units on the 

other side. 


The effects of succesefve rounds in the target areas are independent. 


(A4) Each unit is sufficiently well aware of the location and condition of 

all err- units so that it engages only live enemy units (one at a 

time) and kllls them at a constant rate, which does not depend on the 

enemy force level. When an enemy target is killed, search begins for 

a new target, with the rate of acquiring a new enemy target being 

independent of the enemy's force level. 


(AS) Fire is unifot-mly distributed over surviving enemy units. 


NOTE: --See text for explanation of notation. 
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Table 2.XIX. LONG FORM of Condi t ia~ is  Under Which 

YWCHESTERts Equation f o r  Area F i r e  

Have Been Hypothtml.zed t o  Apply. 

EQUATIONS: 


ASSUMPTIONS (After H. K. WGISS [gg ] ) :  

Two homogeneous forces  are engaged i n  a f i r e  f i g h t .  I n  o ther  words, 
t h e  u n i t s  ( i . e .  weapon systems) on each s i d e  a r e  i d e n t i c a l  ( i . e .  every 
u n i t  on a p a r t i c u l a r  s i d e  has exac t ly  the same capab i l i t y  f o r  k i l l i n g  
enemy forces  and a l s o  exac t ly  t h e  same v u l n e r a b i l i t y  t o  enemy a c t i o n ) ,  
but t he  u n i t s  on one s i d e  may have a d i f f e r e n t  k i l l  r a t e  than opposing 
enemy un i t s .  

Each u n i t  on e i t h e r  s i d e  is with in  weapon range of a l l  u n i t s  on t h e  
o ther  s ide .  

The e f f e c t s  of successive rounds i n  t he  t a r g e t  areas a r e  independent. 

Each f i r i n g  u n i t  is aware only of t h e  general  a r ea  i n  which enemy 
forces  a r e  located and f i r e s  i n t o  t h i s  a r e a  without feedback about t he  
consequences of i ts  f i r e .  

F i r e  from surviving u n i t s  is uniformly d i s t r i b u t e d  over t he  a rea  i n  
which enemy fo rces  a r e  loca ted ,  i.e. unaimed f i r e  ( i n  t h e  oense of not  
being d i r ec t ed  a t  s p e c i f i c  enemy t a r g e t s ) .  

Each u n i t  p resen ts  t he  same vulnerable  area t o  enemy f i r e .  This  
vu lnerab le  area is much l a r g e r  than the  e f f e c t i v e  (or  l e t h a l )  a r ea  of 
a s i n g l e  round of enemy f i r e ,  e.g. small  arms f i r e  a t  i n f an t ry  t a rge t s .  
Addit ional ly ,  t h e  number of h i t s  required f o r  a k i l l  obeye a geometric 
p robab i l i t y  law. 

NOTE: % t e x t  f o r  explanat ion of no ta t ion .  
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t h e  t a r g e t  (who s u f f e r s  t h e  a t t r i t i o n ) ,  while t h e  second r e f e r s  t o  t h e  f i r e r  

We w i l l  always use t h i s  convention when t h e r e  a r e  double s u b s c r i p t s  r e f e r r i n  

t o  both  f i r e r  and t a r g e t .  Also,  vy denotes  a s h g l e  Y combatant 's  f i r i n g  

r a t e  when he  is engaging an acqu i red  t a r g e t ,  and 'SSK denotes  a s ingle-sho 

k i l l  p r o b a b i l i t y .  The i r  product ie then t h e  r a t e  a t  which acqu i red  t a r g e t s  

k i l l e d  by a s i n g l e  f i r e r  i n  t h i s  model. I n  Table 2.XIX, a denotes  t h e  
"x 

vu lnerab le  p rasen ted  a r e s  of a s i n g l e  X combatant, % denotes  t h e  p resen t  

a r e a  occupied by t h e  X f o r c e  (and i n t o  which t h e  Y f o r c e  is assumed t o  f 

and P(K]H) denotes  t h e  p r o b a b i l i t y  t h a t  a t a r g e t  is k i l l e d  given t h a t  i t  

is h i t  ( i . e .  c o n d i t i o n a l  k i l l  p r o b a b i l i t y ) .  

I n  Table 2.XX we summarize r e s u l t s  f o r  LANCKESTERfs two c l a s s i c  model 

so t h a t  w e  can c o n t r a s t  t h e i r  p r o p e r t i e s  wi th  each o t h e r .  The term "aimed" 

is used i n  t h i s  t a b l e  wi th  t h e  unders tanding t h a t  t h e  t a r g e t  f o r c e s  a r e  "eas 

acquired, ' '  whi le  t h e  term "arsa" f i r e  is used wi th  the unders tanding t h a t  t k  

t a r g e t  f o r c e s  tnaintain a constant-area  de fense  ( c f .  Table  2.XVII). Table 2 ,  

tells us t h a t  we may t h i n k  o f  equa t ions  (2.2.1),  i .e.  LANCHESTERfs equations 

f a r  modem warfare ,  as a r i s i n g  when we f i r e  on ly  a t  l i v e  t a r g e t s ,  whi le  (2.1 

a r i s e  when we f i r e  a t  t h e  o r i g i n a l  t a r g e t  p o s i t i o n s  w i t h  no feedback as t o  1 

consequences of our  f i r e  ( s e e  -SCHREIBER [73 ] ) .  Consequently, equa t ions  (2.1 

i m p l i c i t l y  involve "over-ki l l"  ( i n  t h e  sense  t h a t  one may con t inue  t o  f i r e  i 

dead t a r g e t s ) ,  while equa t ions  (2.2.1) do n o t .  Hence, we a r e  n o t  s u r p r i s e d  

t h a t  t h e r e  i s  no advantage t o  t h e  v i c t o r  from concen t ra t ing  f o r c e s  i n  combai 

modelled by LANCHESTER's equa t ions  f o r  area f i r e ,  but  t h a t  t h e r e  is  f o r  coal 

modelled by LANCHESTER1s equa t ions  f o r  modern warfare .  Other r e s u l t s  a r e  

s i m i l a r l y  summarized. I n  t h e  t a b l e ,  ;= (xo + r f ) / 2  denotes  X ' s  "average' 

f o r c e  l e v e l  i n  t h e  engagement, x = xo - xf denotes  X ' s  c a s u a l t i e s  i n  t h e  
C 

engagement, and u = x/y denotes  t h e  f o r c e  r a t i o .  



I 

Table 2.m. Comparison of LANCIiESTERVa Two Basic 

Combat Models. 


LANCHESTEW1s 

Equations for Equations for 


Modern Warfare Area Fire 


Simple Statement of 

"Aimed" Fire "Area" Fire 
Basic Model Assumprion 


Feedback Mechanism Fire at Only Fire at Original 

Live Targets Targets with No Feedback 


1Overkf ll? 
! YES 

State Equation 


Concentration of ;I
Forces Advantageous YES it NO 
for Victor? 


Instantaneous Casualty 

dx
Exchange Ratio, -
dy 


Overall Casualty- 

x c 
Exchange Ratio, -
Yc 


Victory Predicted for 


Xo <Y When -
Yo 


Rate of Change of 

du
Force Ratio, -
dr 


Negative Rate of 

Change for Force 


"0Ratio When -< 
Yo 




In  summary, Table 2 . n  lists varioue resultm, f o r  and proper t ies  of 

LANCHESTER'e two c l a a s i c  combat models. We should take  these  two models 

a s  l imi t ing  cases  f o r  the mutual a t t r i t i o n  of two homogeneous 

forces:  t he  madern-warfare equation8 (2.2.1) represent  i n  some sense t h e  

"most- ef f ect iva" app l i ca t ion  of firepower (i. perfec t  feedback a s  t o  the  e. 

consequences of one's f i r e ) ,  while t h e  a r ea - f i r e  equations (2.4.1) represent  

a "less effect ives '  one, with no feedback a s  t o  the cansequences of one's 

f i r e .  In  o ther  words, we may take equations (2.2.1) t o  represent  the  

case i n  which f i r e  is concentrated on ind iv idua l  t a r g e t s ,  while equations 

(2.4.1) represent  t h e  case  i n  which i t  is  not.  37 Moreover, TAYLOR [84] has 

shown t h a t  these two types of t a r g e t  a t t r i t i o n  processes y i e l d  q u i t e  d i f -  

f e r en t  s t r u c t u r e s  f o r  optimal time-sequential f i r e -d i s t r i bu t ion  p o l i c i e s  i n  

a more general  model f o r  combat aga ins t  heterogeneous forces .  W e  have a l -  

ready seen t h a t  these  two a t t r i t i o n  processes y i e ld  q u i t e  d i f f e r e n t  r e tu rns  

t o  a commander from concentrat ing h i s  forces .  

Thus, these two basic  models may be considered i n  some sense t o  be 

l imi t ing  cases  f o r  poss ib le  fo rce -a t t r i t i on  processes. One is tempted t o  

conjecture t h a t  they bound most real-world a t t r i t i o n  processes,  i.e. i n  

some sense most real-world a t t r i t i o n  processes l i e  between these  two extreme 

points .  Furthermore, they £om the  b a s i s  f o r  e s s e n t i a l l y  a l l  f u r the r  de-

velopments i n  t h e  LANCBESTER theory of combat and y i e l d  important i n s i g h t s  

i n t o  the  behavior of more complex models?8 



2.12. A Claesification Scheme for Homogeneous-Force LANCHESTER-Type Attrition 


Processes and Soma Additional Functional Forms for Attrition Rates. 


As we have seen above for LAEJCHESTER1s two basic combat models, 


several different sets of physical assumptions may be hypothesized to yield 


the same functional form for an attrition rate. Consequently, it is more con- 


venient to refer to a model for combat between two homcgeaeous farces in terms 


of the functional forms for the two attrition rates than to reter in tern of 


the aesumptions (as we have done above). Let us now introduce a very c.rnnvenient 


shorthand for referring to such homogeneous-force LANCHESTER-type combat models. 


It basically involves using a two-part descriptor X ( Y ,  where X describes the 

attrition rate for the X force and similarly for Y. X and Y take on their 


values according to the type of proportionality for the various terms in a 


side's attrition rate. This proportionality is expressed in terms of the 


number of firers (denoted as F) and/or the number of targets (denoted as T). 


If the attrition rate is independent of the numbers of firers and targets, we 


use the letter C (for constant attrition rate). When there is more than 


one term in a side's attriton rate, the same approach is applied to each terra, 


with a plus sign separating each component term of the attrition rate. 


Let 1x9now consider some examples to illustrate this shorthand. For 

example, for LANCHESTER's equations of modern warfare (2.2.11, the X-force 


attrition rate is (-dx/dt) = ay so that it is proportional to only the 

number of enemy firers (and similarly for the Y-force attrition rate). Con-


sequently, we will refer to it as a F I F  LANCHESTEX-type attrition process 

(or, simply, F JF attrition) . Similarly, LANCHESTER'S equations for area 

fire (2.4.1) repreeent FTlFT attrition, since each side's attrition rate 

is proportional to the product of the number of firers and the number of 


targets. As a final exaqle (with two terms in each side's attrition rate), 
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the equations 


will be said to represent 
( Fv1 c1+ F 
LANCMESTER-type attrition. 


Figure 2.14 shows various attrition-rate functional forms that have 


been considered in the literature of the LANCHESTER theory of combat. We 


have used the. above shorthand notation for referring to these various 


attrition processes in the figure. Also shown for each process are the 


state equation (if not too complicated) and the first person (known to this 


author) to have considered it. Table 2.XXI gives an enumeration of authors 


who have studied each of these various "basic" attrition-rate processes. 


Let us now briefly examine the various sets of physlcal assumptions 


that have beer, hypothesized to yield the five basic attrition-rate functional 


forma shown in Figure 2.14. Conditions hypothesized to yield the F I F  and 


FTIFT attrition processes ha,se been discussed previously in Section 2.ll 

(see,for example, Table Z.XVII), and conditions for the F ~ F T  process 


(equivalently, the F T ~  process), of coarse, are just a combination of 
F 


these two sets, with one set applying for each side. For example, BRACKNEY 

[I53 has hypothesized that the F ~FTattrition process occurs for an assault 


by the X forces on defensive Y positions, in which the defenders use 

aimed fire (with X targets readily acquired by virtue of their "assault" 


posture) and so do the attackers, only their search time for Y targets is 

relatively large (and inversely proportional to enemy troop density) by 


virtue of the enemy's remaining under cover in their defensive positions. 


In other words, assumptions (k)and (x2) of Table 2.XVII apply to X, 


while (Ml) and (M2) apply to Y. 
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ATTRITION DIFFERENTIAL STATE 
PROCESS EQUATIONS EQUATION 

LANCHEgTEa (1914) 

FIF  2 2b (x2-x2) = ~ ( Y ~ - Y
0 

square law 

UCHESTER (1914) 

b(xO-x) = a<y0-y) 

linear law 

dt = -bxy mixed law 

PETERSON (1953) 

logarithmic law 

dx-= -ay - Bx
d t  

3 = -bx- ay
dt 

MORSE and KIMBAI,L (1951) 

(generally very complicated) 

Figure 2.14. Various functional fonne for attrition rates 


that have been considered in the LANCHESTER- 


combat-theory literature. 
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TABLE 2.XXI. 


Attrition 


Authors Ziho Have Studied Various Basfc Attrition-Rate Processes. 


LAHCHESTER (1914 
MARADUDIN and G ,  WEISS (1958) 
G, WEISS (1963) 

BRACKNEY (1959) 
DEITCHMAN (1962 ) 

PETERSON (1953, 1967) CLARK (1969) 
HELMBOLD (1965) 
H, K, WEISS (1966) 

MORSE and KIMBALL (19513 

ISBELL and MARLOW (1956~) 
BACH, DOLANSKY, and STUBBS (1962) 



Also, D E T T @ F W  j 221 h a  used the E I  FT a t t r i t i o n  model f o r  

insurgency o p e r a t i o n s  (i.e. g u e r r i l l a  war fa re )  t o  r e p r e s e n t  t h e  ambush of 

X-force csunearinsutgenra by Y-force g u ~ r r i l l a s .  He hypothesized t h a t  

( M I )  and (M2) hold  f o r  t h e  Y force, which fires on t h e  X f o r c e ,  "caug 

i n  t h e  open," but that t h e  au~bushed X force can on ly  r e t u r n  a r e a  f i r e ,  

since i c o  members do n o t  know t h e  exac t  p o s i t i o n s  of i n d i v i d u a l  Y 

ambushers and consequently return f i r e  i n t o  on ly  t h e  g e n e r a l  area knawn 

t o  be o c ~ t l p i e d  by t h e  cncmy. 

PETERSON I69;70 j h a s  hypothesized t h a t  T I T  a t t r i t i o n ,  i . e .  

and 

c h a r a c t e r i z e s  t h e  e a r l y  s t a g e s  o f  a smal l -uni t  engagement i n  which the 

v u l n e r a b i . l i t y  of a f o r c e  derninates i ts  a h i l i t y  t o  a c q u i r e  enemy t a r g e t s .  

I n  o t h e r  kords ,  X I T a t t r i t i o n  occurs  when the exposure of i n d i v i d u a l  

weapons t o  b e  acqu i red  as t a r g e t s  determines t h e  occurrences  of i n i t i a l  

c a s u a l t i e s .  

PETERSON 1691 in t roduced t h i s  model t o  extend t h e  a v a i l a b l e  choicc 

of b a s i c  combat models and a l s o  because i t  does f i t  l i m i t e d  d a t a  f o r  a  

c e r t a i n  type of engagement, i.e. a t a c t i c a l  s i t u a t i o n  i n  which a l l  weapons 

of t h e  two f o r c e s  a r e  w i t h i n  e f f e c t i v e  range of t h e  enemy b u t  when (due 

t o  cover ,  concealment, or e x p e r t  camouflage) no two opposing weapons 

a r e  a c t u a l l y  i n t e r v i s i b l e .  I n  such a s i t u a t i o n ,  i t  is no t  unreasonable 

t o  assume t h a t  t h e  p r o b a b i l i t y  t h a t  t h e  f i r s t  u n i t  t o  b e t r a y  h i s  cover ,  

concealment, o r  camouflage is  i n  t h e  X f o r c e  i s  given by t h e  r a t i o  

ax / (ax  + by) ,  whence fol lows (2.12.1) (see Chapter 4 ) .  However, once t h e  

b a t t l e  a c t u a l l y  beg ins ,  t h i s  model is no longer  a p p l i c a b l e .  
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WEISS [102] has  suggested t h a t  f o r c e  v u l n e r a b i l i t y  may become t h e  

dominaat f a c t o r  i n  causing l o s s e s  as combat u n i t s  i n c r e a s e  i n  s i z e  and 

become i n c r e a s i n g l y  i n e f f i c i e n t .  G. CLARK [20]  has  used t h i s  T I T  a t t r i t i c  

model (2.12.1) f o r  t h e  e a r l y  s t a g e s  of a smal l -uni t  engagement i n  h i s  C O W  

model. 

The l a s t  a t t r i t i o n - r a t e  f u n c t i o n a l  form shown i n  T a b l e  2.14 is  

t h a t  of (F + T) I (F + T) a t t r i t i o n ,  1 .e .  

dx- = - ay - Bx, and * =  - bx - ay.
d t  d t  

Two s i t u a t i o n s  t h a t  have been hypothesized t o  y i e l d  t h e  above equa t ions  

a r e  ( see  Figure  2.13) :-
( S l )  F ( F  a t t r i t i o n  i n  combat between two homogeneous f o r c e s  

wi th  "operat ional"  l o s s e s  [ 3 ; 6 4 ], 

(S2) F I F  a t t r i t i o n  i n  combat between two homogeneouo primary 

f o r c e s  (9WEISS [ loo] )  wi th  superimposed e f f e c t s  o f  

suppor t ing  f i r e s  n o t  s u b j e c t  t o  a t t r i t i o n  [ 9 5 ] .  

I n  t h e  f i r s t  s i t u a t i o n  (Sl), f o r  example, the  term (Bx) i n  

X ' s  l o s s  r a t e ,  i .e. ( -dx/dt ) ,  r e p r e s e n t s  "operat ional"  l o s s e s ,  i . e .  l o s s e s  

due t o  causss  a t h e r  than snemy a c t i o n  131 (e.8. l o s s e s  due t o  s i c k n e s s ,  

a c c i d e n t s ,  d e s e r t i o n s ,  e t c . )  !' I n  o t h e r  words, t h e  model ho lds  t h a t  a 

f o r c e  s u f f e r s  a c e r t a i n  amount of c a s u a l t i e s  due t o  i ts  very  e k e .  I n  

t h e  second s i t u a t i o n  (SZ), it is assumed t h a t  F(F a t t r i t i o n  ho lds  between 

t h e  primary f i g h t i n g  f o r c e s ,  e.g.  i n f a n t r i e s ,  and t h a t  t h e  suppor t ing  weapons 

employ a r e a  f i r e  a g a i n s t  enemy i n f a n t r y  (again  see Figure  2  . l5 )  . 
Let us  no te  t h a t  t h e  s t a t e  equa t ion  is q u i t e  s imple  (and is t r i v i a l l y  

der ived)  f o r  each o f  t h e  f i r s t  four  a t t r i t i o n  p rocesses  shown i n  Figure  2.14. 
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(a) =rational losaes 

(b) combat with supporting fires not subject to attrition 


0 

INFANTRY 

a e 

Figure 2.15. Tvo different combat situations that ha. , 

been hypothesized to yield (F+T) I (F+T) 

attrition. 
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However, t h e  s t i t t e  e q u a t i c n  f o r  the  l a s t  one, the  (E' + T) ( (F + T) 

a t t r i e i o n  p rocess ,  i s  g e n e r a l l y  q u i t e  compl icated,  namely 1951 

where 0 = Jab  + [(a-o)/212 and v = ( 0  - (u+B)/Z}/{B + (ct+8)/2). However, 

a s  f i r s t  noted by Taylor  and Par ry  [95] ,  when ab = US, then 8 (a+B)/2 

and v = 8, s o  t n a t  (2.12.3) becomes 

which is a t o t a l l y  unexpected r e s u l t .  L a t e r  i n  t h i s  book we w i l l  g i v e  some 

i n s i g h t s  a s  t o  why t h i s  complicated s t a t e  equa t ion  (2.12.3) f o r  the  

(F + T) 1 (F -+ T) model (2.12.2) reduces  t o  t h e  " l i n e a r  law" (2.12.4) i n  

t h i s  s p e c i a l  c a s e .  

A g e n e r a l  form f o r  homogeneous-force a t t r i t ~ o nr a t e s  (which y i e l d s  

t h e  square ,  l i n e a r ,  and J.ogarithmbc laws a s  s p e c i a l  c a s e s )  has  been given 

by HELMBOJ,D [36] ,  whc hypothes ized t h a t  t h e  l a r g e r  f o r c e  s u f f e r s  i n e f f i c i e n c e s  

of  s c a l e  when f o r c e  s i z e s  a r e  g r o s s l y  He has  emphasized t h a t  

LANCHESTER's c l a s s i c  equa t ions  f o r  modern war fa re  (2 .2  "11, i . e .  t h e  F I F 
a t t r i t i o n  model, impiy t h a t  no a m t t e r  how unequal t h e  opposing s t r e n g t h s  

may be ,  t h e  f u l l  d e s t r u c t i v e  c a p a b i l i t y  of  each s i d e  can be  focused w i t h  

undiminished e f f e c t s  on t h e  enemy. However, s h e e r  l i m i t a t i o n s  of a v a i l a b l e  



-- 

space, to say nothing of terrain-masking and reaction-time effects, may 


well prevent the larger force from using its full destructive capability. 


In consonance with the above line of reasoning,HELMBULD [36] 

has suggested the following LANCHESTER-type equations 


and 


where, for examplz, g(x/y) is a function that is used to modify the 


fire effectiveness cf an individual Y combatant at extreme force ratios 


and similarly for h(y/x). BELMBOLD argued that the effectivenss-modifi- 

cation functions should sat is£ y the following three requirements 


(R1) g(l) = h(l) 1 ((2.12.5) reduces to (2.2.1) for forces 

of equal size), 

(R2) g(q) Ih(q) (same inefficiencies of scale for each side), 

(R3) g(q) is a strictly increasing function of its argument. 

Hence, (2.12.5) becomes 


and 


which we will refer to as the equations for generalized HELMBOLD-type 


comb~t(seeFigure 2.16). Here, the effectiveness-modification function 


h(z) has the following properties : 

(Pl) h(z) is a strictly increasing function of its argument, 


(P2) h(1) = 1. 

HELMBOLD [36] also considered the special case of (2.12.6) in 

which h(z) is a power function of its argument,41 i.e. h(z) * u C. 
Then, (2.12.6) becomes 




Figure 2.16. Generalized Helmbold-type combat 


which incorporates inefficiencies 


of scale for tha larger force when 


force sizes are grossly unequal. 




C C " dt - +) .), , and * dt = b ) *X , 

which we will refer to as the equations for HELMBOLD-type combat42 (s 
Figure 2.17). It follows that the instantaneous exchange ratio, dx/dy, 

is given by .43 

2c-1 d- 1 
AE _ a (x) 

a (1) dy b y  b x 9 

where d = 2(1-c). Hence, the state equation may be written (for d f 0 )  

Thus, the equation far HELMBOLD-type combat yield the square law when 

c 0, the linear law when c = 1/2, and the logarithmic law when c = 1 

(see - Figure 2.17) . 
Moreover, there is an intimate relationship between the equations 

for HELMBOLD-type combat (2.12.7) and those of LANCHESTER for modern 

warfare (2.2.1). It is convenient, however, to first introduce the 

"Weiss parameter" W defined by 

and to write (2.12.7) as 

d~ dt . -a. ( 5)l-W.y and dt = b ( , (2.12.12) 



Model: dx 
= - x c Y, 

Instantaneous Exchange Ratio: 

d d
State Equation: b (xi-xd) " a (Y(,-Y 

EXPONENTS L A W  COMMENTS 

1 IS W N E  CONCENTRATE 

m11211LINEAR 1 

Figure 2 .17 .  HE'LMBOLD-type combat which incorporates 

x n e f f i c i e n c i e ~of scale for  the larger force 

when force s izes  are grossly unequal. 
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where W E (0 ,1]  f o r  c E [0 ,1 ) .  In t roduc ing  the  f o r c e  r a t i o  u x /y ,  

we o b t a i n  t h e  fo rce - ra t io  equa t ion  

W 

The form of t h e  equa t ion  (2.12.13) sugges t s  l e t t i n g  v = u . Doing t h i s ,  

we may t ransform t h e  f o r c e - r a t i o  equa t ion  i n t o  t h e  fol lowing RICCATI 

equa t ion  

wi th  i n i t i a l  c o n d i t i o n  v (0)  xO/yO. Since we have encountered a RICCATI 

equa t ion  f o r  v - xWlyW,w e  know t h a t  both  xw and yW s a t i s f y  l i n e a r  

d i f f e r e n t i a l  equa t ions  (E Appendix A.3). S e t t i n g  p = xW and q 
W 

a y , 

w e  f i n d  t h a t  

W
wi th  p ( 0 )  = xo , 

W
with  q(O) = yo . 

The r e s u l t  (2.12.15) is h i g h l y  s i g n i f i c a n t ,  s i n c e  i t  shows t h a t  

t h e  non l inear  d i f  f e r e n t i a l - e q u a t i o n  model of HELMEOLD-~ype combat (2.12.7) 

can be transformed i n t o  t h e  f a m i l i a r  l i n e a r  model (2.2.1) s o  t h a t  a l l  

t h e  known r e s u l t s  f o r  t h e  l i n e a r  model can be  invoked. I n  p a r t i c u l a r ,  i t  

fol lows t h a t  (2.12.9) ho lds  ( s i n c e  p = x and g = y di2) and 



Thus, for the model of HELMBOLD-type combat, one can readily answer 


questions (Q1) thraugh (97) posed in Section 2.2 above. Eor example, Y 

will win a fixed-force-level-breakpoint battle in finite time if and 


only if 


As we pointed out in Section 2.9, many different differential- 

equation combat models can yield LANCHESTER1s linear law (2.4.3) (includir 


the (F + T) ( (F + T) model (2.12.2) when ab = a @ ) .  We did not call 

(2.4.1) the equations for a linear-law attrition process for this reason. 


When c = 1/2 and consequently d = 1, (2.12.9) becomes the linear law, 

but the X force level as a function of time is given (implicitly) by 


which should be contrasted with the corresponding result (2.4.7) for the 


FT(FT attrition process. In particular, it should be noted that (2.12.1 


implies that, for example, the X force can be annihilated in finite tin 


whereas this outcome is impossible for "linear-law" combat modelled 


with (2.4.1) (see Proposition 2.4.2). 


Let us finally note that the above transformation of the non-


linear equations for HELMBQLD-type combat (2.12.12) (equivalently, (2.12 


into a lilsear differential-equation model also holds for time-dependent 




attrition-rate coefficients. Moreover, (2.12.7) f s  the only such non-

linear combat model with a "separable" efficiency factor (1.e. h ( x / y ) =  

f (x ) /g (y )  in (2.12.6)) that can be transformed into the F(F attrition 

model (see
-Section 6.11 below). 



PROBLEMS f o r  Chapter 2 

1. What d id  F. W. LANCHESTER hope t o  prove with h i s  simple mathematical 

models of combat? 

2. What a r e  t h r ee  important c h a r a c t e r i s t i c s  of a good a n a l y t i c a l  model? 

(Short answer i n  words is a l l  t h a t  is sought. You may want t o  r e f e r  back 

t o  Chapter 1.) 

3 .  With re fe rence  to  LANCHESTER's o r i g i n a l  work, what is  the  major d i f f e r -  

ence between the  condi t ions under which the  FT~FT a t t r i t i o n  process 

has  been hypothesized to  occur and those f o r  the F l F  a t t r i t i o n  process? 

(A s i n g l e  ;.hrase f o r  ea=h w i l l  s u f f i c e  here . )  

4 .  F i l l  i n  the  missing e n t r i e s  i n  the  below t a b l e  t h a t  i l l u s t r a t e s  how 

under "modern condi t ionst1 of warfare  t he re  is an advantage from concen- 

t r a t i u g  forces .  For these computations assume: 

a- = E = 0.25, xo a 100, and xf = 0,b 


where x denotes t he  i n i t i a l  value f o r  the X force  l e v e l  and xf
0 


denotes its f i n a l  value.  



4 

200 250 JOO 400 500 1000 

5. Redo the  t ab l e  t h a t  you conetrur ted f o r  Problem 4 ,  but inatead of a 

f i g h t  t o  t h e  f i n i s h ,  consider a fixed-force-leVlel-breakpoint b a t t l e  

X Y X
with fgp = fgp - 0.25, where ~g~ fBp x0 and s i m i l a r l y  f o r  yBp= 

Thus, your input  da t a  w i l l  be a /b  = E = 0.25, xO - 100, xf = xgp 25, 

X

and fgp = f i p  = 0.25, with t he  t a b l e  containing e n t r i e s  f o r  yo = 200, 

250, 300, 400, 500, and 1000. 

6.  Consider combat between two homogeneous fo rces  modelled by the following 

F 1 F LANCHESTER-type equations ( fo r  x and y > 0) 
I 

with x(0) = xo, 

with y(O) yo$ 

where a and b denote pos i t i ve  constants .  

Pa r t  a .  What assumptions have been hypothesized to y i e ld  the above 

combat dynamics? (Only one s e t  of simple assumptions sought.)  



P a r t  b.  What a r e  the c o n s t a n t s  a and b c a l l e d  i n  t h e  above LANCHESTER-

type combat model? 

P a r t  c. What a r e  t h e  dimensions o f  a ?  

P a r t  d.  What i s  t h e  q u a n t i t y  6 c a l l e d ?  The q u a n t i t y  a h ?  

P a r t  e .  What is  t h e  X f o r c e  l e v e l  given by? 

P a r t  f .  Let  Y a t t a c k  t h e  X f o r c e ,  which defends.  How a r e  X ' s  

f r a c t i o n a l  c a s u a l t i e s  pe r  u n i t  t ime r e l a t e d  t o  t h e  f o r c e  r a t i o  

of t h e  a t t a c k e r  t o  t h e  defender?  Sketch a p l o t  of t h i s  r e l a -  

t ionsh ip .  How i s  the c o n s t a n t  a r e l a t e d  t o  t h i s  p l o t ?  

[HINT: Observe t h a t  X ' s  f r a c t i o n a l  c a s u a l t i e s  pe r  u n i t  time 

a r e  given by ( - l /x )  dx /d t .  ] 

7. Let us  f u r t h e r c o n s i d e r  t h e  LANCHESTER-type combat model of Problem 6. 

P a r t  a. I f  a = 0.06 X c a  ua l t i e s /minu te /Y combatant, b = 0.01 YP 
casua l t i e s lminu te /X combatant, x = 200, and yo = 100,

0 

who w i l l  win a p g h t  t o  t h e  f i n i s h ?  



Part b. For the data given in Part a above, how long will it take 


for the loser to be annihilated? 


Part c .  For the data given in Part a above, plot the X force level 

x(t) as a function of time. What is x(t) for t = 60 

Part d. Fur the data given in Part a above, plot the Y force level 


p(t) as a function 02 time. What is y(t) for t = 60 

minutes? 


Part e. If a reserve force of 70 3 combatants (assume that these 


reinforcements are identical to the original members of the 


X force) arrives after 30 minutes and is immediately com- 


mitted to battle, who will. win this fight to the finish? 

What would have been the outcome if X could have initially 


committed his reserve? 


Part f . Who will win a fight to the finish if a = 0.09 X casualties/ 

minute/Y combatant, b = 0.02 Y cnsualties/minute/X combatant, 

x0 * 300, and yo = 1001 What is x when y - 75? When 

y = SO? When y = 25? When y = O? 



Part g. If  a = 0.01 X carurr l t idminute /Y combatant, b = 0.01 Y 

caaualtiemlminute/X combatant, xo - 300, and yo = 100, 

who w i l l  win a f Q h t  t o  the Piniah? Who w i l l  win i f  xo - 3501 

I f  xO - 4007 I f  xo = 5001 

8. Lee us  furehar conaider the  LANCHESTER-type combat modal of Problem 6 

and 7, only th ia  tip. we w i l l  asaume tha t  the engagement ba a fixed-

force-love1 breakpoint b a t t l e .  Am urur l ,  we w i l l  reprerent  the forse- 

lwei breakpoints aa  and 

Part  a .  If a = 0.01 X casulatiea/minute/Y combatant, b = 0.04 Y 

Xcaeualtirm/minute/X combatant, xO - 100, YG = 225, fgp = 0.5, 

Yand fBp a 0.7, who w i l l  win a fixed-force-level breakpoint 

b a t t l e ?  

Part  b. For the da ta  given i n  Part  a above, how long w i l l  i t  take fo r  

the loser  t o  read h ie  breakpoint? 

Part  c .  For the da ta  given i n  Part  a above, p lo t  the X force level  

x ( t )  r a  a function of t i m a .  What i a  x ( t )  for  t = 45 

minutes? 



Part d. For the data given in Part a above, plot tibe Y force level 


y(t) as a function of time. What ie y(t) for t - 45 

minutes? 


Part a. Who will win a fixed-force-level-breakpoint battle if 0.01
-- a -
X casualtiee/minute/Y combatant, b a 0.05 Y casualties/minute/X 


x
combatant, xO = 100, yo 300, fBp = 0.5, and fip - 0.71 

Who will win if yo 250? 

Part f. Who will win a fixed-force-level-breakpoint battle if a = 0.001 

X casualties/minute/Y combatant, b 0.01 Y casualties/minute/X 

X Ycombatant, xo = 100, yo 400, fgp - 0.4, and fgp = 0.65? 

Who will win if yo = 3501 

Part g. If a - 0.06 X casualties/miaute/Y combata2t, b = 0.01 Y 

X Y
casualties/minute/X combatant, fgp 0.65, and fgp = 0 . 5 ,  

what initial force rctio is required for X to wln a fixed-

force-level-breakpoint battle? What do these numbers suggest 


to you as far as who is the attacker and who is the defender? 


If you were the commander of the X force, what initial force 


ratio would you want before you engaged the enemy? Why? 




9 .  Now let both sides receive replacemente contitluously over time at 

constant cares. The above comhat model than btzornes 

with x(O) xo, 

where the. positive constants r and s denote the repiacement rates 

for the X and Y forces, respectively. What is the state equation 


for the above LANCHESTER-type combat model with continuous replacements? 


10. The model of the previous problem possesses the conceptual shortcoming 


that both sides have essentially been assumed to possess unlimited 


reserves. How would you modify the model of Problem 9 to reflect the 


situation in which both sides have available only limited pools of 


manpower out of which to draw replacanents? Let Ro denote the total 


nnmber of replacements that X can commit to battle, and similarly let 


SO denote the total number of replacemente available to Y. 


11. S. J. DEITCHMAN [22]  has proposed the following LANCHESTER-type model to 

represent the ambush of X-force counterinsurgeats by Y-force guerrilla 


in guerrilla-warfare operations 




-- 

where a and b denote LANCHESTER a t t r i t i o n - r a t e  c o e f f i c i e n t s  t h a t  

a r e  pos i t i ve  constants .  He hypothesized t h a t  the  ambushets (i.e. the  

Y force)  would uee aimed f i r e  from well-chosen and concealed pos i t ions ,  

and t h a t  the ambuehees ( i . e .  the X force)  would only be a b l e  t o  r e t u r n  

a rea  f i r e  i n t o  the general region occupied by the  enemy because they 

( i . e .  the ambuehees) have been "caught i n  the open" and do not  know the 

pos i t i ons  of individual  Y ambr~shere. 

Pa r t  a .  What i s  the  s t a t e  equation for DEITCHMAN1s ambush model given by? 

Par t  b.  What condit ion on the i n i t i a l  force  l e v e l s  p red ic t s  v i c to ry  f o r  

the abmueher i n  a  f i g h t  t o  t he  f i n i s h ?  

12.  Consider combat between homogeneous X and Y forces  

i n  which the a r t i l l e r y  of the X force  d e l i v e r s  a r ea  f i r e  aga ins t  the 

Y force ,  which occupies a  constant  area. This a r t i l l e r y  is out of 

f i r f n g  range of the  Y force  and hence s u f f e r s  no a t t r i t i o n .  Conse-

quently,  the LANCHESTER-type equation t h a t  descr ibes  t h i s  combac- 

a t t r i t i o n  process is  
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--- 

where a ( t )  denotes a time-dependent MCHESTER a t t r i t i o n - r a t e  

coe f f i c i en t  . 

Par t  a .  What is the Y force  l e v e l  y ( t )  given by? 

Now let  the  f i r e  effecr ivenese of the X-force a r t i l l e r y  be constant  

( i . e .  l e t  a . - constant)  and le t  the Y force  withdraw from t h e i r  

o r i g i n a l  pos i t ions  a t  a va r i ab l e  r a t e ,  denoted a s  W(t), t o  new posi- 

t ions  t h a t  a r e  f r e e  from the  e f f e c t s  of the enemy's a r t i l l e r y  f i r e .  

The corresponding LANCHESTER-type combat equation then becomes ( fo r  y > O )  

with y(O) yo r 

where W ( t )  > 0. 

P a r t  b. What is the Y force  l e v e l  y ( t )  now given by? 

Part c. Denote the number of c a s u a l t i e s  of t he  Y fo rce  a s  c ( t ) .  What 

is c ( t )  given by? 



Now let the withdrawal rate of the Y force be conetant ao that the 

LANCHESTER-type combat model becomes 


( - a y  - W  for y > 0 ,  

where W > 0. 

Part d. What is the Y force level y(t) now given by? 


Part r. If a = 0.1 Y casualties/minute/Y combatant, W = 10 men/ 

minute, and yo = 100; will an air strike after 7.5 minutes 

help the X force? 


Part f. If a = 0.1 P casualties/minute/Y combatant, W = 10 men/ 

minute, and yo - 100; how many casulaties will the Y 

force suffer? 




13. To each of the entries on the lcft below, match the entry on the right to 

which is most closely related. 110 this by placing the latter of the 
appr~priate entry on the right in the answer apace on the left. 


a, T I T  attrition procese, 


b. FTlT attrition process, 


c. FTlF attrition procaee, 


d. "aimed-f ire" conbat with eupporting 

fires not subject to attrition, 


e. state equation, 


f. force-ratio equation for F I F  

attrition process, 


g. force-ratio equation for (F+T) 1 (F'+T) 
attrition process, 


h. force-ratio equation for FT\FT 
attrition process, 


I. force-annihilation-prediction conditior 

for F I F  attrition process, 


j. force-level change per unit time, 


k. casualties per unit time, 


1. fractional casualties per unit time, 


m. overall casualties for X force, 


n. total replacements, 


o. LANCHESTER-type equations for a skimi 


p. instantaneous caaualty-exchange ratio 


q. unit deterioration due to attrition, 


r. Y force ambushing the X force, 


s. inefficiencies of scale for larger £0 

when force sizes are grossly unequal, 


t. overall casualty-exchange ratio for 

F I F  attrition proceaa, 


u,, overall casualty-exchange ratio for 

FT 1 FT attrition process, 

v. relative fire effectiveness, 


w. intensity of combat. 
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14. Consider the ambush of a homogeneous Y force by a 


. . 

)( - FORCE 

ARTILLERY 


AMBUSHERS AMBUSHEES 


homogeneous X force, both of which are armed with small arms. The X 

force uses aimed fire, with an associated time-dependent LANCHESTER 


attrition-rate coefficient denoted as b ( t ) ;  and the Y force returns 

area fire, with an associated time-dependent LANCHESTER attrition-rate 


coefficient denoted as a(t). In other words, the X force ambushes 


with aimed fire, the Y force returns area fire, and on each side the 


fire effectiveness of an individual firer changes over time during the 


Eire fight. Moreover, the X force has called for supporting fire from 

artillery that is out of range of any return fire from the Y force and 


that consequently suffers no attrition. This artillery causes attrition 


to the Y force at a rate proportional to the Y force level with an 


associated "constant" of proportionality a(t). This attrition-rate 


coefficient is time depeldent and accounts for the number of firing tubes 


(i.e. artillery pieces). Because of the ambush and also thlu fire support 


the Y force wants to terminate the engagement, and consequently it 


gradually disengages from combat with the X force (including its fire 



suppor t ) .  Let  W(t) > 0 denote  t h e  time-dependent r a t e  a t  which t h e  Y 

fo rce  withdraws from t h i s  engagement t o  o p o e i t i o n  t h a t  is o u t  of range 

of a l l  enemy f i r e r e .  Let  x ( t )  denote  X ' s  f o r c e  l e v e l  (wi th  i n i t i a l  

va lue  denoted a e  xO), and s i m i l a r l y  l e t  y ( t )  denote  Y'e f o r c e  l e v e l  

(with i n i t i a l  va lue  denoted as y o ) .  Conaider on ly  t h a t  phase of the  
1 ' 

engagement dur ing  which ba th  x and y > 0. What are a p p r o p r i a t e  

LANCHESTER-typa equa t ions  f o r  t h e  r a t e s  of change of t h e  X and Y 

f a r c e  l e v e l s ?  

15.  Consider LANCHESTER-type combat between homogeneous 

X and Y i n f a n t r y  f o r c e s  wi th  suppor t ing  a r t i l l e r y  n o t  s u b j e c t  t o  

a t t r i t i o n .  Each member of t h e  Y f o r c e  uses  aimed f i r e  t o  d e s t r o y  t h e  

X f o r c e  a t  a r a t e  a. S i m i l a r l y ,  each member of t h e  X f o r c e  uses  aimcc 

f i r e  t o  d e s t r o y  t h e  Y f o r c e  a t  a r a t e  b.  Both s i d e s  have a r t i l l e r y ,  

which does n o t  s u f f e r  any a t t r i t i o n  and d e l i v e r s  "area" f i r e  a g a i n s t  t h e  

enemy i n f a n t r y .  The Y-force a r t i l l e r y  f i r e s  a t  a  c o n s t a n t  r a t e  and 



X causes a t t r i t i o n  t o  the enemy in fan t ry  a t  a r a t e  proport ional  t o  the 

force l e v e l  with an associated constant of propor t iona l i ty  c (which 

accounts f o r  the canatant  number of f i r i n g  tubes).  S imi la r ly ,  the X-

force  a r t i l l e r y  f i r e s  a t  a constant  r a t e  and causes a t t r i t i o n  t o  the 

enemy in fan t ry  a t  a r a t e  proport ional  t o  the  Y force  l e v e l  with an 

aseociatnd constant  of propor t iona l i ty  d (which accounts f o r  t he  con- 

s t a n t  number of f i r i n g  tubes).  Let x ( t )  denote t!~e force  l e v e l  of 

X 's  i n f an t ry  (with i n i t i a l  value denoted a s  x 0 ) ,  and s i m i l a r l y  l e t  

y ( t )  denote the  force  l e v e l  of Y ' s  i n f an t ry  (with i n i t i a l  value 

denoted a s  y o ) .  Consider only t h a t  phase of the  engagement during which 

both x and y > 0. What a r e  appropriate  LANCHESTER-type equations f o r  

the r a t e5  of change of the  X and Y force  l e v e l s ?  

16. Consider LANCHESTER-type combat between an X force  and a Y force 

( i n i t i a l l y  ~ l ii n  bunkers). Denote the i n i t i a l  Y force  l e v e l  as Yo' 

Also, denote t h a t  p a r t  of the  Y fo rce  which is  i n  the f o r t i f i e d  posi t lor  

( i . r .  i n  the bunkers) a s  Y1. Each member of the  X force  uses aimed 



f i r e  t o  d e s t r o y  t h e  Y f o r c e  a t  a r a t e  denoted a s  b.  S i m i l a r l y ,  each 1 

member of t h e  Y1 f o r c e  uses  aimed f i r e  t o  d e s t r o y  t h e  X f o r c e  a t  a 

r a t e  denoted as a. Addi t iona l ly ,  t h e  Y1 f o r c e  withdraws from the  

bunkers a t  a r a t e  W t o  become withdrawing t roope,  denoted a s  Y2 ' The 

Y2 f o r c e  doea n o t  exchange f i r e  w i t h  t h e  X f o r c e ,  b u t  Y2 i s  aubject. 

t o  r e c e i v e  suppor t ing  f i r e  from X ' s  a r t i l l e r y .  Members of t h e  Y2 

f o r c e  r e t r e a t  f u r t h e r  t o  p o s i t i o n s  t h a t  a r e  not  v u l n e r a b l e  t o  t h e  X-force 

a r t i l l e r y  f i r e .  Let  t h e  r a t e  st which t h e  vu lnerab le  Y2 f o r c e  is dimin-

ished by t h i s  r e t r e a t  by denoted as R (where f l <  R e  W). The a r t i l l e r y  

of t h e  X f o r c e  does n o t  s u f f e r  any a t t r i t i o n  and d i v i d e s  i ts a r e a  f i r e  

between Y1 and Y2. F i r i n g  a t  a c o n s t a n t  r a t e ,  t h e  a r t i l l e r y  causes  

a t t r i t i o n  t o  Y a t  a r a t e  proportional.  t o  t h e  Y f o r c e  l e v e l  wi th  a n  1 1 

a s s o c i a t e d  Constant o f  p r o p o r t i o n a l i t y  cl  (which accounts  f o r  both t h e  

cons tan t  number of f i r i n g  tubes  and t h e  a l l o c a t i o n  of f i r e )  and s i m i l a r l y  

t o  Y2 wi th  an  a s s o c i a t e d  c o n s t a n t  of p r o p o r t i o n a l i t y  c2.  Let  x(e) 

denote  X ' S  f o r c e  l e v e l  (wi th  i n i t i a l  v a l u e  denoted as x0), y1(t) 

denote  Y1' Y f o r c e  l e v e l ,  and y 2 ( t )  denote  Y Z ' s  f o r c e  l e v e l .  Considel 

on ly  t h a t  phase o f  t h e  engagement dur ing  which x, yl, and y2 > 0. 

What a r e  a p p r o p r i a t e  LANCHESTER-type equa t ions  f o r  t h e  r a t e s  of change of 

the  X, Y1, and 'f2 f o r c e  l e v e l s ?  

17. Consider a homogeneous X f o r c e  t h a t  a t t a c k s  i n  two echelons  a homogeneou: 

Y f o r c e  i n  a hasty-defense p o s i t i o n .  Assume t h a t  t h e  F I F  LANCHESTER-

t y p e  equa t ions  (2.2.:) d ~ X ~ i 2 ;  p r ~ e s ~:kc ~ t t ~ i t k z  ef the f i t s*  - h e l m  

of t h e  X f o r c e  a g a i n s t  the Y de fenders  i n  t h i s  a t t a c k .  The two echeloi 

o f  t h e  X f o r c e  move i n  such a way t h a t  t h e  second echelon does  n o t  i r i f l i  



nor s u s t a i n  any c a s u a l t i e s  while the  f i r s t  echelon i s  f i gh t ing ,  but t h a t  

the  second echelon can quickly rep lace  the  f i r s t  a t  the appropriate  time 

during the a t t a c k  (assume t h a t  the  time requi ted t o  e f f e c t  t h i s  replace- 

ment is  negl ig ib le ) .  Furthermore, assume t h a t  f o r  t h i s  a t t a c k  a = 0.05 

X casualties/minute/Y combatant, b 0.01 Y casualties/minute/X combatant, 

the  i n i t i a l  s t r eng th  of the f i r s t  echelon of the  X fo rce  is 2000, t h a t  

of the second echelon of the  X fo rce  i s  1250, t h a t  the Y fo rce  w i l l  

withdraw when i t  has suffered 75 percent c a s u a l t i e s ,  and t h a t  the  f i r s t  

echelon of the X force  f i g h t s  u n t i l  i t  reaches 25 percent of i t s  i n i t i a l  

s t r eng th  a t  which time i t  i s  replaced i n  t o t o  by the second echelon, which 

f i g h t s  on with the  same combat e f f ec t iveness  (and vu lne rab i l i t y )  per *man 

and a l s o  the same engagement-termination condit ions a s  the f i r s t  echelon. 

P lo t  t he  X and Y Force l e v e l s  x ( t )  and y ( t )  a s  a  funct ion of time 

f d r  t h i s  two-echelon a t t a c k  of X aga ins t  Y. 

18. COL. T. S. SCHREIBER [73]  has proposed the  following simple WWCIIESTER-

type model i n  order t o  quant i tar : lvely r e l a t e  the  e f f i c i ency  of i n t e l l i -

gence and comnand and cont ro l  s ts tems t o  firepower and numerical s t r eng th  

x f with x ( 0 ) = x o ,  

where a and b denote constant  LANCHESTER a t t r i t i o n - r a t e  c o e f f i c i e n t s  

and e and ey denote cons tan ts  t h a t  a r e  ca l l ed  the "cormnand e f f i c i en -  
X 

cies"  of the X and Y forces ,  respec t ive ly .  Here both ex and 



% € [ O . l ] .  I t  should be noted t h a t  f o r  "perfect"  command e f f i c i e n c y  f u r  

t h e  Y f o r c e  (1.e.  eY = 1.0) t h e  X f o r c e  undergoes a t t r i t i o n  a t  a r a t e  

p ropor t iona l  t o  on ly  t h e  number of enemy f i r e r s ,  whi le  f o r  ey = 0 t h i s  

a t t r i t i o n  r a t e  is  p r o p o r t i o n a l  t o  t h e  product of t h e  numbers of f i r e r s  

and t a r g e t s .  What is t h e  s t a t e  equa t ian  f o r  sCHREXBER'~ WCHESTER-type 

model given by? 

19. Consider t h e  fol lowing HEZMSOLD-type equa t ions  f o r  combat between two 

homogeneous f o r c e s  i n  which t h e  l a r g e r  f o r c e  s u f f e r s  i n e f f i c i e n c i e s  of 

s c a l e  when f o r c e  s i z e s  a r e  g r o s s l y  unequal. 

wi th  x(0) xo , 

where W denotes  a c o n s t a n t  and W E  [0 ,1 ] .  What is t h e  s t a t e  equat ion 

f o r  t h e  above LANCHESTER-type combat model given by? 

20. The model of t h e  preceding problem treats both  f o r c e s  symmetrically wi th  

r e s p e c t  '.o t h e i r  i n e f f i c i e n c i e s  of s c a l e  i n  producing c a s u a l t i e s  i n  

combat opera t ions .  Consider now t h e  apparen t ly  l e s s  symmetric form f o r  

such combat wi th  i n e f f i c i e n c i e s  c f  s c a l e  f o r  t h e  l a r g e r  f o r c e  



with  x(0)  = xo , 

where d and e a r e  c o n s t a n t s  s a t i s f y i n g  0 5 d ,  e 5 1. Vhat is 

t h e  s t a t e  equa t ion  f o r  t h e  above LANCHESTER-type combat model g iven  

by? How do you account f o r  t h e  c o n p l a t e  symmetry between t h e  two 

opposing f o r c e s  i n  t h i s  s t a t e  equa t ion?  

21. Consider a sk i rmish  between homogeneous X and Y f o r c e s  i n  which 

t h e  X f o r c e  is supported by a r t i l l e r y  which d e l i v e r s  a r e a  f i r e  

a g a i n s t  t h e  Y E0rp.e. Th i s  a r t i l l e r y  is  o u t  of t h e  f i r i n g  range of 

t h e  Y f o r c e ,  and hence i t  s u f f e r s  no a t t r i t i o n .  The Y f o r c e  with- 

draws a t  a c o n s t a n t  r a t e  W. Assume t h a t  t h e  fol lowing LANCHESTER-type 

equa t ions  nods1 the  a t t r i t i o n  process  f o r  t h i s  engagement ( f o r  x and 

Y'O) 

wi th  x(0) = x,, , 

where a, b, a,  and W are a l l  p o s i t i v e  cons tan t s .  Assuoie t h a t  

x and y > B .  What ie t h e  Y f o r c e  l e v e l  y ( t )  g iven by? 



22. Conrider the following LANCHESTER-type equations f o r  "two-ver sue-onc" 

aimed-fire combat 

where srl, a2 ,  bl. and b2 a r e  pos i t i ve  conatants.  

P a r t  a. What is the  Y force  l e v e l  g ( t )  given by? 

- Show t h a t  the s t a t e  equation f o r  the  above LANCHESTER-type Pa r t  b. 

2
model is given by z: - z2 a (albl + a2b2) (yo - y 

2 
) , where 

We w i l l  now general ize the above r s s u l t s  by considering the  following 

LANCHESTER-type equations f o r  "a-verrue-one" aimed-f i r e  combat 

where ai and bi f o r  i - 1 . 2 . n  a r e  poe i t ive  constants .  



-- 

Part c. What is the state equation for I tn-versus-one" combat? 

Part d. For "n-verecs-one" combat, what is the Xi force level xi(t) 


given by? 


23. Consider the following MCHESTER-type equations for aimed-fire combat 

between two horaogeneous forces wfth superimposed effects of supporting 


fires that are not subject to attrition (E Figure 2.15 above) 

with x(0) = xo , 

where a, b, a ,  and 6 are all positive constants. Assume that 

x and y > 0 .  

Part a. What i.s the X force level x(t) given by? 


Part b. What equatian is satisfied by the force ratio u = x j y ?  



24. Consider S.  DEITCHMAN's [22] LANCHESTER-type! model 

- I  -aY with x(0) xo , 

- bxy with ~ ( 0 )d t1 * 
f o r  t he  ambueh of a homogeneous X counter insurgent  fo rce  by a homogeneous 

Y g u e r r i l l a  force.  Here an ind iv idua l  ambushee r e t u r n s  a r e a  f i r e  aga ins t  

aimed f i r e  of t h e  ambushers, s i nce  he is "caught i n  t he  open by surpr i se"  

and only aware of t he  general  region occupied by the  ambushers. Consider 

only t h a t  phase of t h e  engagement during which x and y > 0. 

Pa r t  a .  Combirre t he  above two LANCHESTER-type equations (I) to  obtain a 

s i n g l e  second-order nonl inear  d i f f e r e n t i a l  equation fo r  the  

fo rce  l e v e l  x ( t )  . 

Bart b. -. In t eg ra t e  the  second-order equation obtained i n  P a r t  a t o  ob ta in  

a f i r s t -o rde r  monlinear d i f f e r e n t i a l  equation f o r  x ( t ) ,  i.e. an 

e q u a t i o ~  involving only t he  X force  leva1  x ( t )  f o r  the  r a t e  

of change of t he  X fo r ce  l e v e l  dxE( t ) .  

-.P a r t  c.* In t eg ra t e  the  f i r s t - o r d e r  equat ion obtained i n  Pa r t  b t o  ob ta in  

the X force l e v e l  x ( t1 .  

X 



FOOTNOTES f o r  Chapter 2 

1. M. K, WEISS [10.ljhaa pointed out t h a t  LANCHESTER, an Englishman, was 

an t i c ipa t ed  ( i n  q u a l i t a t i v e  but  not  q u a n t i t a t i v e  terms) i n  1905 by 

BRADLEY A. FISKE (then Commander, but  l a t e r  Rear Admiral, USN), an 

American. For a sketch of t he  l i f e  and accomplishments of BRADLW 

L L E N  FISKE: (1854-1942), see [66, pp. 298-2991. J. ENGEL [25] sub-

sequently showed t h a t  FISKE's verba l  model i s  equivalent  t o  a sys-

tem of d i f fe rence  equations ( i n  con t r a s t  t o  LANCI4ESTER's d i f f e r e n t i a l  

equations) and examined some of the  mathematical consequences of 

these  Fiske-type equations of warfare.  See Sect ion 2.10 f o r  f u r t h e r  

d e t a i l s .  

2.  FREDERICK W. LANCHESTER (1868-1946) was a leading English automotive 

and aeronaut ica l  engineer.  In h i s  l i f e t i m e ,  LANCHESTER won the high- 

e s t  honors t h a t  h i s  a s soc i a t e s  could award him [601: Fellow of the  

Royal Society,  Honorary Doctor of Laws, Honorary Member of the  I n e t i -  

t u t i on  of Mechanical Engineers, Honorary Member and Pres ident  (1910) 

of the  I n s t i t u t i o n  of Automotive Engineers, and Honorary Ze3low of 

the Royal Aeronautical Society;  r e c i p i e n t  of t h e  Gold Medal of the  

Royal Aeronautical Society (1926) , of t h e  Daniel Guggenheim Medal 

(1931.), of t h e  Ewhg Medal of t h e  I n s t i t u t i o n  of C i v i l  Engineers 

(1941), and of t h e  James Watt In t e rua t iona l  Medal of t he  I n s t i t u -  

t i o n  of Mechanical Engineers (1945). For f u r t h e r  information about 

h i s  many s c i e n t i f i c  and engineering cont r ibu t ions ,  see McCLOSKEY ['SO]. 

I n  recogni t ion of LANCHESTER'e pioneering 1914 cont r ibu t ion  [ 5 5 ]  

( a l so ,  again - [60]), which e l egan t ly  aaed mathematical methods s e e  

f o r  developing In s igh t s  i n t o  t he  so lu t ion  of opera t iona l  p r c b l e w  



long before the term "operations research" was coined, the  Operations 

Research Society of America annually &wards the  Lanchester P r i z e  

"for the paper cn operat ions research judged t o  be the  b e s t  of the 

calendar year.  " 

3. The fnf l u e n t i a l  lgt&century German m i l i t a r y  philosopher, C a r l  von 

Chusewi tz  (1780-1831), s t a t e d  i n  h i s  c l a s s i c  work On War (Vom Kriepe) 

[21, p. 2761, "The bes t  s t r a t egy  is  always t o  be very s t rong ,  f i r s t  

genera l ly  then a t  the  dec is ive  point . . . . There is no more im-

pera t ive  and no simpler law f o r  s t r a t egy  than t o  keep t h e  forces  

concentrated. 'l 

4 .  However, such a n a l y t i c a l  models may be enriched i n  d e t a i l  t o  become 

usefu l  opera t iona l  models through the inc lus ion  of add i t i ona l  s t a t e  

var iab les ,  use of more complicated func t iona l  r e l a t i onsh ips  between 

model parameters, e t c .  (see, f o r  example, W. T .  MORRIS [63J f o r  

fu r the r  discussion of the process a f  auch enrichment). Examples of 

such enriched models t h a t  have been used f a r  defense planning a r e  

BBNDER/IUA, DIVOPS, VECTOR-2, e t c. (seeSection 1.3) . 

5 .  C. ANCKER [ l ]  has pointed out t h a t  i n  1832 KARL von CWSEWITZ 

121, y. 1011 s a i d  t h a t  "war is nothing but a duel on an extensive 

sca l e .  l' 

6. LANCHESTER [ 5 5 ,  p. 4221 did point  ou t ,  however, t h a t  there  were some 

s i t u a t i o n s  i n  ancient  warfare i n  which concentrat ion waR advantageous. 



7. It is still worthwhile to read 'LANCHESTER'e lucid verbal description 

of combat. The most accessible source ie probably MORSE and KIMBALL 

[64, p. 641 (see -also NEWMAN [67, pp. 2136-21.401 or, of course, 

LANCHESTER's original paper [55, column 1 of p .  4?2]). 

8. However, the appropriate equations for such ancient warfare appear 


in MXSE and KIMBALL [64, p. $51 (see-also WLANSKY [23, p. 3461). 

These equations are 


where all symbols are as defined In the main text. 

9. Such an examination does not appear in LANCHESTER's [55] original 


paper or elsewhere. 


10. It should be noted, however, that the concept of equality of fighting 


strengths must be operationally defined, and such a definition in-


variably involves a model of battle termination, i.e. the specifica- 


tions of "victory" and "draw" conditions. With this in mind, we 


observe that LANCHESTER (implicitly) develop~d (2.1.6) for a "fight-


to-the-finish," and the condition for equality of fighting strengths 


must be modified in other cases (zSection 2.8 and Chapter 3). 

11. In fact, LANCHESTER [55] did not develop (2.1.5) at all. Equation 


(2.1.5) was apparently first given by MORSE and KIMBALL 564, p. 65 1 



and ca l l ed  "LANCHESTER1~ square law" by them. 

12. I n  h i s  o r i g i n a l  1914 paper [ 5 5 ] ,  LANCHESTER did not e x p l i c i t l y  give 

the force-rat io  equation (2 .l,7) i u  h i s  development of the  "square law" 

(2.1.6), but  he enigmatically determined condit ions tinder which 

( l / x ) d x / ~ t- ( l / y )dy /d t  - ( l /u )du/d t  = 0. Thus, LANCHESTER himself 

only i m p l i c i t l y  considered the  f orce-rat io  equation (2.1.7) i n  the  

development of h i s  famous square law (2.1.6) . 

13. I n  modelling combat with two such d i f f e r e n t i a l  equations f o r  the two 

force  l e v e l s ,  one is impl i c i t l y  assutning t h a t  the  force  l e v e l s  a r e  

the  s t a t e  va r i ab l e s ,  i . e  the fu tu re  course of combat may be predicted 

from knowledge of only the  cur ren t  va lues ,o f  t he  force  l e v e l s  (assuming 

t h a t  t he  a t t r i t i o n - r a t e  coe f f i c i en t s  a and b a r e  known) (E Sec-

t i o n  1.6 above). There is, moreover, f a r  from universa l  agreement a s  

t o  what a r e  t he  s i g n i f i c a n t  ( i . e .  s t a t e )  va r i ab l e s  f o r  modelling militax 

combat. For some o ther  views, see HAYWARD [30] o r  LIDDELL HART [56 1. 

14.  Corresponding s tochas t i c  combat formulations ( i . e .  MARKOV-chain ana-

logues) a r e  f o r  a l l  p r a c t i c a l  purposes a n a l y t i c a l l y  i n t r ac t ab le .  Fur-

thermore, very nea r ly  t h e  same t rends  f o r  the  combat dynasice a r e  ob- 

ta ined from de terminis t ic  and corresponding s t o c h a s t i c  models although 

some caut ion muet be  exercised in  considering only the  de t e rmin i s t i c  

model f o r  small numbers of combatants o r  when t he  fo rces  a r e  "near 

par i ty"  (zChapter 4 below). Moreover, BONDER and FARRELL [ l l ]  have 

reported exce l len t  agreement between Monte Carlo o r  s t o c h a s t i c  simula- 

t i on  r e s u l t s  and those f o r  a corresponding de t e rmin i s t i c  LANCHESTER-

type model. 



Initially, we were tempted to call (2.2.1) "LANCHESTER1s equations 


for a 'square-law' attrition process," since they do yield the quadratj 


state equation (2.2.5) (seeTAYLOR [82;  841). However, there are 

many differential combat models besides (2.2.1) that yield (2.2.5) 


(E Section 2.9 below). Consequently, we have chosen the name "LAN- 

CHESTER'S equations for modern warfare," although the equations (2.2.1) 


have been hypothesized to apply under other conditions. Sometimes it 


will be more convenient to refer to (2.2.1) as a F I F WCHESTER-type 
attrition process (or, simply, F I F attrition) when greater preciseness 
is required (E Section 2.12). 

Of course, the exact information to be extracted from a model (even a 


simple one) depends an the purpose of the study under consideration. 


Except for the special case of quasi-autonomoue equations in which 


case the equations may be transformed to constant-coefficient ones 


by a change of the time scale (=Section 6.3 below). 

Actually, if we recall (2.2.2), the X force level is given by 


I. when 
xO/yO = a: 

for O ~ t ( + m ,  


cash 6 t - yo for o 2 t --.: t*a 

where 




III. when xO/yO > Jh-ii;: 

where 


It will be convenient in subsequent developments to relax the requirement 

that x, y 2 0. 

19. To see this, consider the solution to (2.2.1; for t 2 ta > 0 with in- 

termediate condition x(ta) - 0 and y(ta) - 0 but xOyO + 0. Clearly, 

x = y E 0 is 5 solution to (2.2.1.). By a standard miqueness theorem, 

it is && solution, and we must have xo - yo = 3, which is a contra-

diction. Hence, it is impossible to have both x(t) and y(t) equal 


to zero at any finite time if xOyO 0. 


20. Of course, the easiest way to determine u(t) is to form the ratio 


x(t ) /y( t )  with x(t) given by (2.2.13) and y(t) given by (2.2.15). 

21. Or, equivalently, a quasi-autonomous model, i.e. one that may be trans-


formzd into a constant-coefficient model by a transformation of the 


battle's time scale. 




I n i t i a l l y ,  were tempted t o  c a l l  (2.4.1) "WINCHESTER1& equatione f o r  a 

' l inear-law' a t t r i t i o n  proceae," s ince  they do y i e l d  the  l i n e a r  s t a t e  

equation (2.4.3) (E TAYLOR (82; 84 1) . However, there  a r e  many d i f -  

f e r e n t i a l  combat models besides (2.4.1) t h a t  y i e l d  (2.4.3) (zSectPo. 

2.9 below). Consequently, we have chosen the  name "LANCHESTER's equat 

f o r  a r e a  f i r e , "  although the  equat ions (2.4.1) have been hypothesized 

t o  apply under o the r  condit ions.  Sometimes i t  w i l l  be more convenient 

t o  r e f e r  t o  (2.4.1) a s  a FTlFT LANCKESTER-type a t t r i t i o n  process (or ,  

elmply, FT 1 FT a t t r i t i o n )  when g r e a t e r  preciseness  is  required (E 
, 

Sect ion 2.12). 

23. Namely, t he  c l a m  of d i f f e r e n t i a l  equations of the  form 

where F is r a t i o n a l  i n  w and w ' ,  and a n a l y t i c  i n  z, which have 

a l l  t h e i r  c r i t i c a l  po in ts  ( i . e .  branch poin ts  and e s s e n t i a l  singu- 

l a r i t i e s )  f i x e d  (E Ih.:E [41, p .  3352). 

24. We again caut ion the  reader  t h a t  t he  a t t r i t i o n - r a t e  c o e f f i c i e n t s  a 

and b, however, r e p r e s e n t , d i f f e r e n t  physical  q u a n t i t i e s  i n  t he  two 

models (2.2.1) and (2.4.1). 

25. In  general ,  w e  have 



which (assuming t h a t  dy /d t  < 0 )  shows t h a t  t h e  d i f f e r ence  between 

the  force  r a t i o  u and t h e  d i f f e r e n t i a l  force-change r a t i o  ( f o r  

cases  of no replacements and withdrawals, t h e  d i f f e r e n t i a l  casual ty-  

exchange r a t i o )  dx/dy determines the  s l g n  of t he  rate of change of 

t h e  force  r a t i o  (sTAYLOR [ 8 9 ] ) .  

26. For example, a tank designer might be  in t e re s t ed  i n  developing an  ex- 

p l i c i t  tradeoff between c e r t a i n  performance parameters of a tank weapon 

system o r  between d i f f e r e n t  tanks (e.8. weight of armor [ i . e .  degree 

of pro tec t ion]  versus mobi l i ty  f o r  a tank).  Moreover, although a 

s impl i f ied  a n a l y t i c a l  model may weTl be f a r  too simple t o  be ab le  t o  

so lve  by i t s e l f  such an opera t iona l  problem ( i .e .  ne i the r  a s s e r t  what 

decis ions should be made nor p red ic t  what dec is ions  w i l l  be made), i t  

may be qu i t e  usefu l  i n  exposing the  bare determinants of t he  tradeoff 

o r  decis ion ( i .e .  ident i fy ing  t h e  major f a c t o r s  and developicg a rough 

quan t i t a t i ve  r e l a t i onsh ip  between them). See SHUBIK and BREWER [741 

and PAXSON [68, p. 81 f o r  f u r t h e r  discuasione. 

27. Here we a r e  using the  word uxlcerrrainty i n  a nontechnical sense [ a s  

opposed t o  the usual  technica l  sense i n  which the  word is used i n  3R 

(see f o r  example, LUCE and U I F F A  [58, p. 131) 1. 

28. Ae pointed out  by TAYLOR and PARRY [ 9 5 ] ,  t h e  e n t i r e  subjec t  of modellir 

b a t t l e  termination is a problem a rea  i n  contemporary defense-planning 

s tud ie s .  There is  fa r  from universa l  agreement on t h i s  t op ic  (see 

TAYLOR [53] and a l s o  Chapter 3 f o r  f u r t h e r  re ferences) .  



29. This d i s t i n c t i o n  w a s  kindly pointed out t o  the author by the  r e f e rees  

t o  h i s  paper TAYLOR i911. 

30. A s  emphasized i n  TAYLOR [91],  i t  w i l l  no t  make much sense t o  study 

decis ions under uncertainty unless  we know how t o  make dec is ions  under 

full c e r t a i n t y .  

31. I n  r e a l i t y ,  however, t h e  a c t u a l  t rend i n  combat opera t ions  over t he  

pas t  two thousand years  of m i l i t a r y  h i s to ry  (see [ 4 0 ] ) has been toward 

g rea t e r  d i spers ion  of fo rces  ( i . e .  lower troop dens i ty) .  We w i l l  d i s -

cuss t h i s  point f u r t h e r  below i n  Chapter 6 and w i l l  explain why i t  is 

so with another equal ly  simple model. 

32.  For t h e  adopted bat t le- terminat ion condit ions (each s i d e  has a f ixed 

breakpoint),  enemy c a s u a l t i e s  have been f ixed ,  and consequently i t  was 

not  necessary t o  consider them. In  o ther  cases ,  however, t h e  v i c t o r  

might very w e l l  want t o  a l s o  consider enemy l o s s e s  i n  h i s  force- 

concentration decision. 

3 3 .  FISKE e s s e n t i a l l y  developed h i s  own version of firepower scores  f o r  

naval engagements. This  w a s ,  of course,  done long before the term 

'If irepower score" w a s  coined. 

3 4 .  Clearly,  t he  equations a r e  physical ly  meaningful only f o r  xn, yn  > 0 .  

S t r i c t l y  speaking thus ,  we should adopc some convention l i k e  (2.2.2), 

b u t  f o r  s imp l i c i ty  hava omftted t h i s .  



35. As shown in Chapter 7, we can always achieve this condition by taking 

the length of the time period to be short enough. 


36. See, for example,.SOKOLINKOFF 179, p. 51 and p. 2631 or BUNGE [18, p.  

(also LINDSAY and LYARGENAU [57]). 

37. G. CLARK [20] has emphasized that one may consider target-acq,uieition 

capability as the distinguishing characteristic between the two sets 


of physical circumstances (i.e. those given in Tables 2.XVIII and 2.X: 


that have been hypothesized to yield these two different basis combat 

models. When targetc are readily acquired, the modern-warfare equatii 


(2.2.1) arise; while when only general knowledge of target locations 


is available, the area-fire equations (2.4.1) arise. Hwever, CLARK 


[20; p. 191 erroneously attributes this observation to LANCEESTER [55 

Xr apparently is due to WEISS [99]. 


38. For example, Taylor and Brown [92] and Taylor and Comstock [94] show 

that the representation of solutions [ 9 2 ]  and the development of for1 

annihilation-prediction conditions 1941 for variable-coefficient LAN 

CHESTER-type equations of modern warfare may be considered to be a 


generalization of these constant-coefficient results. 


39. MORSE and KIMBALL [ 6 4 ,  p. 711 originally did not use the term "operr 

losses in this sense: they used it to denote war lossee under open 


conditions. MORSE and KIMRALL conoidered a simple model for the ovc 


trend of a war and hypothesized that besides a term of the form ay 




X ' s  opera t iona l  l o s s  r a t e ,  i . e  ( -dxldt) ,  there  should be one propor- 

t i o n a l  t o  X ' s  s i z e ,  i . e .  Bx. Apparently, t h i s  terminology was later 

changed by BACH, DOLANSKY, and STUBBS [ 3 ]  t o  denote l o s ses  not due t o  

enemy ac t ion .  

4 0 .  Although not  e x p l i c t l y  s t a t e d  i n  h i s  paper [36],  HELMBQLD apparent ly 

based h i s  modification of LANCHESTER~S equations f o r  modern warfare 

(2.2.1) on the  r e s u l t s  of r a t h e r  extensive empir ical  i nves t iga t ions  

(see HELMBOLD [ 32 -341 ) .  H i s  bas ic  idea  f o r  these  inves t iga t ions  was 

t o  f ind  r e g u l a r i t i e s  o r  "patterns" i n  h i s t o r i c a l  b a t t l e  da t a  and then 

t o  determine whether or not a given simple combat models (HELMBOLD took 

LANCHESTER'S equations of modern warfare) e x h i b i t s  a  s imi l a r  "pattern." 

From h i s  h i s t o r i c a l  da ta ,  HELMBOLD found t h a t  r e l a t i v e  f i r e  effecbive- 

ness  a /b  ( i . e .  t he  r a t i o  of t he  f i r e  e f fec t iveness  of an ind iv idua l  

Y combatant t o  t h a t  of an ind iv idua l  X combatant) t o  be s t rongly  

co r r e l a t ed  with the  i n i t i a l  fo rce  r a t i o  xO/yO. 

HELMBOLD'S d a t a  basecons is ted  of i n i t i a l  and f i n a l  force  l e v e l s  

f o r  both s i d e s  f o r  s eve ra l  hundred h i s t o r i c a l  b a t t l e s ,  with one s i d e  

i d e n t i f i e d  a s  the a t t a c k e r  (X) and the  o the r  (Y) a s  the  defender.  

Assuming t h a t  the square law (2.2.5) held,  HELMBOLD computed the  i n i t i  

force  r a t i o  xO/yO, surv ivor  f r a c t t n s  xf/xO and yf /yO,  advantage 

2p a r a m t e r  V = l n  p where B - {l - (xf/xo) }/I1 - (yf /yO)
2 1, ace iv i t  

r a t i o  ( i n  our terminology, r e l a t i v e  f i r e  e f f ec t iveness )  a / b ,  and the  

"b i t  ternesa" parameter E - 6 tf f o r  each of ( a l l  t o l d  f o r  t he  thr t  

i nves t iga t ions  [32 - 341)  seve ra l  hundred b a t t l e s .  A s  ind ica ted  abovt 

h i s  idea was t o  c o l l e c t  a  s i z a b l e  body of da t a  dea l ing  with the  histo1 



b a t t l e s ,  ure  t h i s  da t a  t o  compute parameters (advantage, a c t i v i t y  

r a t i o ,  and b i t t e r n a m )  associated with each b a t t l e ,  and eearch the  

r e s u l t a  f o r  r e $ u l a r i t i e s .  Although we would expect the  i n i t i a l  force  

r a t i o  xO/yO and the  r e l a t i v e  f i r e  effect ivenee8 a / b  t o  be inde- 

pendent parameters, i n  car ry ing  out  t he  above program, HELKIOLD found 

them t o  ba s t rongly  pos i t i ve ly  cor re la ted  (=,in p a r t i c u l a r ,  [32, 

g. 7; 33, pp. 31-35 and 58-59]). 

Thus, i f  one assumes t h a t  the  square law (2.2.5) holds,  then 

ava i l ab l e  h i s t o r i c a l  b a t t l e  da t a  says t h a t  xO/yO and a /b  a r e  

s t rongly  pos i t i ve ly  cor re la ted :  as the  i n i t i a l  force  r a t i o  of X t o  

Y increases ,  the  r e l a t i v e  f i r e  e f f ec t iveness  of an individual  X 

combatant t o  t h a t  of tm individual  Y ane decreases.  Thus, one is l e d  

t o  abandon the model (2.2.1) and t o  conjecture t h a t  the  l a r g e r  force  

s u f f e r s  i n e f f i c i e n c i e s  of s ca l e  vhen force s i z e s  a r e  grossly unequal. 

HELMBOLD'S modal (2.12.6) is  a a t h e m a t i c a l  expression of t h i s  hypothesis.  

41. .Although not s t a t e d  by HELMBOLD [36], t h i s  p a r t i c u l a r  func t iona l  form 

is suggested by his l i n e a r  regress ion  r e s u l t s  f o r  I n  a /b  aga ins t  

I n  xO/yO (E [33; 341). a l s o  above footnote.  

4 2 .  This model i s  p a r t i c u l a r l y  important because an extension of i t  can 

be ueed t o  model the casual ty-rate  curves used i n  severa l  thea te r - leve l  

combat models ( 2 sChapter 8) .  

43. The g rea t e r  convenience and ina ight  t o  be gained by introducrng the  

paramater d was apparently f i r s t  observed by H. K. WEISS [103]. 
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APPENDIX A: BACKGROUND FOR THE MATHEMATICS OF LANCHESTER'S 


CLASSIC COMBAT FORMULATIONS 


Appendix A consists of three parts: A.l The Hyperbolic 


Functions, A.2 SoLution to the n* Order Constant-Coefficient Linear 


Differential Equation, and A . 3  The Generalized RICCATI Equation. Its 

purpose is to provide some general mathematical background far 


Chapter 2, which was not convenient to incorporate into the main text. 


The reader who is familiar with the hyperbolic functions, solving 


constant-coefficient linear differential equations, and the RICCATI 


equation may skip this material. 




1 

APPENDIX A . l :  The Hyperbolic Funct ions  

1. Background., 

he so-cal led hyperbo l ic  f u n c t i o n s  a r e  s i m i l a r  t o  t h e  well-known 

c i r c u l a r  f u n c t i o n s  (e.g. s i n e ,  c o s i n e ,  e t c . ) .  Le t  ua r e c a l l  t h a t  v i a  

E u l e r ' s  f o r m e  (here  i = fi) 

gig cos  9  + i s i n  9  , 

we may w r i t e  

e i 9  e-i9+ 

cos  9  = Y2 

i 9  - i B  e - e
s i n  9  = 

2i 

It has  been convenient t o  i n t r o d u c e  i n t o  mathematical  a n a l g s i v  r e l a t e d  

f u n c t i o n s  c a l l e d  t h e  h3perbo l ic  func t ions ,  s i n c e  i n  many a p p l i c a t i o n s  t h e  

exponen t ia l  f u u c t i o n  e n t e r s  i n  combicmtions o f  t h e  form (ee  + e-') o r
2 

i (ee  - e 
-81.  Thus, we in t roduce  t h e  so-cal led  hyperbo l ic  cos ine  

and t h e  hyperbo l ic  s i n e  

Replacing 8 by i 9  i c  (A.1.2) and (A.1.31, w e  s e e  t h a t  cos i 9  = cosh 0 

and s i n  i 9  = i s i n h  0 ,  which provides one mot iva t ion  f o r  t h e  names 

hyperha l i c  cosine  and hyperbo l ic  s i n e .  



2 .  Proper t ies  Useful f o r  LANCHESTER Combat The=. 

From the  above d e f i n i t i o n s  of the  hyperbolic func t ions ,  one r ead i ly  

deduces (show t h i s  yourse l f )  the following proper t ies :  

(P3) f o r  r = 0 ,  cosh t = 1 and s inh  t = 0 ,  

(P4) cosh(u-v) = cosh u cosh v - s inh  u s inh  v,  

and (P5) sinh(u-v) = s i n h  u cosh v - cosh u s inh  v. 

Let us now b r i e f l y  show how the  above p rope r t i e s  a r e  u se fu l  f o r  

LANCHESTER combat theory. Proper t ies  (PI) and (P2) imply t h a t  t he  

general  so lu t ion  t o  

i s  'given by 

We r e c a l l  t h a t  (A.1.6) is t h e  X force- level  equat ion,  which appears i n  

the main t e x t  a s  (2.2.10), so t h a t  i t s  i n i t i a l  condi t ions a r e  

dxand - (0) = -ayo . (A. 1.8) 
d t  

Property (P3) is  usefu l  f o r  eva lua t ing  the  cons tan ts  A a ~ d5 i n  

(A.l.7): using (A.1.8), w e  f i n d  t h a t  A = xO and B = -yo SO t h a t  

7x ( t )  = xo ,r b  t - yo s inh  ?;.i , (A.1.9) 



which appears  i n  &be main t e x t  na (2.2.9).  The r e a d e r  should n o t e  t h e  

g r e a t  convenience f o r  e v a l u a t i n g  t h e  cons can t s  i n  the  genera l  s o l u t i o n  t o  

(A11.6)  ( s e e-Appendix A.2)  wheu i t  Is expressed i n  terms o f  t h e  hyperba l i c  

funct  iorrs. 

P r o p e r t i e s  (P4) and (P5) a r e  two of t h e  so-cal led  a l g e b r a i c  add i t io .  

theorems possessed by t h e  hyperbo l ic  f u n c t i o n s .  I f  w e  conelder  t h e  

b a t t l e  t o  begin  a t  to, then t h e  i n i t i a l  cond i t ions  t o  (A.1.6) are 

and 

whence (A. 1.7) y i e l d s  

~ ( t )= xo(cosh to cosh r - s i n h  to s i n h  t )  

f i  (cosh & to s i n h  t - s i n h  to cosh & t ) .  (A.1.1+Yo b 

Let u s  emphasize t h a t  t h e  a l g e b r a i c  a d d i t i o n  theorems of t h e  hyperbo l ic  

f u n c t i o n s  a r e  t h e  reason  t h a t  (A.1.10) may be  s i m p l i f i e d  t o  (A.l .11).  

It is  a l s o  convenient t o  in t roduce  t h e  so-cal led  hyperbo l ic  tangcnt 

de f ined  by, i n  analogy wi th  t h e  c i r c u l a r  func t ions ,  

s i n h  0
tanh 0 = cash . 



It may be shown t h a t  t h e  hyperbo l ic  tangent  has  t h e  fol lowing p r o p e r t i e s :  

( ~ 6 )  tanh 0 is  a s t r i c t l y  i n c r e a s i n g  f u n c t i o n  of 8 ,  wi th  

t a n h 0 3 0  f o r  8 = 0 ,  

(P7) l i m  tanh 0 = 1. 
t + + "  

If we .wr i t e  t h e  X f o r c e  l e v e l  as a func t ion  of time a s  

~ ( t )- 1 x0 - yo$ tanh & t I cash m t , ( A .  1 . 1 3 )  

then t h e  terms w i t h i n  t h e  b r a c k e t s  (namely, F ( t )  a xo - yo Jalb tanh t )  

determine t h e  s i g n  of x ( t ) ,  s i n c e  cosh 0 is always p o s i t i v e .  Observing 

t h a t  F ( t )  is a s t r i c t l y  decreas ing  f u n c t i o n  of time wi th  F(0) = xo > 0 

and l i m  F ( t )  = xo - . y o  m,we s e e  from (A.1.13) t h a t  x ( t )  > 0 f o r  a1 
t++-

t > 0 i f  and only  i f  xO/yO > m. Conversely, X w i l l  be a n u i h i l a t e d  -
i n  f i n i t e  time i f  and on ly  i f  xO/yo c ~alb. Furthermore, t h e  t i m e  a t  

X
which X i s  a n n i h i l a t e d ,  i .e.  tt such t h a t  x ( t a )  = 0, is given by 

which is w e l l  de f ined  f o r  xO/yO ' m b  by v i r t u e  of (P6) and (P7). What 

t h i s  a l l  shows is  t h a t  fo rce -ann ih i l a t ion  p r e d i c t i o n  for t h e  model. (2.2.1) 

is i n t i m a t e l y  r e l a t e d  tc t h e  p r o p e r t i e s  (P6) and (P7) of t h e  hyperbol ic  

tangent .  

F i n a l l y ,  t h e  m a t e r i a l  i n  this sr?ction i s  e s s e n t i a l  f o r  understand- 

i n g  TAYLOR and BROWN'S [ 2 ]  ideas f o r  r e p r e s e n t i n g  t h e  s o l u t i o n  t o  v a r i a b l e -  

c o e f f i c i e n t  LANCHESTER-type equa t ions  of modern war fa re  (=Chapter 6 ) .  



For f u r t h e r  informat ion about t h e  hyperbol ic  f u n c t i o n s ,  t h e  r e a d e r  can 

c o n s u l t  any good t e x t  on t h e  c a l c u l u s  (see,f o r  example, COURANT and 

JOHN [I, pp. 228-2361). 
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APPENDXX A. 2 : Solution t o  the n g  Order Cons tant-Coef f  i c i e n t  

Linear Dif f erentllal  Equation 

1. General Results.  

A l l  force-level equations f o r  LANCHESTER's equations of modern 

warfare (2.2.1) and i ts  extension t o  combat between heterogeneous forces  

<and many o the r  d i f f e r e n t i a l  combat models) a r e  i n  one sense o r  another 

special cases of the n& order  constant-coeff icient  l i n e a r  homogeneous 

d i f f e r e n t i a l  equation 

(A. 2.1) 

where the c o e f f i c i e n t s  ak a r e  constants .  

We f i r s t  attempt t o  determine n l i n e a r l y  independent so lu t ions  

to  (A. 2.1). The appearance of t h i s  homogeneous equation suggests homogeneous 

so lu t ions  of the form eP t ,  where p is a constant ,  s i nce  a l l  der iva t ives  

of ep t  a r e  constant  mu l t ip l i e s  of the funct ion i t s e l f ,  i . e .  

We have then 

This r e s u l t  shows t h a t  ePt is a so lu t ion  of (A.2.1) i f  p ~ a t i s f i c s  

the  so-called c h a r a c t e r i s t i c  equation 



Let us no te  t h a t  t h e  c h a r a c t e r i s t i c  equa t ion  may be ob ta ined  from t h e  

o r i g i n a l  homogeneous d i f f e r e n t i a l  equa t ion  (A.  2.1) simply by f o m a l l y  

k 
r e p l a c i n g  dkx/dt  by  pk,  wi th  t h e  convention t h a t  dox/dto 5 x.  

Since (A.2.2) has n r o o t s  PI' P 2 , - -  , 'n ' i t  may be w r i t t e n  

in the form 

( P - P ~ )  ( P - P ~ )  (P-PJ = 0 

If t h e  n r o o t s  o r e  d i s t i n c t ,  e x a c t l y  n l i a e a r l y  independent s o l u t i o n s  
Pit P 2 t  pnr' 

e , e  , ... , e t o  (A.2.1) a r e  ob ta ined ,  and t h e  g e n e r a l  s o l u t i o n  

t o  t h i s  homogeneous e q u a t i o n  is 

However, i f  one o r  more of t h e  r o o t s  is repea ted ,  then Less than n 

l i n e a r l y  independent s o l u t i o n s  are ob ta ined  i n  t h i s  way. It may be shown 

t h a t  (see, f o r  example, IIILDEBHAM) [I., pp. 9-10] or INCE [2,pp. 133-1371] 

the  p a r t  of t h e  s o l u t i o n  t o  (A.2.1) corresponding t o  an m-fold r o o t  
pl 

i s  of the form 

Hence, t o  each of t h e  n r a o t s  of t h e  c h a r a c t e r i s t i c  equar lon (A.2.21, 

repeated r o o t s  being counted according ro t h e i r  m u l t i p l i c i t y ,  w e  can f i n d  

a corresponding s o l u t i o n  Lo (A. 2 .I), and t h e  g e n e r a l  s o l u t i o n  t o  (A.2.1) 

is simply a l i n e a r  c o m ~ i n a t i o n  o f  these  n indepzndeat  s o l u t i o n s .  

However, f o r  fo rce - leve l  equa t ions  i n  t h e  LANCHESTER theory of combat, 



such repeated r o o t s  do n o t  ar iew u n l e a s  a f o r c e  type i n  our  model g e t s  

f i r e d  upon wiehoat raeurninq f i r e .  U n l t ~ s  t h i s  happens, such repea ted  

r o o m  do no t  arise f o r  F I  F a t t x l t i o n  and i t s  g e n e r c l i z a t i o n s .  

2. Appl ica t i cn  t o  WCHESTER's Equations f a r  Modern Warfare. 

The I$ fo rce - leve l  equa t ion  f o r  LANCHESTER's equa t ions  of modern 

war fa re  (2.2.1) is given by equa t ion  (2.2.10) of t h e  main t e x t ,  which 

we w r i t e  he re  as 

whence t h e  c h a r a c t e r i s t i c  equa t ion  is  given by 

2 
p - a b m O .  (A. 2 .5 )  

It has two d i s t i n c t  r o o t s  = 6 and p 2  - -& f o r  a b  > 0 s o  t h a t  

t h e  genera l  s o l u t i o n  t o  ( A . 2 . 4 )  i s  given by 

9x ( t )  = A' edab t + + I  -Jab t 
(k.-2.6) 

where A '  and 0 '  a r e  c o n s t a n t s ,  o r ,  i n  terms of t h e  hyperbo l ic  func t ions  

( s e e-A p ~ e n d i x  A.I.), as 

f o r  equa t ion  (2.2.10) of t h e  main t e x t ,  w e  can e v a l u a t e  t h e  c o n s t a n t s  i n  

(A.2.7) (seeAppendix A.l) t o  o b t a k ~  



whi.ch appears i n  the main t ex t  as equation (2.2.9)  . 

1. F. B. Hildebrand, Advanced Calculus far  Enuin,eers, Prentice-Hall, 
Englewood C l i f f s ,  N.J., 1949. 

2 .  E .  L .  Ince, Ordinary Dif ferent ia l  Equaticns, Longmane, Green and Co., 
London, 1927 (reprinted by Dover Tubiications, Inc., New York, 1956). 



APPENDIX A . 3 :  ,The Generalized RICCATL Equation. 

The nonlinear first-order ordinary differential equation 

is called the ~eneralized RICCATI equation. Although specialized esoteric 


solution methods have been developed (seeR E L L M  [I]), the standard solutic 

method for this nonlinear first-order differential equation is to transform 


it to a linear second-order differential equation by a transformation of 


the dependent variable. If we let 


where w' = dwldt, then (A.3.1) is transformed into 

Thus we see the intiaate connection between the gersral linear second-orde~ 

differential equation and the generalized RICCATI equa:ion. 


Although the above corlnection was already '.mwn to LEONHARD EULER 

(1707-1783) (seeWATSON [3, p. 92]), the role played by the RICCATI equatic 


il, LANCHESTER combat theory has been recognized only recently. TAYLOR 

and PARRY [2] have show that for the diffarsntial combat model 


dx
-= -n(t)y - B(t)x, and a -b(t)x - a(t)y , (A.3 . 4 )dl dt 




i n t r o d u c t i o n  of the  f o r c e  r a t i o  11 - x/y y i e l d s  t h e  follow in^ (gsneral ize l  

RICCATI equat ion 

F i n a l l y ,  a s  TAYLOR and PARRY [ 2 ,  p. 5251 have emphasized, t h e  

primary va luz  of t h e  f o r c e - r a t i o  equa t ion  (A.3.5) i e  not f o r  e x p l i c i t l y  

computing t h e  f o r c e  r a t i o ,  s i n c e  we have seen t h a t  t h e  s t andard  technique 

f o r  s o l v i n g  t h e  genera l i zed  RICCATI equa t ion  (A.3.1) i s  t o  t ransform i t  

i n t o  a l i n e a r  second-order equa t ion  (A.3.3), which i n  LANCHESTER-theory 

a p p l i c a t i o n s  t u r n s  ou t  t o  ba e i t h e r  t h e  X o r  Y fo rce - leve l  equat ion.  

The importance of t h e  f o r c e - r a t i o  equa t ion  is  t h a t  i t  d i r e c t l y  provides  

much u s e f u l  informat ion about t h e  b a t t l e ' s  outcome without  one having 

t o  spend t h e  t i m e  and e f f o r t  o f  e x p l i c i t l y  computing t h e  f o r c e - r a t i o  

t r a j e c t o r y  (E, f o r  example, Sec t ion  2.2). 
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Chapter 3. SOME SIMPLE MODELS OF BATTLE TERMINATION 


3.1. Jatroduction. 


As pointed out in Section 2.8, the military operations analyst neada 

some type of "combat rseulte table" for asaessing the outcomes of combat 


engagements between oppoaing unite in combat models, eAmulatione, and war 


games. Let uia therefore coineider how one would construct such a combat 


reedts table that relates the engagement's initial conditions to probable 


outcomes. Recalling from Section 1.3 that there are basically three ap- 


proaches for assessing the outcomes of tactical engagements (i.e. fire- 


power scores, Monte Carlo simulation, and analytical models), we realize 


after a little reflection that in all cases there are essentially two 


aspects of assessing such outcomes: (Al) the dynamics of the engagement, 


and (A2j the engagement-termination conditions (or "rules") . 
Although we wtll proceed analytically via LANCHESTER-type nodele 


of warfare, all combat modelling approaches must in some sense include 


these two aspects. Thus, modelling engagement termination is an essential 


ingredient for combat analysis, siace determination of battle outcome de- 


pends on not only the dynsmics of combat but also the engagement-termination 


riles used. Furthermore, any shortcomings in modelling the engagement- 


termination process are not limited to LANCHESTER-type models: they are 


basic shortcomings of the state-of-the-art of combat modelling. 


It is important for the military operations analyst to have a clear 


understanding of how force-level and weapon-system-performance factors 


interact to determine the outcome of battle. In other words, one seeks to 


answer questions such as, "Who will win the battle? What i a  the tradeoff 

between the quality and quantity of weapon systems? When are two forces 


of equal strength?" For answering such questions, we will assume that the 




combat dynamics are given by LANCHESTER-type equations of warfare. With 


the epacification of engagement-termination ruler (i.e. an engagement- 


tatmination model), we can, of couree, determine the outcome of (the simu- 

latsd) battle simply by plotting the decay of the force levels (or any othe 


etate variables) and oboerving which aide reachaa its engagemant-terninatlo 


conditione first. Beeidae b e k g  a time consuming approach, this nethod 

doer not provide any clear wderstanding of how force-level and weapon- 


system-performance factora interact to determine the outcome of battle. 


What is needed are explicit conditions that relate the initial conditions 


of battle, weapon system capabilities, tactics, and the outcome of battle. 


Accordingly, we will develop explicit battle-outcome-prediction COP 


ditiona for autonomous (i.e. time-invariant2 combat dynamics and a cnrtain 


simple modal of engagement termination. We have previously given some of 


these battle-outcome-prediction results in Section 2.8 without justificatic 


Here we will give theoretical justification for many such results. We must 


first, however, discuss the modelling of engagement termination. Mcreover 


the engagement-termination model should be considered to be different and 


distinct from the combat attrition model. 


In this chapter we will consider the modelling of zngagement termi- 


nation and the development of associated battle-outcome-prediction coadi- 


tione for both deterministic and also stochastic engagement-termination 


processes. We will consequently be able to answer questions (Ql) through 


(44) posed in Section 2.2 (e.g. "Who will win? What initial force ratio 

is required to guarantee victory?) for many LANCHESTER-type models. Both 


theoretical developments and also empirical verification of such models 


will be discussed. 




3.2. Modalling Ba t t l e  Termination. 

Ae 8.  K. WEISS [22 ,  has emphasized, engagements t h a t  continue u n t i l  one 

s i d e  is wiped out are r a re .  Rather, r e t r e a t  (or  disengrgement) may begin 

when t h e  number of c a s u a l t i e s  euatainad by a s i d e  approaches 10% o r  so of i ts 

i n i t i a l  r t r eng th  [22,  p.  161. Poeeibly the  occurrence of aome o ther  event 

( for  example, the  enemy "taking the  high ground") may t r i g g a r  r e t r e a t  o r  

disengagement. I n  any case,  though, we ahould examine t h e  bat t le- terminat ion 

process more cloeely.  

Let us  therefore  consider two forces  i n  ground combat. The engage- 

ment begins,  the  forces  i n t e r a c t  and c a s u a l t i e s  are exchanged a s  b a t t l e f i e l d  

a c t i v i t i e s  a r e  performed, and even:ually t h e  b a t t l e  w i l l  end. How did t h e  

b a t t l e  end? Who "won" t h e  b a t t l e ?  Wha: caused the  b a t t l e  t o  end? Theae 

a r e  important (and d i f f i c u l t  t o  answer) questionu f o r  t he  m i l i t a r y  opera- 

t i o n s  ana lys t .  They a r e  a l s o  very Important f o r  t h e  combat modeller. 

R. L. HELMBOW[lO]has considered t h a t  t he re  a r e  four  poss ib le  out- 

comes f o r  such a b a t t l e :  

one s i d e  has  been annihi la ted,  with i ts  opponent thereby 

i n  undisputed con t ro l  of t h e  b a t t l e f i e l d ,  

one s i d e  surrenders  and submits t o  t h e  w i l l  of i t s  opponent, 

who thereby gains of t h e  b a t t l e f i e l d ,  

ne i the r  s i d e  surrenders  or  is ann ih i l a t ed ,  but  one of them 

has disengaged and e i t h e r  has withdrawn o r  i s  i n  t h e  process 

of doing so ,  leaving its opponent i n  r a t h e r  c l e a r  con t ro l  of 

t h e  b a t t l e f i e l d .  

ne i the r  s i d e  has surrendered o r  been annih i la ted ,  b a t  ba th  

s idea have disengaged and have e i t h e r  withdrawn from the  



combat &r0a or  a r e  i n  t h e  proceae nf doing so; the  withdrawal 

i a  mu~,l, and con t ro l  of the b a t t l e f i e l d  i s  uncertain :or 

e i t h e r  aide. 

HELMBOLD[10, pp. 1-21 has considered the battle-tcami.nation proceea f u r t h e r  

and he has  conesquently concluded t h a t  outcomes (02)  and (03) a r e  t he  most 

l i k a l y  t o  occur. Thus, he has taken posaesaion of t he  b a t t l e f i e l d  aa the 

c r i t e r i o n  f o r  v i c to ry  i n  b a t t l e ,  although otheraL have rstated t h a t  addi- 

t i o n a l  f ac to r8  must be considered i n  evaluat ing b a t t l e  outcomes. 

Howaver, f o r  s imp l i c i ty ,  w e  w i l l  follow HELMBOLD and take possession 

95 the b a t t l e f i e l d  as t h e  c r i t e r i o n  f o r  v ic tory .  More p rec i se ly ,  we w i l l  

de te rn ine  the winner of an engagemeot and then assume t h a t  he takes  pos- 

sess ion  of t he  b a t t l e f i e l d .  Thus, the  bat t le- terminat ion process involves 

r e t r e a t  o r  surrender f o r  t he  lo se r .  HhZElBOLD I10 ,p .  21 ha8 s t a t e d  t h a t  "in 

general,  a weakenhg s i d e  w i l l  p re fer  t o  withdraw and abandon the  f i e l d  

r a t h e r  than surrender  t o  its opponent, and ( i f  withdrawal is no t  f ea s ib l e )  

w i l l  usua l ly  prefer  t o  surrender at some casua l ty  l e v e l  sho r t  of 100 per-

cent  t o t a l  annihi la t ion."  

Let ue now turn  t o  t he  modelling of t he  b a t t l e d t e m i n a t i o n  process.  

Conceptually, w e  have two forces  on the  b a t t l e f i e l d .  each purruing i t s  am 

confLicting i n t e r e s t s .  In  general  terms, the  b a t t l e  may be considered t o  

be over when one s i z e  has decided t o  abandon i ts  goal  (or  mission) ,  whateve 

t h i s  may be. In  o the r  words, we may say that t h e  b a t t l e  is over when one 

u n i t  has  ceased t o  be combat e f f ec t ive .  This s i t u a t i o n  roughly corresponds 

t o  EiELMBOLD's outcomes (02) and (83) abcve. I n  consonance with common 

m i l i t a r y  OR usage, l e t  us r e f ~ r  50 t h e  onset  of t h e  i n u b i l i t y  of a u n i t  

t o  f u l f i l l  i t s  mission a s  t h a t  unit'cr breakpoint. We w i l l  assume t h a t  

when a m i t t s  breakpoint i s  reached, the u n i t  w i l l  abawion its mission and 

"break o f f "  t he  engagement t o  leave the  enemy fo rce  is posseasion of t he  



Liald of b a t t l e .  Z 

The important queetlon f o r  t he  combat modeller t o  addrese i s ,  "What 

are t he  e ign i f i can t  vaxiablev upon which b a t t l e  termination ( i . e .  a unit: 

reaching i ts  b reakpo iu t  dapundal" Although one can hypotheeize many fac- 

t o r s  upon which b a t t l e  termiaarion night  depend3 ( a . g. c o u a l t i e s  , casua l ty  

r a t e ,  force  r a t i o ,  t a c t i c a l  e i t u a t i o n ,  perceived t a c t i c a l  e i t u a t i o n ,  e t c . ) ,  

we w i l l  assume f o r  s imp l i c i ty  t h a t  i t  depends on the  u n i t ' s  f o r c e  l e v e l  4 

a s  w e l l  a s  the following three  f a c t o r s  5 : 

(Fl)  type of un i t  , 

(F2) s i z e  of u n i t ,  

and (F5) miasion of un i t  (a.8.  a t t a c k  o r  defend). 

We now fonnal ly s t a t e  these asstamptione as t he  Breakpoint Hvpothesis. 

BREAKPOINT HYPOTHESIS: A uni t  w i l l  cease t o  be  an e f f e c t i v e  

f igh t ing  force  f a  a f i re  f i g h t  when a given fo'rce l e v e l  is  reached. 

When t h i s  event  happens, the u n i t  l o s e s  its a b i l i t y  t o  perform its 

mission and w i l l  "break o f f "  the  engagement. This force- level  

breakpoint depends on the  u n i t ' s  type, s i z e ,  and mission. 

We w i l l  r e f e r  t o  this force  l e v e l  a t  which a mit ceases t o  be combat e f -  

f e c t i v e  as t h a t  u n i t ' s  breakpoint  force  l e v e l  (o r ,  simply, i ts breakpoint) 

Thus, we are assuming t h a t  when a u n i t ' s  breakpoint is reached, t h e  u n i t  

w i l l  ''break off"  :ha engagement and l eave  the  enemy force  i n  possessjion of 

t he  b a t t l e f i e l d .  I n  o ther  words, t he  f i r s t  u n i t  that reaches i ts  break-

poin t  loees  the  enfiagemenc. 

Consider now combat between two homcgeneaus forces  (denuted a s  X : 

Y)  and denote X ' s  breakpoint fo rce  l e v e l  a8 vBp, with yBp being simi: 

defined. Then, fo r  example, a 'I v ic to ry  may be described mathmatical l :  

i n  %he following way: 238 



(CZ) yf > ygp, 

(C3) x( t )  r ]CB* and y ( t )  > ygp f o r  0 ( t  tf , 

where x ( t )  and y( t )  denote the X and Y force l eve l s  a t  time t ,  

arid tf .= x ( t f ) ,  and yf 1 y ( t f )  denote f i n a l  values a t  the end of bat- 

t l e .  It is a l s o  con~wnient t o  wri te ,  for  example, tha t  

where f& denotes a given f rac t ion  of X ' s  i n i f  i a l  force level .  The 

X
above Breakpoint Hypothesis implic,s th8t  fgp depends 011 the  u n i t ' s  type, 

s i ze ,  and mlssion. A s  noted previously in  Section 2.8, typica l  values f o r  

a company-sized infant ry  un i t  a r e  the  following: 

f &  - 0.7 fo r  an attacking force,  

and 

£2= 0.5 f o r  a defending force. 

What happens a f t e r  a unit  reaches ;.ts breakpoint? Tne madelling of 

subsequent combat ac t ions  w i l l ,  s f  course, depecd on the spec i f i c  t a c t i c a l  

s i tua t ion  being consideired. Far example, i f  the  Y force cannot disengage 

( i .e .  r e t r e a t )  upon reaching its breakpoint, then i t  must e i t h e r  surrender 

o r  be annihi lated (or a t  l e a s t  continue the  f i r e  f igh t  a t  grea t ly  reduced 

effect iveness t o  r e f l e c t  the coahat behavior of a f ight ing  uni t  tha t  has 

become ineffec t ive  and is  t ry ing t o  disengage). If the  Y force can r e t r e a t  

then we might, for  example, model. combat a c t i v i t i e s  a f t e r  Y q s  breakpoint 

has been reached by a continuous withdrawal of the Y force from b a t t l e ,  

a d i f fe ren t  r a t e  of sustaining casual t ies  f o r  the  remaining Y force ,  and 

a grea t ly  reduced r a t e  of i n f l i c t i n g  casua l t i e s  f o r  the  remaining Y force 

( t o  r e f l e c t  the  Y force ' s  lack of combat effect iveness and preoccupation 



with retreat) . 



3.3 Developing Battle-Outcome-Prediction Conditions. 


It is import.ant for the military operatiow analyst to have 


a clear understanding of how the initial force levels and weapon-system- 


performance parameters interact to determine the outcome of battle. Foc 


any particular battle (e.g. in the stationary case, for specified values 


of the attrition-rate coefficients and initial force levels), we can 


always, of course, determine the outcome by explicitly computing the 


force-level trajectories and plotting their decay over time: the loser 


is simply the side that first reaches its breakpoint. This approach, 


however, is time consuming and by itself tells us essentially nothing 


about the parametric dependence of battle outcome on initial force levels 


and wenpon-system-performance parameters. 


It is therefore of interest to develop victory-prediction conditi, 


which facilitate sensitivity analysis and help one obtain insights into 


the dynamics of combat by explicitly portraying the relationship between tl 


various factors in the combat-attrition process and trltrle outcome. As we 


have discussed just above and in Sectioa 2 . 8 ,  such hattle-outcoue-predictil 

conditions depend not only on the combat dynamics (e.g. LANCHESTER-type 


differential equations) but also on the battle-termination model. We will 


assume here that the battle ends when one side first reaches its breakpoin 


force level (see -the Breakpoint Hypothesis of Section 3.2). We wiil then 

see that for certain battle dynamics we need not spend the time and effort 


of explicit.',^ computing force-level trajectories in order to determine the 


victor in such fixed-force-level-breakpoint battles. We have already give] 


in Section 2.8 special cases of such victory-prediction conditions for 


LANCHES'TFR1sclassic combat formulations. Furthermore, the force-annihila 


predictim conditions that we developed in Sections 2 . 2  and 2 . 4  (see,for 



example, Proposition 2.2.1) a r e  a l s o  s p e c i a l  cases  of tirase more general 

victory-predict ion conditions.  

We w i l l  now present two d i f f e r e n t  methods f o r  developing condit ions 

t h a t  pred ic t  the outcome of fixed-force-level-breakpoint b a t t l e a  between 

two homogeneous forces  with f a i r l y  general combat dynamics. These two 

m2thods f o r  developing battle-outcome-prediction condit ions involve 

(A) determining the minimum of two f i r s t -passage  times, 

and (B) using the  time-independent coupling of the  force  l eve l s .  

Both approaches many times lead to  conditions t h a t  p red ic t  the outcome of 

b a t t l e  withoxt having t o  spend the time and e f f o r t  of e x p l i c i t l y  computing 

force-level t r a j e c t o r i e s .  Res t r ic t ions  t h a t  must be placed on the combat 

dyaamics f o r  each of these two approaches a r e  b r i e f l y  discussed. Applica-

t i ons  of these  methods to s p e c i f i c  EANCHESTER-type combat models (general ly  

LANCHESTER's c l a s s i c  combat formulations) a r e  given i n  Sec;:ions 3.6 through 

3.9 below. 

The f i r s t  (and conceptually more general) way t o  develop victory-  

pred ic t ion  conditions f o r  a fixed-force-level-breakpoint b a t t l e  with general  

b a t t l e  dynamics is t o  determine the  minimum of t he  f i r s t  passage times f o r  

each s i d e ' s  force  l e v e l  going through its breakpoint.  We w i l l  r e f e r  t o  

t h i s  approach a s  Method A. Let UB denote the  f i rs t -passage time f o r  X ' s  

Xforce  l e v e l  going through i ts  breakpoint force  l e v e l  xBp a s  tgp, and 

Y
s i m i l a r l y  f o r  tBp. We have then, f o r  example, from the  d e f i n i t i o n  of 

X Xt,, t h a t  ~ ( t )> xBp f o r  a l l  t E [O,tBp). It follows t h a t  t is 

the  smallest  pos i t i ve  root  of the equation 



Xin calculating x(t) for the determination of tBP, we will assume thac 

the two forces never disengage, i.e. the combat dynamics hold for all 


tlme. We will also set t = -k if no such po~xtivs root to equation 

(3.3.1) exists. 


It follows then that, for exapple, Y wil' win if and only f f  

V
tip < tBp. This situation is shown in Figure 3.1, in which, for example, 

we have terminated the force-attrition prxess for Y once his breakpoint 


'Yhas been reached (i.e .  y(t) = yBp Sor all t 2 tgp). In actuality ! i f  

we assume that disengagement is possible), however, attrition for both 


Y X V Ysides stops ac ryl = tBp < tgp, as shown in Figure 3.2. Uere tW 

denotes the time for Y to win a fixed-force-level-breakpoint battle. 

Although Method A conceptually a?plies to any LANCHESTER-type attrition 


process, victory-prediction-condition results have so far only been 


obtained for LANCHESTER's classic combat formulations (i .e. the F I  F 
and FT~FTattribition processes) by this method. 


6
The second (and conceptually more restrictive) way to develop 


victory-prediction conditions for a fixed-force-levei-breakpoint battle 


between two homogeneous forces involves use of HELMBOLD'S monotonicity 


condition that one force level must be a strictly increasing function of 


the other one, i.e. 


where g(y) is strictly increasing for yf 2 y (; yo. The desired victory- 

prediction conditions readily follow from such a monotonicity condition. 


We will refer to this apprcazh as Method B. The monotonicity condition 


is developed, however, from the state equation (see SectI.cn 2.2) so.-

that this approach is limited to LANCEESTER-type models for which a state 




Time, t 


Y

Figure 3.1. Relationship between tBptip and 

for a Y victory. 




Y Y
Figure 3 . 2 .  Desay of force levels  for O 5 t 5 t W= X 
'BP < 'BP 

in the case of a Y victory. The dotted l ice  

shows what the decay of the Y force level 

would be i f  the forces d i d  not disengage at 
X
t = tgp,. 



equa t ion  of t h e  form (2.2.3) hold. .' It w i l l  be  shown below t h a t  

(provlded a c e r t a i n  c d d i t i o n a l  "reanonable" t e c h n i c a l  c o n d i t i o n  i s  

s a t i s f i e d )  Y w i l l  win ( i n  f i n i i e  t.Lme) such a b a t t l e  i f  and onl3. imf 

This is  the  key r e s u l t  f o r  developing v ic to ry-pred ic t ion  cond i t ions  

by Method B,  s i n c e  g = g(y;xO,yO). 

Let ua now d e m n s t r a t e  t h e  v a l i d i t y  of t h e  f a i r l y  g e n e r a l  

v ic to ry-pred ic t ion  c o r d i t i o n ,  i .e.  (3.3.3), i n d i c a t e d  i n  t h e  preceding 

paragraph. F i r s t ,  le t  us r e s t a z e  (3.3.2) somewhat more formal ly  a s  

Condit ion (FI). 
CON3ITION ( F I ) :  '.fie X dnd Y f o r c e  l e v e l s  a r e  

( d e t e r m i n i s t i c a l l y )  r e l a t e d  t o  each o t h e r  by x = g(y)  

= g(y;xO,yO),  where g(y) is  s t r i c t l y  i n c r e a s i n g  f o r  

yf 2 y ( yo and yg denotes  rhe f i n a l  Y f o r c e  l e v e l  

a t  t h e  end of b a t t l e .  

Then, t h e  key r e s u l t  f o r  batt le-outcome p r e d i c t i o n  by Method B is 

(3.3.31, which w e  r e s t a t e  as Propos i t ion  3.3.1. 

PROPOSITION 3.3.1: Assume t h a t  Condit ion (FI) holds  and 

X
t h a t  tgp is f i n i t e .  Then, Y w i l l  win a fixed-force-

level-breakpoint  b a t t l e  i n  f i n i t e  t i m e  i f  and o n l y  i f  



PROOF: To prove nucees i ty ,  we assume Y wins,  which impl iee  t h a t  

Xf I XBP and Yf > Ygp* It fol lows t h a t  g(y f ) > g(yBp) ,  s i n c e  g(y)  

i s  s t r i c t l y  inc reae ing .  Thus, xBp - xf = g ( y f )  > g(yBp),  s o  t h a t  

xBP > g(yBp) ,  and n e c e s s i t y  has  been proved. To prove suf f i c iency ,  w e  assume 

t h a t  xBp > g(yBp). It fol lows t h a t  g [ y ( t )  I - x ( t )  > xgp > g(yBp) ,  whence 

Xy ( t )  > yBP f o r  0 -< t -c t f '  s i n c e  g(y)  is s t r i c t l y  inc reae ing .  Also, tBp 

being f i n i t e  impl ies  t h a t  x ( t )  > xBp f o r  0 2 t < tf b u t  xf - x ( t f )  

X X = x( tBp)  = %P with  tBp f i n i t e .  Hence, Y w i l l  win t h e  b a t t l e  i n  f i n i t e  

8time. Q.E.D. 

As w e  have j u s t  seen ,  t h i s  second method of developing v i c t o r y -  

p r e d i c t i o n  c o n d i t i o n s  depends i n  an e s s e n t i a l  way on Condi t ion ( F I ) .  So 

f a r  we have n o t  d i scussed  which c l a s s  of LANCHESTER-type equa t ions  ( i f  any) 

corresponds t o  (3.3.2). We w i l l  now show t h a t  a c e r t a i n  c l a s s  of r a t h e r  

s imple  LANCHESTER-type equa t ions  f o r  combat between two homogeneous f o r c e s  

(al though somewhat r e s t r i c t i v e )  does indeed y i e l d  (3.3.2).  Furthermore, 

t h e  s imple  combat models (2.2.1) and (2.4.1) belong t o  t h i s  c l a s s  o f  

LANCBESTER-type equa t ions .  

Thus, w e  cons ider  t h e  fol lowing LANCHESTER-type equa t ions  

where f ( t )  > 0 almost everywhere (e.g. except  f o r  a f i n i t e  number of 

p o i n t s )  i n  t i m e ,  and F1, F2, G1, and G2 > 0 f o r  x > x and y > yBp.
BP 

It fol lows t h a t  



where 

and 

It is r ead i ly  seen t h a t  p(x) is s t r i c t l y  increas ing  f o r  x s p L x L x0; 

s imi l a r ly ,  q(y) is s t r i c t l y  increas ing  f a r  ygp 2 y 5 yo. Hence, t he  

inverse funct ion p- l (n )  is  a l s o  s t r i c t l y  increas ing  f o r  p(% P ) -c s 

-< p(xo). It therefore  follows from (3.3.4) t h a t  

f o r  yBp 2 yf 5 y 2 yo. Thus, f o r  t he  b a t t l e  dynamics (3.3.4), w e  can 

always develop a func t iona l  r e l a t i onsh ip  between the  force  l e v e l s  of the  

form of (3.3.2) . In o the r  words, w e  have proven the following propos i t io  

PROPOSITION 3.3.2: Condition (FI )  is s a t i s f i e d  f o r  a l l  

LANCHESTER-type equations with two force- leve l  va r i ab l e s  

of the form (3.3.4).  

HELMBOLD [ l o ] ,  however, has developed h i s  pioneering r e s u l t s  i n  a 

d i f f e r e n t  form: he has given h i s  victory-predict ion condi t ions (somewhat 

l e s s  e x p l i c i t l y )  i n  terms of the  casua l ty  f r a c t i o n s  of the  combatants. 

We w i l l  now show how our r e s u l t s  a r e  equivalent  t o  h i s .  L e t  us according 

denote X ' s  casua l ty  f r ac t i on  a s  , X I . .  ft( = (xo-x)/xo, and s i m l l a r l  



Y
for fc. We will a l s ~denote X's breakpoint caeaalty fraction corre- 


X Y

sponding to xBp as (fC)Bp, and similarly for (fc)Bp. Then correspond-in 


to Condition (FI) we have Condition (CFI). 


CONDITION (CFI) : e X and Y casualty fractions are 

Y

(deterministically) related to each other by 9(fc)
d -

Y
- 9(fc;xo,y0) where 9(fY) is strictly increasing for 
C 


Y Y

0 -c fi 2 (fc)f and (Cc)f denotes the final Y casualty 

fraction at the end of battle. 


It is easy to show that Conditions (FI) and (CFI) are equivalent. 


PROPOSITION 3.3.3: x = g(y) with g(y) strictly increasing 

Y Y
if and only if % = 9 (fc) with ~(f,) strictly increasing. 

Consequently, the following is the analogue of Proposition 3.3.1. 


PROPOSITION 3.3.1': Assume that Condition (CFI) halds and 


that tgp is finite. Then Y will win a fixed-force-level- 

X


breakpoint battle in finite time if and only if jfc)Bp < 

It is very convenient when, for example, the initial force level 


xO and the casualty fraction fc ere "separable" in H(x0,x), i .e. 



L 3 t  US therefore  introdrice t h e  concept of a func t ion  being quasi-homogeneous: 

we w i l l  r e f e r  t o  a funct ion of two va r i ab l e s  F(x,y) as being quasi-homo-

Hence, i f  H(xo ,x) and K(yo ,y) 3re  quasi-homogeneous func t ions ,  the[; 

X

where y(&) ,  A(() > 0 f o r  5 > 0. It is e a s i l y  shown t h a t  h ( fc )  i s  

X X Y
s t r i c t l y  increas ing  and pos i t i ve  Lor 0 < f c  2 ( fClBp;  s imi l a r ly ,  k ( fc )  

Y Yis s t r i c t l y  increas ing  f o r  0 < fc 2 ( fcIBp- It follows t h a t  

Y

where h-' denotes the  inverse  funct ion and cP(f c) is s t r i c t l y  increas ing  

Y Y
f o r  0 2 f c  2 ( fc )Bpg Also, 

-1
where hl denotes the  inverse  func t ion ,  and g(y) is  s t r i c t l y  increas ing  

f o r  Ygp 2. Y 5. YO' 

AB we have noted above, we actually have tha t  



It is of i n t e r e s t  i n  m i l i t a r y  OR t o  c o n s i a e r  t h e  c a w  i n  which r e s u l t s  

do no t  depend on t h e  aboolucs i u i t i a l  f o r c e  Levels bur on t h e  i n i t i a l  

f o r c e  r a t i o ,  i . e .  

$JI n  t h i s  case ,  (3.3.12) impl ies  t h a t  there i s  a = $(x /y ) such t h a t  0 0 


However, (3.3.16) is equ iva len t  t o  t h e  f u n c t i o n a l  equa t ion  

which has  t h e  genera l  s o l u t i o n  [ I ,  pp. 144-1151 

s o  t h a t  t h e  on ly  f u n c t i o n s  t h a t  s a t i s f y  (3.3.16) are 

Thus, "absorbing t h e  cons tan t  C1 i n t o  th.? f u n c t i o n  hl," we mav write 

when H(xo ,x) and K(yo , y) a r e  quasi-homogenaoue f u n c t i o n s  and (3.3.15) 

ho lds  



s o  t h a t  both H(xo,x) and K(yo,y) a r e  homogeneouo f u n c t i o n s  of degree  c 

when they are quasi-homoge~eoue and r e s u l t s  do n o t  depend on t h e  a b s o l u t e  

i n i t i a l  f o r c e  l e v e l s  but  o c l y  on t h e  i n i t i a l  f o r c e  r a t i o .  

Now l e t  us show how Propos i t ion  3.3.1 and (3.3.13) ydeld an  

e x p l i c i t  v ic to ry-pred ic t ion  cor,dition when H(x0 P x )  and K(yU, y) are 

quasi-homogeneous. We begin  by observing t h a t  P ropos i t ion  3.3.1 and 

(3.3.13) y i e l d s  

Cansider next  t h e  q u a n t i t y  y(xo) hl(xBp/xO), where h l ( O  i s  s t r i c t l y  

i n c r e a s i n g  and p o s i t i v e  f o r  0 2 5 < 1. Makiug use  of (3.3.19), w e  f i n d  t 

s o  t h a t  when t& is f i n i t e  and H(xo,x) and K(yo,y) a r e  quaoi-i~ooio- 

geneous , 

Y w i l l  win i f  and a n l y  i f  (3.3.20) 

Furthermore, t h e  l e n g t h  of b a t t l e  is f i n i t e .  We w i l l  no t  r e p e a t  t h i s  

f a c t  any more, a l though i t  does hold f o r  a l l  t h e  v ic to ry-pred ic t ion  con-

d i t i o n s  i n  t h e  remainder of t h i s  s e c t i o n ,  s i n c e  w e  w i l l  always assume 

t h a t  tBp is f i n i t e .  Also, l e t  us con t inue  t o  assume t h a t  H(xo,x) and 

K(yO ,y) a r e  quasi-homogeneous. Then, we may a l s u  show t h a t  

Y w i l l  win i f  and only  i f  



Recalling (3.3. la), we adso see that when Y (xu) / A  (yo) = O(xO/yO) and 

c > 0, the above victory-prediction conditiors become 

and 

X k[(f;),,l 
Y will win if and only if (3.3.2: 

yo h[(fX, 1 
c BP 

In other words, when the functions H(xo,x) and K(yo,y) are 

quasi-homogeneous, we have the explicit victory-prediction condition 

(3.3.20) or, equivalently, (3.3.21). If additionally y(xo)/X(yo) = 

$(xO/yO) and c > 0, these results simplify still further. We will see 

below that the victory-prediction conditions given In Section 2.8 (namely 

(2.8.3) and (2.8.13)) are special cases of (3.3.22). For a disc,ussion 

of the insights into the dynamics of combat to be gained from such victor: 

prediction conditions, the reader is directed to Section 2.8. 



3 . 4 .  Modelling a Unit ' s  Force-Level Breakpoint. 

Thus, an  engagement's outcome depends on both the  combat dynamics ax 

a l so  t h e  bat t le- terminat ion modal. Even having decided Lo assume the  Brea 

point Hypothesis (H Sect ion 3.2 above) f o r  combat between two homogeneor 

forces  (denoted a s  X and Y ) ,  we a r e  not f in i shed  with ba t t l e - t e rmha t i c  

modelling: f o r  a force-level-breakpoint b a t t l e ,  we can model a u n i t ' s  

breakpoint as being e i t h e r  a random va r i ab l e  ( r ea l i zed  before t he  b a t t l e )  

o r  a de t e rmin i s t i c  quantity.  Thus, w e  have the  two general  models f o r  a 

s i d e ' s  bat t le- terminat ion process: 

( M l )  d e t e rmin i s t i c  breakpoint,  

9(M2) random breakpoint. 

Clearly,  a de te rminis t ic  breakpoint may be considered t o  be a spec i a l  case 

of a random breakpoint.  The l a t t e r  is used t o  model b a t t l e  termination v i  

a so-called "break curve," which g ives  t h e  probabi l i ty  t h a t  a fo rce  w i l l  

d iscont inue the engagement as a funct ion of i ts cur ren t  force  l e v e l l o  (usu 

normalized a e  a f r a c t i o n  of t h e  i n i t i a l  fo rce  l e v e l ) .  

Figure 3.3 shows a hypothet ical  force- level  break curve f o r  t he  X 

force.  We may think of such a break curve a s  modelling b a t t l e  termination 

i n  t he  following manner. A t  o r  before the  beginning of b a t t l e ,  a sample 

breakpoint force  l e v e l  is drawn from the  d i s t r i b u t i o n  of such values a s  gii 

by the  appropriate  break curve. This is  done f o r  each s i d e ,  and the  valuer 

so drawn a r e  ca l l ed  the  "breakpoints" of t h e  two s ides .  The b a t t l e  then 

begins and continues u n t i l  one s ide ' s  fo rce  l e v e l  becomes equal t o  its pre-

se lec ted  breakpoint. A t  t h i s  po in t ,  t h e  s i d e  whose preselected breakpoint 

has been reached is sa id  t o  "break," meaning t h a t  it is presumed t o  abandor 

i ts  mission and t o  discont inue o r  "break off"  the  engagement. Thus, the  

s i d e  tha t  breaks is the  l o s e r  according t o  t h i s  model. 
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Fraction of Initial Force Level, xixO 

Figure 3 .3 .  Hypothetical force-level break curve 

for thq X force.  
. . 



A de terminis t ic  break curve may be thought to  be a spec i a l  case of 

such a random break curve. A de te rminis t ic  force- level  break curve is shown 

i n  Figure 3.4. For such a de terminis t ic  break curve, we can inmediately 

apply the  r e s u l t s  of Sect ion 3.3 (e.g. PropoeJtion 3.3.1 o r  (3.3.20)) and 

obta in  battle-olttcome-prediction conditions. However, i f  t h e  breakpoints 

a r e  random var iab les ,  then f u r t h e r  ana lys i s  i a  required a s  shonn In Section 

3.7. 

Before continuing fu r the r ,  l e t  u s  point  ou t  t h a t  even i f  w e  conaider 

t h a t  t he  force  l e v e l s  a r e  t h e  s i g n i f i c a n t  va r i ab l e s  i n  the bat t le- terminat ion 

process and t h a t  the  breakpoints  a r e  e i t h e r  de t e rmin i s t i c  o r  s tochas t i c ,  

we s t i l l  m y  consider two d i f f e r e n t  types of bat t le- terminat ion models: 

(Tl] desc r ip t ive ,  

(T2) adapt ive behavioral. 

By a desc r ip t ive  model of the  bat t le- terminat ion process,  w e  mean 

a model t ha t  descr ibes  t he  bat t le- terminat ion process i n  terms of one o r  

more independent va r i ab l e s ,  l i k e  t h e  m d e l s  described above. Consequently, 

such a desc r ip t ive  model can give us  ( i f  only i n  a p r o b a b i l i s t i c  sense) 

~ s c hs ide ' s  breakpoint before  the b a t t l e  begins. 

By an adapt ive behavioral model, we mean one i n  which each s i d e  con- 

s i d e r s  t h e  progress of t h e  b a t t l e  and accordingly decides whether o r  not 

t o  continue the  engagement. In  such a model, each s i d e  behaveo according 

t o  t h e  r e s u l t s  of a dynamic rat ional-decis ion process r a t h e r  than simply 

2reselec t i n g  a s p e c i f i c  Sreakpoint . HELMBOLD [lo] has ahown, however, t h a t  

both models a r e  equivalent i n  the  simple case i n  which kach s i d e  g w e r n s  i t e  

behavior according t o  onl ;~  i ts  own s t a t e  (i .e.  o m  casua l ty  f r ac t ion ) .  H e  

has concluded[lO, p. 51  t h a t  break curves ( i . e .  a desc r ip t ive  model of bat- 

t l e  termination) do r e f l e c t  the  dynamic decis ion process taking p lace  i n  

combat unless,  f o r  example, one s i d e ' s  breakpoint d i s t r i b u t i o n  depends on 

256 



Fraction of In i t ia l  Force Level, x/xo 

Figure 3 . 4 .  A detewinietlc force-level break curve. 



the other aide's casualty level. 


A final word of caution to the reader. Unfortunately, HELMBOLD [lo1 

has shown (e
also Section 3.13 below) that if one considers two homogeneous 


forces in deterministic LANCMESTER -type combat without replacaasnts and 


withdrawals and assume6 


11 

(Al) a break7oint hypothesis is applicable t o  all battlee, 

and (82) a universally applicable deterministic attrition process, 

then the breakpoint hypothesis "yields theoretical implications that are 


at variance with the available battle-termination data in several essential 


aspects." HELMBOLD [lo] has considered random breakpoints in his work. Thus, 

such a simple model of battle termination is not scientifically valid. Never-


theless, this simple battle-termination model ia widely used in defense 


analyses (E BELMBOLD [ l o ]  for numeroue examples), and the author knows of 

no alternative battle-termination model that has been widely used and has 


passed the same st~ingent scientific test of validity that this simple 


model haa bailed, Thus, we vill continue to ansum that our Breakpoint 


Hypothesis is true. It therefore seems appropriate to develop the relation- 


ship between the initial force 1.evels. weapon-system-perf~rmance factors, 


and the outcome of battle for simple LANCHESTER-type models such as 


(2.2.1) and (2.4.1) above. 




-3.5. Victory-Predictlon Conditions for Determinis,tic LANCHESTER-Type 


Attrition Process@e with Deterministic Force-Eel Breakpohts. 


When both sides' force-level brsakpoints ere deterministic, then 


Method B of Section 3.3 provide8 some explicit victory-prediction conditions 


(namely, Propositions 3.3.1 and 3.3.1'). For convenience, we restate them 

here as Propeeitions 3.5.1 and 3.5.1': 


PROPOSITION 3.5.1: Assume that Condition (FI) holds, that 


tip is finite, and that the breakpoints ate deterministic. 


Then, Y will win a fixed-force-level-breakpoint battle in 

PROPOSITION 3.5.1': Assume that Condition (CFI) holds, 

that tip is finite, and that  the breakpoints are deterministic. 

Then, Y will win a fixed-force-level.-breakpoint battle in 


X Y Y
finite time if and only if (PC),, < q[(f IBp1 = ~ ( f c ) B p ; ~ O , ~ o ] .  

Moreoever, we know by Proposition 3.3.2 that Condition (FI) 

(equivalently, Condition (CFI)) holds for all WiNCHESTER-type equations 


of the form 


where f(t) > 0 almost everywhere (e.g. except for a finite number of 

points) in time, '7d F1, FZ,G1, and G > O for x > x g p  and y > y g p .
2 



Furthermore, f o r  combat modelled by the  LANCHESTER-type equations (3.5.11, 

ve showed i n  Section 3.3 t h a t  when H(xo,x) and K(yo,y) [dei ined by 

(3.3.6) and (3.3.7), respec t ive ly]  a r e  quasi-homogeneous func t ions  and 

is f i n i t e ,  then 
t~~ 

r(xo) kl(f ip)  
Y w i l l  win i n  f i n i t e  time i f  and onlv zf , (3.5.2) 

where hl and kl a r e  defined by (3.3.10) and (3.3.11) and, f o r  example, 

X 
'BP f~~ X ~ *o r  (equivalent ly)  

Y(x()) k [  ( 'e)Bp~ 
Y w i l l  win i n  f i n i t e  time Sf and only i f  -< , (3.5.3) 

where h and k are a l s o  defined by (3.3.10) and (3.3.11) and, f o r  

X

example, ( f c Iap  " (xL - xBP)/xo'O. Addit ional ly ,  when y ( ~ O ) / A ( y o )-
4(x 0/y and c > 0,  t he  ~ b o v e  victory-predict ion condi t ions s impl i fy  0 

t o  (=Section 3.3 f o r  proof) 

k ( f '
X~

1 rill win i n  f i n i t e  t i m e  i f  and only i f  - < , 
Y o  

1 BP 

and (equivalent ly)  



The above are fairly general victory-prediction conditions. 


In the next section we apply them to LANCHESTER's classic combat , 

formulations (2.2.1) and (2.4.1) (i.e. LANCHESTER-type equations for 


the FIF attrition process and also for the FT)FT process, respectively). 


A diacueeion of the insights into the dynamics of combat to be gained 


from such victory-prediction conditions is t o  be found in Section 2.8. 



3.6. Development o f  Victory-Predic t ion Condit ions fo_r LANCHESTERA 

C l a s s i c  Models wi th  De te rmin i s t i c  Force-Level Breakpoints .  

I n  t h i s  s e c t i o n  we w i l l  show how t o  develop v i c t o r y - p r e d i c t i o n  

cond i t ions  by t h e  two methods d i scussed  above i n  Sec t ion  3.3 ( i . e .  Methods 

A and B) f o r  LANCHESTER's two c l a s s i c  combat models (2.2 "1)  and (2.4.1) , 

i . e .  the  equa t ions  f o r  t h e  F J F  a t t r i t i o n  p rocess  and f o r  t h e  FTlFT 

process .  We have p rev ious ly  given t h e s e  r e s u l t s  wi thout  j u s t i f i c a t i o n  i n  

Sec t ion  2.8, where a d e t a i l e d  examination and d i s c u s s i o n  of t h e  i n s i g h t s  

i n t o  t h e  dynamics of combat t o  be  gained from t h e s e  v i c t o r y - p r e d i c t i o n  

cond i t ions  i s ,  however, g iven.  For both  t h e s e  two combat models, we have 

a choice  of which method t o  use  f o r  developing v i c t o r y - p r e d i c t i o n  c o n d i t i o n s  

f o r  d e t e r m i n i ~ t ~ c  b reakpoin t s .  Method B,  however, i s  b e t t e r  s u i t e d  t o  

combat modelled w i t h  random breakpoints  and i s  t h e r e f o r e  ve ry  important 

f o r  our  developments i n  t h e  nex t  couple o f  s e c t i o n s .  

We f i r s t  cons ider  t h a t  t h e  combat dynamics a r e  given by LANCHESTER's 

equa t ions  f o r  modem warfare  (2.2.1). F i r s t ,  we w i l l  develop a v ic to ry-

p r e d i c t i o n  c o n d i t i o n  by Method A, i . e .  by determining t h e  minimum of t h e  

f i r s t  passage times f o r  each s i d e ' s  f o r c e  l e v e l  t o  reach i t s  breakpoint  

value .  For (2.2.1) t h t  t i m e  f o r  t h e  X f o r c e  t o  reach  i t s  breakpoin t ,  

denoted a s  tBp,may be obta ined by determining t h e  smallest p o s i t i v e  

r o o t  of t h e  equat ion (3.3.1) wi th  x ( t )  given by (2.2.8). Causequently, 

we f i n d  t h a t  



and similarly for t When t& is not defined, we will take it to 

BP' 

be (+-). It follows [with three cases having to be cansidered: 

(A)  xO/yO c (B) xO/yO = 6 , d (C) xO/yO > m1that 

2 2 
t < t if and only if =(yo-yBF) > b(xo2 - xip) . 

X Y
Letting %P = fBP xO and yBp = fBp yo, we may state the above result 

PROPOSITION 3.6.1: When the combat dynamics are given by 


LANCHESTER's equations for modern warfare (2.2.11, Y will 


win a fixed-force-level-breakpoint battle in finite time if 


and only if 


The victory-prediction condition (3.6.3) of Proposition 3.6.1 was given 


previously without justification in Section 2.8 as (2.8.3). 


Alternatively, we could have developed Proposition 3.6.1 by 


Method 8, 1.e. by using HELMBOLD'S monotimicity condition that one force 


level must be a strictly increasing function of the other one. By 


Proposition 3.3.2, we know that Condition (FI) is satisfied for the model 


(2.2.1) so that we could use Proposition 3.5.1 (equivalently, Propositian 


3.3.1) to prove Proposition 3.6.1. However, it is much more convenient 


to invoke the victory-prediction condition (3.5.4) , which is a special 

case of the victory-prediction condition in Proposition 3.5.1 (namely, 




(3.3.3)).  To invoke (3.5.4),  w e  observe t h a t  H(xG,x) (as  given by 

(3.3.6)) is quasi-homogeneous and (3.3.10) y ie ld8  t h a t  

2s i x e  H(xo,x) = b(xG - x 2 
) . Simi la r ly ,  

2 
1 - (2 I .x(y0) = YO' and k ( 1 a 

Yo 

Consequently, A(xO)/y(yO) = $(xO/yO) - (x0/y0l2 s o  t h a t  c = 2 > 0, and 

w e  may invoke (3.5.4) t o  prove Proposi t ion 3.6.1 provided t h a t  tBp 
is  

f i n i t e .  Thus, we must again consider tgp a s  given by (3.6.1) . Proposi t ion 

3.6.1, however, requi res  t h a t  

X
s o  t h a t  (3.6.11 y i e ld s  t ha t  tgp is  well  defined and f i n i e e .  We f i n a l l y  

note t h a t  t h e  force-annihi la t ion-predict ion condi t ion given i n  Proposi t ion 

X Y

2.2.1 may be obtained from Proposi t ion 3.6.1 by s e t t i n g  fBp - ERp = 0.  

L e t  us now give an example t h a t  shows t h a t  t h e  requirement t h a t  

t be  f i n i t e  is abso lu te ly  necessary f o r  Proposi t ion 3.5.1 t o  be  

t rue.  Accordingly, we consider  t he  following var iab le -coef f ic fen t  

12

LANCHESTER-rype equations 

vhere 



h(t) > 0 for all t 2 0, and ka and k,, are constants. We observe 

that the equations ( 3 . 6 . 7 )  are a special case of the equations ( 3 . 3 . 4 )  

so tbat we know by Proposition 3.3 .2  that Condition (FI) holds for them. 

13
In fact, we have the following.square law 

Moreover, the substitution 


where the relative-fire-effectiveness parameter X~ is defined by 


14
Consequently, x(s) is given by 

whence 




- yoy k~ ( r )= xo coah B(t )  i;- sin,  R(t1 , 

where 

It now fol lows,  however, t h a t  

does n o t  always imply t h a t  t h e  X f o r c e  w i l l  l o s e  such a fixed-force-level-

breakpoint  b a t t l e  wi th  combat dynamics (3.6.7) ( a s  Propos i t ion  3.5.1 impl ies  

it should when t is  f i n i t e ) .  

The nonsuf f ic iency  of (3.6.14) t o  e f f e c t  a T v i c t o r y  occurs  

a ( t )when tBp is not  f i n i t e ,  i . e .  when l i m t  + +' = M < + -. For example, 

consider  a f i r e  f i g h t  i n  which t h e  combatants cake cover and cont inue ro 

reduce t h e i r  v u l n e r a b i l i t y  so  t h a t  each s i d e ' s  f i r e  e f f e c t i v e n e s s  decays 

exponen t ia l ly  over time, i . e .  a ( t )  - k e-lt and b ( t )  = %e-lt. Then 
a 

and U r n t  ++= 6 ( t )  - M - =ly. Hence, when (3.6.14) ho lds ,  w e  can 

always choose y s o  t h a t  l i m
t + + -~ ( t )- x0 cosh M - y ~6-s i n h  M > xBp.

0 R 


I n  o t h e r  words, w e  can always p ick  y s o  t h a t  X i s  n o t  f i n i t e ,  and then tgp 

(3.6.14) does no t  imply t h a t  t h e  X f o r c e  w i l l  l o s e  such a fixed-force-

level-breakpoint  b a t t l e .  



We cex'; ?...tmider t h a t  the combat dynamics a r e  given by cons tan t -  

c o e f f i c i e n t  LANCHESTER-type equa t ions  f o r  an  FT 1 ET a t t r i t i o n  p rocess  

( 2 . 4 1 )  We w i l l  aga in  f i r s t  devd.op v ic to ry-pred ic t ion  c o n d i t i o n s  by 

Method A. For (2.4.1) t h e  t i m e  f o r  t h e  X f o r c e  t o  reach i ts  breakpoin t  

may be ob ta ined  by determining t h e  s m a l l e s t  p o s i t i v e  r o o t  of t h e  equa t ion  

(3.3.1) with, x ( t )  given by (2.4.19). Accordingly,  we f i n d  t h a t  

-1 1  1
(- - -) f o r  p = l .  

9x13~ Xo 

1 Xo 
ayo( l - PII n  p + - (1-p)

X~~ f o r  P # 1 , 

where p = bxo/ayo and t is  n o t  de f ined  f o r  0 5 xBp < xO-yOa/b 

when p > 1. When tip is n o t  de f ined ,  we w i l l  set i t  e q u a l  t o  (+ ') . 
S i m i l a r l y ,  

f o r  p = 1 , 

l 1 yo 1
- 1 n  - + - ( I - - )  f o r  P + 1 ,

ayo (P-1) YBP P 

Y

where tgp is n o t  de f ined  f o r  0 2 yBp < yo - xob/a when p < 1. It 

fol lows [aga in  w i t h  t h r e e  cases  t o  be  considered]  t h a t  

X

tBP( tY i f  and on ly  i f  a ( y  -y ) > b(xO-xgp) . (3.16.17BP 0 BP 

x
We observe t h a t  tBp is  w e l l  de f ined  and f i n i t e  when (3.6.17) ho lds  

and ~g~ > 0. From t h e  above w e  may conclude 



PROPOSfTION 3.6.2: When the combat dynamics are given by 

the. LANCHESTER-type equations for an FT 1 FT attrition 

process (2.4.1), Y will win a fixed-force-level- 

breakpoint battle if and only if 

X 
The duration of combat is finite if and only if f g p  > 0, 

i.e. x > 0. BP 

Alternatively, we could have developed Proposition 3.6.2 by 

Method B. Again, we know that Condition (FI) is satisfied so that we 

can use (3.5.4), which is a special case of the victory-prediction conditlo 

in Proposition 3.5.1, to prove Proposition 3.6.2. To invoke (3.5.4), we 

observe that H(xo,x) (as given by (3.3.6)) is quasi-homogeneous and 

(3.3.10) yields that 

and 

since H(xo,x) b(x0-x) Similarly, 

and 

Consequently, y(xol/.A(yo) = ((xO/yO) = xOIyO so that c = 1 0, and 

we may invoke (3.5.4) Lo prove Proposition 3.6.2 provided that tip is 

X finite. Thus, we must consider tgp as given by (3.6.15). Proposition 

3.6.2, however, requires that 



X 

so that (3.6.15) yields that tBp 

is well defined and finite if and 


only if xBp > 0. We finally note that the force-annihilation-prediction 

condition given in Proposition 2.4.1 may be obtained from Proposition 3.6.: 


X
by setting fBp = fgp 10. 



-- 
-- 

x 

3.7, Development of General Battle-Outcome-Prediction Condit ions 

f o r  Detern?inis t ic  LANCHESTER-Type A t t r i t i o n  Processes  wi& 

S t o c h a s t i c  Casualty-Fraction Breakpoints.  

I n  t h i s  c a s e  we  consider  t h a t  each s i d e ' s  fo rce - leve l  breakpoint  

i s  a random v a r i a b l e  t h a t  i s  r e a l i z e d  before  t h e  beginning of b a t t l e  (see 
Sec t ion  3.4 above). Although t h i s  model may seem somewhat r e s t r i c t i v e ,  i t  

i s  equ iva len t  (see Sec t ion  3 .4  above and 1IELMBOLD [ SO, p. 5 and pp. 68-69]) 

t o  one i n  which each s i d e  cons iders  i t s  own f o r c e  l e v e l  and governs i ts 

behavior according t o  i t s  own s t a t e ,  i . e .  f o r c e  l e v e l .  We w i l l  denote 

random v a r i a b l e s  by upper-case l e t t e r s ,  wi th  t h e i r  r e a l i z a t i o n s  being 

denoted by t h e  corresponding lower-case l e t t e r s .  Thus, XBp i s  a random 

v a r i a b l e  ( f r e q u e n t l y  abbrev ia ted  r .v . )  and denotes X ' s  fo rce - leve l  break-

po in t .  The r e a l i z a t i o n  of XBp i n  a p a r t i c u l a r  b a t t l e  w i l l  be denoted a s  

i n  consonance wi th  ou t  previous  n o t a t i o n .  
BP 

The outcome of b a t t l e  is now a random v a r i a b l e  t h a t  depends on both  

the  d e t e r m i n i s t i c  b a t t l e  dynamics and t h e  d i s t r i b c t i o n  func t ions  f o r  t h e  two 

fo rce - leve l  b reakpoin t s .  Quantities t h a t  a r e  of i n t e r e s t  f o r  our  combat 

model inc lude  the  following: 

( Q l )  t h e  p r o b a b i l i t y  of winning, 

(42) the casua l ty - f rac t ion  d i s t r i b u t i o n s  (boeh condit iona.1 and 

a l s o  uncondi t i o n a l l  , 

and (43) t h e  average c a s u a l t y  f r a c t i o n  f o r  each s i d e .  

Let ucs f i r s t  cons ider  t h e  p r o b a b i l i t y  of winning. We assume t h a t  t h e  random 

v a r i a b l e 6  XBp and YBp a r e  independent and continuous.  Le t  u s  f u r t h e r  

assume t h a t  '& i s  f i n i t e ,  where Gp denotes  t h e  rime a t  which XBp is  

reached. Invoking Propos i t ion  3.3.1, we see t h a t  Y w i l l  win i f  and o n l y  i f  



- - 

Hence, t h e  p r o b a b i l i t y  t h a t  Y w i l l  w:tn is  given by prob[xBp > g(yBp) 

which we m4y w r i t e  a s  Prob[Xgp ) 8(YBp)l ,  s i n c e  by assumption 

p r o b [ S y  = g(YBp)] = 0. For convenience,  we w i l l  denote Prob[Xgplg(Yi  

a s  P[XBp 2 g(YBp)]. Although w e  could proceed t o  develop the  d e s i r e d  

r e s u l t s  i n  terms of f o r c e  l e v e l s  o r  fo rce - leve l  f r a c t i o n s  (e.g. x/xo) ,  

!.t is more convenient t o  develop them i n  terms of t h e  cosual ty-  

f r a c t i o n s ,  s i n c e  t h e  r e s u l t s  t h a t  appear  i n  t h e  l i t e r a t u r e  110; 251 

a r e  expressed t h i s  way, Both approaches a r e ,  of course ,  equ iva len t  a s  

Propos i t ion  3.3.3 and comparison of Propos i t ions  3.3.1 and 3.3.1' show^? 

We now develop express ions  f o r  t h e  p r o b a b i l i t y  t h a t  Y w i l l  w i r  

b a t t l e  wi th  d e t e r m i n i s t i c  LANCHESTER-type combat dynamics and s t o c h a s t i c  

( o r  random) c a s u a l t y - , f r a c t i o n  b reakpoin t s  by cons ider ing  Propos i t ion  3.: 

Reca l l ing  t h a t  t h e  X and Y c a s u a l t y  f r a c t i o n s  a r e  given by 

and 

X
we w i l l  denote X ' s  c a s u a l t y - f r a c t i o n  breakpoint  ( a  r .v . )  a s  (Fc ) wi 

X
corresponding d i s t r i b u t i o n  f u n c t i o n  (d. f.) denoted a s  FX[ ( f c ) B p ] .  I n  

Xo t h e r  words, FX(s) denotes P[(Fc)Bp s ]  . We w i l l  a l s o  denote  t h e  

corresponding d.  f  . as FX(s).  I n  o t h e r  words, PX(s) = 1 - FX(s). Purth 

more, t h e  p r o b a b i l i t y  t h a t  (Fx) lies between s and s + dd is  g i v
c BP 

We w i l l  a l s o  w r i t e  dFX(s) = f X ( s ) d s ,  where f
X 
(s) i s  c a l l e d  t h e  probaa 

X
b i l i t y  d e n s i t y  f u n c t i o n  (p .d . f . )  of  t h e  random v a r i a b l e  (Fc)Bp. From t l  



- - 
assumed indepemdence of )Hp end YBp, i t  fo l lows  t h a t  ( F : ) ~ ~  and 

sp a r e  independent. 

With t h e  above n o t a t i o n  def ined ,  we may invok.? P r o p o s i t i o n  3.3.1' 

t o  f i n d  t h a t  t h e  p r o b a b i l i t y  t h a t  Y w i l l  win is  given by 

. -
Y
It fo l lows  from t h e  assume4 independence of (flBp and (FcIBP (E 

Appendix B concerning t h e  p r o b a b i l i t y  t h a t  one random v a r i a b l e  is l e s s  

than ano ther  independent one) t h a t  

where we have t runca ted  cp(t)  by def in ing  ( s e e  -HELMBOLD [ l o ,  pp. 12-13] f o r  

a f u r t h e r  d i scuss ion)  

Moreover, t h e  p r o b a b i l i t y  t h a t  Y w i l l  win may a l s o  be  w r i t t e n  as 

s o  that w e  a lso  have 

In  t h e  above formulas (3.7.5) and (3.7.81,  the. v a r i a b l e s  s and t 

a r e  thus  r e l a t e d  by 



I n  o r d e r  t o  p rese rve  the  c o r r e c t n e s s  of  t h e  above formulas when q ( 1 )  < : 
-1 -

we d e f i n e  JI ( s )  = 1 f o r  9 ( l )  2 s 2 1 (see-HELMEOLD 110, p. 131) .  

Equation (3.7.8) a l s o  fo l lows  from (3.7.5) by an i n t e g r a t i o n  by p a r t s  

and t h e  c h ~ n g e  of v a r i a b l e  (3.7.9). I n  a s i m i l a r  f a s h i o n ,  i t  may be shot 

tlla t 

The development o f  express ions  f o r  t h e  c a s u a l t y - f r a c t i o n  

c o n d i t i o n a l  d i s t r i b u t i o n s 1 5  is somewhat more involved.  We begin  by conai 

i n g  t h e  evene t h a t  a b a t t l e  i s  fought and w e  observe s 2 
X 5 s + d s  

The p r o b a b f l i t y  t h a t  t h i s  happens i n  any b a t t l e  is given by 

It fol lows t h a t  

Consequently, t h e  p r o b a b i l i t y  t h a t  t h i s  happens i n  a b a t t l e  won by Y 

is given by 


Ia a b a t t l e  won by Y,  however, we have 
(Fc) BP rn (elf, where ( a ) ,  

denoces Y's f t n a l  c a s u a l t y  f r a c t i o n  a t  t h e  end of b a t t l e .  Hence, 

...Am-



Y
I n  such a b a t t l e ,  t h e  p r o b a b i l i t y  t h a t  (Fc)f 5 q is  t h e  same a s  t h a t  

Thus, we have developed e s s e n t i a l l y  a l l  t h e  r e s u l t s  shown i n  Table 3.1 

except f o r  t h e  uncondit ional c a s u a l t y - f r a c t i o n  d i s t r i b u t i o n s  and t h e  

average c a s u a l t y  f r a c t i o n s  . 
To develop t h e  express ione f o r  t h e  average c a s u a l t y  f r a c t i o n s  

given i n  Table 3.1, we f i r s t  develop t h e  d i s t r i b u t i o n  o f ,  f o r  example, X's 

f i n a l  c a s u a l t y  f r a c t i o n ,  denoted as and then simply compute i t s  
b 

expected value .  Since  e i t h e r  X o r  Y must win, t h e  l a w  of t o t a l  

p r o b a b i l i t y  y i e l d s  

s o  t h a t  (3.7.14) and t h e  X analogue of (3.7.15) y i e l d  

Reca l l ing  t h a t  t = $-'(s), we may change t h e  v a r i a b l e  o f  i n t e g r a t i o n  i n  

t h e  f i r s t  term on t h e  right-hand s i d e  of (3.7.17) t o  o b t a i n  



TABLE 3.1. Quantities of Interest for Battle with Random 
Caeualty-Fraction Breakpoints. 

2a. Casualty-Fraction Conditional Distributions 

2b. Casualty-Fraction Distributions 

PI(<)^ 2 P I  a 1 - -
Fx(p) F ~ ( + - " ( P ~ )  

-Y

P[(Fc), 5 ql = 1 - Fx(+(q)) Fy(q) 

3 .  Average Casualty Fractions 



whence (3.7.17) becomes 

I n t e g r a t i o n  of the  dmve than y i e l d s  t h e  d e s i r e d  r e s u l t  f o r  the  casua l ty -  

f r a c t i o n  d i s t r i b u t i o n  

16Let us a l s o  observe t h a t  

From (3.7.18) we s e e  t h a t  the  expected value  of (<)f is given by 

whence an i n t e g r a t i o n  by p a r t s  y i e l d s  t h e  d e s i r e d  r e s u l t  given i n  Table 3.1 

Y

The express ions  f o r  P[(Fc)f  5 q ]  and f c  m y  be developed i n  a similar 

fash ion .  

Thus, we have developed genera l  express ions  f o r  the  t h r e e  measures 

of combat outcomes: (1) t h e  p r o b a b i l i t y  of winning, ( 2 )  t h e  casua l ty -  

f r a c t i o n  d i s t r i b u t i o n s ,  and (3) t h e  average c a s u a l t y  f r a c t i o n  for eech 

s i d e .  We d i d  t h i s  f o r  t h e  c a s e  i n  which (1) combat a t t r i t i o n  was modelle 

by d e t e r m i n i s t i c  LANCHESTER-type equa t ions  f o r  which Condi t ion (CFI) h e l d ,  

and ( 2 )  t h e  c a s u a l t y - f r a c t i o n  breakpoint  f o r  each s i d e  was a random 

v a r i a b l e  independent of t h e  o t h e r  s i d e ' s  breakpoint  and wi th  lcno.cm 

d i s t r i b u t i o n .  Unfor tunate ly ,  t h e  genera l  combat-outcome-prediction 

276 



express ions  g iven i n  Table  3.1 do n o t  by t h e w e l v e e  p rov ide  any i n s i g h t  

(such a s  t h a t  provided by P r o p o s i t i o n  3.6.1 diacusseci i n  Sec t ione  3.6 

and 2.8 above) i n t o  t h e  r e l a t i o n s h i p  between t h e  d i s t r i b u t i o n  of cambaz 

outcomes and v a r i o u s  f a c t o r e  i n  t h e  combat model (such a8 t h e  i n i t i d  

f a r c e  r a t i o  xO/yO, r e l a t i v e  f i r e  e f f e c t i v e n a e e ,  parameters  of the 

b reakpo in t  d i s t r i b u t i o n s ,  e t c . ) .  To develop such pa ramet r i c  i n s i g h t s  

i n t o  t h e  d i s t r i b u t i o n  of  combat outcomes, we must cons ide r  some s p e c i f i c  

i n s t a n c e s .  

One general case ,  however, f o r  which f a i r l y  e x p l i c i t  r e s u l t s  

a r i s e  is  t h a t  i n  which 

where s = $(t), $ ( t )  i s  given by (3.7.61, and,  of course ,  Condi t ion (CFI 

ho lds .  Such a c a s e  has  been found t o  be a reasonably  good approximation 

t o  U. S. C i v i l  War d a t a  by H. K. WEISS [ 2 5 ] .  To develop an e x p l i c i t  
-

express ion  f o r  t h e  p r o b a b i l i t y  t h a t  Y wins ,  we l e t  T = F y ( t )  s o  t h a t  

dFy( t )  - d r  and F x ( ) ( t ) )  - T " ~ ,  and then (3.7.5) y i e l d s  

To develop a n  e x p l i c i t  express ion  f o r  t h e  c o n d i t i o n a l  d i s t r i b u t i o n  o f ,  

f o r  example, X's ( f i n a l )  c a s u a l t y  f r a c t i o n  (3.7.14),  we l e t  



o yx(s) SO t h a t  dFX(8) - - do and ' ~ ~ ( ( - ' ( s ) )  - CJ"~,and then 

(3.7.14) y i e l d s  

Other r e s u l t s  may be ob ta iced  i n  a similar fash ion ,  and t h e s e  r e s u l t s  a r e  

summarized i n  Table 3.11. From t h e s e  r e s u l t s ,  we so? t h a t  t h e  assumption 

(3.7.21) has  t h e  i m p l i c a t i o n  t h a t  whether a s i d e  wins or l o s e s  does not  

a f f e c t  h i s  c a s u a l t y - f r a c t i o n  d i s t r i b u t i o n ,  i . e .  t h e  uncondi t iona l  c a s u a l t j  

f r a c t i o n  d i s t r i b u t i o n  is t h e  same a s  the  c o n d i t i o n a l  d i s t r i b u t i o n s .  

We a r e  now I n  a  p o s i t i o n  t o  develop some e x p l i c i t  r e s u l t s  f o r  

LANCHESTER's two c l a s s i c  combat formulat ious : (1) LANCHESTER' s equa t ions  

f o r  a r e a  f i r e  (2.4.1),  and ( 2 )  LANCHESTER's equa t ions  f o r  modern war fa re  

( 2 . 2 1 ) .  Here w e  w i l l  g i v e  exac t  r e s u l t s  when they a r e  r e l a t i v e l y  simple 

( i . e .  f o r  t h e  case  i n  which each s i d e ' s  c a s u a l t y - f r a c t i o n  breakpoint  is a 

uniformly d i s t r i b u t e d  random v a r i a b l e )  and w i l l  use an approximation when 

t h e  r e s u l t s  a r e  n o t  s imple  ( i . e .  f o r  t h e  s p e c i a l  case i n  which each s i d e ' :  

c a s u a l t y - f r a c t i o n  breakpoint  is  an exponen t ia l ly  d i s t r i b u t e d  random 

v a r i a b l e ) .  



-- 

TABLE 3.11. Resulte for Battle with Random Casualty-Fraction 

-

Breakpoints When FX(s) = [Fy(t)l a  . \ 

-
Basic Assumption: FX(s) [Ty(t) 1

a 
where s = $(t). 

Probabilities of Winning: 


Casualty-Fraction Conditional Distributions: 


PI(<)^ <- p l ~wins] = 1 - [~$($-'(P))I 
b+l> 

Casualty-Fraction Distributions: 


Average Casualty Fractions: 




3.8. Battle-Outcome-Prediction Conditiond for Deterministic FT(FT 


Attrition Process with Stochastic Breakpoints 


In this section we develop explicit expressions for (Ql) the 


probability of winning, (421 the casualty-fraction distributions (both 


condftional and also unconditional), and (43) the average casualty fractic 


for each side for LANCHESTER1s (deterministic) equations for area fire 


(2.4.1), i.e. the equations for an FTlFT attrition process, with random 


breakpoints. We will do this for two specific casualty-fraction-breakpoin 


distributions: 

(Dl.) uniformly distributed breakpoints, 


and (D2) exponentially distributed breakpoints. 


As above, we rill assume that each side's Sreakpoint is independent of 

that for the other side. Let us observe that for random breakpoints the 


analogue of the victory-prediction condition (3.6.18) is a probability of 


winning such as (3.8.6) below. Also, the analogue sf the victor's casualt 


fraction given in Table 2.XII is, for example, a casualty-fraction condi- 


tional distribution such as (3.8.7) or an average loss such as given by 


(3.8.10). 


We begin by developing certajn key general expressions that apply 


to all casualty-fraction-breakpoint distributions for an FTlFT 


attrition process. First, let us observe that we may express the state 


equation (2.4.3) for the FTIFT attrition equations (2.4.1) in terms of 


the casualty fractions f: and f: [=(3.7.2)l as 

where 




C 

lioreover, t h e r e  a r e  r e s t r i c t i o n s  on t h e  a p p l i c a t i l i t y  of (3.8.11, i . e . ,  

X Y

i t  holds  only  f o r  f c ,  ic € [O, l ] .  We observe t h a t  y > 0 is  simply t h e  

r a t i o  of f r a c t i o n a l  l o s s e s  (X t o  Y ) .  I n  o t h e r  words, from (3.8.1) w e  

s e e  t h a t  t h e  func t ion  of Condit ion (CFI), i . e .  t h e  f u n c t i o n  such t h a t  

Y
iXp ( f c ) ,  is given by= 

X
f rSince 2 1, we muse sometimes t r u n c a t e  t h e  p f u n c t i o n  ( i . e .  when 

t > I/r) s o  t h a t  Xf c  does n o t  exceed 1. Thus, we i c t r o d u c e  t h e  modified 

f u n c t i o n  $ def ined  by (3.7.6). It is given by 

We a l s o  observe t h a t  

Next, we w i l l  use  t h e  above i n  conjunct ion wi th  t h e  genera l  

express ions  given i n  Table 3.1 t o  develop t h e  key genera l  battle-outcome- 

p r e d i c t i o n  express ions  f o r  an FTJFT a t t r i t i o n  process .  Considering (3.3.: 

we o b t a i n  from (3.7.8) t h e  2ollowing express ion f o r  P~ 



In a similar fasnion, consideraticn of ( 3 . 8 . 5 ) .  (3.8.01, and (J .  7.13) yield8 

The other conditional casualty-fraction distributions may be similarly 


obtained. For the unconditional casualty fraction distributions, it is more 


convenient to consider the complementary d.f. Hence, (3.7.20) and (3.8.5) 


yields 


Similarly, 


Finally, Table 3.1, (3.8.4), and (3.8.5) yield the desired expression for 


the average losses, 




From t h e  above genera l  batt le-outcome-prediction c o n d i t i o n s  i t  i s  s t r a i g h t -

forward (but  somecimes very messy) t o  compute d e s i r e d  q u a n t i t i e s  f o r  a 

s p e c i f i c  casual ty-f ract ion-breakpoint  d i s t r i b u t i o n .  

We now w i l l  cons ider  two such s p e c i f i c  breakpoint  d i s t r i b u t i o n s .  

Let us f i r s t  cons ider  the  case  i n  which each s i d e ' s  c a s u a l t y - f r a c t i o n  break-

p o i n t  i s  uniformly d i s t r i b u t e d  ( i . e .  a s i d e  is  e q u a l l y  l i k e l y  t o  break o f f  

t h e  engagement a t  any c a s u a l t y  f r a c t i o n  between 0 and 9)  and, of course ,  t h e  

b a t t l e  dynamics a r e  given by t h e  aqua t ions  f o r  an  FT ~ F T  a t t r i t i o n  process  

( 2 . 4 1  In t h i s  c a s e  

f o r  0 -< s ,  t 2 1. Use of (3.8.11) i n  formulas l i k e  (3.8.6) through (3.8.10) 

then y i e l d s  t h e  r e s u l t s  given i n  Table 3.111. 

Before we proceed wi th  t h e  development o f  r e s u l t s  f o r  e x p o n e n t i a l l y  

d i s t r i b u t e d  b reakpoin t s ,  l e t  us  cons ider  what i n s i g h t s  i n t o  t h e  dynamics 

o f  combat we can o b t a i n  from our  s imple  combat model. I n  p a r t i c u l a r  ( as  

s t r e s s e d  above),  we a r e  i n t e r e s t e d  i n  unders tanding t h e  s t r u c t u r e  of t h e  

r e l a t i o n s h i p  between b a t t l e  outcome and va lues  f o r  model parameters.  For 

t h i s  case  i n  which we have in t roduced randomness i n t o  t h e  rwo ( independent)  

p rocesses  of breaking o f f  t h e  engagement, we would l i k e  t o  know t h e  e f f e c t s  on 

t h e  n a t u r e  of b a t t l e  outcomes from in t roduc ing  t h i s  randomness. The reader  





should t h e r e f o r 9  compare t h e  de te rmin i s t i c -b reakpoin t  r e s u l t s  given i n  

Table 2.XII wi th  the  uni.forrnly-distributed-breakpoint r e s u l t s  given i n  

Table 3.111. Let us now make a few such comparisons. 

I n  Figure  3.5 w e  show t h e  p r o b a b i l i t y  t h a t  Y w i l l  win, P
Y '  

ae  

a f u n c t i o n  of the  "normalized" i n i t i a l  f o r c e  r a t i o ,  y = (a /b)  (yo/x0). Let 

us  r e c a l l  (see (2 .8 . i4)  o r  P ropos i t ion  3.6.2) t h a t  f o r  d e t e r m i n i s t i c  break- 

p o i n t s  Y w i l l  win a f ixed-casual ty-f ract ion-breakpoint  b a t t l e  i f  and 

only  i f  

Xwith  the  l e n g t h  o f  b a t t l e  being f i n i t e  i f  and only  i f  ( f  1 < 1. Thus,
c' BP 

X
f o r  equa l  b reakpoin t s ,  1 . e .  ( f c )Bp  = ( fc)Bp,  Y w i l l  win i f  and on ly  i f  

y > 1. I n  o t h e r  words, f o r  d e t e r m i n i s t i c  b reakpoin t s  Y w i l l  win w i t h  

p r o b a b i l i t y  one f o r  y > 1 and w i l l  win wi th  p r o b a b i l i t y  ze ro  f o r  

0 2 y < 1 (see Figure  3.6).  Hence, w e  s e e  t h a t  t h e  normalized i n i t i a l  

f o r c e  r a t i o ,  y = (a /b )  (y 0/x ) , is t h e  key parameter f o r  f o r e c a s t i n g  G 


whether Y w i l l  win o r  l o s e  f o r  both  d e t e r m i n i ~ t i c  b reakpoin t s  and a l s o  

random ones. 

X
We may th ink  of (Fc)f as t h e  fo rce - leve l  c o s t  t o  X o f  engaging 

Y i n  combat without cons ider ing  t h e  outcome of b a t t l e ,  i . e .  wi thout  

cons ider ing  whether X wins c r  l o s e s .  Then t h e  c a s u a l t y - f r a c t i o n  d i s t r i -

bu t ions  may be considered measures of t h e  r i s k  of doing b a t t l e .  I n  Table 

3.111 l e t  us note  t h a t  f o r  y # 1 



a t o )Normalized Initial Force Ratio, y = --
b \xO 


Figure 3.5. Relationship between the normalized initial 


force ratio y = --- and the probability a(Yo)

XO 

of winning for baccle with deterministic 


FT(FT attrition and uniformly distributed 


breakpoints. 






and a l s o  t h a t  f o r  y i1 

Hence, f o r  y + 1 the  d i s t r i b u t i o n  of X ' s  c a s u a l t i e s  when X wins i s  n o t  

t h e  same a s  t h a t  of Y when Y wins,  and ( s i m i l a r l y )  t h e  d i s t r i b u t i o n  of 

X ' s  c a s u a l t i e s  when Y wins is  no t  t h e  same as t h a t  of Y when X wins. 

It may be shown (see  -HELMBOLD [ l o ,  pp. 18-19]) t h a t  t h e s e  r e s u l t s  hold  i n  

genera l  f o r  FT(FT a t t r i t i o n .  We w i l l  r e t u r n  t o  t h e s e  r e s u l t s ,  i . e .  (3.8.13 

and (3.8.14), l a t e r ,  s i n c e  they have an  important  r o l e  t o  play i n  t h e  

h i s t o r i c a l  v a l i d a t i o n  of such breakpoint  hypotheses.  

I n  Figure  3.7 we show how P[(Fc)f ( 0.31, where (Fc)f  denotes  a  

given s i d e ' s  f i n a l  c a s u a l t y  f r a c t i o n ,  depends on t h e  normalized i n i t i a l  

f o r c e  r a t i o  y and t h e  outcome of b a t t l e .  It should be  c l e a r  t h a t  t h e  

curves  shown i n  Figure  3.7 r e f l e c t  t h e  f a c t  t h a t  (3.8.13) and (3.8.14) ho ld ,  

e.g. t h e  winner ' s  c a s u a l t y - f r a c t i o n  d i s t r i b u t i o n  is d i f f e r e n t  f o r  X and 

Y.  F i n a l l y ,  i n  Figure  3.8 we show p l o t s  of t h e  g r o b a b i l i t y  t h a t ,  X ' s  f i n a l  

c a s u a l t y  f r a c t i o n  exceeds a  given amount p a s  a f u n c t i o n  of t h e  normalized 

i n i t i a l  f o r c e  r a t i o  y. Also shown is t h e  p r o b a b i l i t y  t h a t  X wins.  

Reca l l ing  t h e  i n t e r p r e t a t i o n  of (elfa s  t h e  c o s t  t o  X of engaging Y 

(without cons ider ing  t h e  outcome of b a t t l e ) ,  we may t h i n k  of Figure  3.8 

as showing t h e  r i s k  t o  X of engaging Y i n  combat. We should o b s e w e  

t h a t  pi(?)c f -> p J qu ick ly  reaches  a l i m i t i n g  v a l u e  f o r  y g r e a t e r  than 

one. Let  us  f i n a l l y  observe t h a t  f o r  any breakpoint  d i s t r i b u t i o n  ( see  -
3.8.10) t h e  average c a s u a l t y  f r a c t i o n s  a r e  r e l a t e d  by 





1.0 3.0 


Normalized Initial Force Ratio, y 

No-lired Initial Force Ratio, y - ~(3) 
X~ 

Figure 3.8. Th@ probability that X's casualty fraction exceeds a 


given amount as a function of the normalized initial 


force ratio y - a(%) for battle with deterministic 
b XO 

FT1 FT at tririon and uniformly distributed breakpoints. 



1 

which should h e  compared t o  t h e  corresponding r e s u l t  f o r  d e t e r m i n i s t i c  

t r eokpoin ta  (see-Table  2 .XIS o r  (3.8.1))  

Thus, on t h e  average the  two s i d e s '  f r a c t i o n a l  loseea  bear  t h e  same r e l a t  

s h i p  t o  each o t h e r  whether or not  t h e  breakpoints  are modelled 8s random 

v a r i a b l e s .  

F i n a l l y ,  we cons ider  t h e  case i n  which each s i d e ' s  casual ty-f ract  

breakpoint  i s  e x p o n e n t i a l l y  d i s t r i b u t e d  and,  of course ,  the  b a t t l e  dynamic -. 
a r e  given by the equa t ions  f o r  an FT IFT a t t r i t i o n  p rocess  (2.4.1).  I n  

t h i s  c a s e  

- A  XY -A 
Y
t 

1 - eF..(s) = 1 - e  and F (t) - .  (3.8.1 

-X 
f o r  0 -< s, t 2 1. We have added, f o r  example, t h e  f a c t o r  ( 1  - e *) t o  

-A s 
c u r e  t h e  d e f e c t  of t h e  d i s t r i b u t i o & '  1 - e a t  s = 1, 1.e .  t o  make 

= 1. The two d i s t r i b u t i o n  f u n c t i o n s  (3.8.11) and (3.8.17) f o r  X ' s  

c a s u a l t y - f r a c t i o n  breakpoint  a r e  g r a p h i c a l l y  dep ic ted  i r  Figure 3.9. The 

parameter AX i n  (3.8.17) c o n t r o l s  X ' s  r a t e  o f  "giving up h i s  miss ion 

and breaking o f f  t h e  engagement" as a func t ion  of h i s  c a m a l t y  f r a c t i o n .  

I n  o t h e r  words, t h e  l a r g e r  AX is, t h e  more "quickly" X gives  up (as a 

f u n c t i o n  of h i s  f r a c t l o n a l  l o s s )  as computat ianof  X ' s  average breakpoint  

shows 



Casualty Fraction. 
 < 

F 3 . 9 .  ":fez. x d  = x ; 3 ~ 2 ~ r i 2 1t h e c ~ t t i t z 12 i o t r t h n t i ~ ~  

functions for X's casualty-fraction breakpoint. 




where E[X] denote8 t h e  expected v a l u e  of t h e  random v a r i a b l e  4 Table 

3.IV shows how X ' s  average breakpoint  depends on the  parameter A X o  

as e Funct ion o f  th; ParameterTkBLE 3.1V. X's Average Breakpoint  ( T : ) ~ ~  

f o r  an  Exponen t i a l ly  D i s t r i b u t e d  Casual ty-Fract ion BreakpoAx 

Exact r e s u l t s  f o r  t h e  above exponen t i a l  d i s t r i b u t i o n  f u n c t i o n s  

(3.8.17) (sHELMBOLD [ l o ,  pp. 78-82]) are s o  compl icated t h a t  i t  is  

d i f f i c u l t  t o  c l e a r l y  see t h e  r e l a t i o n s h i p  between v a l u e s  f o r  model pararnete 

and b a t t l e  outcome. For example, t h e  p r o b a b i l i t y  t h a t  Y w i l l  win is  read 

computed from (3.8.6) and (3.8.17) t o  b e  g iven by 

<f o r  0 -< y --1, 
(3.8.19 


f o r  l ~ .y 



However, f o r  A X ,  X 2 5.0, Py is very near ly  given by Y 


where Py denotes  an  approximate p robab i l . i ty  t h a t  Y wins. 

Reca l l ing  (3.7.22), t h e  r e s u l t  (3.8.20) sugges t s  us ing t h e  fol low 

approximations f o r  t h e  breakpoint  d i s t r i b u t i o n  f u n c t i o n s  f o r  AX, Xy 2 5.1 

- A  s .. - A  YtX
FX(s) - 1 - e , and F y ( t )  = 1 - e , (3.8.: 

and t ak ing  

s = y t  f o r  a l l  t 2 0 . 

I n  t h i s  c a s e  

where 

s o  t h a t  (3.7.22) would y i e l d  (3.8.20). Figure  3.10 shows X ' s  exact  and 

approximate breakpoint  d i s t r i b u t i o n  func t ions  f o r  A X  = 2.0. For A X  = 5 . (  

t h e  approximate and e x a c t  va lues  d i f f e r  by a t  most 0.007 a t  s 1: i nJ 


o t h e r  words, w e  would no t  be a b l e  t o  s e e  any d i f f e r e n c e  between them i n  

a p l o t  l i k e  Figure  3.10. Hence, our  advocacy of t h e  approximations (3.8.21 



Casualty Fraction, fX 

C 


Figure 3.10. Exact and approximate theoretical d i s t r i b u t i o n  

functions for X's casualty-fraction breakpoint 


for AX = 2.0 In the exponential case in which 

FX(m) i8 given by (3.8.17). 



-- 

and (3.8.22) for AX, Xy 2 5.0. Such approximations have been freely uspd 

by H. K. dEZSS [25] in his very original and significant: examination of 

1.9 

combat data from the U. 5 .  Civjl War. 

Thus, we will make the approximtiona (3.8.21) and (3.8.221, and 


then we can invoke the general results of Table 3. I1 to obtain the 


approximate results shown in Table 3.V. For AX, XY -> 5.0, the approximate 

results should be very close to the exact ones (and almost indistinguishable 


for AX, Ag)lO.O). Figure 3.11 contrasts how the probability that Y 


wins depends on the "normalized" initial force ratio y = (a/b)(yO/xo) for 

such exponentially distributed breakpoints with how it does for uniformly 


distributed ones. In this figure we also see the influence of the ratio 


AX/Ap 0" the probability that Y wins. For the exponentially-distributed 
A 

breakpoints, the approximate probability of a Y win Py, is given by 


(3.8.20) for the curves shown in Figure 3.11. Finally, Figure 3.12 shows 


some theoretical casualty-fraction distributions computed according to 


zexact results [lo]. In this figure P(f c U I  wZ) denotes P[ (FC)f 2 U I Z  wins] 

for Z = X, Y. We observe in (a) of Figure 3.12 that ~ [ ( l f ) ~2 U I X  wins] 

Y
- P[(F:)~ 2 U(Y wins] a P[(??)~ -< I I ~ Ywins] a P[(Fc)f 5 U I X  wins], i.e. 

for y = 1 the casualty-fraction distribution is the same for both X 

and Y, regardless of who wins (see NELMBOLD [lo,p. 8 4 1 ) .  This is not true 

for y + 1, and (b: and (c) of Figure 3.12 show how X's casualty-fraction 

distribution depends on who wins. 


Thus, for exponentially distributed breakpoints the parameters 


dependence of battle outcome on model parameters is most easily seen by 


considering approximate results such as those given in Table 3.V. Although 


these approximations are only "good" for AX, Ap 5.0, they do afford a 


quick look at the general relationship between battle outcome and model 


parameters and are to be preferred because of tne complexity of the exact 




\ uniform (exact result) 

Normallzed Initial Force brio, y = 8(3) 
X~ 

Figure 3.11. The approximate probability ?y that Y wins 

as a f:unction of the normalized initial force 


ratio y = - -'rO) for battle with deterministic 

b XO 

FT I FT attrition and random breakpoints. For 

uniformly distributed breakpoints, the probability 


that Y wins (dashed line) is exact. 






TABLE 3.V. Approximate Results for Battle with Detormini8tic PP 1 IT 
Attrition and Exponentially Distributed Caaualty-Fraction 


Breakpoints with AX, Xy 2- 5.0. 

Approximate Casualty-Fraction-Breakpoint Distributions: 


where 


s 3 yt for all t 2 0 . 

Approximate Probability of Winning: 


Approximate Casualty-Frac tional Dist tibutions : 

Approximate Average Casualty Fractions: 




r e s u l t s  (5H E M O L D  [lo, pp. 78-82]) . For A X  o r  A 2 3.0, t he  oracc 

r e s u l t s  a r e  t o  b e  preferred.  We note ,  however, t h a t  ( f o r  example) X ' s  

average breakpoint i s  given by (3.8.18) so  t h a t  A X  - 3.0 corzesponds t o  

a un i t  t h a t  would on the average f i g h t  to  a f r a c t i o n a l  l o s s  of 0.281 before 

breaklng of f  the  engagement (sTable 3.IV). 

Fina l ly ,  from consider ing the r e s u l t 8  given i n  t h i s  s ec t i on ,  we 

see  t h a t  although i t  is  a very simple model and probably oversimplif ied,  the 

model with both deterministic FT( FT a t t r i t i o n  and de t e rmin i s t i c  breakpoints 

( s e e  Section 2.8) does provide a very convenient frame of re fe rence  f o r  

studying more complex models. Fqr  t h i s  reason, we have emphasized 

LANCHESTER's c l a s s i c  combat formulations in Chapter 2. 



3.9. Battle-Outcome-Prediction Conditions for Deterministic F ( F  


Attrition Procees with Stochastic Breakpoints. 


In this secti.on wa develop battle-outcome-prediction conditions for 


LANcHESTER'S (detarminietic) equations of modern warfare (2.2. I), i. e . the 
equations for an F ~ Fattrition process, with random breakpoints. As aboi 


we will aasurme t,hat the two stochastic battle-termination processes are 

independent, i.e. each side's breakpoint ie independent of that for the 


other side. Results are then given for the two specific casualty-fraction< 


breakpoint distributions considered above: namely, 


(Dl) uniformly distributed breakpoints, 


and (D2) exponentially distributed breakpoints. 


Results have not been as completely developed aa and are far more complica 


than those above for FT(FT attrition, and we will consequently focus on 


the probability of winning. Because of the complexity of exact analytical 


results, a couple of very useful appr~ximations will be consi&.red. 


As above, we will begin by developing some general results for F I  F 

attrition. First, let us observe that the state equation (2.2.5) for 


the F I F  attrition process (2.2.1) may be expressed in terms of the 


casualty fractions and ft as 

c 

Y
whence the cp function such that fa = q(fc) is given by 

where 




HELMBOLD 110, pp. 7-01 r e f e r s  t o  p a s  a measure of the  r e l a t i v d  

advantage of Y over X. In h i s  empir ical  i nves t iga t ions  of combat 

models, HELMBOLD [8-101 always takes X t o  be the a t t acke r  and Y t o  be 

defender. He then introduces the defender 's  "advantage parameter, '' which 

he def ines  a s  

Then V w i l l  range from - t o  += and 

i f  X ( the  a t t acke r )  has t he  advantage 

i f  Y ( the  defender) has the  advantage, 

This terminology, however, is  a l i t t l e  misleading, s i n c e  ( f o r  example) 

f o r  de te rminis t ic  breakpoints V < 0 does not imply t h a t  X w i l l  always 

win. Recalling (3.6.3), we see  t h a t  i t  is indeed poss ib le  f o r  Y t o  win 

a fixed-force-level-breakpoint b a t t l e  ( i n  f i n i t e  time) when V < 0 i n  

cases when the breakpoints a r e  appreciably d i f f e r e n t  i n  favor  of Y 

(see-Table 2.XI). Consequently, we w i l l  not r e f e r  t o  P a s  a r e l a t i v e  

advantage parameter but w i l l  c a l l  IJ t he  "normalized" i n i t i a l  force r a t i o .  

The modified $-function, defined by (3 .7 .6 ) ,  is  given by 

( 1 - J1 + p2{(1-t)2 - 11 f o r  ~ < t < t- - U' 

where 



f o r  0 5 \I 2 1, 

f o r  15 v *  

Also, 

~ ( S I= 

f o r  S , , I S ,  

where 

The key g e n e r a l  batt le-outcome p r e d i c t i o n  express ions  f o r  a n  FIF 

a t t r i t i o n  p rocess  may be ob ta ined  by combining t h e  above r e s u l t s  wi th  t h e  

g e n e r a l  express ions  given i n  Table  3.1. For example, t h e  p r o b a b i l i t y  

t h a t  Y w i l l  win is given by 

where $-'(n) is given by (3.9.7). Again ( r e c a l l  (3.8.6)), w e  observe 

t h a t  t h e  upper l i m i t  o f  i n t e g r a t i o n  depends on t h e  "normalized" i n i t i a l  

f o r c e  r a t i o ,  v = (yOIxO) . Let  us  r e c a l l  ( s e e- (2.8.3) o r  Propos i t io ,  

3.6.1) t h a t  f o r  d e t e r m i n i s i t i c  b reakpoin t s  Y w i l l  win a fixed-force-leve 
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breakpoint bat* ( i n  f i n i t e  time) i f  and only i f  -

X Y
Hence, f o r  equal breakpoints ,  1.e. fgp = E B p ,  Y w i l l  win i f  aatd only i f  

p 1 Thus, w e  s ee  (not unexpectedly) t h a t  r e s u l t s  f o r  random breakpoints 

a r e  c lo se ly  r e l a t e d  t o  those f o r  de t e rmin i s t i c  ones. The simple, t o t a l l y  

de te rmin is t ic  model (2.8.12) provides a very important frame of reference 

f o r  examining more complex models with random e f f e c t s .  

We can already s e e  t h a t  battle-outcome-prediction r e s u l t s  f o r  F(F 

a t t r i t i o n  with random breakpoints  w i l l  be considerably more complex than 

those f o r  the F T ( ~case and (qu i t e  possibly,  although we cannot prove 

t h i s  a s se r t i on )  not express ib le  i n  terms of so-called "elementary" 

functions.  Hence, some type of s implifying approximatien is des i rab le .  

HELMBOLD [ l o ,  p. 481 has suggested l i n e a r i z i n g  $ ( t )  . In  o the r  words, 

i f  we expand cp i t ) ,  as given by ( 3 . 9 . 2 )  , i n  a TAYLOR s e r i e s  about t = 0,  

then w e  ob ta in  

2where O(t ) denotes terms t h a t  a r e  of the  same order  o i  magnitude a s  

c2 f o r  t "small. " Ignoring the  higher  order  terms, we obta in  

HELMBOLD'S approximation f o r  cp(t), nanely 



whence 

and 

f o r  O 2 s u" , 

f o r  , A s ..-

Hence, w e  can invoke a l l  t he  r e s u l t s  f o r  the  FT I FT proqess (see, f o r  

example, (3.8.6) through (3.8.10)) with y = u2 t o  obta in  approximate 

r e s u l t s  f o r  t h e  F I F  a t t r i t i o n  process. For example, 

f o r  

6 

where Py denotes an approximate p robab i l i t y  t h a t  Y w i ' l l  win. 

As  w e  have done i n  the previous s ec t i on ,  l e t  us now consider 

two s p e c i f i c  breakpoint d i s t r i b u t i o n s .  F i r s t ,  w e  consider uniformly 

d i s t r i b u t e d  casua l ty- f rac t ion  breakpoints ,  I . e .  we assume t h a t  (3.8.1.1; 

holds. For s imp l i c i t y ,  l e t  us  focur on the  p robab i l i t y  o f  winning, saiy 

( fo r  example) f o r  Y. In t h i s  case,  (3.8.11) and (3.9.9) y i e l d  



-- 

where 3r-1( s )  1s given by (3.9.7) and sU is given by (3.9.8). 

For tuna te ly ,  t h e  i n t e g r a l  i n  (3.9.16) may be eva lua ted  i n  terms of 

elementary fu rnc t ims ,  namely 

which i s  t h e  exac t  r e s u l t  f o r  Y ' s  win p r o b a b i l i t y  f o r  a b a t t l e  wi th  

F I  F a t t r i t i o n  and m i f o r m l y  d i s t r i b u t e d  casua l  ry - f rac t ion  b reakpoin t s .  

The dependence of t h i s  psi& z l ~i l i t y  on t h e  normalized i n i t i a l  f o r c e  r a t i o  

p = (y /x ) 1 3 , is shown i n  Figure  3.13. 
0 0 


X f  we compare t h e  shape o f  t h e  plot of Py versus  t h e  normalized 

i n i t i a l  f o r c e  r a t i o  i n  Figure  3.5 wleh t h a t  i n  Figure  3.13 (bear ing  i n  

mj-nd, however, t h a t  y # P), we s e e  t h a t  t h e  curve i s  much s t e e p e r  i n  

the  neighborhood of 11 = 1 i n  Figure  3.13 than i t  is n e a r  y = 1 i n  

Figure  3.5. 'This is a r e f l e c t i o a  of t h e  f a c t  t h a t  a d d i t i o n a l  i n i t i a l  

f o r c e s  have a much g r e a t e r  impact on t h e  outcome of  a b a t t l e  wi th  F ( F  

a t t r i t i o n  t h q  one wi th  F T ~ F T  a t t r i t i o n  ( r e c a l l  Sec t ion  2.9 on concen- 

t r a t i o n  of f o r c e s ) .  

Now let  us  cons ider  HELMBOLD'S approximation o f  us ing  a l i n e a r i z a t  
A 

of t h e  non l inear  +-funct ion,  denoted as $ 1  [ s e e  (3.9.13) and (3.9.14) 

Again, we w i l l  focus  on t h e  p r o b a b i l i t y  t h a t  Y w i l l  win. I n  t h i s  case ,  



,exact 4 

Normalized Initial Force Ratio, 


Figure 3.13. Relationship between the normalized initial force 

YO g


ratio - end the probability of winning 
Xo 

for battle with determinietic F)F attrition and 


uniformly distributed breakpoints. The dashed curve 


shows the approximate probability based on HELMBOLD'S 


linearization of ~ ( c ) .  



(3.8.11) and (3.9.15) y i e l d  

This  approximate win p r o b a b i l i t y  is shown i n  Figure  3.13 a s  t h e  dashed 

l i n e .  We s e e  t h a t  f o r  uniformly d i s t r i ' b u t e d  b reakpoin t s ,  HELMBOLD'S 

approximit ion is  q u i t e  good. A complete e r r o r  a n a l y s i s  of HELMBOLD'S 

approximation is, however, beyond t h e  scope of our  c u r r e n t  examination. 

Other r e s u l t s  (e.g. v a r i o u s  casual ty-f  r a c t i o n  d i s t r i b u t i o n s )  may be 

obta ined i n  a similar fash ion .  Some a d d i t i o n a l  r e s u l t s  a r e  t o  be found 

i n  HELMBOLD [10 ] . 
F i n a l l y ,  l e t  us b r i e f l y  cons ider  t h e  case  of e x p o n e n t i a l l y  

d i s t r i b u t e d  c a s u a l t y - f r a c t i o n  breakpoint?,  i . e .  w e  assume t h a t  (3.8.17) 

holds .  Exact r e s u l t s  i n  t h i s  case  a r e  d i f f i c u l t  t o  o b t a i n  s o  t h a t  some 

type of approximation seems i n  o rder .  As above, le t  us focus  on t h e  

p r o b a b i l i t y  t h a t  Y w i l l  win. I f  w e  use WEISS's approximations (3.8.21) 

and (3.8.22) f o r  t h e  breakpoint  d i s t r i b u t i o n s  and HELMBOLD'S l i n e a r i z a t i o n  

(3.9.12) of t h e  9-funct ion,  then f o r  XY -> 5.0 t h e  fol lowing should 

be a good approximation f o r  P~ 

C 
Other r e s u l t s  may be obta ined i n  a similar fashion.. 



h3.10. Another Model that Considers Unit Deterioration Due to Attrition. 


Most ground-combat models determine the level of combat effective- 


ness of forces by considering the loss of personnel or supplies and equip- 


uent. For example, ATLAS (=[7, p. 6-31] considers that the offeative- 

ness (measuued in terms of a firepower score) of a combat unit to depend 


on the percent casualties of the unit, the level of the unit's supp1f.c~ 


and equipment, and t h e  tactical posture of the unit, i.e. whether it is 

attacking or defending. In particular, (nonlinear) effectiveness curves 


relating percent degradation in unit effectiveness to percent casualties 


are used in ATLAS (see- [7, p. 6 - 4 1 ) ,  These curves implicitly supply unit 

breakpoints by providing a casualty level (equivalently, a force level) at 


which a unit ceases to be effective and must break off the engagement, 

Accordingly, a major combat modelling issue is to determine how to relate 


force effectiveness to personnel strength. We will now analytically 


examine this via LANCHESTER-type models of combat. 


Let: us consider two homogeneo-~s forces in LANCHESTER-type combat. 
Jr 

For illustrative purposes we will model the basic combac attrition process 


with LANCHESTER's equations for modern warfare (2.2.1) , i .e . the equations 
for an F ( F  attrition process (see Figure 2.14), although our appr,oach 
does apply to other attrition structures. We will additionally assume that 


ollr Breakpoint Hypothesis holds (E Section 3.2). In this case, we may 

consider that a force is effective only when its personnel strength is above 


its breakpoint force level, since the disengagement process is triggered 


when the unit's breakpoint is reached. Therefore, as first noted in 


Section 2.8, we s h o u l d  in this case write LANCHESTER's equations for modern 

warfare r.s 




for x > xgp and y > yBp , 

otherwise, 


for x > x and y 7 yBp ,BP 


0 otherwise. 


It is instructive to examine the (casualty) effectiveness, for 


example, of the Y force in the above combat model. Measured in terms of 


its kill rate, the Y-force effectiveness is given by 


aY for Ygp " Y ( YO , 
Y-force casualty (3.10.2) 

effectiveness 0 far O(y(y BP ' 

This dependence of unit effectivenss on personnel strength (for casies of 


no replacements and withdrawals, personnel casualties) is diagrammatically 


shown in Figure 3.i,4. 


We see from Figure 3.14 that this combat formulation suffers from 


having a discontinuity in force effectiveness when a side reaches its 


breakpoint: just above its breakpoint a force may be quite effective in 


producing enemy casualties; while upon reaching its breakpoint, it becomes 


totally ineffec:tive. This somewhat unsatisfactory situation is the direct 


consequence of combining the Brea!cpoint Hypothesis (seeSection 3.2) with 

equations for F I  F attzition without any modification of the latter. 


Thus, this battle-termination model may be considered to be slightly 


imcompatible with the usual F I  F combat; dynamics. Moreover, a coubat 


model such as ATLAS [7, Figure 6-4on p. 6-41 uses a continuous degradation 


in unit effectiveness (over the strictly linear reduction expected from 




Y-Force Effectiveness 
t 
YBP 


Force Level, y 


Figure 3.14. Relation between force effectiveness and unit 


strength for Y force in combat modelled by 


F I F  attrition equations (3.10.1). 




reduced force  l eve l s )  a s  force  l e v e l s  a r e  reduced through a t t r i t i o n  

u n t i l  i ts breakpoint is reached. Let us therefore  develop from physical ly  

motivated hypotheses an a l t e r n a t i v e  model t h a t  possesses such e f ea tu re  

of u n i t  de t e r io ra t ion .  

I< seams reasonable t o  hypothesize t h a t  the f r a c t i o n  of a force  

t h a t  i s  e f f ec t ive  depends on the number of c a s u a l t i e s  t h a t  the force  has 

suf fered  ( f o r  cases  of no replacements and withdrawals, equiva len t ly ,  the 

force  l eve l ) .  For example, the l o s s  of one o r  two men should have l i t t l e  
I 

effect: except f o r  reducing the  u n i t ' s  fo rce  l s v e l  ( i . e .  number of ava i l -  

ab le  f i r e r s ) .  Higher l e v e l s  of ca sua l t i e s ,  however, might wel l  a f f e c t  

the organizat ional  i n t e g r i t y  of the uni t  and reduce i ts  ef fec t iveness  

more than i n  j u s t  d i r e c t  proportion to  i t s  casual ty l e v e l .  SPRING and 

MILLER [17] and o thers  have postulated such a  r e l a t i onsh ip  between the 

f r a c t i o n  s f  a force  t h a t  is e f f e c t i v e  and the  fo rce ' s  casua l ty  leve l .  

Let us  now consider how such a  hypothesis leads  t o  a  modification of 

LANCHESTERts c l a s s i c  equations f o r  modern warfare.  We w i l l  s ee  t h a t  

such a  hypothesized re la t ionship  general ly  leads to  the fcllowing type 

of combat model 



Y
where fE denotes the fraction of the X force that is effective and 


depends on y/y0 and the parameters yBp/yo and gy. Similarly for 

f i .  Here By denotes all other model parameters that pertain to Y. 

If we express, for example, ygp in the form given by (3.2.2) ; then 

and we then have 

YSP/YO= £BP 

We will develop below that SPRING and MILLER'S [17] functional relationship 


between ef fee tiveness and casualties yields 


Y
where f I  denotes the fraction of the initial Y force that 13 inherently 

ineffective in combat (i.e. they never do fire their weapons) and ygp 

X X X
is given by the analogue of (3.2.2). Similarly for fE(~/~o;fBp,fI,p). 


Fe will now develop the expression for C: as given by (3.10.5). 

Let f: now denote the fraction of the surviving Y force that is 


ineffective and recall that Y's casualty fraction is given by 


We will denote Y's casualty fraction at his breakpoint when y ygp as 


Y 

c b p '  

SPRING and MILLER [l7, ~p 12-17] have postulnted a relationship(f 


such as that shown in Figure 3.15 between the fraction of survivors 


Y Y
that are ineffective, fI, and the casualty fraction, f . The shape of 

C 

the curve in Figure 3.15 suggests the fo1,lowing type of functicnal 


relation 




Y

Casualty Fraction. fc = (yO-y)/yO 

Figure 3.15. Functional relation between a unit's casualty-
Y


fraction, fer and the fraction of the surviving 

C Y

force that is ineffective, TI, as originally 


postulated by SPRING and MILLER [I71 for an 


infantry company in the attack. 




where and C a r e  constants .  I f  f:(o) - 0 and f : ~ ( f : ) ~ ~ l  1,Cl 2 
then C1 = 0 and C2 = l / [ ( f Y )  ] so  tha t  (3.10.7) becomes 

c BP 

REDDOCK [15] has found t h a t  values of u between 2 . 5  and 3.8 give a 

reasonable f i t  t o  the curves i n  SPRING and MILLER [17]. 

We w i l l ,  however, modify the type of func t iona l  r e l a t i o n  o r i g i n a l l y  

considered by SPRING and MILLER 1171 by assuming t h a t  a c e r t a i n  f r ac t ion  

Y

of the  Y fo rce ,  denoted a s  (fI)O, w i l l  e s s e n t i d l y  always be ine f f ec t ive  

and w i l l  never f i r e  t h e i r  weapons i n  combat, regardless  of what the 

casua l ty  l e v e l  i s .  2o Assuming t h a t  t h e  remaining force  s u f f e r s  degradation 

a s  postulated by SPRING and MILLER, we w i l l  consider t he  type of r e l a t i o n  

shown i n  Figure 3.16, namely 

where (£:I0 denotes the f r a c t i o n  of the  i n i t i a l  Y force  t h a t  is 

i n e f f e c t i v e  ( i . e .  t h a t  never f i r e s  its weapons). It should be noted t h a t  

Y

(3.10.9) reduces t o  (3.10.8) when (fI)O = 0. The f r a c t i o n  of the  Y 

Y

force  t h a t  is e f f e c t i v e ,  denoted a s  fE, i s  then given by (3.10.5). 

Y Y
where f o r  convenience we have denoted simply a s  f I .  

Thus, our combat model t h a t  considers  de t e r io ra t ion  i n  u n i t  f i r e  

e f fec t iveness  due t o  c a s u a l t i e s  and t h a t  no t  every man f i r e s  h i s  weapon 



Casualty Fraction, f: = (yo-y)IyO 

Figure 3.16. Functional relation betveen a unit's casualty 

Y


fraction, f-, and the fraction of the surviving 

C 
 Y


force that is ineffective, f I ,  for an infantry 

company in the attack with 0.25 of the initial 


force always ineffective. 




in combat may be written as 
.- . ,.Aery 

0 otherwise, 


Y
where, for example, fI denotes the fraction of the Y force that is 


always ineffective. Before proceeding further, let us make a few obser- 


vations about our modification of LANCHESTER's classic F [ F attrition 

model to incorporate ineffective combatants and unit deterioriation due 


to attrition. For f: = f: = 0 and u = v = + a ,  the equations (3.10.10) 

reduce to (3.10.1). However, our combat formulation (3.10.10) is very 


nonlinear in the force levels. In Figure 3.17 we show how the Y-force 


effectiveness for our new model (3,10.10) varies with the Y force level. 


There is no longer a discontinuity in unit effectiveness at the unit's 


breakpoint. Moreover, it is indeed surprising (as we will show below) 


that when f i p  = fBp. fp - F:, and u = v ,  the Y force will still win 

(in f i~iite time) if and only if 




y i p  

Force Level, y 


Figure 3.17. Relation between force effectiveness and unit 


strength for Y force in combat modelled by 


nonlinear equations (3.10.10). [Here we have 
Y


let ( fc)gp - 0.4 and v = 2.5. The dashed 

line is for combat modelled by the FIE' 

attrttion equations (3.10.1) (s
Figure 3.141.1 




To obta in  the  s t a t e  equation t h a t  r e l a t e s  the  X and Y force  

l e v e l s  f o r  x 2 xBP and y 2 ygp, we f i r ~ td iv ide  the  f i r s t  equat ion 

of (3.10.10) by the  second t o  ob ta in  the  instantaneous (or  d i f f e r e n t i a l )  

casualty-exchange r a t i o  

Separat ing va r i ab l e s  and i n t e g r a t i a g ,  we ob ta in  the  following s t a t e  

equation f o r  x 2 xgp and y 2 yBp 

H(xo,x) a K ( Y ~ , Y )  

where 

L 

We have not  been ab l e  t o  ob ta in  a time so lu t ion ,  e.8. t he  X 

force l e v e l  a s  a func t ion  of time x ( t ) ,  f o r  t h e  model (3.10.1C), even 

i n  cases  of p a r t i c u l a r  ( I u t  f in i te ) , ,  viil es f o r  and v. It docs not  C 
appear t h a t  the  time so lu t ion ,  e.g. x ( t ) ,  is express ib le  I n  terms of any 

of the  s tandard funct ions of matbema@yl ana lys i s .  W e  can, however, use 



.. 


finite-dif fere!nce methods to "numerically integrate" (3.10.10) and obtain 


an approximate value of, for example, the X force level, denoted as 


x(t) (see Chapter 7) .  Such a numerical solution is usually generated 

(with the help of a digital computer) far particular numerical values of 


the model parameters and initial conditions, and con~equently it doea not 


by itself provide any tnsights into the dynamics of combat. Moreover, it 


is even essentially impossible to explicitly solve (3.10.13) through 


(3.10.115) for x in terms of y (except fcr the special case of 

IJ = v = 1). Thus, the state equation (3.10.13j appears to be of little 

use. However, we will now shcw that Y will win (in finite time) if 


and only if 


Furthermore, (3,10.16) is of considerable value for providing some 


important insights into the dynamics of combat. 


In deveioping the Y-victory-prediction condition (3.10.16), we 


first observe that equations (3.10.10) are of the same form as (3.3.4), 


namely 


with x(0) xo , 

with ylo) = yo , 

where f(t) 2 0 and Fi, F2, GI, and G2 ' 0 for x ' xBp and 

y > yBF. Other assumptions will be stated presently. We have shown 

(-see Section 3.3) that Y dill win (in finite time) if and only if 



p-l(n) is  a s t r i c t l y  Lncreasing funct ion of n, and p and q a r e  

given by (3.3.6) and (3.3.71, respec t ive ly .  Thus Y w i l l  win i f  and only 

s ince  p ( x )  is  s t r i c t l y  increasing.  Recal l ing (3.2.6) and (3.3.71, w e  

see t h a t  (3.10 . l6 )  follows from (3.10.19). Let us observe t h a t  pqx) = 

P (x;xo,xBp.o;~) . where denotes the  X-force parameters. 

It remains t o  show t h a t  tip is f i n i t e .  We now make the  following 

sssumpt ions : 

(1) F1, F2. G1. and G2 a r e  s t r i c t l y  increas ing  funct ions of 

t h e i r  arguments with F1(xBp) > 0, 

T 

(2) f ( t ) d t  e x i s t s  and is  f i n i t e  f o r  any f i n i t e  T but 

0 
T 


l i m  f ( t ) d t  = +a . 
T + + = O  

Then (3.10.16) implies t h a t  tip is  f i n i t e .  The proof is a s  follows. 

thenIf H!X~.$~) < K ( Y ~ s Y ~ ~ ) ,  Y L yf > yBP so  t h a t  



whence 

1; -
+From t h e  assumption t h a t  liy+ f ( t ) d t  = +- , i t  follows t h a t  

x ( t )  -+ xBP i n  f i n i t e  t i n e .  Thus, w e  have proven the  following important 

proposi t ion.  

PROPOSITION 3.10.1 : Consider the  LANCHESTER-type equat ions 

(3.10.17) and assume t h a t  

(A11 F1, FZD GI, and G2 > 0 for x > xBp and y > ygp. 

(A21 F1(x), F2(y),  G1(x), and G2 (y) a r e  s t r i c t l y  

increas ing  f u m t i o n s  of t h e i r  arguments f o r  

x ,xBp and y 2 yBp with F1 (xgp) > 0, 

T 

(A3)  f ( t )  2 0, ( f ( t ) d t  e x i s t s  and i s  f i n i t e  f o r  every 

0 


f ( t ) d tf i n i t e  va lue  of T, and l i ~ + + ~ / ;  = + r n  

Then Y w i l l  win a fixed-force-level-breakpoint b a t t l e  i n  

f i n i t e  time i f  and only i f  

where 



Considering (3.10.14), (3.10.15), and (3.10.20), w e  may develop 

victory-predict ion condi t ions for our combat model (3.10.10). We s t a t e  

these r e s u l t s  as Proposi t ion 3.10.2. 

PROPOSITION 3.10.2: Consider combat mcdelled by (3.10.10). 

Y w i l l  win a fixed-force-level-breakpoint b a t t l e  i n  f i n i t e  

time i f  and only i f  

where 

X Y X Y
It may be shown t h a t  the  funct ion Q(fBp, fBp, iI, f i ,  P, v) possesses 

X Y Xthe  foll.owing properties f o r  0 5 fBp,  fBp, f I, f 
Y,< 1 and L, v > 0: 



Y X Y XIt fol lows t h a t ,  f o r  example, i f  fgp 2 fgp ,  iI 2 f I ,  and p 1. v,  then 

Q 5 1. I n  t h i s  c a s e ,  X w i l l  win ( i n  f i n i t e  time) i f  

Our a n a l y t i c a l  model is par  t i c u l a r  l y  v a l u a b l e  because i t  y i e l d s  

a batt le-outcome-prediction cond i t ion ,  namely (3.19.22), t h a t  e x p l i c i t l y  

shows t h e  parametr ic  dependence of b a t t l e  outcome on model parameters.  

S e n s i t i v i t y  a n a l y s i s  has thus been g r e a t l y  f a c i l i t a t e d .  P ropos i t ion  3.10.2 

is  p a r t i c u l a r l y  s i g n i f i c a n t  because i t  shows us  t h a t  t h e  outconc 02 b a t t l e  

depends on only  seven f a c t o r s  ( t h r e e  r e l a t i v e  f a c t o r s  and f o u r  model 

parameters) ,  even though our  combat model (3.10.10) (wi th  b a t t l e -  

t e rmina t ion  cond i t ions  included)  c o n t a i n s  t e n  independent parameters:  

X Y X Y 

namely, a ,  b, xo, yJ, fI, f I ,  fgp,  fgp,  U, and v .  Thus, t h e  outcome 

of a fixed-force-level-breakpoint  b a t t l e  modelled wi th  t h e  combat dynamics 

(3.10.10) depends on t h e  fol lowing seven f a c t o r s  : 

(Fl) the  i n i t i a l  fo rce  r a t i o ,  uo = xO/yO, 

(F2) r e l a t i v e  f i r e  e f f e c t i v e n e s s ,  R = a/b, 

(F3) r e l a t i v e  f r a c t i o n  of i n : i e i a l l y  e f f e c t i v e  f o r c e s ,  

X Y(F4-5) the  two breakpoint- force- level  f r a c t i o n s ,  fgp  and f g p ,  

(F6-7) t h e  two u n i t  degradat ion parameters,  P and v. 



For simplicity, let us rewrite the battle-outcome-prediction 


condition (3.10.22) of Proposition 3.10.2 as 


X 

1. will win (in finite times) if and only if 2 < Q$ . (3.10.24) 
"0 


Thus, X can only win if the initial fcrce ratio xO/yO exceeds the 


critical value QG.
Numerical values for Q and Q for various 


X Y X Y
representative values of the parameters fBp, fBp, fI, fI, P, and v 

are shown in Table 3.VI. Parameter values were chosen to be representative 


of an attack by the X forces against Y. These particular parameter 


values are similar to those used for the numerical examples shown in 


Table 2.XI of Section 2.8. Before discussing the contents of Table 3.V1, 


let us observe that our combat model (3.10.10) may be considered to be a 


generalization of 'LANCHESTER'S classic F;F attrition model, since (for 


+ 
-+example) {1 - [ (yO-y)/ (yO-yBp)I*I  1 as v + for Y ( Y ~ ~ ' Y ~ I  

so that for f: = f: = 0 the combat model (3.10.10) + the classic combat 

model (3.10.1) as 11, v -t + . Additionally, two particular cases of 
parametric values merit special attention. Specifically, the victory- 


prediction condition (3.10.24) reduces to previous encountered results 


in the two special cases: 


In the first case (Cl) in which fX f: = fI, and e = v:Y
BP f ~ ~ '  


we obtain Crom (3.10.23) that Q - 1 so that the victory-prediction 



TAELE 3.VI. Numerical Values for Q and Qma s  the Combat Parameters 

X Y X Y
fBPs fBps f I s  f I s  p s  and v are Varied. 

0 X Y
CASE a/b pE 'BP f g ~  IJ v Q Qm 

NOTES : 

(1 )  X i s  the  a t tacker  



condit ion (3.10.24) reduceo t o  previouuly encountered r eau l r e  i n  the 

two spec i a l  c,aees: 

Y X Yfgp ,  f I  f I ,  and IJ V ,  

and 

X Y
(C2)  f I m f I  and p = v = f w .  

X Y X Y

In the f i r s t  case (Cl) i n  which fgp = fgp, f I  fX, and LI - v; 

w e  obta in  from (3.10.23) t h a t  Q 1 so  t h a t  the  victory-predict ion 

condit ion (3.10.24) is  i d e n t i c a l  t o  the force-annihilntion-prc?diction 

condit ion given i n  Proposi t ion 2.2.1. Thus, we s e e  t h a t  r e s u l t s  f o r  

the simple combat model (2.2.:) a r e  bas ic  fo r  understanding more complex 

which f = 2 and IJ - I.I= + =, we obta in  from (3.10.23) chat  

-
I! 2

Q I1 - f BP) 1 so  t h a t  the victory-predict ion condit ion 

(3.10.24) f o r  the nonl inear  combat model (3.10.10) i s  the  same a s  t h a t  

f o r  a  b a t t l e  with F I F  a t t r i t r o n  (see (2.8.3)).  

Let us now r e t u r n  t o  the  contents  of Table 3.VI. As s t a t e d  above, 

parameter values have been chosen t o  be representa t ive  of an a t t ack  by 

the X forces  aga ins t  ". As we have noted before,  one f requent ly  !mars 

i n  mi l i t a ry  c i r c l e s  t h a t  a three-to-one force  r a t i o  is required f o r  a  

successful  a t t a c k  aga ins t  an  enemy posi t ion.  Table 3.VI provides some 

theo re t i ca l  j u s t i f i c a t i o n  f o r  t h i s  well-known rule-of-thumb. We r e c a l l  

t h a t  our model (3.10.10) says t h a t  X w i l l  win i f  and only i f  the  

i n i t i a l  force  r a t i o  $/yo exceeds the c r i t i c a l  threshold value ~ d a / b .  

The values f o r  ~mi n  the. l a s t  column of Table 3.VI shows 

us t h a t  r e l o t i v r l y  minor-looking changes i n  the c o d at paraine t e r s  can 

change t h i s  c r i t i c a l  value by two hundred percent o r  so. We observe 



t h a t  Q 2 l y i e l d s  t h a t  xo/yG 4 impl lus  t h a t  Y w i l l  win. 

I n  o t h e r  words, i f  Y can a n n i h i l a t e  X i n  t h ~  c l a s s i c  F I F  b a t t i e  

( 2 . 2 . 1 1 ,  he w i l l  win t h i s  ana modellod by (3.10.10). Wreover  , t h e  

con ten t s  of Table 3.VT o r s  probably most f r u i t f u l l y  studied by the  reader  

r e f e r r i n g  back t o  p r o p e r t i e s  ( P l )  through (PS) of t h e  Q f u n c t i o n ,  

which fol low (3.10.23). Lee us  a l s o  no te  t h a t  f o r  tho  s i t u s t i o w  con-

s i d e r e d  by Table 3 . V I  the  breakpoint  f o r c e  l e v e l  (expressed a8 a f r a c t i o n  

of t h e  i u i t i a l  f o r c e  l e v e l )  and consequent ly  t h e  effect :  of a given 

c a s u a l t y  l e v e l  i s  g r e a t e r  f o r  an  a t t a c k i n g  u n i t  than f o r  a  defending one. 

This is because an  a t t a c k  normally r e q u i r e s  r a p i d  movement, good coordi-  

n a t i o n ,  and high o r g a n i z a t i o n a l  i n t e g r i t y  (see [ 7 ]  f o r  f u r t h e r  d e t a i l s ) .  

Le t  us f i n a l l y  n o t e  t h a t  t h e  q u a l i t a t i v e  behavior  of t h e  nonl.inea1 

combat model (3.10.10) is probably b e s t  understood by r e l a t i n g  i t  t o  t h a t  

f o r  t h e  l i n e a r  cdmbat model (3.10.1).  Thus, the  s imple  model (3.10.1) 

(equ iva len t ly ,  (2 .2 .1))  provides  an e s s e n t i a l  frame of r e f e r e n c e  f o r  

s tudying more complicated combat models. This f a c t  i s  t h e  reason why w e  

have s p e n t  so  much time examining t h e  s imple  m d e l  (2.2.1).  Moreover, 

t h e  non l inear  combat model (3.10.10) is j u s t  con 3l icoted enough s o  t h a t  

we apparen t ly  cannot express  t h e  timv s o l u t l - . .  ie .8 .  t h e  X f o r c e  l e v e l  

as a f u n c t i o n  of time x ( t ) )  i n  terms of "elementaryts f u n c t i o n s .  Further 

more, t h e  s t a t e  equa t ion  (3.10.13) is s o  complicated t h a t ,  f o r  example, 

f o r  v > O and f i n i t e  i t  is e s s e n t i a l l y  impossible  (except when v = 1)  

t o  s o l v e  f o r  y i n  terns of x. Never theless ,  w e  were a b l e  t o  e x p l i c i t l y  

p r e d i c t  b a t t l e  outcome i n  a l l  cases .  I t  was indeed somewhat s u r p r i s i n g  

t o  o b t a i n  a v ic to ry-pred ic t ion  cond i t ion  o f  t h e  form (3.10.22), i . e .  

s u r p r i s i n g  t o  o b t a i n  a s o r t  of "square l a w . "  We w i l l  now show t h a t  

t h i s  is a genera l  consequence BE combat dynamics of the  form (3.10.3).  

I.%".",.... I.' 



Srom (3.10.3) we obta in  t h a t  Y w i l l  win ( i n  f i n i t e  time) i f  

and only i f  

X
wbere f E  is a a t r i c t l y  increas ing  funct ion of X and i s  pos i t i ve  fo r  

x c ( I ~ , x ~ ] ,  and s i m i l a r l y  fo r  f:. Hencc, w e  have 

and 

However, an i n t e g r a t i o n  by pa r t s  y i e ld s ,  f o r  example, 

X
where F(fBp,BX) denotes a funct ion of only fgp and t h e  o ther  model X 

parameters OX,  and s i m i l a r l y  f o r  K1 wi th  assoc ia ted  funct ion G(fBp,ey).Y 

XI t  i s  r ead i ly  seen t h a t  F(fBp,eX) > 0 f o r  xgp < xo. Thus, i n  

general  f o r  the model (3.10.3) 



--- 
Y w i l l  win ( i n  f i n i t e  time) i f  and only  i f  . (3 .10 

0 
 BP 


This c e r t a i n l y  is an unexpected r e s u l t .  Moreover, i t  shows how int imately  

the  two combat models (3 .10 .1 )  and (3 .10 .3 )  are  r e l a t e d .  



3.11. GISS'a Model of Battle Tarmination. 


H. K. WEISS E241 has considered modelling the ending of a war .se a 

MARKOV process (more precisely, ao a contj.nuous-parameter W.RKOV chain (E 

Section 4.2)) and has reported fairly good agreement between his model and 


available historical war data. Subsequently, in his examination of combat 


data for the U. S. Civil War, WEISS [25] has also considered modelling 


battle termination as ti MARKOV process: every time that a side sustalne a 

casualty, its commander makes a decision as to whether or not to continue 

the battle. In other words, the basic idea behind WEISS's model of battle 


termination is that during a battle (as it progresses and casualties mount 


on both sides) each side considers only its own observed cumulative fraction 


loss to the moment of evaluation as the sole criterian for deciding whether 
-
or not to continue the battle. When a side has decided not to continue the 


engagement, it will abandon its mission and will try to break off the engage 


ment. Thus, WEISS's model generates a casualty-fraction-breakpoint distri- 


21
bution for each side. 


In other words, WEISS [251 has assumed that a side's own fractional 

loss (or casualty fraction) is the significant variable governing the battle. 


termination process. After introducing some necessary notation, we will 


develop WISS's model, which yields an exponentially-distributed casualty- 


fraction breakpoint for each side. In our development here, we will focus 


on just one of the sides engaged in combat. Let f denote the force's own 


fractional loss, 1.e. 


f = (the side's own fractional loss) 

= [(initial force level)-(current force level)]/(initial force level). (3, 



The following aseumptiona are made for WEISS'e model of battle termination: 


(Al) a side in contat considers only its own observed cumulative 


fractional loae (i.e. cumulative catmalty fraction) t o  the 


moment of evaluation as the sole criterion for deciding whether 


or not to continue the battle; when the aide has decided not to 


continue the engafiemant, it will abandon its miseion and will 


try to break off the sngagement, 


( A battle termination in the future is independent of what has 

happened in the past ( i . e .  independence of nonoverlapping 

casualty-fraction IntervaL), 


a side terminates the battle at the side has continued to 

casualty fraction between f fight until casualty 

and (f + AT) fraction i I 


Let 


P[side ffghts at least until caeualty fraction > fj 

wkere F(f) denotes the d.f. for the side's casualty-fraction breakpoint 


(Fc)Bp, i.e. F(f) = P[(FclBp 2 f 1. For notational convenience, let us 
-

denote P(t) as Q(f). Then assumptions (Al) through (A3)  and the usual 

conditional-probability arguments yield 




b I 

'. 
I 

q. !9, 
s i d e  f i g h t s  a t  leas1 u n t i l  

, I  c a s u a l t y  f r a c t i o n  > (f+Ai) 
\ 

\ '  
./ 

I s i d e  f i g h t s  a t  l e a s t  u n t i l  s i d e  does n o t  terminato  b a t t l e  1 
.Q c a s u a l t y  f r a c t i o n  > f between f and (f+Af) .l 

whence 

L e t t i n g  Af + 0, w e  o b t a i n  

When f 0 ,  we have 4(0)  = 1, s i n c e  it i s  c e r t a i n  t h a t  a  s i d e  ( i f  i t  doer 

i n i t i a l  t h e  b a t t l e )  w i l l  s u f f e r  some c a s u a l t i e s ,  i .e . ,  P l s i d e  f i g h t s  a t  

least u n t i l  c a s u a l t y  f r a c t i o n  > 01 = 1. Thus, assumptiol:i (Al) through (A3: 

y i e l d  t h e  fol lowing d i f f e r e n t i a l  equa t ion  f o r  t h e  b reakpoin t  complementary 

d . f .  

d9- LP -h(f )4  wi th  G(0) = 1 . (3.11.3)df 

Separa t ing  v a r i a b l e s  and i n t e g r a t i n g ,  we o b t a i n  



Since F(f) ia a dietribution function, we must have F(1) -
-

lim F(f) = F(l C 0) - 1 = 1 - F(l + 0). In other words, we must have 
f + 1 
f.1 


F(1 ,+ 0) 0. However, if h (f) in bounded for ail f E [0,1], ehen 
1 

J. 

@ (1) exp{- I X(f)df) > 0 so that in order for 4(f) to be a compleL 
0 


mentary d.f. we must somehow defhe 0(1 + 0) to be 0. In any case, 

assumption (A;) through (A:)) are not quite compatible with a casualty-

fraction-breakpoint distribution function for a continuou~ly-distributed 


brenkpoint. 
h e  way to obtain a distribution function is to take 


1 - exp{- I
A 

X(s)dul for 0 -< E < 1, 
0 


(Modification 1) F(f) = { (3.11.5: 

for f = 1. 

HELYtEOLD[lO] has given battle-autcome-prediction results for such 


exponentially-distributed break-points. However, the casualty-fraction 


breakpoint is no longer continuously distributed. Moreover, on .physical 


grounds, we must have P[casualty-fraction breakpoint 11 = 1, since a 

force cannot continue the battle (with probability one) once it has been 


annihilated. Another way to obtain a distribution function is to reacale 


F'(f) by the appropriate factor, namely 




However, the battle iermination process is not quite MARKOVIAN in this 

second case. When X(f) = constant, the above expressions for F(f) 

simplify to 

1 - e-X f , for O c f c l ,-
(Modification 1) ~(f)= 

1 for f = l , 

and 

(Msdif ication 2) 


It essentially does not matter which modified expression (i.e. eith 


(3.11.5) or (3.11.6)) we use when X(f)  2 5.0 for all f € [0,1], since 

then there is negligible difference between them and consequently approx 


mately the same battle-outcome-prediction tesul ts are to be obtained fro 


each. For example, in the case of a constant battle-termination rate X 


the expressions (3.11.7) and (3.11.8) differ by at most 0.007 near f = 

when X -> 5.0 (see-Section 3.8). In such cases, essentially the same 

battle-outcome-prediction results are obtained for either (3.11.7) or 


(3.11.8). and it is theref~re immateridl as to which we use. In his exa 

tion of cambat data for the U.S. Civil War, WEISS 1251 found that X -> 1 

for both sides for all types of battles, but HELMBOLD [lo, p. 391 has fo 

values of X < 1.0 for other sets of historical combat data. 

In summary, in this section we have examined WEISS's [25] battle- 


termination model. We have seen that: this particular model yields casua 


fraction breakpoints that are independent and exponentially distributed. 


We finally observe that a uniformly-distributed breakpoint corresponds 


to the case of "greatest uncertainty" in a side's engagement-terminatior 


process, i.e. the "met random" state of nature. 
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3.12. WEISS1s Model of Engagement Outcomes in the U.S. Civil War. 


As we have stressed above (E, for example, Section 2.8), the 

determination 3f battle outcome depends not only on the dynamics of comba 


(i.e. the modei of the force-attrition process) but also on the battle- 


termination process. Thus, in order to obtain a complete model of engage 


ment outcomes, one must add a model of force attrition to WEISS's above 


battle-terminarfon model. This program was in fact carried out by H. K. 


in his very interesting and significant paper [25]. From examining battl 


casualty data for the U.S. Civil War, WEISS [25] found that a F T ) ~  

attrition process was suggested for combat attrition. The data also sugg 


a variety of exponentiai breakpoint for each side. WEISS then explored t 


consequences of these assumptions and found that the available historical 


combat data for the U.S. Civil War was in fairly good agreement with thes 


hypotheses. Let us now examine his model in detail. 


In addition to assumptions (Al) through (A3) given in the above sect 

WEISS assumed that combat attrition was a FT~FT process in "meeting 


engagements" (i.e. battles other than assaults on fortified lines). For 


the reader's convenience we collect here all the assumptions for WEISS1s 


(251 model of engagement outcomes in the U.S. Civil War: 


(Al: a side in combat considers only its own observed cumulative 


fractional loss (i.e. cumulative casualty fraction) to the 


moment of evaluation as the sole criterion for deciding whethe] 


or not to continue the battle; when the side has decided not tc 


continue the engagement, it will abandon its mission and will 


try co break off the er~gagement, 




1 

(A2) battle termination in the future is independent of what has 


happened in the past (i.e. independence of nonoverlapping 


casualty-£ raction intervals) , 

a side terminates the battle the side has con-hued to 

at casualty fracrion between fight until casualty fraction 

f and (f + Af) 1 f 

(A4) for a given battle, the casualty-exchange ratio is constant, 


e.g. xc/yc = Constant where (for example) x denotes X's 
C 


22cumulative casualties. 


Now, assumption (A4) implies that for a given battle 


where, for example, fX denotes X's casualty fraction and 

C 

For a give9 battle. y is constant, but it may vary in a random fashion 


from battle to battle. In other words y is the realization of the 

random variable r and is realized before each battle. Accordingly, the 

modified $-function used for developing battle-outcome-prediction conditior 


is given by 


y t  for O ~ t ~ l / y ,  

$(tI = 

1 for 1/y 5 t . 



Thus, we can invoke a l l  t he  general results f o r  the lT.1FT a t t r i t i o n  

process with random breakpoints (E, f o r  mample, equations (3.8.6) 

through (3.8.10)). 

As we have seen above i n  Section 3.11, aesumlptions (Al) through (A3) 

imply t h a t  each e ide 'e  casual ty-fract ion breakpoint is  independent of the 

o ther  s i d e ' e  and has some type of exponential-l ike d i s t r i b u t i o n  (possibly 

with a va r i ab le  termination r a t e ) .  I n  o ther  words, t he  caeualty-fraction- 

breakpoint dis t r i iout ion,  f o r  example, f o r  X must be of the  form (E 

Section 3.11) 

f o r  s a l .  

Alterna t ive ly ,  we could have chosen 

We have already developed exact and approximate r e s u l t s  f o r  breakpoint 

Xd i s t r i b u t i o n s  of the form (3.12.5) with .lX(fc) = constant  = AX. However, 

we w i l l  now develop r e s u l t s  f o r  breakpoint d i s t r i b u t i o n s  of the form 

(3.12.4) (see a l s o  HELMBOLD [ l o1 ) . In t h i s  case,  -




WEISS [ 2 5 ]  found that the Civil War combat data is fit by the following 

f~nctional f o m  of (3.12.6) 


for O < s e l , 
-
(3.12.7) 


for s = 1 .  


far O e t < l ,-
(3.12.8) 

for t s l .  

A1 though 


with 


the battle-outcome-prediction results of Table 3.11 do not hold exactly, 


since the breakpoint distribution functionti are not continuous. 


23Using (3.12.7) and (3.12.8) to evaluate the STIELTJES integral 


(3.8.6), we obtain the following exact result for the probability that Y 

24
will win 
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X 

A,/ a, - ( U ~ X , + ~ , )  
1 - e  f o r  O ~ y < l ,  

+ l lu3 

P~ 
m 

AX/ hy 3-(hx+Xy/y 1 
(3.12*11) 

X x / A y  + l / Y  
3 1 - e  

3
-(xx+Xy/v 1

+ e f o r  1 < ~ ,  

? b x ,s o  t h a t  we s e e  t h a t  a good approximation t o  t h i s  e x a c t  r e s u l t  when 

> 5.0 is ( s e e  a l s o  Sec t ion  3.8).
Y - -

A 

where Py denotes  an approximate p r o b a b i l i t y  t h a t  Y wins. Let u s  a l s o  

compute t h e  average c a s u a l t y  f r a c t i o n s  from (3.6.101, namely 

3 3 
where u = Minimum(y ,1) . The s u b s t i t u t i o n  t = Ay + l / y  1s 

t r a n s f w m s  (3.12.13) i n t o  



where 


0 

31-113 I 
r ,-213 e-t dt . (3.12.16)S = -h-113~~x~~y
+ 1 1 ~3 Y 
9 


Observing that q 2 1 for AX, hY -> 1, up find that S has thd foll.owJ,ng 

bound for AX, Ay 1 


where X = Mininm('X h !. Thus, we have WEISS1s 1251 approximation for 
Y,' Y 


~
A X ,  h y 5.0 (here S < 0.0013) 

Thus, relatively simple approximate results are available for WEISS's model 


of engagextent outcones In the U.S, Civil War when Ax, A,z 5.0. 

Thus we have completed our examination of the theoretical basis of 

WEISS1s [ 2 5 ]  model of engagement outcctnes in the U.S. Civil War. The 

node1 is based on assumptions (All through (A4)  abave, which delineate the 

battle-termination process and the combat dynamics. We have subsequently 

deduced both exact and approximate results for the following quantities: 


(Ql) probability of winning, 


and (42) the average casualty f ractione. 




XP the nexc section, we will see how wEISS'~modal provides a thaorctic~l 

framework far analyzing ccmbat data fo,r  the U.S. Civil War. Furtllermore, 

sgreemnt between historical combat data and theoretical predictions by 


the model is reasonably good. 




3.13. WEISS1s Empirical Examination of Engagement Outcomes in the 


U. S. GiviS War. 


In a very significant (and now classic) paper [25], H. K. IdEISS has 


examined combat data on the U. S. Civil War to determine the extent to which 


it can be explained by simple mathematical relations, and he found some 


support (as well as problems) for such modelling. As we have seen above 


in Section 2.7, such attempts at empirical verification of LANCHESTER-type 


combat models have been rare. Such work is very important, however, since 


it may establish a scientific basis for combat modelling. 


WEISS1s Civil War paper should be considered to be the culmination 


of his work on LANCHESTER-type models of combat. This paper more fully 


develops ideas expressed in some of his earlier work 122-241; namely, 


empirical investigation of the applicability of LANCHESTER-type equations 


to real combat [22-231 and the modelling of battle termination as a MARKOV 


process [24]. WEISS [23, p. 841 had earlier pointed out that an important 


question for military OR is whether, on the average, the outcome of actual 


combat tends to follow the linear law (2.4.3) or the square law (2.2.5). 


Additionally, some type of engagement-termination m~del is-necessary for 


military analysis of combat (as we have repeatedly noted above). In [25] 


WEISS considered battle termination to be a MARKOV process: each time that 


a side sustains a casualty, its commander decides whether or not to continue 


the battle. He had previously used this type of model for the termination 


of a war. Additionally, WEISS1s investigations [24 - 251 are more or less 

the point of departure for HELMBOLD1s work. 


WEISS1s paper [25] began with a brief review of the overall character- 


istics of the U. §. Civil War with respect to the sizes of the forces in- 

volved, number of battles, total losses, and some distributional data on 


force ratios and casualty ratios. It then examined the applicability of 
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LANCHESTERt3 classic "combat laws." WEISS showed that a categorization 


of battles into "assaults on fortified lines" and "other battles" is 


significant. He then developed a mathematical relation between a aide's 


fractional loss and its ability to continue a battle, and he showed that 


this describes fairly well the probability of winning a battle as a functi 


of the relative casualty rates. The influence of fortification was 


demonstrated (although we will not examine it here). Finally, WEISS 


suggested some areas for future analysis. 


After a discussion of the sources, availability, and quality of 


combat data for the U. S. Civil War, WEISS [2S, pp. 765-7661 exeined data 

on force ratios in battles. Next, he examined the influence of the force 


ratio on the exchange ratio in order to establish the nature of the combat 


dynamics. WEISS sought to establish whether or not a simple form of 


LANCBESTER-type equations (i.e. LANCHESTER's classic combat formulations 


(2.2.1) and (2.4.1)) is consistent with the available historical combat 


data. Let us recall (z,for example, Table 2,XX) that LANCHESTER's 
Square Law b(xo - x ) =a(y0 - y 2) implies that the overall casualty- 

-exchange ratio should be inversely proportional to the "average" force 
ratio namely
--' 

-
where x = xO - x denotes X's casualties in the battle, x = (x +x ) / 2

C f 0 f 

denotes X's average force level, b represents X's fire effectiveness, 


-
and similarly for the Y quantities yc. y, and a. If combat were to 


obey LANCHESTER's Square Law, then we would expect the loss ratio to be 




-- 

s t r o n g l y  c o r r e l a t e d  wi th  t h e  f o r c e  r a t i o  (E WEISS [23, pp. 84-87]). Qn 

t h e  o t h e r  hand, LANCHESTER1s Linear  -Law b(xo-x) = a(yo-y) impl ies  t h a t  

t h e  c?verall  casualty-exchange r a t i o  should be independent of t h e  ( i n i t i a l )  -
f o r c e  r t i t i o ,  namely 

From an examination of a s c a t t e r  diagram (with  c o o r d i n a t e s  of c a s u a l t y  

r a t i o  and l o s s  r a t i o )  f o r  "all" b a t t l e s ,  WEISS ( 2 5 ,  p. 7681 found no 

apparent  c o r r e l a t i o n  of t h e  c a s u a l t y  r a t i o  wi th  t h e  f o r c e  r a t i o .  H e  then 

a g g c e ~ a t e d  b a t t l e s  i n t o  two c l a s s e s :  ( I )  " a t t a c k s  on f o r t i f i e d  l i n e s , "  

and (11) a l l  o t h e r  b a t t l e s ,  c a l l e d  f o r  convenience "meeting engagements." 

Figure 3.18 shows t h e  l o s s  r a t i o  p l o t t e d  a g a i n s t  t h e  i n i t i a l  f o r c e  

r a t i o  f o r  " a t t a c k s  on f o r t i f i e d  l ines . "  The d a t a  shows cons iderab le  

s c a t t e r  w i t h  no p a t t e r n  immediately d i sce rnab le .  Examination of b a t t l e s  

o t h e r  tnan a s s a u l t s  on f o r t i f i e d  l i n e s  (denoted by WEISS as "meeting 

engagements1') y i e l d  a  "more homogeneous p i c t u r e "  [ 2 5 ,  p. 7701, as shown 

i n  Figure  3.19. In  t h i s  f i g u r e  t h e r e  i s  no obvious c o r r e l a t i o n  between 

t h e  c a s u a l t y  r a t i o  and t h e  i n i t i a l  f o r c e  r a t i o ,  sugges t ing  t h a t  LANCHESTER', 

Linear  Law might: be j u s t i f i e d  here .  WEISS noted t h a t  t h e  " s c a t t e r  i n  

exchange r a t i o  from b a t t l e  t o  b a t t l e  amounts t o  on ly  a  f a c t o r  of two a t  

most." Hence, one is l e d  t o  p o s t u l a t e  t h a t  a t t r i t i o n  i n  C i v i l  War 

"meeting engagements" followed F T ~FT a t t r i t i o n ,  wi th  t h e  casualty-exchang 

r a t i o  xc/yc - a / b  being a  random v a r i a b l e  r e a l i z e d  before  each i n d i -  

v i d u a l  b a t t l e .  

WEISS [25 ,  pp. 770-7751 went on t o  examine d a t a  f o r  "meeting 

engsgements" i n  g r e a t e r  d e t a i l .  H e  found f o r  a somewhat l i m i t e d  sample 





Figure 3.19. Initial force ratioa and loss ratios in battles 


other than assaults on fortified lines for 


U. S. Civil War (from WEUS 1251). 



(28 battles in all) that the probability o f  winning was strongly related 

to the initial force ratio, AS shown in Table 3.VIf and Figure 3.20. 


Also shown as the smooth curve in Figure 3.20 is the function 


where P denotes the probability of n Union win and u = initial force 

ratio: Confederats/Union. WEISS also found that casualties tended t o  be 

about equal and the larger force tended to win. This suagested to him a 


combat nodel based on ability to continue fighting as a function of sustai 


fractional losses. The end result was WEISSts model for combat outcomes, 


which we have considered in the previous section. His model was based on 


the following empirical findines for "meeting engagements" in the U. S. 


Civil War : 

(Fl) the probability of winning appeared to be a strong function 


of the initial force ratio, 


(F2) casualty ratios were independent of which side attacked, or 


who won, or the initial force ratio, and they lay within the 


extreme values 0.46 and 2.33, 


(F3) on the average the loser sustained 15 per cent casualties; 


the winner, 12 per cent. 


The above is the motivation for WEISSts model of engagement out- 


comes, which we have studied in Section 3.12. The main information 


extracted by WEISS from his model was (1) the probabilities of winning, 


and (2) the average casualty fractions. WEISS estimated model parameters 


(the fractional loss ratio. y, and the battle-termination rates, A X  and A. 

from the combat data in the following fashions. He first estimated, 




TABLE 3.VII. Fraction of Union (X) Wins in " ~ o e t i n ~  Engagements" 


as a Function of the Initial Force Ratio for U.S. 


Civil War (from WEISS [ 2 5 ] ) .  

Fraction of Union Wins 
Initial F m c e  Ratio: Number 

of 50% Confidence 
Confsdcrate/Union Strength Cases Average Limits 



0 .  2 5  0 .  5 1. 0 2 .  0 4: 0 

Force Ratio, Confederate (Union 

Figure 3.20. Probability of  c Union win versus the i n i t i a l  force ra t io  for 

"meeting engagements" (28 bat t les )  i n  the U. S. C iv i l  War 

(from WEISS [ 2 5 3 ) .  



X 
f o r  example, ( fX)  = ? ( f  ) = PIX f i g h t s  a t  l e a s t  u n t i l  c a s u a l t y  

X c X c 

f r a c t i o n  > it] by doing t h e  following: 

X 
(TI) rank a l l  b a t t l e s  i n  o r d e r  of i n c r e a s i n g  ( f C I f ,  where 

X 
( f c I f  denotes  t h e  f r a c t i o n a l  l a s s  of X a t  t h e  time t h e  

b a t t l e  ended, r e g a r d l e s s  of who won t h e  b a t t l e ,  

X 
(T2) e s t i m a t e  p r o b a b i l i t y  of con t inu ing  b a t t l e ,  oX(fc) ,  from 

t h e  formula 

where 
X 

Ox = Ox[(f ) 1 der.otes t h e  observed oumber of b a t t l e s  
c f 

X 
t h a t  l a s t e d  u n t i l  ( f c ) f ,  No denotes  t h e  t o t a l  number of 

b a t t l e s ,  and L denotes  t h e  number of b a t t l e s  l o s t  by Y 
Y 

X a t  l e s s e r  va lue  o f  ( fc)  

X 
The e s t i m a t e  (3.13.4) f o r  @ (f  ) may be j u s t i f i e d  a s  fol lows.  I f  we X c 

f o r g e t  about Y l o s i n g  ( i . e .  Y dec id ing  t o  q u i t ) ,  then we would expec t  

(on t h e  average) * @  ( f X )  b a t t l e s  t o  con t inue  p a s t  f a .  However, No X c LY 
b a t t l e s  ended a t  l e s s e r  va lue  of f:, s i n c e  Y decided t o  t e rmina te  t h e  

engagement. I f  Y had no t  decided t o  t e rmina te  t h e s e  engagements, then  

X X *.u ( f  ) b a t t l e s  would hkve cont inued a t  l e a s t  u n t i l  fc .  I n  o t h e r  vords  L~ X c 

Y 
whence fol lows (3.13.4). We can s i m i l a r l y  e s t i m a t e  4~~ ( f f )  - Fy(fc)  

from t h e  formula 



I n  o t h e r  words, from t a b u l a t i o n s  o f  the  f i n a l  c a s u a l t y  f r a c t i o n s  (fa) 

Y

and i n  each b a t t l e ,  one can e s t i m a t e  v a l u e s  f o r  t h e  casua l ty -  

( f c ) f  

f ract ion-breakpoint  complementary d i s t r i b u t i o n  f u n c t i o n s  ~ ~ ( f : ) - ~ ~ ( f t )  

and my(f;) 
Y 

= Ty(fc ) .  

WEISS ( 2 5 .  p. 7781 p l o t t e d  ~ n ( l / @ )  a g a i n s t  f c  and found t h a t  

gave a good f i t  t o  t h e  d a t a  f o r  both  s i d e s  (seeFigure  3 .21) ,  a l though t h e  

f i t  could be improved by cons ider ing  d i f f e r e n t  f u n c t i o n s  f o r  t h e  two s i d e s .  

I n  o t h e r  words, t h e  C i v i l  War d a t a  suggested t h a t  f o r  "meeting engagements" 

and 

I-- k t 31 for o -< t < I , 
Py( t )  = (3.13.8) 

f o r  t m l ,  

-
where FX(s) - ~ ~ ( f : ), e k .  Consequently, f o r  "meeting engagements" i n  

t h e  U. S. C i v i l  War, b a t t l e  outcome may be approximately modelled by 

25 
(-s e e  Sec t ion  3.12) 

and 



Figure 3.21. Probability of continuing battle v;rsus lass fraction for 


"meeting engagemente" in the U. 8. Civil War (from UEISS 


I251). 



X Ywhere y = f c / f c  denotes t he  f rac t iona l - loas  r a t i o  ( a l so  r e f e r r ed  t o  

elsewhere a s  the %ormalizedl' i n i t i a l ,  force r a t i o ) .  WEISS [25 ,  p. 7801 

a l s o  subdivided t h e  b a t t l e  d a t a  by ranges of y, i .e .  ranges of t he  

f  r a c t  ional- loss  r a t i o  , i n t o  four  equal  groups and compared (3.13.9) and 

(3.13.10) with the  averages of the  d a t a  i n  each group. Resu1.t~ s r e  shown 

i n  Table 3.VIII. 

Thus, WEISS [25] developed a model of engagement outcomes i n  

t h e  U. S ,  C i v i l  War, and t h i s  model yielded t h e o r e t i c a l  p red ic t ions  t h a t  

were i n  f a i r l y  good agreement with t he  h i s t o r i c a l  c a t a .  Whether o r  not 

such a model i s  genera l ly  appl icab le  t o  modern warfare w a s ,  however, not 

decided by WEISS's i nves t i ga t ion  (and, indeed, i t  cannot be s o  decided).  

Moreover, WEISS c l e a r l y  s t a t e s  t h a t  t he  purpose of h i s  i nves t i ga t ion  [25 ]  

was t o  i nd i ca t e  some of the  f a c t o r s  uossibly involved i n  modelling combat 

operat ions and t o  s t imula te  fu r the r  research on t he  s c i e n t i f i c  study of 

warfare. WEISS1s work [25] provides many of the  ideas  upon which HELMBOLD'S 

inves t iga t ion  [10]of var ious breakpoint hypotheses i s  baeed. 

One f ina l  point ,  however, mer i t s  fu r the r  discussion,  and t h a t  is 

the  general  na ture  of s c i e n t i f i c  v e r i f i c a t i o n  of a combat model. The 

process is an i n d i r e c t  one i n  which we must deduce t e s t a b l e  consequences 

from the  modelling assumptions (or hypotheses). Furthermore, w e  can never 

"prove that a model is  t rue ,"  but we  can sometimes determine t h a t  a model 

y i e ld s  t h e o r e t i c a l  implicat ions ( i . e .  consequences) t ha t  a r e  a t  var iance 

with ava i l ab l e  empirical evidence. In  t h i s  case,  w e  should r e j e c t  the  

model a s  being untenable i n  l i g h t  of empir ical  evidence and seek a l t e r n a t i v e  

tenable  hypotheses. 
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TABLE 3 . V X I I .  Comparison of Hiatorlcal Combat Data with Model 

Re~ults for "Heeting tingagemente" in the U.S. 

Civil War (From WEISS (251) .  

-
Range of Y 0.22-0.69 0.70-0.79 0.80-1.11 1.12-2,78 

Average Y 0.73 3. .9I. 
0 a g 4  I 

Number of battles 7 7 

Fraction of Union (X) wins 0.79 0.57 


A 

PX from ave. Y [sq. (3.,13.9)1 

I IAverage Confederate ( Y l  fractional loss 0.37 , 0.19 

4 

from eq. (3.13.10) 

C 

NOTE: Model parameters, 1.e. AX = Xy = k, are estimated from same data f o r  

which the above comparison is made. 




3.1. HELMBOLD'S Empirical Investigation of the Validityof 


Breakpoint Hypotheses. 
-
Finally, we come to HEZJlBOLD's work 1101 concerning the scientific 


validity of a certain breakpoint hypothesis and several variants thereof. 


This work should be considered to be the extension and synthesis of earlier 


work by both H. K. WEISS [22-25 3 and HE;LMBOLD himself [a-93. HELMBOLD'S 

RAND repore[lO]is in our opinion probably the most significant piece of 


work on either the scientific aspects of modelling engagement termination 


or the scientific evaluation of the validity of combat models. 


This remarkable report first establishes a rather comprehensive 


theoretical framework for modelling englgement termination and then deduces 


testable consequences of the modelling hypotheses (i.e. the assumptions). 


These consequences are then compared with empirical evidence (i.e. historical 


combat data) to evaluate the model's scientific validity. HEWOLD found 


that his basic breakpoint hypothesis was at variance with empirical evidence, 


but he advanced no alternate hypothesis that he felt was satis:factory. 


Consequently, this fine work has apparently had little influence on the 


combat-modelling community . 
HELMBOLD'S work on madelling battle termination [lo] has greatly 


influenced this chapter. His theoretical treatment of modelling battle 


termination is both significant and interesting. Moreover, this work contains 


the germs of many ideas that sre significant in their own right (e.g. the 


approach used in Section 3.5 for developing victory-prediction conditionsz6). 


HELME3OEDts basic breakpoint hypothesis [lo] consisted of the follow- 

ing three assumptions* 


(Al) each side independently selects a breakpoint from a distri- 


bution of such breakpoints and gives up the ba&le when its 


casualty fraction reaches this breakpoint, 




(A2) t h e s e  breakpoint  d i s t r i b u t i o n  curves  a r e  g e n e r a l l y  

a p p l i c a b l e ,  

(A3) t h e  c a s u a l t y  f r a c t i o n s  of t h e  f o r c e s  a r e  d e t e r m i n i s t i c a l . 1 ~  

and monotonically r e l a t e d  t o  each o t h e r  v i a  t h e  $-funct ion,  

Y
i.e. f a ( t )  - $ [ f c ( t ) ) l  f o r  o 2 t 5 t f .  

How does one go about showing whether o r  not HELMBOLD'S breakpoint  hypothesis  

i s  t r u e 2 7 ?  This  t a s k  indeed appears  formidable ,  s i n c e  t h e  assumptions (Al) 

through (A3) do not  s p e c i f y  e i t h e r  (1)  a s p e c i f i c  breakpoint  d i s t r i b u t i o n  

f o r  each s i d e ,  o r  (2) a s p e c i f i c  $-function,  which r e l a t e s  t h e  two c a s u a l t y  

X Y
f r a c t i o n s  by - $ ( f c ) .  HELMBOLD has  overcome t h i s  d i f f i c u l t y  b r i l l i a n t l y :  

f c  

he  has  shown how observed c a s u a l t y - f r a c t i o n  distributions can be used t o  test 

t h e  breakpoint  hypo thes i s .  More p r e c i s e l y ,  HEEMBOLD (10, pp. 16-17] has 

shown how t h e  $-function and i t s  i n v e r s e  0-I may be determined from t h e  

c a s u a l t y - f r a c t i o n  c o n d i t i o n a l  d i s t r i b u t i o n s .  I n  o t h e r  words, one may e s t i m a t e  

$ and $ (denote  t h e s e  es t imated  func t ions  a s  $I and gl, r e s p e c t i v e l y )  

from a v a i l a b l e  h i s t o r i c a l  combat d a t a  by developing c a s u a l t y - f r a c t i o n  con-

d i t i o n a l  d i s t r i b u t i o n s .  

Having determined j and 4-I by HELMBOLD'S g r a p h i c a l  procedure.  

we may p l o t  t h e  es t imated  f u n c t i o n s  on a graph and s e e  whether o r  not  they 

a r e  indeed i n v e r s e  f u n c t i o n s ,  i . e .  whether o r  n o t  i s  a r e f l e c t i o n  of 

$4 i n  t h e  45 degree  l i n e  through the  o r i g i n  ( s e e  Figure  3.22). I f  4-
-$-I
and s a t i s f y  t h e  i n v e r s e  f u n c t i o n a l  r e l a t i o n s h i p ,  t h e n  t h i s  evidence 

would lend support  t o  HELMBOLD'S breakpoint  hypo thes i s .  I f  $ and 0-I 

do no t  s a t i s f y  t h e  necessary  mathematical r e l a t i o n s h i p  between i n v e r s e  

f u n c t i o n s ,  then HELMBOLD7s breakpoint  hypo thes i s  would be d e f i n i t e l y  d i s -  

proven. In  o t h e r  words, t h a t  6 and 4 - as developed from t h e  caaua l ty -  

f r a c t i o n  c o n d i t i o n a l  d i s t r i b u t i o n s  should be  i n v e r s e  f u n c t i o n s  is a t e s t a b l e  
, .. 



Figure 3.22. Inverse functional relationship that must 


hold between )(u) and (u) (from 


HELMBOLD (101). 



consequence of HELMBOLD'S breakpoint hypothesis (i.e. assumptions (Al) 


through 'A3) above), The validity of the breakpoint hypothesis may there- 


fore be tasted by seeing whether or not actual combat data has this inversg 


function property inherent in it. 


Let us now show how JI and $
-1 may be determined from the casual 

fraction conditional distributions. For convenience let us introduce the 


following notation for the casualty-fraction conditional distributions 


and 


Y 

AyX(t) = P[(Fc)f 5 t I X  wins] . 

It folluwa that 


since FX = $(F'). In other words, AXX and AYX have the same value for 
C C 


s and $J-~(s), respectively. We may similarly define A (t) and Am(s)

W 

and it follows that .~ 

Now suppose that we had a graphical plot of the observed casualty fraction 


for a set of battles won by X (chosen to be the attacker). Such a 


hypothetical plot is shown in Figure 3,23. Using (3.14.3) and a plot like 


that shown in Figure 3.23, we may graphically determine the estimated value 


of JI-'(s), denoted as $-'(a), by repeatedly determining $"(sl) for 




Figure 3.23. Use of hypothetical casualty-fraction 


distributions for battles won by 
"-1


(the attacker) to determine $I (s). 

X 



several. different given values of X's casualty frac:tion, s In a simi 

1' 

fashion, we may graphically determine $(t) from the.observed casualty- 


fraction distributions when Y wins. 


H E M O L D  [lo] also developed certain important relationships betw 


the casualty-fraction conditional distributions. These relationships pl, 


a key role in the testing of his breakpoint hypotheses. They are contail 


in the following two propositions (for proofs, seg HELMBOLD [ 9 ] ) .  

PROPOSXTION 3.14.1: If A=(u) = AW(u) and AyX(u) = AXI(u) 

then $ = $-' = I, where I denotes the identity function. 

e 


PROPOSITION 3.14.2: If $(s) 2 s for some s, then AW(s) 2 A, 

and A
XX 

(a) 2 An(s) . Conversely, if $(s) 5 s for some s tht 

+(s) 5 Am(.) and AXX(s) 2 Ayx(s). 

The first result (i.e. Foposition 3.14.1) says that if the winner and tt 


loser have the same casualty-fraction distributions (regardless of whethe 


the attacker X or the defender Y wins the battl'e), then the $-functi 

must be the identity function (i.c. fractional casualties are exchanged 


equally). The second result (i.e. Proposition 3.14.2) may be used to d e ~  


the possible types of relations between the casualty-fraction distributic 


(see 110, pp. 33-34]).-~ U ~ W X D  

HELMBOLD[lO] went on to test in the manner outlined above his 


breakpoint hypothesis by comparing the model's consequences (namely, that 


i-1
the graphically determined functions 1 and must satisfy the necea 

inverse functional relationships) with available combat data. H E W O L D  u 




s e v e r a l  s e t s  of empi r ica l  d a t a  on c a s u a l t y - f r a c t i o n  d i e t r i b u r i o n s  ic t h i s  

work: namely, 

(S l )  d a t a  from his e a r l i e r  empi r ica l  work (E HELMBOLD C8-9 1 )  . 
(S2) data e x t r a c t e d  from. BODART'S Krieus-Lexicon [ 2 ]  by WILLARD 

[26], as modified by SCHMIEMAN [161. 

Let us f i r s t  cons ider  HELMBOLD'S comparison of h i s  model wi th  t h e  d a t a  

Lase generated by h i s  e h r l i e r  work [8-91. Prom t h e  raw combat d a t a  ( i . e .  

t h e  i n i t i a l  and f i n a l  f o r c e  l e v e l s  f o r  t h e  a t t a c k e r  and t h e  de fender ) ,  

HELMBOLD obtained t h e  c a s u a l t y - f r a c t i o n  c o n d i t i o n a l  d i s r r t b u t i o n s  shown : 

Figure 3.24 (see HELMBOLD [lo, pp. 21-22] f o r  more d e t a i l e d  casualty-Era.cl 

d a t a ) .  The va lues  f o r  $(q) and $-'(q) r ead  g r a p h i c a l l y  from t h e  p l a  

of t h i s  f i g u r e  (according t o  t h e  procedure desc r ibed  above) a r e  p l o t t e d  

i n  Figure  3.25. From t h i s  l a t t e r  f i g u r e  w e  s e e  t h a t  $ and a r e  

c l e a r l y  no t  i n v e r s e  2unc t ioas ,  which i s  a  necessary  consequence of HELMBl 

breakpoint  hypothesis .  This  f a c t  is  s t r o n g  evidence a g a i n s t  t h i s  breakp 

hypothesis  being t r u e  (sese d i s c u s s i o n  above j . 
HELMBOLD [ l o ,  pp, 25-32] then performed t h e  same test wi th  a much 

l a r g e r  sample of combat d a t a ,  d a t a  e x t r a c t e d  from BODART's Kreigs-Lexico 

[ 2 ]  by WILIARD : 261 ( a s  modified by SCHMIEMAN [16]).  Be considered t h r e  

d i f f e r e n t  groupings o f  t h i s  d a t a :  (I) t h e  e n t i r e  set of 1080 b a t t l e s ,  

(11) Category X b a t t l e s  ( i . e .  "openn b a t t l e s  i n  t h e  sense  t h a t  both  s i d e  

could,  wi th  about  equa l  f a c i l i t y ,  disengage and conduct an o r d e r l y  with- 

drawal) ,  and (111) Category I1 b a t t l e s  ( i . e .  "closed" b a t t l e s  i n  t h e  s e  

t h a t  one s i d e  was e n c i r c l e d  o r  o the rwise  i n  a p o s i t i o n  from which an 

o r d e r l y  withdrawal could no t  be r e a d i l y  made, and whose o p t i o n s  f o r  mane 

were markedly mare r e s t r i c t e d  than those  o f  h i s  opponent) .  





Figure 3.25- Values of 6 and 6-' derived from 

Figure 3.24 (from HELMBOLD [ 101) . 
HELMBOLD's Figure 7 is our Figure 3.24. 




-- 

The overall BODART data showed [lo, pp. 26-26] that the dlstributio 


of the attacker's (i.e. X's) casualties when the attacker won is about 


equal to the distribution of the defender's casualties when the defender 


won; and it showed that the distribution of the defender's casualties when 


the attacker won is about equal to the distribution of the attacker's 


casualties when the defender won, i.e. 


and 


Proposition 3.14.1 says, however, that we should have 


and this consequence was contradicted by the empirlcal evidence. ilELMEOLD 

then examined data for only Category I battles and alsd data for only 


Category I1 battles and found further contradiction to the breakpoint 


hypothesis. 


Thus, HELMBOLD [1(31 fond that for all sf the data sets that he 

analyzed, $ and ' were clearly mutually inverse mathematical functic 

as required by his original breakpoint hypothesis (see Figures 3.25 and 


3.26). Consequently, this breakpoint hypothesis Is not tenable. However, 


instead of being inverse functions it appears that 






but that (3 .1 .4 .5 )  and (3.14.6) held, at least approximately, for all the 

data analyzed, HEZMBOLD[lo, p. 321 concluded that this latter empirical 


fact (i.e. (3.14.5) and (3.14.6) holding) was at the crux of the contradic 


of the breakpoint hypothesis by the available historical combat data. 


HEltMROLD 110, pp. 33-61] went on to consider some tentative modifi- 

catiovs of his original breakpoint hypothesis and discussed them in terms 


of the light they shed on the prospects for developing a theory that would 

satisfactorily explain the available combat data. His modifications m y  

roughly be stated as follows (see[lo] for Further details): 

(Modification 1) Use one $-function when the attacker (X) wins, and a 


different $-function when the defender wins. 


(Modification 2) Replace (A3) in HELMBOLD'S original breakpoint hypothesi 


by the following: the casualty fractions of the forces 


engaged in a given battle are related to each other by 


where y is the real.ization of the  random variable r, 

which is realized before each battle, and r is log- 


normally distrtbuted with mean zero and standard deviatj 


of 0.76. 


(Modification 3) Give up (A2) in HELMBOLD'S original breakpoint hypothes: 


and let the break ccrves depend on the class or type of 


battle that is under study. 




Each of them three tentative taodificati.ons was then shown by HELMBOLD 

to be unsatisfactory, lee. yield some consequence contradicted by the 


available conbat data. For example, Proposition 3.14.2 was used to show 


that the observed cusuaity-fraction distributions have shapes that are al 

variance with theoretPca1 predictions. HELMBOLD finally outlined the 


properties that -9 satisfactory theory of battle terminqtion should posse1 


All, the above versions of the breakpoint hypothesis violates some of 


HELMBOLD' s criteria. 
Thus, HELMBOLD'S principal finding(l0, p. v ]  was that _the break^ 

hypo_thesisyieldsdical implications thst,se at variance with& 


available battle termination data in several essential respects. He alsc 
-
discussed the properties of a satisfactory theory of battle terminatton 


brit did not. develop such a theory that could satisfactorily account for 


availabie data. HELMBOLD [lo, p. v]  felt that "until a better theoretics 

explanation of the bottle termination process becomes available, the soul 


ness of models of combat such as war games and computer simulations that 


make essential use oE breakpoint hy~otheses is suspect." Nevertheless, 


asssssment of the outcomes of tactical engagements does reqdre rhe use 


of some type of engagement-termination canditions (i.e. battle-rerminati 


model). We (and the rest of the military OR community) will continue to 


use our Breakpoint Hypothesis (E Section 3.2 above) untj.1 a better 

alternative comes along. 




--- 

FOOTNOTES for Chapter 3 


1. For example, the eminent military historian T. N. DuPUY [li] (aae 


also [61) has considered the outcome of battle to be gl.ven by the 

formula 


(outcome or result) 


= (mission accomplishment)+ (space effectiveness)+(casualty affect 

Hate we should take "space effectiveness" to mean "possession of the 


battlefield." There are, of course, difficulties in quantifying the 


above three concepts of mission accomplishment, etc. (one should 


"operationally" define them). Neverthel.ess, it is significant that 


historically it is unclear who was the "winner" for many battles. Hc 


ever, combat models, which-are aupposed to be representations of the 


real world, usually give &ire clear-cut results. This shortcoming, 


moreover, is not just limited t o  LANCHESTER-typr. models of warfare. 

2. In her classic and definitive study of the effects of casualties on 

combat effectiveness, D, CLARK [ 5 ]  has considered casualty and replac' 

ment data from the so-called morning reports of 44 infantry battalion! 


taking part in seven engagements in World War I1 !.n the European theai 


of operatiogs. In this rare empirical study, she considered the follc 

ing three categories of breakpoints:

-. -

I. attack + rapid reorganization -* attack, 

11. attack + defense, 

111. defense + withdrawilJ. by order to a quieter sector. 



The reader can probably appreciate the difficulties in quantifying 


such factors. 


4 .  Equivalently, for cases of no replacements and no withdrawals such as 

we consider here, we may consider the casualty level or casualty 


fraction. See HELMBOLD [lo, p. 7 1  for a discussion of the case with 

replacements. 


5 .  The selection of these three factors is motivated by the conclusions 

reached by D. CLARK [5, p. 3 and also p. 3 4 1 .  One might add the unit' 

tactical posture (e.g, attacking, defending in a prepared position, 


defending in a "hasty defense," etc.) to this list. 


6 .  Method B is apparently due to HELMBOLD [lo]. 

7 .  In practice this restriction is not as serious as it may at first see 

much more general victory-prediction conditions have so far been obta 


by Method B than by Method A. The reason for this situation is that 


the expression for a force level as a functioc of time may be very, 


very c,omplicated (and not expressible in terms of "elementary" 


functions). 


8. fie requirement that t be finite is absolutely necessary as an 


example given in Section 3.6 below shows (seealso Footnote 12) . 



-- 

A fourth category, defense -c coliapse, apparent.1~ had to be discarde, 


because ot data-base limitations. Thus, one might also call a "breal 


point" a "transition point" in the activities of a cdkbat unit. Sucl 


details are apparently not considsred in most current combat modelo 


whether they be aimulationa or firepower-score models. 


. -I 

3. D. CLARK (51  considered the following variables in her atudy of breal 

points: 


(Vl) casualties and net casualties (expressed as a percent) 


on day of breakpoint, 


(V2) cumulative casualties and cumulative net casualties (again, 


-
as a percent) 


(a) for day of breakpoint plus two preceding days, 


(b) from start of engagement to breakpoint._ 


She also briefly considered (subjectively) the possible effects of 


the fallowing eleven variables: 


(1) condition of troops at beginning of engagement, 


unusual environmental stresses, 


the imperative of the assigned mission, 


morale, 


leadership, 


tactical plan, 


reconnaissance, 


enemy opposition, 


fire support and reinforcement, 


logistical support, 


communications. 
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9 .  Although not  e x p l i c i t l y  s t a t e d  i n  D. CLARK'S [ S ]  s t u d y ,  a random-

breakpoint  model is suggested by h e r  d a t a  which showed wide v a r i a t i o  

i n  t h e  c a s u a l t y  percentage a t  which a u r l t  became combat i n e f f e c t i v e  e~ 

10. Usual ly ,  such a b reak  curve  r e l a t e s  t h e  p r o b a b i l i t y  t h a t  a f o r c e  

d i s c o n t i n u e s  t h e  engageaent t o  t h e  c a s u a l t y  f r a c t i o n  (e,f o r  examp 

HEEMBOLD [ lO] ) .  In  c a s e s  of no replacements  and withdrawals such as 

t h e  one a t  hand, t h i s  is,  of  c o u r s e ,  e q u i v a l e n t  t o  p l o t t i n g  the prob 

a b i l i t y  a g a i n s t  t h e  force-].eve1 f r a c t i o n ,  e .g ,  x,'xo. For our  purpo 

he re ,  i t  i s  more convenient  . t o  t a k e  t h e  fo rce - l eve l  f r a c t i o n  as t h e  

independent v a r i a b l e .  

11. Unlike our  Breakpoint  Hypothesis ,  HELMBOLD [ l o ,  p.  '71 assumes t h a t  t 

break curves  ( i , e .  b reakpo in t  d i s t r i b u t i o n s )  a r e  t h e  same f o r  a l l  b a  

" i r r e s p e c t i v e  of t h e  s i z e  of f o r c e s  involved o r  when, where, by whom 

o r  w i t h  what t h e  b a t t l e  w a s  fought."  H i s  Hypotheses A and B c o r r e s p  

t o  our  Breakpoint Hypothesis .  

12. This  is t h e  example t h a t  was r e f e r r e d  t o  i n  Footnote 8 above. Moreo 

t h e s e  equa t ions  a r e  a s p e c i a l  c a s e  of quasi-autonomous e q u a t i o n s  

d i scussed  i n  S e c t i o n  6.4 below ( s e e  -a l s o  TAYLOR and BROWN [21, Note 

13. B. 0. KOQPMAN (* MORSE and KIMBALL [14,  p.  651) a p p a r e n t l y  f i rs t :  
I 

observed t h a t  v a r i a b l e - c o e f f i c i e n t  equa t ions  f o r  a F I F  a t t r i t i o n  

process  wi th  a t t r i t i o n - r a t e  c o e f f i c i e n t s  of t h e  form ( 3 . 6 . 8 )  y i e l d  

such a square  law. Th i s  r e s u l t  was a p p a r e n t l y  l a t e r  independent ly  

d iscovered by H. K. WEISS [23 ,  p. 881 i n  a d i f f e r e n t  modell ing con te  



14. I). 0. KOGPMAN (~ee
-MORSE and KIMBALL [14, pp. 65-67]) apparently firs 

observed the important result that for a constant ratio of artrition- 


rats coefficients the, for example, X force level as a funct':.-m of 


time, i.e, x(t), takes a form no more compLicated than that for cons 

coefficients: namely, the result (3.6.13) is the same as (2.2.9) sxc 


for a transformation of the time scale. Subsequently, ISAACS [12, 

pp. 327-3281, FARRELL [4, pp. 180-1841, and TAYLOR [18. Appendix D; 1 


have inadvertently rediscovered rhio result in different modelling 


contexts (E also TAYLOR [20]). Solutions for special cases of (3.6 

had been givec earlier by BONDER [3]. 


15. The casualty-fraction conditional distributions have been used in 


HELMBOLD'S [lo] empirical investigation of breakpoint hypotheses. 


X
16. Here we have made use of the fact that P [ ( < ) ~ > pJ - PI(Fc)f 2 p] , 

since (<)f is a continuously distributed r.v. 


17. It should be noted that for (3.7.21) to hold we must have s = 1 

when t = 1. Furthermore, the results given in Table 3.11 apply for 

continuously distributed breakpoints. It does not appear that (3.7.2 


ever holds exactly in practice for continuously distributed break- 


points, although the results given in Table 3.11 are apparently uscsl 


excellent approximations to the exact results. 




18. HELMBOLD [lo, p. 791 has considered (in our notation), for example 

the d.f. 


for O c s < l ,  


for e = 1 , 

and consequently our results are not directly comparable to his, We 

-y


have chosen to "rescale" the distribution 1 --e by the factor 
-A s 


1 - e -Ax , i.e. set F (s) - (1 - e
X 


X 
)/(I 
- e ''1
 as given by (3.8. 


since we felt that results could consequently be more readily compare, 


with those of H. K. WEISS [25]. 


1.9. These approxtmations are not identified as such in WEISG's [25] paper 


however. Exact results for P P [ ( < ) ~ Z ~ ~ X 
Y' wins], etc. for 


distribution functions of the type discussed in Footnote 17 have been 


given by HELMtjOLD [lo, pp. 78-82]. Furthermore, WEISS [25] found thai 


for example, the functional form 


gave a good fit to combat data from the U. S. Civil War. He also four 


that k > 100 so that such an approximate complementary d.f. and an 

approximation like (3.8.22) d~ indeed yield results extremely close tc 


the exact ones. 




20. The h i s t o r i c a l  evidence about t h e  f r a c t i o n  of u o l d i e r s  who never f i r  

t h e i r  weapons repor ted  by S.  L .  A. MARSHALL 1131 suppor t s  t h i s  

hypothesis .  

21. HELMBOLD [ l o ,  pp. 68-69] has  shown how such a  c a s u a l t y - f r a c t i o n  h r e a  

po in t  d i s t r i b u t i o n  may be generated from t h e  c o n d i t i o n a l  p r o b a b i l i t y  

t h a t  a s i d e  wil l  f i g h t  a t  Least t o  a s p e c i f i e d  c a s u a l t y  f r a c t i o n  (f 

given t h a t  it  has  fought t o  a given c a s u a l t y  f r a c t i o n  f ,  i.e. 

s i d e  w i l l  f i g h t  a t  l e a s t  a i d e  has  fought t o  1
t o  c a s u a l t y  f r a c t i o n  ( t+h)  c a s u a l t y  f r a c t i o n  f 
= X(h,f) . 

Thus, a break curve may be developed from a cont inuous  model of d e c i  

behavior  i n  which a  s i d e  observes  h i s  f r a c t i o n a l  l o s s  and then d e c i d ~  

a MARKOVIAN fash ion  whether o r  n o t  con t inue  f i g h t i n g .  

22. Thus, t h e  normalized exchange r a t i o  (or  f  r a c t i o n a l - l o s s  r a t i o )  r , 
X Y


def ined  by I' * f c / f c ,  is a random v a r i a b l e ,  which w e  may cons ider  

t o  be  r e a l i z e d  ( i . e .  r = y) b e f o r e  3 given b a t t l e .  Th i s  a s p e c t  w a s  

no t  e x p l i c i t l y  s t a t e d  by WEISS [251 ,  and subsequent ly  HELMBOLD 

[ l o ,  pp. 50-581 has  given the  model a more c a r e f u l  examination.  Our 

d i scuss ion  here ,  however, fo l lows WEISS [25] .  

23. Techn ica l ly  speaking,  t h e  STIELTJES i n t e g r a l  (3.8.6) does no t  e x i s t  

when y = 1, s i n c e  both in tegrand  and i n t e g r a t o r  a r e  d i scon t inuous  a t  

the same p o i n t  (seeAppendix B f o r  a f u r t h e r  d i s c u s s i o n ) .  



24. Strictly speaking, the probability given by (3.12.11) is a conditiont 


probability depending on the realization of the random variable i',' 


1.e. P[Y will winJr y ]  . Then, the unconditional probability that 

Y will. win is given by 


This point is not explicitly stated in WEISS's paper [25 ]  in which 

P[Y will win1 r 1 y ]  as given by (3.12.11) would be imprecisely denc 

as Py. However, to make WEISS's paper 1251 accessible to the reade 


we have nevertheless chosen to overlook the fact that, for example, 


(3.12.11) and (3.12.18) are actually conditional results (see 

HELMBOLD [lo, pp. 50-511 for a later and further discussion of this 

point). 


25. Strictly speaking, these results are conditioned on a given realizal 


of the random variable I'. WEISS does not note this point, and the 


expressions (3.13.9) and (3.l3.1Oj are the ones actually given by h: 


in (251. See also Footnote 24 above. 

26. HELMBOL3's 1101 statement of a general principle for developing 


victory- re diction conditions (see,for example, our Proposition 3. 

is incomplete, however. In order for it to be entirely correct, an 


addditional condition must be added, namely (for the situation con- 


X
sidered by Proposition 3.5.1) that tBp muse be finite. 



27 .  Actually, one cannot. "prove" that HELMBOLD'S [ l o ]  breakpoint hypoth 

i s  true, but one may b e  able to  show that the hypothesis i s  a t  vari 

w i t h  available empirical evidence (and hence untenable). 
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U P F J D I X  B: 1?1B PROLARlLIW THAT OtTE RANDOM VARIABLE 

I9 LESS THM ANOTHER 

Introduction.1. -----
Aa we hove d i ~ c u s s a d  i n  Section 3.3 above, many t i m e ~  er m i l i t a r y  operat i  

anelyat  would like t o  have battle-ourcorn-predicrion condieione f o r  varioue t: 

of t a c t i c a l  engagements. I f  the  combat model of such a t a c t i c a l  s i t u a t i o n  is 

simple enough, then one may indeed be ab le  t o  develop e x p l i c i t  battls-outcome- 

predic t ion  conditions.  Such a n a l y t i c a l  r e s u l t s  a r e  ,gery useful f o r  developinr 

i n s i g h t s  i n t o  the  dynamics of combat, When there  are random e f f e c t s  i n  the  

combat model, developing cuch battle-outcome-prediction condit ions usua l ly  

involves,  i n  one way or another ,  determining the  p robab i l i t y  t h a t  one randcm 

va r i ah l e  i s  l e s s  than another t h a t  is  s t a t i s t i c a l l y  independent of the f i r s t .  

One such case t h a t  we considered i n  Chapter 3 was t h a t  of determining 

the  probabi l i ty  of winning a b a t t l e  modelled with de te rminis t ic  a t t r i t i o n  and 

random breakpoints.  Another is  t h a t  of detemdning the outcome of a duel  

between two individual  weapon systems, cf. the theory of s tochas t i c  dua l s  [ I ]  

I n  the  l a t t e r  case,  the  probabi l i ty  of winning the  duel is equal t o  the psoba 

b i l i t y  of t he  d u e l i s t  having the  smaller of the two times to k i l l  a passive 

t a rge t .  In fact, determining the  d i s t r i b u t i o n  of combat outcomes f o r  almost 

any s tochas t i c  combat model w i l l  invar iab ly  involve aome type of p robab i l i t y  

t h a t  one random va r i ab l e  i s  l e s s  than another independent one. Although t h i ~  

is c e r t a i n l y  not  the  moat general case poss ib le ,  i t  dues correspond t o  t he  

only one considered i n  the l i t e r a t u r e ,  and consequently for  our present pux-

poses i t  s u f f i c e s  t o  consider the  case of two independent random var iab les .  



2. Bas ic  Theory. 

Consider two independent rnndcm v a r i a b l e s ,  denoted a s  S and T. 

(JUJESTIOB: What i s  t h e  p r o b a b i l i t y  t h a t  S is  l e a s  than  T, i . e .  

P[S < TI7 

Before answering t h i s  ques t ion ,  l e t  us in t roduce  80mp! necessa ry  n o t a t i o n .  We 

denote tlre d i s t r i b u t i o n  f u n c t i o n  (d . f . )  of  t h e  random v a r i a b l e  ( r e v . )  S ,  

a l s o  f requen t ly  c a l l e d  t h e  cumulative d1stribut:Lon f u n c t i o n  (c .d .S. ) ,  as 

F ( s ) ,  i . e .S 

and s i m i l a r l y  f o r  FT( t ) .  When t h e  random v a r i a b l e  S is  cont inuous ,  i . e .  FS(s 

i s  A coat inuous  func t ion ,  t h e n  t h e  d . f .  may be expressed i n  terms of a p r o b a b i l i  

d e n s i t y  f u n c t i o n ,  denoted a s  fS(sZ ,  i .e.  

-
Also, we w i l l  denote t h e  corresponding complementary d.  f .  a s  F~ (9) , i .e .  

-
FS(s) - P[S  > s] = 1 - FS(s) .  When S is cont inuous ,  then 

To develop an express ion  f o r  P[S.: TI, w e  f i r s t  cons ider  t h e  p r o b a b i l i t y  

t h a t  t h e  r .v .  T i s  g r e a t e r  than a given r e a l i z a t i o n  s of t h e  independent 

r .v .  S. Hence, we cons ider  (seeFigure  B.l) 



Shaded oren ie 

Figure B . 1 .  The probabi. l ity that  one random var iab le  

is greater  than a g i . ~ e n  r e a l i z a t i o n  of 

another independent random var iab le ,  



thc  last e q u a l i t y  on t h e  r ibht-hand e i d a  of (B.1) holding by t h e  aesumed 

tndnpendeacc of S and T. Then, uncondi t ioning [ i .  e. "averaging" t h e  above 

c o n d i t i n n e l  p r o b a b i l i t y  (B.1) over  " a l l  p o e s i b l e  v a l u e s  of x"], we have 

P[S < TI = 1 P[S <. T(S = s I e P [ s  < S 2 8 + de]  
n l l  p o s s i b l e  
values of  s 

Thus, 

which ho lds  f o r  any two independent random v a r i a b l e s .  When t h e  random 

v a r i a b l e  S is cont inuous ,  t h e  above becomes 

One can a l s o  show ( e i t h e r  by i n t e g r a t i n g  ( ~ . 2 )by p a r t s  o r  by using f i r s t  

p r i n c i p l e s )  t h a t  

Thus, w e  observe t h a t  when one of t h e  r . v .  is continuous,  t h e n  P[S c T] a 

P[S 2 TI.  I n  summary, we have found t h a t  f o r  two independent random v a r i a b l e ]  



Another caee  of cons iderab le  i n t e r e a t ,  which i s  a g e n e r a l i z a t i o n  o f  thc 

above, is  t h a t  i n  which we have a f u n c t i o n  of t h e  random v a r i a b l e  T, danotc 

h e r e  a s  $(T). Again, we assume t h a t  t h e  random v a r i a b l e e  S and T are 

independent.  We now seek t o  determine t h e  p r o b a b i l i t y  t h a t  S c +(T) ,  name: 

P[S < $(T) ] .  We assume t h a t  $ h a s  a well-defined i n v e r s e  func t ion ,  denote1 

a s  $I-'. Replacing T by $(T) i n  t h e  above development, w e  have 

P C P [ $ - ~ ( s )  c T I S  = s ] * P [ s  < S -< s + d s l  , 
a l l  p o s s i b l e  
va lues  of s 

by v i r t u e  of t h e  assumed independence of S and T. A l t e r n a t i v e l y ,  we may 

PIS < $(TI1 = 1 P[S < $(T) I T  = t ]  * P [ t  .c: T 5 t + d t ]  , 
a l l  p o s s i b l e  
va lues  of t 

s i n c e  FT( t )  is continuous from t h e  r i g h t ,  and t h e  in tegrand  P[S < $(T) I T  
a s  a f u n c t i o n  of t must be  continuous from t h e  l e f t  a t  p o i n t s  of d iscont ix  

of FT( t )  (1.e. P[S < $ ( T ) ~ T= t ]  = P[S 2 $ ( T ) [ T  = t ] )  i n  o r d e r  f o r  t h e  

STIELTJES i n t e g r a l  t o  e x i s t  (seeAPOSTOL [2,  pp. 212-2131). 

Thus, f o r  s - $ ( t )  such t h a t  $ is  w e l l  de f ined ,  w e  have shown d 



3. P r o b a b i l i t y  of Winning B a t t l e  with De te rmin ia t i c  A t t r i t i o n  and Random 

Breakpoints .  

I n  t h i e  s e c t i o n  w e  apply the  above b a s i c  theory t o  develop equa t ions  

(3.7.5) and (3.7.8) of Chapter 3. Consider combat between two homogeneoue 

f o r c e s ,  denoted as X and Y .  A s  i n  Chapter 3, Let FX(s)  denote t h e  d . f .  

f o r  X's c a s u a l t y - f r a c t i o n  breakpoint  (a r .v. ) ( e l B p ,  i.e. 

and s i m i l a r l y  f o r  Fy ( t )  . For convenience l e t  us  denote  (<),p simply a s  

Y
S and (Fc)Bp as T. Then, equat ion (3.7.4) of Chapter 3 r e a d s  

'. 
= P[Y w i l l  win] = P[S < $(T)]  , (1

P~ 


where $(t) denotes  t h e  " t runcated"  9-funct ion,  i . e .  $ ( t ) = Minimum[cp(t),l 

and 9 i s  t h e  s t r i c t l y  i n c r e a s i n g  func t ion  t h a t  r e l a t e s  t h e  combatants'  cam 

X Yf r a c t i o n s ,  i . e .  f c  = p ( f c ) .  A s  d i scussed  i n  Sec t ion  3.7, $-' is then w e l l  

Y

defined.  Assuming t h a t  ( f ) g p  and (Fc)Bp a r e  independent,  we can combin' 

(B.8) and (B.9) t o  f i n d  t h a t  

s ince .  f o r  example, dFX(s) = 0 f o r  s < 0 o r  s > 1. Equation (8.10) appe. 

i n  Chapter 3 a s  (3.7.5) and (3.7.8). 



1 

4 .  Probabi l i ty  That Next Casualty i e  of a Given Type i n  Ha t t l e  with Ran& 

Occurring Caeulat ies  (Includes Stochast ic  Duels). 

Other appl ica t ions  of the above baelc  theory occur i n  the  theory of 

s tochas t i c  duels  (mANCKER [ I ] )  and a l s o  f o r  MARKOV-chain versions of 

LANCHESTER-type combat models (e8ROWN [3] ,  SMITH [ 4 ] ,  o r  Chapter 4).  

w i l l  consider t h e  spec i a l  case i n  which the  t h e e  between caeua l t i e s  a r e  

exponentially d i s t r i bu ted .  

Again, w e  consider combat between two homogeneous forces ,  denoted a1 

and Y. Let S denote the  time t o  the  next X casua l ty  and T denote 

time t o  the next Y casual ty.  Then 

P[next casua l ty  i s  an  X casua l ty]  = P[S < TI . 

We w i l l  assume t h a t  S and T a r e  independent. This assumption i s  the 

one made i n  t he  theory of s tochas t i c  due l s  and i s  also well  known t o  hold 

such MARKOV-chain a t t r i t i o n  models. I f  the  times 'between casualties' a r e  

n e n t i a l l y  d i s t r i bu ted ,  i . e .  S -- e(AS) and T - e(AT) where S '-' e(AS) 

t h a t  "S is exponentially d i s t r i bu ted  with parameter ASff  (namely, 
-Ass 

P [ s <  S = s + d s ]  = A e d s  f o r  s 1 0), then i t  follows t h a t  f o r  s >S 


and 

Hence, by ( ~ . 3 )we have 



Thus, for times between events (i.e. casualties) being exponentially distribl 


we have 


As
P[next casualty is an X casualty] = A + AT , 
S 

where AS denotes X's casualty rate and A denotes Y ' s  casualty rate. 
T 
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Chapter 4. SMCUSTIC LANCHESTER-TYPE COMBAT MODELS 

4.1. Introduction. 


Combat is anything but o deterministic process. Military history 

gives us innumerable examples of random effects (or just plain luck) pl, 


ing R mjor role in warfare. Why, then, have we been considering only 

tarministic combat formulations so far in this book? The reason is qui 

simple: although there fa no mathematical difficulty in formulating stc 


chaetic LANCHESTER-type combat models, it is very difficult to obtain 


information about the dynamical behavior of the tuodel (e. g. to answer qt. 

tione like questions (Ql) through (47) posed in Section 2.2 above). Fur 


themre., although random effects may at first appear to be significant 


in combat, we feel that for many combat situations the "first order" (or 


primary) nature of the combat dynamics may be observedt in a deterministi 


model, with the random effects usually being secondary and qualifying th 


"first order" behavior observed in the deterministic mode:. 


Many times, however, a deterministic aodelmay be a very bad repre 


sentation of random combat phenomena and may yield misleading insights 


into the dynamics of combat. Thus, there is a greatly enhanced value to 


deterministic formulations of the combat attrition process when properly 


interpreted within the framework of more comprehensive stochastic models 


(including Monte Carlo simulations) . In fact, the "empirical" es timatior 

of WCIIESTER attrition-rate coefficients (for a deterministic combat 

model) from high-resolution Monte Carlo simulation or field experimentati 


data can be based on a stochastic model of the combat attrition process. 


LANCHESTER himself had in the back of his xuind that the true nature 


of combat was stochastic and that his simple deterministic differential- 


equation modelo were only approximations (valid to some extent for large 


388 




numbera of combatants) t o  t he  average, o r  mean, =ours@ of b a t t l e .  Con-

s ide r ing  the  decay of the  force  l e v e l s  ;In cumbat, LANCUSTER [56, p. 422 

column 31 sa id ,  

"Since the  forces  a c t u a l l y  cans ie t  of a f i n i t e  number of u n i t s  

( inatead of an i n f i n i t e  number of infiniCesimtrl u n i t s ) ,  the end 

of the curve must show discont inui ty ,  and break o f f  abrupt ly  when 

the  l a s t  man is reached; the law based on average8 ev ident ly  does 

not hold r i g i d l y  when the  numbers become small." 

Thus, WJCHESTER s t a t e d  t h a t  h i s  determinis:ic d i f fe ren t ia l -equat ion  made 

were "based on averages," implying an underlying s tochas t i c  process.  Fur 

thermore, a s  the above quotation shows, he r ea l i zed  tl tat  such determinis t  

d i f f e r e n t i a l  equations may y i e ld  good approxSmations t o  t h e  mean of the 

underlying s tochas t i c  process only when the  force  s i z e s  a r e  "large." W e  

should therefore  view deterministic LANCBESTER-type equations a s  repre- 

sen t ing  (in. some sense) t h e  mean o r  expected course of b a t t l e  and view 

them somewhat skep t i ca l ly  f a r  "small" numbers cf combatants. 

During World War 11, B , 0 ICOOPMAN (seeMORSE and Z C Z M B ~ ~[65,  

pp. 67-71] extended LANCHESTEB's i 5 d j  reauies  aacl 6eveLoped s tosbast i :  

vers ions  of LANCHESTER's o r i g i n a l  models, hWch we have considered above 

in Chapter 2. Marry o the r  workers have subasquennt:ly eansiclered a ~ t o c h a s t  

1
ana lys i s  of combat a t t r i t i o n .  

There a r e  many zandddm f a c t o r s  present on the  battl lefio,ld i n  cam-

bat .  W e  can improve the  real ism of WCHESTER-type models by including 

random va r i a t ions  in t h e  following: 



(U) t he  a t t r i t i o n - r a t e  c o e f f i c i e n t s  ( they may be random va r i ab l  

t h a t  a r e  r ea l i zed  before  t h e  engagement begins) ,  

(R2) the  enemy's i n i t i a l  fo rce  l e v e l  ( t h e  exact  numerical s t r eng  

of t h e  enemy is  usua l ly  unknown a t  the  beginning of a b a t r l ,  

f o r  i t ,  i . e .  random i n i t i a l  condi t ions f o r  the  enemy), 

(k3) t he  breakpoints ( i . e .  random stopping mechanism), 

and (R4) t he  occurrence of c a s u a l t i e s  (but a t  spec i f ied  r a t e s ) .  

I n  t h i s  book, however, w e  w i l l  consider only random v a r i a t i o n s  i n  t he  0 1  

currence of c a s u a l t i e s  over time. Moreover, t h i s  is apparent ly  t he  onl: 

source of random e f f e c t s  t h a t  has  s o  f a r  been considered in the  combat- 

modelling l i t e r a t u r e .  

A s  we w i l l  see i n  t h e  next  s ec t i on ,  i t  is  a simple t a sk  t o  fomuL 

s t o c h a s t i c  vers ions  of any p a r t i c u l a r  de te rmin is t ic  LANCHESTER-type mod( 

However, there  i s  usua l ly  a t  l e a s t  an order  of magnitude more d i f f i c u l t :  

i n  a n a l y t i c a l l y  ex t r ac t i ng  information from such a s tochas t i c  model t h a ~  

in  ex t r ac t i ng  the  analogous information from a corresponding determinis:  

model. Fortunately,  t he  behavior of t h e  de t e rmin i s t i c  model is a good 

2
guide f o r  studying and descr ibing t h e  behavior of a stochastic: vers ion 

of t h i s  model. Thus, we should view thc de t e rmin i s t i c  r e a u l t s  a s  a benc 

mark, a point  of departure  f o r  discussing s tochas t i c  r e s u l t s .  

In  other  words, we should ask ourselves ,  ''How do random f luc tua t ic  

In the  occurrence of casualties,  modify t he  de te rmin is t ic  r e s u l t s ? "  Thir 



appears to be a reasonable approach for studying probabilistic combat 


dynamics, and i.t is the one that we will follow. Accordingly, in Section 


4.4 below, we will discuss what information should be obtained from the 


model. Basically, we seek answers to probabilistic versions of questions 


(Q1) through (47) posed in Section 2.2 above. Typical quantities of fn-


terest are now expressed in probabilistic terms, e.8. 


(1) the probability of winning, 


(2) the average force levels as a function of time. 

Aa G. CLARK [16] has emphasized, the deterministic and stochastic 

models are related, since the deterministic model should represent the mea 


or expected course of battle. Moreover, an analysis of the stochastic 


formulations is useful in understanding the impact of random fluctuations 


in the occurrences of casualties upon the outcome of battle. It is also 


useful for interpreting the deterministic model in the sense that it can 


reveal how accurately the deterministic node1 approximates the expected ou 


come of a more general stochastic combat process. 




4.2. P robab i l i s t i c  Dynamic Models. 

I n  t h i s  chapter we w i l l  s tudy a p robab i l i s t i c  version ( i n  which casu- 

a l t i e s  occur randomly over time) of t h e  LANCHESTER-type equations f o r  com- 

3ba t  between two homogeneous forces  . Extension t o  combat between heterogeneous 

f orcee f0110- along obvioua l i n e s .  

We begin by f i r s t  considering a determinis t ic  combat-attri t ion model 

and then develop its e tochas t ic  analogue i n  which t h e r e  a r e  random fluctua-  

t i o n s  i n  t he  occurrences of ca sua l t i ee  over time. Let us  t he re fo re  consider 

combat between two homogeneous forces  dercribed by t h e  following de terminis t ic  

LANCHESTER-type equations f o r  x,y > 0 [ t he  f i r s t  equation, f o r  example, 

becomes dx/dt  = 0 f o r  x - 01 

where x ( t )  and y ( t )  denote t h e  X and Y force  l e v e l s  a t  time t ,  and 

G and H denote force-chqnge r a t e s  (with a negat ive force-change r a t e  

s ign i fy ing  a ne t  i n f lux  of replacements). For s impl ic l ty  we assume t h a t  

there  a r e  no replacements and withdrawals; and, i n  t h i s  case,  G and H a r e  

simply casua l ty  r a t e s .  This 5Pmple combat s i t u a t i o n  is shcwn diagrammatically 

i n  Figure 4.1. 

The above equations (4.2.1) are a de terminis t ic  dynamic model of corn-

. , .  bar between two homogeneous forces.  I n  t h i s  model 

t = "time" parameter 
4 

x,y = s t a t e  va r i ab l e s  . 



Figure 4.1. Combat between two homogeneous forces with 


no replacements and no withdrawals. 




Both the time parameter and the s t a t e  va r i ab l e s  axe taken i n  (4.2.1) t o  be 

nonnegative r e a l  numbers. It is i n t u i t i v e l y  appealing t o  model time a s  a 

continuous va r i ab l e  ( i . e .  a va r i ab l e  t h a t  can take  on a continuum of values: 

although many times i t  is more convenient ' to consider the  evolut ion of a 

dynamic system a t  only d i s c r e t e  po in t s  i n  time and t o  consider  t i m e  as a 

d i s c r e t e  var iab le .  

I n  c h o ~ s i n g  t o  use a de t e rmin i s t i c  model such a s  (4.2.11, we have 

f o r d  i t  convenient t o  represen t ,  f o r  example, t h e  i n t e g r a l  number of 

combatants ( i .e .  phys ica l ly  t h e  X fo rce  l e v e l  can only b e  a nonnegative 

in teger )  wi th  t he  r e a l  number x ( t ) .  In o ther  worde, although w e  know i t  

r e a l l y  i s n ' t  t r ue ,  we consider  t h a t  t he  fo rce  l e v e l s  are continuous variablc 

This  is a compromise t h a t  one must f requent ly  make i n  order  t o  use a differc  

equation model (which here  h p l i e s  d i f f e r e n t i a b i l i t y  of  t h e  f o r c e  l e v e l s )  

t o  represen t  t he  evolut ion of a dynamic system. We i n t u i t i v e l y  f e e l  t h a t  

t h i s  is a "reasanable" i d e a l i z a t i o n  f o r  "large" force  l e v e l s ,  and we should 

bear  i n  mind t h a t  a l l  models involve such abs t r ac t i ons  (see Sect ion 1.L. 2 

f o r  f u r t h e r  d i scuss ion  of t h i s  point) .  

Thus, w e  seek a p r o b a b i l i s t i c  vers ion  of t h e  above de t e rmin i s t i c  

IAN(=EIESTER-type model (4.2.1). Such a model is c a l l e d  a MARKOV process ,  

s i nce  t h e  p robab i l i t y  of any p a r t i c u l a r  f u t u r e  behavior of t h e  process i s  

e n t i r e l y  determined by t h e  present  state. More formally,  we have t h e  fo l -  

lowing d e f i n i t i o n  of a MARKOV process ( fo r  fu r the r  d e t a i l s ,  see PARZEN [691 

o r  WIN[ 441 : 

DEFINITION 4.1: A random process is  c a l l e d  a MARKL)V process 

when there  is  no dependence on pas t  history; the future 

p r o b a b i l i s t i c  behavior of t h e  system depends s o l e l y  on i ts  

cu r r en t  s t a t e .  

X 



I n  f a c t ,  the  concept of A MIURlKOV process was developed t o  be a p r o b a h i l i s t i  

analogue of a de t e rmin i s t i c  process modellad by d i f f e r e n t i a l  equat ions l i k e  

5
(4.2.1). 

Depending on how trw model "time" and t h e  system s t a t e ,  t he re  a r e  d i f -  

f e r e n t  types of MARKOV processes which we can use t o  model a dynamic oys- 

tem. It is t he re fo re  convenient t o  c l a s s i f y  MARKOV processes according t u  

[69, p. 1881 

(Cl) t he  na ture  of t h e  "time" parameter (whether i t  is a d i s c r e t e  

o r  a continuous v a r i a b l e ) ,  

(C2) t h e  na ture  of t h e  state space of t h e  process.  

Such a c l a s s i f i c a t i o n  is  more o r  less t h e  s tandard one. 

Thus, we Rave a choice of t h e  type of p r o b a b i l i s t i c  vers ion  t o r  (4.2.. 

t o  consider.  Of all the  d i f f e r e n t  types of MARKOV processes  i n  Figurc 

4.2, it  is  easiest t o  e x t r a c t  t h e  information i n  which we a r e  i n t e r e s t e d  

( s e e  Sect ion 4.4) from t h e  continuous-parameter MANC.OV-chain model, and th i !  

model does t a k e  i n t o  considerat ion the  i n t ege r  r e s t r i c t i o n s  on the  combat- 

an t s '  fo rce  l eve l s .  Thus, we w i l l  consider  combat modelled a s  a continuous-

parameter MARKOV chain.  [ In order  t o  h e u r i s t i c a l l y  develop t h e  relations hi^ 

between t h e  de te rmin is t ic  model (4.2.1) and its KARKOV-process analogue, 

however, we w i l l  a l s o  b r i e f l y  consldzr combat madelled a s  a continuous-

parameter MARItOV process,  i.e. d i f f u s i o n  process.]  I n  f a c t ,  since w e  w i l l  

assume t h ~ tno more than one casrlalty can occur a t  a time, t h e  MARKOV chain 

wi1.I. be of a s p e c i a l  type c a l l e d  a W t h - d e a t h  urocess  (actuaily a pure 

death process; KLEINROCK 154 ,  espec i a l l y  p. 25 1 f o r  fu r  ;her deca i l s )  . 
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Figure 4.2 .  Claesificatim of MARKOV processes. 



4.3. A MARKOV-Chain Model for LANCHESTER-Type Combat, 


Let us therefore consider combat attrition modelled as a continuous- 


parameter MARKOV chain corresponding to the general deterministic LANCHESTER-


type homogeneous attrition process (4.2.1) . Thua, time varies contilluousb in 

our model, but the number of live (i.e. effective) combatants (assumed to be 


homogeneous) on each side is a nonnegative integer. Furthermore, the number 


of live combatants on each side is a random variable, since we are now 


assuming that casualties occur randomly over time. 


Following our notational convention of denoting random variables 


by upper-case letters and their realizations by the corresponding lower-case 


letters, we will denote the X force level at time t, a random variable 


(frequently abbreviated r.v.), as M(t), with its realization at time t 


being denoted as m. Corresponding quantities for the Y forces will be deno, 


as N(t) and n. Initially in the battle (i.e. at t = 0) there a.re m 0 


combatants and n Y combatants with certainty, i.e. with probability one. 
0 


All these quantities M, N, m, and n are restricted to be nonnegative intege~ 


Hence, the random variable M(t) can take on the value m = 0,1,2,..., xuo, eac 

with some positive probability in a ffght to the finish; and similarly for N(1  

Our simple combat situation is shown diagrammatically in Figure 4.3. Here 


G = G(t,m,n) denotes the casualty rate of the X force, since we are assuming 

no replacements and withdrawals (seeSection 4.2), and similarly for H = H ( t , m , r  

Corresponding to the two deterministic differential equations (4.2.1) 


is a system of many more differential-difference equations. 6 
Furthermore, this 


system of equations19 actually influenced by the engagement-termination model 


adopted for the battle. For simplicity, we will first consider a fight to the 


finish (i.e. a fight that lasts until the annihilation of one side or the other) 


and then we will subeequently consider the equations for a fixed-force-level- 


X 



variable with ( ) variObk with 
realization realization 

Figure 4.3. Homogeneous-force combat modelled as a continuous- 


parameter MARKOV chain. Here M(t), a random variable 


(r.v.), denotes the number of X combatants at 


time t; and N(t), a r - v . ,  denotes the corresponding 

number for Y. The combat depicted here is the 


stochastic analogue of that shown in Figure 4.1 


(i.e. combat with no replacements and no withdrawals). 




breakpoint  b a t t l e  (see Se,ction 2 .8) .  Thus, w e  now tu rn  t o  t h e  development of 

7
the  equa t ions  ( h e r e  t h e  so-cal led  forward KOLMOGOROV equa t ions  ) t h a t  govern 

t h e  e v o l u t i o n  o f  t h e  p r o b a b i l i t y  d i s t r i b u t i o n  f o r  t h e  number of s u r v i v o r s ;  some 

people c a l l  t h i s  v e c t o r  of s t a t e  p r o b a b i l i t i e s  t h e  s t a t e - p r o b a b i l i t y  vec to r .  

It i s  more convenient,  however, f o r  us t o  consider  t h e  e v o l u t i o n  of 

i n d i v i d u a l  components of t h e  s t a t e - p r o b a b i l i t y  v e c t o r  than t o  cons ider  t h e  

v e c t o r  i t s e l f .  Let  us t h e r e f o r e  denote an i n d i v i d u a l  component of s t a t e -

p r o b a b i l i t y  v e c t o r  a s  fo l lows  

where B [A = a, 1 denotes  t h e  p r o b a b i l i t y  t h  : a random event  A has  t h e  out- 
I 


come al. For n o t a t i o n a l  convenience, we w i l l  denote  P ( t , m , n ; O , ~ , n  0  ) simply 

a s  P ( t  ,m,n) . I n  o t h e r  words, we have 

We w i l l  now b r i e f l y  focus  on t h e  assumed a t t r i t i o n - r a t e s  o f  our  model. 

In t h e  d e t e r m i n i s t i c  model (4.2.1) wi th  no replacements and withdrawals,  G 

i s  c a l l e d  the  a t t r i t i o n  rate of t h e  e n t i r e  X f o r c e ,  s i n c e  (-dxldt) = G(t,x,y:  

In our  MARKOV-chain model, t h e  s t o c h a s t i c  analogue of (4.2.11, we  analogously  

have 



-- 

C(t,m,n) = rate of  a t t r i t i o n  f o r  t h e  e n t i r e  X f o r c e ,  

H(t,m,n) - r a t e  of a t t r i t i o n  f o r  t h e  e n t i r e  Y force .  

Then, a s  one u s u a l l y  assumes (e.g. see KARLIN [ 4 4 ,  p. l a g ] ) ,  w e  assume t h a t  

- .-. 

rone  X c a s u a l t y  dur ing i n t e r v a l  1 
Lo£ t i m e  from t 

one Y c a s u a l t y  dur ing i n t e r v a l  

P of t i m e  from t t o  t + ~t 
= H(t,m,n)At .C I 


W e  f u r t h e r  assume t h a t  dur ing any s h o r t  i n t e r v a l  of t i m e  of l e n g t h  A t  t h e  

p r o b a b i l i t y  of more than one c a s u a l t y  ( e i t h e r  on t h e  same s i d e  o r  on bo th  

s i d e s )  is  n e g l i g i b l e .  In  mathematical  terms we express  t h i s  assumption as 

more than one c a s u a l t y  dur ing i n t e r v a l  

of t i m e  from t t o  t + A t  

where O(x) denotes  dependence on x such t h a t  l imx+OO(x)/x  = CONSTANT, 

The ba t t l e - t e rmina t ion  cond i t ions  a r e  t h e  f i n a l  i n g r e d i e n t  t o  our 

combat model and a r e  incorporated i n t o  t h e  model i n  t h e  fol lowing way. 

Corresponding t o  t h e  assumption made f o r  t h e  d e t e r m i n i s t i c  model t h a t  dx/clt = 

and dy/dt  = 0 when x .r 0 o r  y = 0 i s  t h e  assumption t h a t  no more c a s u a l t :  

can occur  when m - 0 o r  n = 0 .  The q u a n t i f i c a t i o n  o f  t h i s  assumption in- 

corpora tes  t h e  b a t t l e - t e r n i n a t i o n  c o n d i t i o n s  i n t o  our combat model. Thus, 

when rn = 0 o r  n - 0,  t h e  cwinbat s t a t e  is  absorbing,  and t h e  dynamics o f  



our s t o c h a s t i c  combat model must be modified.  We w i l l  s e e  how t h i s  is done 

below. Accordingly, we w i l l  f i r s t  consider  t h e  case  i n  which 0 < m ( % 

and 0 < n i n o .  

After  t h e s e  p r e l i m i n a r i e s ,  we w i l l  now t u r n  t o  t h e  development of 

t h e  forward KOWOGOROV equa t ions ,  which d e s c r i b e  t h e  p r o h a b i l i s t i c  e v o l u t i o n  

o f  t h e  state of  each of our  two opposing coabae systems. Let us  f i r s t  observe 

t h a t  t h e  r n i t i a l  cond i t ions  f o r  t h e  forward KOLMOGOROV equa t ions  a r e  given by 

1 f o r  m = mo and n I no, 

P (0 ,m,n) = 

0 o therwise ,  

s i n c e  we have assumed t h a t  t h e r e  a r e  i n i t i a l l y  m X combatants and no Y 0 

combatants w i t h  c e r t a i n t y .  Also,  s i n c e  w e  a r e  assuming t h a t  t h e r e  a r e  no 

replacements,  i t  i s  impossible  t o  have m > mo o r  n > no.$ Thus, we conclude 

t h a t  

P(t,m,n) = G f o r  m > mo o r  n > n 0 (4.3.5) 

This  r e s u l t  w i l l  a l l o w  u s  t o  s i m p l i f y  t h e  development of t h e  forward KOLMQCOROU 

equa t ions  by a l lowing b a t t l e  s t a t e s  (m,n) wi th  m = mo o r  n = no co be  

considered as s p e c i a l  cases  of those  f o r  0 < m ( mo and 0 < n ( no. We 

now consider  t h e  development of t h e s e  b a s i c  equa t ions  f o r  t h i s  l a t t e r  genera l  

c a s e  ( s l i g h t l y  d i f f e r e n t  developments a r e  requ i red  when m = O o r  n = 0 

(see below) ) . 
Thus, f o r  0 < m L m,, and 0 < n _( no, t h e  usua l  c o n d i t i o n a l  prob- 

a b i l i t y  arguments (e. g. see FELLER [25, pp. 407-4081). y i e l d  



M(E + At) = m 

N(t + At) .I n 

M(t) = n no casual ty occurred on e i t h e r  s i d e  i n  

i n t e r v a l  of time from t t o  t + ~t 1 
M(t) = m+l one X casual ty occurred i n  i n t e r v a l  

+ [ - n ] [ of t i m e  from t t o  t -t A t  1 
+ . [ " ' " =  ] P[ 

one Y casua l ty  occurred i n  i n t e r v a l  

N ( t )  = n+l of time from t t o  t + A t  1 
combatants i n  some more than one casual ty occurred 

o ther  s t a t e  a t  t i n  i n t e r v a l  of time from t t o  t + A t  1 
s ince  i f  we find ourselves (with some probabi l i ty )  a t  b a t t l e  s t a t e  (m,d a t  

tima t + A t ,  then one of t he  following four  mutually exclusive events must 

have occurred ( z e s  Figure 4 .4 . ) :  

1. we were i n  b a t t l e  s t a t e  (rn,n) a t  time t and no casua l ty  

occurred i n  the time i n t e r v a l  ( t ,  t + At). 

2. we were i n  b a t t l e  s t a t e  ( n r t l ,  n) a t  time t and one X 

casual ty occurred i n  t h e  time i n t e r v a l  ( t ,  t + At) ,  

3. we were in b a t t l e  s t a t e  (m, n+l) a t  time t and one Y 

casua l ty  occurred i n  the  time i n t e r v a l  ( t ,  t + At), 

4 .  we were i n  some o ther  b a t t l e  s t a t e  a t  time t and more than 

one casual ty occurred i n  t h e  time in t e rva l  ( t ,  t + At). 



AT t + A t  

BATTLE IN 
STATE (m,n*l) 

BA7TI.E IN 
SOM OTHER STATE 

START OF 
BATTILE 

Figure 4 . 4 .  Possible battle-state transitions considered 

in the deve1oynen.tof the forward KOLMOGORQV 

equations ( 4 . 3 . 9 3 .  



Here t h e  MAMOV ausumpthr? thae t h e  f u t u r e  depends only on t h e  p r e s e n t ,  i . e .  

i t  is  independent of pas t  h i s t o r y  ( r e c a l l  D e f i n i t i o n  4. I) ,  a l lows u s  t o  w r i t e ,  

f o r  example, 

M(t) = mtl and N(t)  = n and one X c a s u a l t y  

occurred i n  i n t e r v a l  of time from t t o  t + A t1 

M(t) = m+l one X c a s u a l t y  occurred i n  i n t e r v a l  

of tine from t t o  t + A t  

where f o r  n o t a t i o n a l  conven.ience w e  have denoted,  f o r  example, 

we observe t h a t  

no c a s u a l t y  occurred on e i t h e r  s i d e  

i n  i n t e r v a l  of  t ime f r ~ m  t t o  t + A t  1 


8
Next, ignor ing  t e r m  0 ((A?)'),  we o b t a i n  from (4.3.6) 

where we have made use  of (4 .3 ,1 ) ,  ( 4 . 3 . 2 ) ,  ( 4 . 3 . 5 ) ,  and (4.3.7).  Wri t ing 

( 4 . 3 , 8 )  as 

404 



and l e t t i n g  A t  -c 0 ,  we o b t a i n  t h e  forward KOLMOGOROV equa t ions  f o r  t h e  

(forward) p r o b a b i l i s t i c  e v o l u t i o n  of  t h e  p r o b a b i l i t y  d i s t r i b u t i o n  over  t h e  

numbers of  s u r v i v o r s  on both s i d e s  i n  o u r  s t o c h a s t i c  b a t t l e .  Thus, we o b t a i n  

, f o r  0 < m (mo and 0 < n ( n o  

wi th  i u i t i a l  c o n d i t i o n s  (4.3.4) a t  t 0. Here t h e  r e a d e r  should  keep i n  

nind t h e  r e s u l t  (4.3.5). Th i s  LANCiiESTER-type s t o c h a s t i c  p r o c e s s 9  i s  c a l l e d  

( a p p r o p r i a t e l y  enough) a "pure death" p rocess ,  s i n c e  we can on ly  have 

"downward" s t a t e  t r a n s i t i o n s  from (m+l,n) t o  (m,n) o r  from (m,n+l) 
I 

t o  (m,n). However, t h e  above forward KOLMOGOROV equa t ions  on ly  apply  f o r  

m and n > 0. On t h e  boundary of  t h e  s t a t e  space  they  t a k e  a s l i g h t l y  

d i f f e r e n t  form. 

O n  t h e  boundary o f  t h e  s t a t e  space  where m = 0 o r  n = 0,  na more 

c a s u a l t i e s  can occur ,  and t h e  above deve lopren t s  must be s l i g h t l y  modified.  

Thus, f o r  m 0 and 0 < a -< n0 



M(t + At) - 0 

N(t + At) = n 

one X c a s u a l t y  occurred i n  

N( t )  N(t )  o n i n t e r v a l  o f  t ime from t t o  t + ~t- n 1 
combatants i n  some more than one c a s u a l t y  occurred i n  

o t h e r  s t a t e  at  t i n t e r v a l  of t ime from t t o  t + A t  

s i n c e  i f  we f i n d  o u r s e l v e s  (wi th  some p r o b a b i l i t y )  a t  b a t t l e  s t a t e  (m,n) a t  

time t + A t ,  then one of t h e  fol lowing t h r e e  mutually e x c l u s i v e  e v e n t s  must 

have occurred 

I. we were i n  b a t t l e  s t a t e  (0,n) a t  t ime t and with c e r t a i n t y  

no c a s u a l t i e s  occurred i n  t h e  t i m e  i n t e r v a l  ( t ,  t + At) ,  

2. we were i n  b a t t l e  s t a t e  (1,n) a t  t i m e  t and one X c a s u a l t y  

occurred i n  t h e  t i m e  i n t e r v a l  ( t ,  t + ~ t ) ,  

3. w e  were i n  some o t h e r  b a t t l e  s t a t e  a t  t ime t and more than 

one c a s u a l t y  occurred i n  t h e  t ime i n t e r v a l  ( t ,  t + ~ t ) .  

Here t h e  f i r s t  term on t h e  right-hand s i d e  of t h e  above equa t ion  of t o t a l  

p r o b a b i l i t y  is  a r e f l e c t i o n  of t h e  ba t t l e - t e rmina t ion  model, i . e .  f ixed-force-

level-breakpoint  b a t t l e .  The u s u a l  arguments based on pass ing t o  t h e  l i m i t  

a s  A t  -+ 0 now y i e l d  t h a t  f o r  n = 0 and 0 < n ( n o  



-- 

dP- ( t ,O,n)  = G ( t , l , n )  P ( t , l , n )  -
d t  

<S i m i l a r l y ,  we f i n d  t h a t  f o r  0 < m -. mo and n = 0 

dP- (t,m,O) I. H(t ,m, l )  P ( t ,m, l )  .d t  

F i n a l l y ,  t h e  assumption t h a t  i t  i e  impossible  f o r  more than one c a s u a l t y  a t  

ti t ime t o  occur ,  cf. (4.3.3). y i e l d s  t h a t  i t  i s  imposeibLe t o  reach t h e  s t a t e  

(0 ,0 ) ,  and henc.e 

P(t,O,O) = 0 . 

The system of forward KOLMOGOROV equa t ions  (4.3.9) through (4.3.12) 

w i t h  i n i t i a l  cond i t ions  (4.3.4) i s  a s t o c h a s t i c  v e r s i o n  ( o t h e r s  a r e  p o s s i b l e ;  

s e e  Footnote 2 )  of t h e  d e t e r m i n i s t i c  combat -a t t r i t ion  model (4 .2-1)  wi th  

b a t t l e - t e r n i n a t i o n  cond i t ions  t h a t  dx/dt  and dy/dr = 0 wbcn e i t h e r  x a 0 

o r  y = 0. The r e a d e r  should keep i n  mind t h a t  t h e  r e s u l t  (4 .3 .5)  a p p l i e s  t o  

(4.3.9) so  t h a t  t h e  forward KOLMOGOROV equa t ions  t a k e  a s p e c i a l  form when 

m = mo and n = no. Consequently, t h e  r e a d e r  should t h i n k  of (4.3.9) (and 

hence t h e  e n t i r e  system) as an  "abbreviated" form o f  t h e  s t o c h a s t i c  combat 

equat ions .  Thus, al though it may sometimes be  convenient f o r  one t o  cons ider  

t h i s  abbrev ia ted  form of t h e  forward KOLMOC4ROV equa t ions  (4.3.9) through 

(4 .3 .12) ,  t h e  r e a d e r  should n o t e  t h a t  w r i t t e n  o u t  i n  f u l l  t h e  forward 

KOLNOGORCIV equa t ions  a r e  



for  m u m o  and n m n o  

for m u m o  and O < n < n o  
-

f o r  0 < m < mo and 0 < n < no 

dP- (t,m,n)d t  = G(t,mtl,n) ~ ( t , m + l , n )+ ~ ( t , m , n + l )  ~ ( t , m , n + l )  

-(G(t ,m,n) + ~ ( t , m , n ) )  P(t ,m,n),  

f o r  m = 0 and 0 < n 5 no 



---- 

f o r  O < m i m ,  and n = O  

and f o r  m = 0 and n = O 

P(t,O,Q) = 0 Cor a l l  t 2 0 , 

with i n i t i l l  condi t ions (4.3.4). The reader  should observe t he  symmetry 

exhibi ted by t h e  forward equat ions (4.3.133 through (4.3.15) and (4.3.1:) 

through (4.3.13) on eynrmetric port ions of t he  scate-space b o a d a r y  where 

m = 0 o r  mo and/or n = 0 
Or "9' 

Let us now su~lmarize t h e  assumptions made f o r  t he  development of the  

-above equations f o r  t h i s  MRKO~r-type st trit ion process : 

(Al) t he  a t t r i t i o n  process depends on the  cur ren t  system s t a t e  

and tlme, but i t  does not depend on pas t  h i s to ry ,  

one X casua l ty  during i n t e r v a l  
p[ of time from t to  t + A t  = G(t,m,n)At,I 


and 
me Y casua l ty  during interval.  

= H ( t , m , n ) ~ t ,of t i m e  from t t o  c + A t  I 

more than one casua l ty  during 

(A31 P [i n t e r v a l  of time from t t o  t + ~t] ~ ( b t , ~ ) ,  

(Ah) no more c a s u a l t i e s  can occur once m = 0 o r  n = 0. 



-- 

x 

The reader  should observe t h a t  assumptions (Al) through (A3) p e r t a i n  t o  t h e  

c a s u a l t y  ~ r o c e s s ,  whi le  ( A 4 )  p e r t a i n s  t o  t h e  ba t t l e - t e rmina t ion  prccees .  The 

s i g n i f i c a n t  t h i n g  t o  n o t e  is t h a t  our  s t o c h a s t i c  combat model i n t e g r a t e s  

toge ther  both an a t t r i t i o n - p r o c e s s  model,a& a l s o  a b a t t l e - t e r m h a t i o n - p r o c e s s  

There a r e  v . n y  d i f f e r e n t  o t h e r  b a t t l e - t e r m i n a t i o n  models (e. g. 

Chapter 3) t h a t  could be used i n  our  s t o c h a s t i c  model. We w i l l  on ly  

cons ider  one of them here ,  though: we w i l l  assume t h a t  t h e  b a t t l e  t e rmina tes  

when one s i d e ' s  f o r c e  l e v e l  reaches  a f i x e d  "breakpoint" v a l u e  (fixed-force- 

level-breakpoint  b a t t l e )  (E Sec t ions  3.2 and 6.6).  It fo l lows  t h a t  t h e  

f o r c e  l e v e l  of t h e  o t h e r  s i d e  ( i . e .  t h e  winner) w i l l  always have been above 

i t s  breakpoint  value .  

For such a fixed-force-level-breakpoint  b a t t l e ,  t h e  abvve forwsrd 

KOLMOGOROV equat ions  t a k e  a s l i g h t l y  d i f f e r e n t  form on t h e  boundary o f  t h e  

s t a t e  space,  which i t s e l f  i s  d i f f e r e n t .  For t h e  d e t e r m i n i s t i c  model w e  

assume t h a t  dx/dt  = 0 and dy/dt  - 0 xhen x = -
"BP o r  y = ygp, where 

denc tes  X ' s  breakpoint  f o r c e  l e v e l  and y denotes  t h a t  of Y. The
SP BP 

corresponding assumption f o r  t h e  s t o c h a s t i c  model i.s t h a t  no more c a s u a l t i e s  

o r  n = ncan occur  when m = m
BP - BP' Here %P denotes  X ' s  f ixed-force--

level-breakpoint  f o r  t h i s  MARKOV-chain model and s i m i l a r l y  f o r  MakingnBP. 

t h e  s t andard  assumptions (Al) through (El) and 

(A4') no more c a s u a l t i e s  can occur once m = 
%P Or r BP' 

we may develop t h e  fol lowing forward KOUlOGOROV equa t ions  f o r  such a b a t t l e  



f o r  m m m g  and n - n o  

for 0 Imgp < m < m0 and a = no 

fc r  m g p < m < m g  and n g p < n i n0 

dP ( t  ,rn,n) - G ( t  ,m+l.n) P ( t  ,n+l,n) + H(t ,m,n+L) ~ ( t,m,n+l)d t  

- { ~ ( t , m , n )  + ~ ( t , m , n ) )  P ( t , n , n ) ,  



-f o r  %P < m ( mg and n = nBP 

= map - nBPand f o r  m and a 

O
~ ( ~ ~ m g ~ , ~ ~ ~ )  f o r  a l l  t 0 ,  (4.3 

with i n i t i a l  condi t ions (4.3.4). This system of forward KOLMOGOROV equations 

(4.3.20) through (4.3.26) with i n i t i a l  condi t ions (4.3.4) is  a s t o c h a s t i c  

vers ion of the  de te rmin is t ic  combat-attri t ion model (4.2.1) with b a t t l e -  

termination condi t ions t h a t  dx/dt and dy/dt  = 0 when e i t h e r  x = xBP 

o r  y = ygp. A fight-to-the-finish is a s p e c i a l  case of  these  equations.  

Thus, when mBp - O and n - 0 i n  equations (4.3.20) through (4.3.26)BP 

t h i s  model reduces t o  equations (4.3.13) through (4.3.19). 



4.4. Informat ion t o  be Obtained from t h e  Model. 

The above forward KOLMOGOROV equa t ions  (4.3.1.3) through (4.3.19) 

wi th  i n i t i a l  c o n d i t i o n s  (4.3.4) comprise o u r  formulat ion of a s t o c h a s t i c  

analogue of t h e  d e t e r m i n i s t i c  LANCHESTER- type combat mo*Iel ( 4 . 2 1  The 

a n a l y s i s  of such 8 model should be guided by what informat ion one would 

l i k e  t o  o b t a i n  from t h e  model. Conversely, t h e  a n a l y t i c a l  r e s u l t s  t h a t  

have appeared i n  t h e  l i t e r a t u r e  a r e  a r e f l e c t i o n  of such c o n s i d e r a t i o n s  

and may t h e r e f o r e  be placed i n  proper  p e r s p e c t i v e  by cons ider ing  t h e  

q u e s t i o n  of what informat ion t o  e x t r a c t  from t h e  model. Furthermore, su 

q u e s t i o n s  a r e  e q u a l l y  v a l u a b l e  f o r  guiding computational work i n  those  c 

i n  which t h e  model is no t  p a r t i c u l a r l y  t r a c t a b l e  a n a l y t i c a l l y .  

What informat ion should w e  seek  t o  o b t a i n  from a s t o c h a s t i c  

combat model? Although t h e  s p e c i f i c  informat ion t o  e x t r a c t  from any 

combat model depends, of course ,  on t h e  purpose of t h e  OR s tudy  w i n g  

t h a t  model, one can a n t i c i p a t e  such demands by cons ider ing  t h e  ques t ions  

shown i n  Table 4.1. Analogous q u e s t i o n s  f o r  a d e t e r m i n i s t i c  combat 

model a r e  given i n  Table 6 . 1  (seeSec t ion  6.3). Bas ica l ly ,  w e  a r e  

i n t e r e s t e d  i n  what w i l l  happen i n  t h e  b a t t l e  according t o  t h e  s t o c h a s t i c  

model and how t h i s  compares wi th  t h a t  according t o  t h e  corresponding 

d e t e r m i n i s t i c  model. I n  f a c t ,  because i t  i s  r e l a t i v e l y  s o  much more 

d i f f i c u l t  ( r e c a l l  t h a t  Footnote 6 has  t o l d  us t h a t  t h e r e  are many more 

equa t ions  f o r  t h e  s t o c h a s t i c  model) t o  e x t r a c t  such informat ion from 

s t o c h a s t i c  combat models, a reasonable  a n a l y s i s  bzra tegy appears  t o  be 

f o r  one t o  become f a m i l i a r  with t h e  dynamics o f  t h e  d e t e r m i n i s t i c  model 

and how those  of a corresponding s t o c h a s t i c  model d i f f e r  (both  i n  terms 

of t h e  mean path of b a t t l e  and a l s o  i n  terms of s t o c h a s t i c  v a r i a t i o n s  

about t h i s ) .  
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Table 4.1. Information t o  E x t r a c t  from S t o c h a s t i c  Combat Model. 

(Q1) What i e  the  p r o b a b i l i t y  t h a t  a g iven s i d e  w i l l  "win" t h e  engagement; 

Beta n p i h i l a t e d ?  

(42) Haw does t h e  p r o b a b i l i t y  d i s t r i b u t i o n  of t h e  number of s u r v i v o r s  

on each s i d e  change dur ing  t h e  course  of t h e  b a t t l e ?  How do t h e  

average f o r c e  l e v e l s  change over  time i n  t h e  b a t t l e ?  What i s  t h e  

v a r i a b i l i t y  i n  b a t t l e  outcomes about t h e s e  averages?  

(43) What i s  t h e  p r o b a b i l t t y  d i s t r i b u t i o n  of the numbers of f h a l  

su rv ivors?  What a r e  t h e  expected numbers of f i n a l  s u r v i v o r s ?  

(94) How does a s i d e ' s  p robabdl i ty  of winning very  v i t h  changes in t h e  

i n i t i a l  f o r c e  r s t i o ?  

(G5)  What is t h e  p r o b a b i l i t y  d i s t r i b u t i o n  of t h e  lengt 'n of t h e  b a t t l e ?  

How long w i l l  t h e  b a t t l e  last on the average? 

(46) How does t h e  b a t t l e ' s  outcome f o r  t h e  s t o c h a s t i c  combat model 

compare t o  that of a corresponding d e t e r m i n i s t i c  model? 



In the remainder of  t h i s  chapter we w i l l  consi.dcr anawering 

the questions shown i n  Table 4 .1 .  One important~question, however, that 

we w i l l  not consider is question (45). The Interested reader can f i n d  

results on the moments of  the distribution of the length of ba t t l e  i n  

SPRINGALL'S Ph.D. thes i s  [ 7 7 ,  pp. 50-541. 



4.5. VerLfdcation t h a t  P(t ,m,n) : h a  P r o b a b i l i t y  Mass Funct ion,  

It w i l l  he  i n s t r u c t i v e  f o r  us t o  v e r i f y  t h a t  t h e  s o l u t i o n  

,m,n) t o  t h e  forward KOLMOGONW equa t ions  is  indeed a  p r o b a b i l i t y~ ( t  

d i s t r i b u t i o n .  T h i ~development is  p a r t i c u l a r l y  s i g n i f i c a n t  because i t  

w i l l  i n d i c a t e  how w e  may compute t h e  moments of t h e  joint p r o b a b i l i t y  

d i s t r i b u t i o n  of t h e  number of s u r v i v o r s  on each s i d e .  

I f  P ( t  ,m,n) is a probability mass func t ion ,  then we must have 

mo n
0

1 ~ ( t , m , n ) = l  f o r  a l l  t L 0. (4.5,  

w'%~"*BP 

Pb "0 
Let us  den2te  1 P(t,rn,n) as C ( t ) .  It s u f f i c e s  t o  show t h a t  

m=mgp n=nBP 


dC- (t) '0 f o r  a l l  t 2 0,
d t  

wi th  

The l a t t e r  cond i t ion  (4.5.3) r e a d i l y  fo l lows  from t h e  d e f i n i t i o n  of C ( t )  

and (4.3.4).  Also, from t h e  d e f i n j t i o n  of C ( t )  w e  o b t a i n  

dC- ( t )  - { E" ( t ,m,n)
d t  

m - % ~  nq BP 

S u b s t i t u t i n g  (4.3.13) through (4.3.19) i n t o  (4.5.4) and s impl i fy ing ,  

we o b t a i n  



m -1 n

0 G

dC
- (t) = G(t ,wl,n) P(t ,m+l,n) 
dt 
 m-m 
BP 


Transforming indices in two of the summations in (4.4.5.), we obtain, 


whence follows (5.4.2) and hence (4.5.1). 




I n  a s i m i l a r  f ash ion ,  one can show t h a t  

Th is  r e s u l t  ( 4 . 5 . 6 3  i s  s i g n i f i c a n t ,  s i n c e  i t  a l lows us  t o  r e a d i l y  compute 

t h e  average f o r c e  l e v e l s  and t h e i r  v a r i a b i l i t i e s  f o r  our  LANCHESTER-type 

MARKOV-chain combat mode: ( 4 . 3 . 2 0 )  through ( 4 . 3 . 2 6 )  with in ie i fa l  c o u d i t  i a  

( 4 . 3 . 4 ) .  We observe t h a t  ( 4 . 5 . 2 )  corresponds t o  t h e  s p e c i a l  case  of 

( 4 . 5 . 6 )  i n w h i c h  g(m) a 1  and h ( n ) = l .  

The development of ( 4 . 5 . 6 )  is a s  fol lows.  F i r s t  we observe t h a t  

T u b s t i t u t i n q  ( 4 . 3 . 2 0 )  through ( 4 . 3 . 2 6 )  i n t o  ( 4 . 5 . 7 )  and s impl i fy ing ,  w e  

o b t a i n  



Transforming indices in two of the summations in ( 4 . 5 . 8 ) ,  we obtain 

whence follows ( 4 . 5 . 6 )  . 



,-4.6. The D i s t r i b u t i o n  of Time Between Casualti.  e s  f o r  t h e G e n e r e 1  Model. 

The d i s t r i b u t i o n  of times between c a s u a l t i e s  i s a b a s i c  i n g r e d i e n t  

f o r  much a n a l y s i s  of our  MARKOV-chain model, and it t h e r e f o r e  seems 

a p p r o p r i a t e  fox us t o  develop i t  f o r  t h e  genera l  model of Sec t ion  4.3. 

We begin by developing t h e  p r o b a b i l i t y  t h a t  no l o s s e s  occur dur ing  a 

t ime- in te rva l  of l e n g t h  t. For m = mo and n = no, w e  have from 

(4.3.9) [equ iva len t ly ,  (4.3.1311 

w i t h  i n i t i a l  cond i t ion  P(O,mo,no) = 1. 

The above d i f f e r e n t i a l  equa t ion  (4.6.1) i s  r e a d i l y  i n t e g r a t e d  t o  

y i e l d  

We f i n a l l y  observe t h a t  

P[no c a s u a l t y  by t ime t ]  = P ( t  ,mo, no) . 

NOW l e t  T1 denote  t h e  time a t  w'hich t h e  f i r s t  c a s u a l t y  occurs  

( a  r . .  . Since t h e  b a t t l e  begins  at  t = Q, TI is _also t h e  l e n g t h  of 

t i m e  u n t i l  t h e  occurrence of t h e  f i r s t  c a s u a l t l  i n  t h e  b a t t l e .  Then 



PIT1 > t ]  = P[no c a s u a l t y  by time t ]  . 
and t h e  d i s t r i b u t i o n  f u n c t i o n  (d . f . )  f o r  t h e  time u n t i l  t h e  f i r s t  

-
T h e  average t i m e  until t h e  f i r s t  c a s u a l t y  t1 = EIT1] - t fT1 ( t ) d t ,  

where f ( t )  = dF / d t  denotes  t h e  p r o b a b i l i t y  d e n a i t y  func t ion  (p.d.f.1*1 T1 
for TI, i s  given by 

-
f o r  b a t h  s i d e s .  When h C ( t )  i s  c o n s t a n t ,  say AC(t) = a ,  then  tI = l / k ,  

which i s  a key r e l a t i o n  f o r  modell ing LGNCHESTER a t t r i t i o n - r a t e  c a e f f i c i e n l  

(seeSec t ions  4.7 and 5 .1) .  

The above c o n s i d e r a t i o n s  a r e  r e a d i l y  genera l i zed  t o  apply  t o  

t h e  occurrence of any c a s u a l t y  i n  such a  b a t t l e .  Accordingly, we let 

T~'* denote  t h e  rime between t h e  occurrences  of two s u c c e s s i - ~ ec a s u a l t i e s
BC 

-measured Ernm t h e  occurrence of t h e  last casua* which took t h e  system 

t o  s t a t e  (m,n) a r . .  Then f o r  mgp < m( rno and nBP < n (no 



X 

N, 11P!TgC tllsst c a s u a l t y  a t  t o ]  

where to * 0 when m rn,, and n no. Hare we must cons ide r  t h i s  

c o n d i t i o n a l  d i s t r i b u t i o n ,  s i n c e  t h e  X and Y a t t r i t i o n  r a t e s  G and H 

change over time [ f o r  f i x e d  (m,n) 1 s o  t h a t  the d . f .  f o r  T ~ ' "  depends on 
BC 


e x a c t l y  when t h e  last c a s u a l t y  occurred.  

We w i l l  a l s o  let T;'" denote  t h e  time u n t i l  t h e  nex t  L c a s u a l t y ,  

measured from t h e  occurrence  of t h e  last c a s u a i t y  which took t h e  sys tem 

t o  s t a t e  (m,n) ( a  r.v.1, and we w i l l  s i m i l a r l y  d e f i n e  t h e  rime u n t i l  

the next  Y c a s u a l t y  T The assumed W K O V  p r o p e r t y  (1.e. s e e-
assumption (A.1) above i n  S e c t i o n  4 . 3 )  impl ies  t h a t  t h e  random v a r i a b l e s  

'T ~ and~ T:'" a r e  independent.  It is  e a s i l y  shown thaL 

P [ T ~ ' ~t llast c a s u a l t y  a t  -< 

and s i m i l a r l y  f o r  P!T;'" -< t 1 l a s t  c a a u a l t y  a t  
=O I W e  a l s o  no t e  t h e  

fo l lowing c o n d i t i o n a l  e x p e c t a t i o n  

~ [ f"ll l a s t  c a s u a l t y  a t  
t o ]x 


(*3- 1 tG(to 4- i,m,n) e?cp{-
tO+t 

~ ( s , r n , n ) d s ) d t  , 
0 '0 

1and s i m i l a r l y  f o r  P . [ G ' ~last .asunlty a t  t g j .  
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The random v a r i a b l e s  T;'" and T;'" are p a r t i c u l a r l y  impor tan t ,  

s i n c e  w m y  uee our  knowledge about them t o  comFute t h e  p r o b a b i l i t y  

t h a t  t h e  mxt c a a u a l t y  w i l l  be,  f o r  example, an  X c a a u a l t y  when i t  

occurs .  ,et ue now develop t h i s  p r o b a b i l i t y ,  which p lays  a key r o l e  i n  

developing t h e  p r o b a b i l i t y  of winning. We f i r s t  observe  t h a t  

P [X c a s u a l t y  1 c a s u a l t y  occurs  (p rev ious  one at t o )  1 

*  PIT^^" < ~ ! ~ ~ l l a s t  c a s u a l t y  a t  to] ( 4 . 6 . 9 )  

Since  t h e  cont inuaus  random v a r i a b l e s  T;'" m,n  
and Ty a r e  independent 

wi th  known d i s t r i b u t i o n  f u n c t i o n s ,  we know from Appendix B t h a t  

- b '+p,n x ( 8 )  f (s) ds, 

Tn 
where F ( t )  deno tes  ~ [ q ' "  5 t 1 last  c a s w l t y  a t  to ]  and 

T;'* 

f ( t )  deno tes  t h e  p.d. f .  f o r  T;'~. Thus, w e  f i n d  t h a t  
Tm,n 
Y 

P [X c a s u a l t y  1 c a s u a l t y  o c c u r s  (p rev ious  one a t  t o )  1 

For s t a t i o n a r y  t r a n s i t i o n  p r o b a b i l i t i e s ,  i . e .  G and H independent of  t ,  

t h e  l a t t e r  formula s implf  f i e s  cons ide rab ly .  



4 . 7 .  J'hb S p e c i t 1  Caee of SLationary T r a n s i t i o n  P r o b a b i l i t i e e .  

Ve w i l l  now cons ider  t h e  s p e c i a l  case of b a t t l e s  1.n which t h e  t o t a l -  

f o r c e  a t t r i t i o n  racen depend o n l y  an the  f o r c e  l e v e l s  and n o t  e x p l i c i t l y  on 

t h e .  I n  o t h m  word%, we w i l l  cons ider  b a t t l e s  w i t h  s ta tAonary t r a n s i t i o n  

p robabLl i t i ee  repreeented by time-independent a t b y i t i o n  rates 

G ( t , n , n )  - A(m,n) * r a t e  of a t t r i t i o n  o f  X f o r c e ,  
(4.7.1.) 

H(t,m,n) = B(n,n) r a t e  of a t t r i t i o n  of Y i o r c e .  

With a few important excep t tens  (e.g. some g e n e r a l  r e s u l t s  i n  

Sec t ions  4.12 and 4.14 below), we w i l l  consider  only t h i s  specia l .  case  

i n  t h e  remainder of t h i s  chap te r .  It is  t h e  only  c a s e  i n  which a n a l y t i c a l  

r e s e l t s  f o r  t h e  ques t ions  posed i n  Sect ion 4.4 a r e  a v a i l a b l e  (and even 

then r e s u l t s  a r e  f ragmentary) ,  I n  p a r t i c u l a r ,  k t  Is e s s e n t i a l l y  t h e  only  

case  f o r  which a n a l y t i c a l  r e s u l t s  f o r  t h e  s t a t e  ? r o b a b i l i t i e s  ( i . e .  

d i s t r i b u t i o n  of t h e  numbers of su rv ivors )  and t ' ,e  p r o b a b i l i t y  of winning 

have been obta ined.  I n  Chapter 6 we show how d i t ~ i c u l t  it is  t o  o b t a i n  

a n a l y t i c a l  r e s u l r s  f o r  t h e  corresponding detelm+- s t i c  LANCHESTER-type 

equa&ions w i t h  time-dependent a c t r i t i o n - r a t e  c o e f f i c i e n t s .  Consequently, 

s i n c e  t h e r e  a i e  many more equat ions  f o r  t h e  s t o c h a s t i c  model ( r e c a l l  

Footnote 6), t h e  r e a d e r  should n o t  be s u r p r i s e d  t h a t ,  except  f a r  r e s u l t s  

l i k e  (4.6.2),  genera l  a n a l y t i c a l  r e s u l t s  do not e x i s t  f o r  s t o c h a s t i c  

b a t t l e s  wi th  time-dependent a t t r i c i o n - r a t e  c o e f f i c i e n t s .  

Le t  u s  now write o u t  i n  f u l l  t h e  forward KQMOGOROV equa t ions  f o r  

our b a t t l e  wi th  s t a t i o n a r y  t r a n s i t i o n  p r o b a b i l i t i e s .  A s  we saw i n  Sect ion 

4.3 above, t h e  exact  form of t h e  complete system i s  in f luenced  by t h e  



battle-tormination model. For the sake of concreteness, we w i l l  consider 

a fixed-.'area-level-breakpoint ba t t l e ,  with (a6 usual) mgp denoting X ' a  

brenkpcint and n denoting Y's breakpoint. In t h i s  case the forwardBP 

I;OT,MdrX)ROP equations (written out i n  f u l l )  take the  following form 

for 0 i m g p  < m < mo and n = n o  

---f o r  m = mg and 0 5 nBp < n < no 

far m ~ ~ < m < mand ngp C ' n < n o- 0 

dl'- (t,m,n) = A(m+l,n) P(t,nrtl,n) + B(m,n+l) P(t,m,n+l) 
d t  

- {A(m,n) + B(m,n) )  p(t ,m,n)) ,  
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f o r  LP = mBP and nRP < n ( no 

dP
d t- ( t , a p , n )  - A h B p  + 1.n) P(t.mBp + l , n ) ,  

f o r  mBp < m ( mg and n - n-- BP 

dP- (t.m,nBp) = B(m,n BP + 1 )  P(t,m,nBp+ 1 )  ,d t  

and f o r  m = mBP and n = nBP 

P( t  ,%p,nBp) ' O , 

with i n i t i a l  cond i t ions  (4.3.4). Since  (4.7.8) always ho lds ,  we w i l l  no t  

w r i t e  i t  ou t  e x p l i c i t l y  when we consider  s p e c i a l  c a s e s  of ( 4 . 7 . 2 )  

through (4.7.8). 

The anaLyt ica1 e x t r a c t i o n  of informat ion from t h e  above genera l  

model wi th  s t a t i o n a r y  t r a n s i t i o n  p r o b a b i l i t i e s  about t h e  dynamics of 

10
combat i s  stil.1 t o o  difficult t o  contemplate.  It corresponds t o  o b t a i n i n  

a n a l y t i c a l  r e s u l t s  from a d e t e r m i n i s t i c  model l i k e  (5.1. I ) ,  and w e  show 

elsewhere i n  t h i s  monograph t h a t  even t h i s  i s  impossible  f o r  such a  

s impler  d e t e r m i n i s t i c  model. R e t u n i n g  t o  t h e  above s t o c h a s t i c  model, 

we no te  t h a t  t o  o b t a i n  t h e  s t a t e - p r o b a b i l i t y  v e c t o r  ( f .e .  p r o b a b i l i t y  

d i s t r i b u t i o n s  of t h e  number of s u r v i v o r s  on each s i d e ,  which may be  



considered t o  be a  b a s i c  i n g r e d i e n t  of computing such r e s u l t s )  

11 
one must s o l v e  the  system of equa t ions  (4.7.2) through (4.7.7) 

w i t h  i n i t i a l  cond i t iohs  ( 4 . 3 . 4 ) .  This may be done by, f o r  example, 

r e c u r s i v e l y  s o l v i n g  the  equa t ions  by elementary i n t e g r a t i o n  means 

(see Example 4.7.1 below). Although p a r t i a l  r e s u l t s  a r e  r e a d i l y  

ob ta ined ,  a genera l  s o l u t i o n  f o r  P(t,m,n) t h a t  ho lds  f o r  a l l  v a l u e s  

of m and n has  on ly  been ob ta ined  i n  a few s p e c i a l  cases .  More-

over ,  when m and n a r e  l a r g e ,  such an a n a l y t i c a l  s o l u t i o n  becomes 

too  complicated t o  b e  o f  any d i r e c t  p r a c t i c a l  use.  Never theless ,  

some important  p a r t i a l  r e s u l t s  a r e  e a s i l y  ob ta ined  f o r  t h e  g e n e r a l  

model. 

For time-independent a t t r i t i o n  r a t e s ,  t h e  r e s u l t s  of Sec t ion  4.6 

s i m p l i f y  considerably .  We f i n d  t h a t  

p[no c a s u a l t y  by t ime tl = exp[-~A(~,no)+B(mo,no)}t] . (4.7.! 

The t imes  between c a s u a l t i e s  a r e  exponen t ia l ly  d i s t r i b u t e d  (but  s t a t e  

dependent) wi th  

deno tes  t h e  t ime hetween t h e  occurrences  of two c a s u a l t i e s  where ~ : i ~  
(see Sec t ion  4.6 for a p r e c i s e  d e f i n i t i o n  of t h i s  and t h e  fo l lowing  random 

v a r i a b l e s  T!'" and T!'~). Considering t h e s e  random v a r i a b l e s ,  we 

observe t h a t  we no longer  have t o  c o n d i t i o n  on when t h e  l a s t  c a s u a l t y  



has  occurred,  e i n c e  t h e  a t t r i t i o n  r a t e s  A and R do a o t  a x p l i c i t l y  

depend on time. The expectud time between c a s u a l t i e s  i a  g iven by 

S i m i l a r l y ,  t h e  Lime u n t i l  t h e  occurrence  of t h e  n e x t  X c a s u a l t y  Ti"." 

i s  a l s o  exponen t i a l ly  d i s t r i b u t e d  (bu t  s t a t e  dependent) wi th  

and s i m i l a r l y  f o r  T;'". We r e c a l l  t h a t  t h e  random v a r i a b l e s  T;'" and 

T ~ ' ~ are independent.  The expected v a l u e  of  T:'" i s  given by Y 

and s i m i l a r l y  f o r  T;'". F i n a l l y ,  we f i n d  t h a t  t h e  p r o b a b i l i t y  t h a t  t h e  

nex t  c a s u l t y  is ,  f o r  example, an  X c a s u a l t y ,  which w e  know is given by 

P[X c a s u a l t y  1 c a s u a l t y  occurs ]  = P [T:'~ < T;'"], reduces  t o  [cf. (4.6.11) 

above] 

P[X c a s u a l t y  1 c a s u a l t y  occurs  ] = A(m,n) 
A(m,n) + B(m,n) 

Again, t h e  t ime of  occurrence  of t h e  l a s t  c a s u a l t y  does  no t  i n f l u e n c e  t h i s  

p r o b a b i l i t y .  

Returning now t o  t h e  s t a t e - p r o b a b i l i t y  v e c t o r ,  we n o t e  t h a t  

r e s u l t s  ( i . e .  a g e n e r a l  s o l u t i o n  far  t h e  complete s t a t e - p r o b a b i l i t y  v e c t o r :  

have appeared i n  t h e  l i t e r a t u r e  f o r  t h e  fo l lowing s p e c i a l  c a s e s  o f  t h e  
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a t t r i t i o n  r a t e s  A and B (seeSec t ion  2.12 f o r  a d l a c u s s i o n  of t h e  

phys ica l  circumstances hypothesized t o  y i e l d  such a t t r i t i o n  p rocesses  

and a l s o  an exp lana t ion  of n o t a t i o n ) :  

!a) F I  F s t o c h a s t i c  LANCHESTER-type -a t t r i t ion procesb 

(b) FTI FI' s t o c h a s t i c  LANCESTER-type a t t r i t o n  proceae 

(c) (ET) 1 (F + T) s t o c h a s t i c  LANCBESTER-type a t t r i t i o n  p rocess  

A(m,n) = Bm + an , 
(4.7.1 

B(m,n) = bm f an . 

A genera l  express ion  f o r  P(t ,m,n),  holding f o r  a l l  v a l u e s  of m and n,  

h a s  on ly  been ob ta ined  f o r  t h e  FT~FT s t o c h a s t i c  LANCHESTER-type 

a t t r i t o n  p rocess  (seeCLARK. 1151) and f o r  t h e  (F+ T) 1 (F+ T) p rocess  

for t h e  s p e c i a l  case  i n  which a + a = b + @ (see ISBELL and MARLCW 

[ 4 0 1 ) .  Other r e s u l t s  (e.g. p r o b a b i l i t y  of winning) have appeared f o r  

t h e  FIFT process:  

(dl  F ~ F T  s t o c h a s t ? . ~LANCHESTER-type a t t r i t i o n  p rocess  

A(III,xA) = an , 

B(m,n) = bmn. 
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Exampla 4.7 .J-... Far the F I F  stochast ic  LANCHESTER-type a t t r i t i o n  procea, 

with time-indq and,.nt attrit ion-rate coef f ic tents ,  the substitution of 

(4.7.15) into  the forward KOLMOGOROV equations (4.7.2)  through (4.7.7)  

y ie lds  

o r  m = m, and n - n, 

for  m - mo and-0 5 ngp < n < n0 

for m
BP 

< m < m g  and n < n < n o
BP 

dP- (t,m,n) - anP(t ,mtl,n) + bm~(t,m,n+l)- (an+ bm) P(t,m,n) , (4 .dt 



--for m = mDP and nBP < n ( no 

with i n i t i a l  conditions (43.4) Recursively solving the above equations 

4 . 7 )  through (4.7.24) "from the top down," one obtains for 

where J = mo-m. Similarly,  we find that for ngp 5 n 5 no 

where K = ng-n. Further re su l t s  become iantas t i ca l ly  complex and are 

discussed i n  Section 4.9 below. Let us now, however, indicate bow 

(4.7.25) may be obtained by recursively solving (4.7.19) and (4 .7 .20)  "from 

the top down" by elementary means. 



Figure  4.5 schemat ica l ly  shows t h a t  a n a l y t i c a l  c a l c u l a t i o n  of 

P ( t  ,m,n) r e q u i r e s  previous  determinat ion of P!t ,m+l,n) and ~ ( t,m,n+l) 

[cf. (4.7.2) through (4.7.7) o r  (4.7.13) through (4.7.24) 1. T h i s  "from- 

the-topdown" sequence of i n t e g r a t i o n  of t h e  forward KOLMOGOROV equa t ions  

must be followed, of course ,  f o r  any b a t t l e  dynamics [ r e c a l l  (4.3.20) 

through (4.3.25)]. Returning t o  the s p e c i f i c s  o f  t h e  P ~ Fs t o c h a s e l c  

LRNCIIESTER-type a t t r i t i o n  p rocess ,  we s e e  t h a t  equa t ion  (4.7.19) wi th  

i h e  i n i t i a l  c o n d i t i o n  P(O,mo,no) = 1 is r e a d i l y  i n t e g r a t e d  t o  y i e l d  

We observe t h a t  (4.7.27) i s  j u s t  a s p e c i a l  c a s e  of (4.6.2) [see a l s o  

(4.7.9)]. For m = mo-1 and n = n0 ' equa t ion  (4.7.20) wi th  (4.7.27) 

s u b s t i t u t e d  i n t o  i,t r e a d s  

wi th  i n i t i a l  cond i t ion  

p(0) - 0 , 

where f o r  convenience w e  have denoted P(t,mO-l ,no) simply as p ( t ) .  

Mul t ip lying both s i d e s  of (4.7.28) by t h e  i n t e g r a t i n g  f a c t o r  

exp [b(mo-1) + ano] t  , we f i n d  t h a t  



(BATTLE STATE ) 

Figure 4.5. Dependence of the calculation of the component 


P(t,m,n) of the state-probability vector for 


battle state (m,n) on the previous determination 


of those for other battle states. 




whence 


,mg-2,no), whence followsUsing ( 4 . 7 . 2 9 ) ,  we may solve (4 .7 .20)  for ~ ( t  

(5 .7 .25)  by repeated application of the above procedure. 



X 

4 . 8 .  An Important Tie-In t o  t h e  Modelling of LANCHESTER Att r i t ion-Ra te  

C o e f f i c i e n t s .  

When t h e  a t t r i t i o n  r a t e s  i n  a b a t t l e  a r e  independent of t i m e ,  

computation of t h e  average t ime f o r  t h e  occurrence o f ,  f o r  example, an 

c a s u a l t y  sugges t s  t h a t  X's l o s s  r a t e  be modelled by t h e  r e c i p r o c a l  

of t h e  expected time f o r  t h e  Y f o r c e  t o  k i l l  an  X t a r g e t .  Thie s imple  

result is  q u i t e  important ,  s i n c e  i t  forms t h e  conceptual  b a s i s  for t h e  

a n a l y t i c a l  modell ing of LANCHESTER a t t  r i t o n - r a t e  coef f i c i e n t s  ( see  

Chapter 5, e s p e c i a l l y  Sec t ion  5 .1) .  Because of i t s  g r e a t  importance, 

let  as develop (5.1.3), even though i t  is i m p l i c i t  i n  previous  r e s u l t s  

of Sect ion 4.7.  

For conformance wi th  n o t a t i o n  used e lsewhere  i n  t h i s  book, w e  

w i l l  denote  T:'" simply as Thus, TXy r e p r e s e n t s  t h e  t ime ( a  r .v.)  
A 

f o r  t h e  e n t i r e  Y f o r c e  t o  k i l l  a ~ i n g l e  X combatant i n  our  s t o c h a s t i c  

b a t t l e  i n  which c a s u a l t i e s  occur randomly over  time. Th is  time is measured 

from t h e  occurrence of t h e  l a s t  c a s u a l t y  i n  t h e  b a t t l e .  Likewise, we 

w i l l  denote  T ~ * "  simply a s  t h e  t ime f o r  t h e  e n t i r e  X f o r c e  t o  Y T ~ ~ ' 

k i l l  a s i n g l e  Y combatant. For b a t t l e s  wi th  s t a t i o n a r y  t r a n s i t i o n  

p r o b a b i l i t i e s  ( i .  e. t h e  a t t r i t i o n  r a t e s  depend only  on t h e  f o r c e  l e v e l s  

and n o t  e x p l i c i t l y  on t ime; cf. Sec t ion  4.7), t h e  average time f o r ,  f o r  

example, t h e  Y f o r c e  t o  k i l l  an X t a r g e t  t akes  a p a r t i c u l a r l y  

en l igh tn ing  form. F i r s t  of a l l ,  w e  have shown t h a t  T is exponen t ia l ly
XY 

di . s t r ibu ted ,  wi th  

P [ T X y ( t ]  = 1 - e-A(rn,m) t 
9 



and sf .milarly f o r  Tm. Here t h e  d i s t r i b u t i o n  f u n c t i o n  f o r  TXy does 

no t  depend on to [g.( 4 . 6 . 7 ) ] ,  s i n c e  t h e  a t t r i t i o n  r a t e  A does not  

e x p l i c i t l y  con ta in  time t. It fol lows t h a t  [sg.(4.7.13) 1 

and we s i m i l a r l y  f i n d  t h a t  

I n  o t h e r  words, t h e  r e c i p r o c a l  of t h e  a t t r i t i o n  rate i s  equa l  t o  

t h e  expected t ime t o  k i l l  an enemy combatant. Conversely, t h e  expected 

t ime t o  k i l l  an  enemy combatant may be  u s e l  t o  p r e d i c t  a  numerical  v a l u e  

f o r  t h e  corresponding a t t r i t i o n  r a t e ,  and t h u s  t h e  r ~ l a t i o n s  (4.8.2) and 

(4.8.3) form t h e  conceptual  basil; fo? t h e  modell ing of LANCHESTER 

a t t r i t i o n - r a t e  c o e f f i c i e n t s  (E Chapter 5 f o r  f u r t h e r  d e t a i l s ) .  They 

suggest  t h e  fol lowing "es t imators"  f o r  t h e  X and Y l o s s  r a t e s  

A -
where A denotes  an e s t i m a t e  of t h e  X l o s s  r a t e ,  t denotes  t h e  XI 


average t ime f o r  t h e  Y f o r c e  t o  d e s t r o y  a s i n g l e  X combatant, and 
A -

s i m i l a r l y  f o r  B and tyX. 

I n  p a r t i c u l a r ,  f o r  t h e  F I  F LANCHESTER-type a t t r i t i o n  process ,  

we have ~ ( m , n 3  an and B(m,n) = bm, and we may w r i t e  



X 

where TXY now denotes the time for a single Y f irer  to k i l l  an 

target (a r .v . )  and similarly for TyX. The above expressione ( 4 . 9 . 5 )  

Form the conceptual basis of S .  BONDER'S mdel l ing of the LANCIiPlSTBR 

e.ttrition-rate coefficients for combat modelled by LANCMESTRR-type 

equations of modern warfare or i t s  heterogeneous-force extens3on (see 
Chapter 5 for further deta i l s ) .  



4.9. The St?~uUProbab~.1.i t1es.  

The p r o b a b i l i t y  d i s t r i b u t d o n  of t h e  j o i n t  number of s u r v i v o r s  on ench 

side (I.e. t h e  s ta te-probtr .b i l i ty  vec to r )  may be d i r e c t l y  computed f r o n  the 

forward r(0LMUGOROV eqlrutlons. From t h e  j o i n t  d i s t r i b u t i o n  aE sctrvlvors oue 

can compute many o t h e r  q u a n t i t i e s  of i n t e r e s t ,  e.g. average f o r c e  l e v e b ,  

d i a t r i b u r i u n  of f i n a l  eurv ivora ,  e t c .  (cf.Table 4. I) . We w i l l  see, however, 

t h a t  such der ive& q u a n t i t i e s  can many times be computed %ore simply by o t h e r  

means, wi thout  having t o  f i r s t  decermlne t h e  3 o i n t  d i s t r i b u t i o n  of su rv ivorn ,  

,TechnicaiPy speaking,  P(t,m,n! is  t h e  j o i n t  p r o b a b i l i t y  d i s t r i b u t i o n  of 

M(t) and N( t ) ,  We observe t h a t  t h e  s e t  of j o i n t  p o s s i b l e  b a t t l e  r e a l i z a t i c  

a t  any time t > 0 may be  r a t h e r  Large: t h e r e  a r e  (m0+l-mgp) X (no+l-ngp) 

p o s s i b l e  b a t t l e  r e a l i z a t i o n s  a t  any t ime t > 0. Thas, f o r  even r a t h e r  

rncdel numbers of combatants (say mo and no > 10) t h e  j o i n t  d i s t r i b u t i o n  

of s u r v i v o r s  i s  r a t h e r  unwieldy. Consequently, even when numerical  r e s u l t s  

a r e  a v a i l a b l e  f o r  t h e  j o i n t  d i s t r i b u t i o n  of s u r v i v o r s ,  they a r e  by themselvet 

80 uninformative t h a t  o t h e r  measures of b a t t l e - s t a t e  r e a l i z a t i o n  a r e  

d e s l r a b i e .  

Since  P(t,m,n) is  a j o i n t  ? r o b a b i l i t y  d i s t r i b u t i o n ,  we know t h a t  we 

The r e a d e r  w i l l  r e c a l l  t h a t  we have a l ready  v e r i f i e d  t h a t  (4.9.1) indeed 

holds  fo r  t h e  g e n e r a l  model wi th  forward KOLP1060ROV equa t ions  given by 

(4.3.13) through (4.3.19). 



There a r e  t h r e e  b a s i c  methods1* f o r  computing t h e  j o i n t  pr .obabi l i ty  

d i s t r i b u t i o n  of t h e  numbers of s u r v i v o r s :  

\
(MI') from an  a n a l y t i c a l  express ion ,  

(M2') by numerical  i n t e g r a t i o n  of t h e  f o w a r d  KOLMOGOROV equa t ions ,  

( M 3  ') by a hybr id  analyt ical -numerical  approach ( i .  e .  f tom an  

a n a l y t i c a i  express ion  wi th  c o e f f i c i e n t s  numerical ly  determined 

from a system of p a r t i a l - d i f  fercnce equations13).  

For convenience, we w i l l  r e f e r  t o  t h e s e  t h r e e  b a s i c  methods simply a s  follows 

(MI) a n a l y t i c a l ,  

(M2) numerical ,  

(M3) hybrid .  

The a n a l y t i c a l  method (MI) r e c u r s i v e l y  uses  t h e  forward KOLMOGOROV equa t ions  

t o  d e v e l o p a n e x p l i c i t  closed-form s o l u t i o n  f o r  t h e  s t a t e  p r o b a b i l i t i e s .  

Such a n a l y t i c a l  express ions  have been developed i n  only  a few i s o l a t e d  

s p e c i a l  c a s e s  (seebelow f o r  f u r t h e r  d e t a i l s )  and then a r e  so complicated 

t h a t  no i n s i g h t s  can be  d i r e c t l y  obta ined i n t o  t h e  p r o b a b i l i s t i c  dynamics 

of combat. Furthermore. such a n a l y t i c a l  express ions  a r e  n o t  even apparen t ly  



the moot compututionally e f f i c i e n t  ( see-CLARK [16, p i  1151). The numerical 

method (M2) uses f in i te -d i f fe rence  methods (e.g.  see HILDEBRIWD [37; 381, 

McCRACKEN and DORN [62],  MILNE [63],  TODD [80],  o r  Appendix E f o r  f u r t h e r  

d e t a i l s )  t o  numerically i n t e g r a t e  the  forward equations.  This method always 

produces numerical r e s u l t s  f o r  any given i n i t i a l  numbers of combatants and 

func t iona l  forms of a t t r i t i o n  r a t e s  but by i t s e l f  does no t  d i r e c t l y  provide 

any in s igh t s  i n t o  t he  dynamics of combat without l abor ious ly  gr inding out 

parametric r e s u l t s  f o r  judiciously chosen input  values  (seebelow f o r  fu r the r  

discussion) .  Furthermore, such numerical i n t eg ra t i on  is  q u i t e  computational1 

i n f e r i o r  t o  t he  hybrid method (M3), which i n  some sense combines the bes t  

aspec ts  of the  a n a l y t i c a l  and the  numerical methods. The hybrid ana ly t i ca l -  

numerical method (M3) was apparent ly  f i r s t  proposed i n  the  Ph.D. t h e s i s  of 

G. M. CLARK [16] and is  unfor tuna te lynotvery  widely known. Although some-

what complicated and tedious,  i t  i s  by f a r  t he  most computationally e f f i c i e n t  

approach (see -CLARK [16, p. 1051). A s  with t h e  o ther  methods, i t  is d i f f i c u l  

t o  ob ta in  i n s i g h t s  (without using kpproximations) i n t o  t h e  p r o b a b i l i s t i c  

dynamics of combat because of the  inherent  complexity of r e s u l t s ,  but the  

p o s s i b i l i t i e s  of t h i s  promising approach have not  been thoroughly explored. 

In the  remainder of t h i s  s ec t i on  w e  w i l l  focus an reviewing what 

a n a l y t i c a l  r e s u l t s  have been developed f o r  t he  j o i n t  p robab i l i t y  d i s t r i b u t i o n  

of t h e  numbers of surv ivors ,  and we w i l l  b r i e f l y  consider a s p e c i f i c  numerics: 

example (with "snapshots'" produced by computer graphics  of what the  j o i n t  

p robab i l i t y  d i s t r i b u t i o n  looks l i k e  a t  d i f f e r e n t  po in t s  i n  t i m e  over t he  

course of b a t t l e ) .  Let us  f i r s t ,  however, b r i e f l y  present  CLARK'S hybrid 

method ( ~ 3 ) .  Connections b e h e e n  r e s u l t s  ob ta inable  by t h i s  method and 



e x i s t i n g  a u a l y t i c a l  r a s u l t s  have apparent ly  nc t  been explored a t  a l l .  I n  

f a c t ,  m a t  r e s u l t s  i n  the  p r o b a b i l i s t i c  ana lys i s  of colnbat have been more 

o r  l e a s  ad hoc and i so l a t ed .  What is  needed l a  a un i f i ca t i on  and s imp l i f i -  

c a t i on  of r e s u l t s ,  wi th  I n t e r r e l a t i o n s h i p s  pointed ou t .  

Based on considerat ion of h i s  s p e c i f i . ~  a n a l y t i c a l  r e s u l t s  f o r  t he  

FT~FTa t t r i t i o n  process (seebelow f o r  s p e c i i i c s )  , G. M. CLARK [16, p .  1061 

very i n s i g h t f u l l y  guessed (and then induc t ive ly  confirmed) t h a t  f o r  a f i g h t  

t o  t he  f i n i s h  modelled by the  general  s t ochas t i c  LANCHESTER-type homogeneous- 

fo rce  autonomous combat model [ i . e .  (4.7.2) through (4.7.8) hold with 

%P = nBp - 01 the  s t a t e  p r o b a b i l i t i e s  a r e  given by 

f o r- O < m ( m o  O < n ( n o  

- 0 < n L nofor 


rr  LA-. -1 . 



and we recall that P(t,O,O) 0. Using the LAPLACE transform (e.g. see 

HPLDEBRAND [36 ] ,  PADULO and ARBIB [67 ] ,  or KLEINROCK [ 5 4 ] ) ,  CLARK [16, pp. 

109-1121 ha^ shown that the conetaxits cmPn are determined by the followinr 
j.k 


system of partial-difference equations 


for
- O < m L m o  0 < n < k L n O  

m,n-il

B(m,n+l) Cm 


cmvn , 9 ' 
m,k A(m,n) + B(m,n) - A(m,k) - B(m,k) 

and for 
-- 0 < m I m 0  0 < n -< no (m,n) # (mO,nO1 



I 

"0
with C = 1. Also, 
',,, mo,"0 

for
- O<u(j(mo i(k(no 

O y n  The above expresslons (4.9.2) through 
aud similarly for CO,n and Co 

j#k 


(4.9.4) are explicit analytical results for the state probabilities, with 


the constants cmSn determined by (4.9.5) through (4.9.10). CLARK (161 -
j ,k 


proposed that the constants cmsn be numerically determined by recursive 

j ,k 

solution of the system of partial-difference equations, and hence we have 


called this approach the &trid analytic&-numerical method. 


It is indeed disappointing that essentially all the analytical result& 


known to this author for the probability distribution P(t,m,n) for such 


LANCHESZER-type battles are probably best classified as "symbolic," have 


essentially no computational value, and furthermore provide absolutely no 


insights into the probabilistic dynamics of combat. Such "symbolic" results 


are epitomized by the result14 given by R. H. BROWN [14] for the =nerd 


stochastic LANCIQESTER-type homogeneous- force autonomous (i.e. with time- 


independent attrition rates) combat model with forward AOLMOGOROV equations 




-- 

(4.7.2) through (4 .7 .8) .  I n  p r e p a r a t i o n  f o r  s t a t i n g  BROWN'S r e a u l t ,  w e  ci 

a  pa th  from t h e  i n i t i a l  s t a t e  (mo,nO) t o  s t a t e  (m,n). Such a  pa th  i n  I 

s t a t e  space may bc descr ibed  a s  a  sequence of J = mo - m ze ros  and 

K = no - n ones, where a zero  corresponds t o  a s t e p  t o  t h e  l e f t  i n  t h e  r 

space ( i . e .  an X c a s u a l t y )  and a one corresponds t o  a  s t e p  down ( i . e .  a 

casua l ty )  (- Figure  4.6).  By cons ider ing  t h e  b inary  r e p r e s e n t a t i o n  of i 

p o s i t i v e  i n t e g e r ,  w e  ( fol lowing BROWN [ l h ] )  may make correspond t o  each 

r e a l i z a t i o n  of a  b a t t l e  pa th  an i n t e g e r  k given by 

where ( s e e-BROWN 114, pp. 13-14] f o r  f u r t h e r  d e t a i l s )  

/ 1 i f  r t h  c a s u a l t y  a long  b a t t l e  path  

corresponding t o  k is a Y combatant,\ 

Let us denote  by I t h e  s e t  of a l l  p o s i t i v e  i n t e g e r s  whose b inary  
J , K  

r e p r e s e n t a t i o n  c o n t a i n s  e x a c t l y  K ones and no more than J zeroes  ( a g a i ~  

s e e  BROWN [14, pp. 3.3-141 f o r  complete d e t a i l s ) .  A f t e r  r such t r a n s i t i c  -
(provided t h a t  r -< J + K) , t h e  system w i l l  be i n  s t a t e  (%,r,  \,r ) , whel 





and 

Then, BROWN [14, pp. 14-16] shows t h a t  

where i = t/--i. denotes  t h e  pure ly  imaginary number of u n i t  magnitude, :i 

denates  t h e  t o t a l  c a s u a l t y  r a t e  g iven by 

and 

BROWN [14, p. 1 3j p o i n t s  o u t ,  though, t h a t  un less  m is c l o s e  t o  mo and 

is  c l o s e  t o  n
0' t h i s  r e s u l t  i s  of " l i t t l e  p r a c t i c a l  i n t e r e s t  i n  t h e  genera l  

case .  " 

Although t h e  above express ion (4.9.13) i s  an exac t  r e s u l t  f o r  t h e  j o i  

p r o b a b i l i t y  d i s t r i b u t i o n  of t h e  numbers of s u r v i v o r s  i n  t h e  genera l  homogene 

f o r c e  WCHESTER-type b a t t l e  modelled by a continuous-time MARKOV cha in  wi th  

s t a t i o n a r y  t r a n s i t i o n  p r o b a b i l i t i e s ,  t h e  au thor  knows n o  computational use 

I 



(or, for that matter, any use at all) that has ever been made of this imposi 


formula. Even practical results for qecial cases of (4.7.2) through (4.7.8 


(i.e. for particular functional forms of A(m,n) and B(m,n) in these 


equations) have been elusive for any and all analptical solution approaches. 


The difficulty is not in integrating the forward KOLMOGOROV equations for a 

given initial number of combatants on each side (which can be done by elemen 


methods in the "top-down" manner discussed in Section 4. 7)15 but in finding 


a general expression that holds for arbitrary initial numbers of combatants 


(i.e. for any mo and n > 0). Let us now examine what analytical results 0 


have been obtained by any means for such special cases of the general model 


(4.7.2) through (4.7.8). We will review essentially all the analytical resu: 


known to this author. 


The joint probability aistribution for the number of survivors on eacl 


side has been investigated for the following probabilistic versions of the 


homogeneous-force battle (4.2.1) with stationarj transition ~obabilities 


corresponding to the time-independent attrition rates (4.7.1): 


(a) FT 1 FT stochastic LANCHESTER-type attrition process 

A(m,n) = a m  and B(m,n) = bum , (4.9.17 

(b) (F+T) I (F+T) stochastic LANCKESTER-type attrition process 

A(m,n) = an + Bm and B(m,n) = bm + Bn, (4.9.18 
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(c) F 1 F stochastic MCHESTER-type attrition process 

A(rn,n) - an and B(m,n) = bm . (4.9.19) 

We will now examine what analytical results for the state-probability vector 


have been obtained for each of the above three attrition processes. 


For the ~1 FT atochastic LANCHESTER-type attrition process with ,+, d 

attrition rates (4.9.17), G. CLARK 1161 has used the LAPLACE transform to find 


that for O <  m L m o  0 < n L n O  

J K m
0 

n
0 (-,) j+k-m-n (m,)!a b  
 1 1 m! n! (k-n) ! (j-m)! (mO-j1 ! (nc-k)!(a+b)J+K jam k-n 


where (as above) J = mo-m and K = no-n. When m = 0, he has also shown 

[16, pp. 102-1031 that fpr 0 C n no 

m m n

0 0 j+k-1-n (mo): (no) !a ObK 


mo+k 1 1 (n-I)! (k-n)! j! (mo-j)! (no-t)! 
(a+b1 j-1 k=n 



and sim4':arly f o r  P(l:,m,O). It is c l e a r  t h a t  no Ins ights  i n t o  the dynamics 

of combat a r e  d i r e c t l y  obtainable  from (4.9.20). 

For the  _SFCT)I(F+T) s tochas t i c  LANCHESTER-type a t t r i t i o n  process with 

r a t e sa t t r i t i o n  -(4.9.18), ISBELL and MARLOW [40] assumed t& a f a = b + 0 

and found tha t  f o r  mgp < m ( m o  and ngp < n (  no 

mo+"o)(= Pn o + P + I - I ~ e + x~ - m o o , ( 4 . 9 . ~  

where J = mo - m denotes the  number of X c a s u a l t i e s ,  s i n l l a r l y  f o r  K, 

and P (mo,nO) denotes the probabi l i ty  t h a t  the  system passes through the 
m," 

t r ans i en t  b a t t l e  s t a t e  (m,n) a t  some time during the b a t t l e .  In  general 

( i . e  f o r  the  general  a t t r i t i o n  process with s t a t i ona ry  t r a n s i t i o n  probabi l i t iec  

and no r e s t r i c t i o n  on the  a t t r i t i o n - r a t e  coe f f i c i en t s  such a s  a + c = b + B ) ,  

t h i s  l a t t e r  probabi l i ty  s a t i s f i e s  the  following par t ia l -d i f fe rence  equation 

for mo L m > mBY and nO)  n > nBP 

v i t h  boundary conditions 

r f o r  % = m ,  

and 
P ( m - l , n o ) - 0  fo r  n  > n.  
'59n 0 



X
Here PNC(m,n) denotes the probability that the next casualty is taken by the 


X force when the battle state is (m,n), i.e. P[X casualty~casualty occurs] 


Y
which we have seen is glven by (4.7.141, and similarly for PNC(m,n). The 

derivation of the above partial-difference equation for P
rn,n("'0 
 ) (4.9.23) 

i a  similar to that for 
Pm (mo,no) (4.10.6) given in Section 4.10 below. 

'"BP 

It should be noted that, alternatively, we could have taken the partial-differ- 


ence equation (4.9.23) for P (mo ,no) to hold for n+, > m aad no 2 n 
m* n 


with the boundary conditions then being 


for no * n ,  


and 


for mo 2 m. 

Fcr an autonomous (F+T) I (F+T) attrition process, the above equation (4.9.23) 

becomes [corresponding to the first of the above two equivalent sets sf 


boundary conditions (4.9.24) 1 for mo 2 m > mgp and mg > n > ngp 

with boundary conditions 




and 


When a + a = b + 8, the above equation ( 4 . 9 . 2 6 )  further reduces Lo (again, 

for mo Lrn ) mgp and no > n > nBP) 

with boundary conditions 


for mo = m,1 1  

(4.9. 


for no 2 n . 



It i r ,  worth ernphcl~izing tha t  (4.9.22) holds only when a + = b + 0 , but 

t h a t  (4.9.26) and (4.9.27) hold without any such r e s t r l c t i s u  on the  a t t r i t i o a -  

r a t e  coe f f i c i en t s .  F ina l ly ,  i t :  should be noled t h a t  f o r  t h i s  s p e c i a l  case 

An which c $. a b 3. 6 not on1.p cnn (4.9.22) [ a f t e r  one has a n a l y t i c a l l y  

solved (4.9.28) with t he  boundary condi t ions (6.9.29) 1 be used t o  provide an 

a n a l y t i c a l  r e s u l t  f o r  P(t,m,n), but i t  can a l so  be used t o  provide a hybrid 

analytical-numerical r e s u l t  ( c f .  our discussion about t he  t h r ee  bas i c  methods -
f o r  computing t h e  j o i n t  p robabi l i ty  d i s t r i b u t i o n  f o ~the  numbers of surv ivors ) .  

In other words, (4.9.22) a l s o  provides a basfa f o r  a hybrid ana ly t i ca l -  

numerical approach f o r  computing P(t,m,n) when used i n  conjunction with a 

numerical so lu t ion  ( fo r  example, recurs ive ly  generated with the  he lp  of a 

d i g i t a l  cmputer ]  t o  the  par t ia l -d i f fe rence  equation (4.9.28) with the 

boundary condi t ions (4.9.29). Thus, w e  s ee  t h a t  there  is more than one way 

t o  e f f e c t  a hybrid analytical-numerical so lu t ion  t o  t h e  forward KOLMOGOROV 

equations [cf.CLARK'S approach given above and epitomized by (4.9.2)]. It 

appears t ha t  within t h i s  context ,  (4.9.22) provides a more e f f i c i e n t  way t o  

compute P(t,m,n) than does (4.9.21, but computational s t u d i e s  a r e  required 

t o  confirm t h i s  conjecture .  In  f a c t ,  such computational s t u d i e s  are so re ly  

needed i n  t h i s  e n t i r e  f i e l d .  

For the  F I F  s t o c h a s t i c  LANCHESTER-type a t t r i t i o n  process with a t t r i t i o n  

r a t e s  (4.9.19) , t he  author knows of no general a n a l y t i c a l  r e su l t16  f o r  the  -
s ta te -probabi l i ty  vec tor  (outs ide of the p a r t i a l  r e s u l t  given i n  Sect ion 4.7 

above). Before we give an a n a l y t i c a l  r e s u l t  f o r  t h e  s t a t e -p robab i l i t y  vector  

i n  a spac i a l  case,  it  w i l l  be convenient f o r  us  t o  f i r s t  give an important 

a n a l y t i c a l  r e s u l t  f o r  Pm,n(mO,nO), which holds i n  general  f o r  the  P I P  

a t t r i t i o n  process and is  used t o  compute P(t,m,n). Accordingly, we observe 

thh t  GOLDIE [31] has recent ly  shown (using generat ing funct ions)  t h a t  f o r  



the F(F stochastic LANCHESTER-type attrition process with no restriction 


on the attrition-rate coefficients a and b (other than that they be 


positive), the probability that the system passes through the battle atate 


(m,n) at some time during the battle P (mo,nO) is given for mO 2 Q > mgp
msn 


and n
(3 -> n > nBp by 

GOLDIE [31] also gave the following alternate representation for P (mo,nO),

m,n 


whose duality with (4.9.30) should be noted. 


n -k m +n -m-n 
O t o  O r(m+%k) 


= (rn + n) (9) 
k-n (no-k)! (k-n) ! T (mo -t k + 1) 

These results may also be obtained by R. H. BROWN'S separation-of-variable's 

method (see 
-Appendix C), but the easiest  way to obtain them is to use the 

9expression (4.10.2) for P b0do) the probability that X wins a 

msn~~ 


fixed-force-level-breakpoint battle with m final survivors, and the follow- 


ing recursion (first apparently formally observed by GOLDIE [31]) 




1 

which holds for the general LANCHESTER-type stochastic attrition process i 

time-independent attrition-rate coefficients and is readily developed by 


elementary probability arguments. To see how (for example) (4.9.30) may 


developed by using (4.9.32), it is convenient to denote the probability 


P (mo,no) of passing through the transient state (m,n) as 
'm,n (mo ,n(m, n 


Similarly, we will denote the probability Pm (mo,no) of reaching the 

%P 


absorbing state (m,ngp) as P* (mopno). Using this notation, we may 
mB='13~ 


write (4.9.32) more explicitly for m 2 m > %P and n
0 -> n > ngp as 

whence follows 


The desired result (4.9.30) for P (m ,n ) PT 
m,n o o rn,n'"~s"~ ) follows from s 

stituting the expression for A'm,n-l (m n )  obtainedfrom(4.10.21) and
0' o 

Y

PNC(m,n) I(b/a)ml/{ (b/a)m + nl into equation (4.9.34) above. We are no 

ready to give a result for P(t,m,n) for the F I F  stochastic LANCHESTER-ty 


attrition process for the special case of equal attrition-rate coefficient 


In this special case in which a = b we may invoke ( 4 . 9 . 2 2 )  by setting 

a = S = 0, and consequently we find that for no 2 m > mgp and n > n >
0 -



where ( a s  above) J = m -m and K - noon. By s e t t i n g  a = b i n  (4 .9 ,30) ,0 

we f i nd  thar  P (mo,no) i n  (4"9.35) i s  given by 
m, n 

Furthermore, F. C. BROOKS [13] has made the  very i n s i g h t f u l  observat ion t h a t  

f o r  t h i s  s p e c i a l  case i n  which a - b oce can very e a s i l y  ob ta in  simple 

a n a l y t i c a l  r e s u l t s  f o r  t he  t o t a l  number of c a s u a l t i e s  on both s ides .  Thus, 

i f  t he  s t a t e  space i s  appropr ia te ly  def ined,  some very u s e f u l  information i s  

r ead i ly  obtained f o r  these  s t o c h a s t i c  b a t t l e s .  The reader  should bear i n  

mind, though, t h a t  t he  bas i c  u n t r a c t a b i l i t y  of q u a n t i t i e s  l i k e  t he  sLate-

p robab i l i t y  vec tor  remain unchanged by such transformations.  Thus, BROOKS 

[13, p. 91 considered the  p robab i l i t y  t h a t  a t o t a l  of L J + K = 

(mo--m) + (no-n) c a s u a l t i e s  have occurred on bcth s ides  by t i m e  t ,  PL( t ) ,  

and found t h a t  ( s t i l l  f o r  the  s p e c i a l  case i n  which a = b) f o r  a f i g h t  t o  

t he  f i n i s h  In  which L C mo, no 

It w i l l  be i n s t r u c t i v e  f o r  us t o  show how BROOKS'S [13] r e s u l t  (4.9.37) 

may be obtained from (4.9.27), which i s  a s p e c i a l  case  of ISBELL and 

MARLOW'S [40] more general  r e s u l t  (4.9.22). To t h i s  end, we observe t h a t  



-- 

and hence (4.9.35) y i e l d s  

where L = J + K and 

whence (4.9.37) followa from (4.9.35) provided t h a t  S,(mo.no) - 1.0. We 

w i l l  now give a probabi . l i s t i c  argument t h a t  SL(mO,nO) = 1.0, but a d i r e c t  

v e r i f i c a t i o n  of t h i s  f a c t  through use of the  above r e s u l t  (4.9.30) f o r  

(m n ) has s o  f a r  proven t o  be e lus ive .  We f i r s t  observe t h a t  
'm,n O '  o 

a t o t a l  of L c a s u a l t i e s  on both 

s ides  have occurred a t  some time 

during the  course of t he  b a t t l e  

Assuming t h a t  the  b a t t , l e ' s  termination condi t ion involves more than a t o t a l  

of L c a s u a l t i e s  on both s ides ,  then i t  is  c l e a r  t h a t  St(mg,nO) = 1.0. 

Considering the  above r e s u l t s ,  we begin t o  gain some apprec ia t ion  

f o r  the  grea t  increase  i n  d i f f i c u l t y  i n  a n a l y t i c a l l y  ex t r ac t i ng  information 

(c f .  Table 4.1 again) from a simple homogeneous-force combat model by the 

inc lus ion  of randomness In  the a t t r i t i o n  process.  Especial ly  because of 
t 



the combinatorial aMpvcts involved, a modem large-scale, high-speed 


digital computer must be used to generate numerical (as opposed to analytica 


results and can always readily generate such numerical results for a paxticu 


set of input values for the battle parameters. Although such particular 


numerical examnples can always be more or less readily generated by a modern 


digital computer, general insights into the dynamics of combat are again qui 


difficult to develop and can only be obtained by laboriously grinding out 


numerical reaults for diven ranges of input values for the battle parameters 


(-see Appendix E for a further discussion of such numerical methods). Never-

theless, at this juncture consideration of a specific computer-generated 


numerical example should at least provide the reader with some better under- 


standing abodt the basic nature of probabilistic LANCHESTER-type ccrnbat dyna 


as portrayec! by the joint probability distribution For the numbers of 


survivors M(t) and N ( t ) ,  i.e. P(t,m,n). 

It is indeed surprising that more use has not been made of the modern 


large-scale, high-speed digitial computer and associated computer graphics tc 


at least computationally investigate stochastic LANCHESTER-type force-on-for( 


attrition models. Let us now consider such a computer-generated numerical 


example for the joint probability distribution of M(t) and N(t) for the 


F I F  stochastic LAWCHESTER-type attrition process (4.9.10) . Numerical results 

are depicted (for the battle-input data shown in Table 4.11) at five differer 


points in time for this fight to the finish in Figures 4.7 through 4.11. 


In the corresponding deterministic battle, the X force is annihilated at 


DX = 155.81 minutes; and these plots (i.e. Figures 4.7 through 4.11) correq ta 

DX DX DX DX DX
to t = 0.025 ta , 0.25 ta , 0.50 ti , 0.75 ta , and 1.0 ta , respectively. 



TABLE 4 .11 .  Particulars for the Numerical Example for the Evolution of 

the Joint Probability Distribution for M(t) and N(t) for 


the F IF Stochastic LANCHESTER-Type Attrition Process (4.9.10) 

for a Fight to the Finish. 


1. Basic Input Data 


a = 0.008 X casualties/minute/Y firer 

b = 0.004 Y casuslties/minute/X firer 

m,-, - 40,  no 40 

2 .  Computed Quantities for Corresponding Deterministic Battle 

tDX 155.81 minutes [from equation ( 2 . 2 . 2 0 )  1 
a 


with xf - 0.00 and yf = 28.28 



Y 

Level. 

Force 


Figure 4.7. Joint probability distribution for M ( t )  and N(t) 

for the F I F rtochasric LANCHESTEX-type attrition 

process (4.9.10) for the input data given in Table 

DX
4.11 at t = 0.025 ta . 



Y 

Level, 


Figure 4 . 8 .  Joint  probability d is tr ibut ion  for M(t) and N(t) 

for the F IF etochast ic  LANCHESTER-type a t t r i t i o n  

procese (4.9.10) for  the input data given in Table 
DX4.11  a t  t = 0.25  ta . 
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Figure 4.9. Joint probability distribution foc M(t) and N(t) 


for the F(F stochastic IANCHESTER-type attrition 


process (4 .9 .10 )  for the input data given 13 Table 
DX
4.11 at t - 0.50 ta . 
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Level,  

Force 


Figure 4.10.  Joint probability distribution for M(t) and N(t) 

for the F I F  stochast ic  LANICHESTER-type a t t r i t i o n  

process (4.9.10) for the input data given i n  Table 
DX
4.11 a t  t = 0.75 ta . 



X 

Force Ls 

Figure 4 .11 .  Joint probability distribution for M(L) and N(t) 

for the F 1 'r' stochast ic  LANCHESTER-type a t t r i t i o n  

process (4  .g.lCI) for the input data given i n  Table 
1)X

4.11 a t  t = 1.0 ta . 



In  o t h e r  words, t h e  time f o r  e.ach of t h e  j o i n t  p r o b a b i l i t y  d i s t r i b u t i o n s  

sham i n  P i g l r e s  4.7 through 4.11 is  expressed i n  miis of t:, how long i l  

t akes  fo r  t h e  X Force t o  be a n n i h i l a t e d  i n  t h e  corresponding b a t t l e  r e p r e  

sented by t h e  d e t e r m i n i s t i c  model. 

The F igures  4.7 through 4.11 may be thought of a s  "snapshots" of t h e  

j o i n t  p r o b a b i l i t y  f o r  s u r v i v o r s  i n  t h i s  b a t t l e  taken a t  a sequence of i n c r e  

times. From s e q u e n t a l l y  1ooki:rg a t  t h e s e  f i g u r e s ,  t h e  r e a d e r  can s e e  how t 

p r o b a b i l i t y  d i s t r i b u t i o n  evolves  over time. At t = 0 a l l  p r o b a b i l i t y  is  

loca ted  at: t h e  s i n g l e  p o i n t  (ma, no) = (40, 40) i n  t h e  s t a t e  space.  By 

t = 0.025 t: t h i s  "spik?" o r i g i n a l l y  at  (mo, no) has  evolved a t  a "need 

near  (mo9 no) (* Figure  4.7). A s  time goes on, t h i s  "needle" of prob- 

a b i l i t y  mass becomes more and more blunted and moves t ~ w e r d s  t h e  n-axis 

( i . e .  m = 0) .  The b l u n t i n g  of t h e  p r o b a b i l i t y  mass corresponds t o  d i f f u s i c  

of p r o b a b i l i t y  from t h e  mode ( i . e .  t h e  "high point")  of the j o i n t  d i s t r i b u t :  

while the movement of t h e  p r o b a b i l i t y  mass i n  t h e  s t a t e  space corresponds 

t o  convect ive  t r a n s p o r t  of p r o b a b i l i t y  towards t h e  end-of-bat t le  c o n d i t i o n  

i n  t h e  s t a t e  space17 ( i . e .  a n n i h i l a t i o n  of one s i d e  o r  t h e  o ther )  (E 

Figures  4.8 through 4.11). Since  (m, 0) and (0 ,  n) a r e  absorbing s tat  

i n  t h i s  f i g h t  t o  t h e  f i n i s h ,  p r o b a b i l i t y  " s t i cks"  t o  the boundary of the 

s t a t e  space a s  some of t h e  p r o b a b i l i t y  mass reaches  t h e  boundary ( s e e  -
Figures  4.10 and 4.11). As t i m e  i n c r e a s e s  wi thout  bound, a l l  t h e  probabil  

mass becomes absorbed on e i t h e r  t h e  m-axis o r  t h e  n-axis,  and t h i s  s i t u a t :  

corresponds t o  t h e  mathematical f a c t  t h a t  l i m t + + - w  P( t , r . ,n)  = 0 when bc 

m and n > 0. The t o t a l  amount of p r o S a b i l i t y  mass u l t i m a t e l y  accumulat~ 

18 
on t h e  n-axis i s  simply the  p t o h a b i l i t y  t h a c  Y wins , i . e .  R [ Y  wins]  

no
- L n m l  limt+ + m  P(t ,O,n) ,  and similarly f o r  P[X wins] .  For t h e  examyl 



a t  hand, t h e  r e a d e r  can s e e  from Figure  4 . 1 1  t h a t  P[Y wins]  ia r a t h e r  l a q  

and corresponds t o  a "decis ive"  wln by Y i n  t h e  d e t e r m i n i s t i c  b a t t l e .  I f  

t h e  opposing f o r c e s  were c l o s e r  t o  "par i ty"  ( i . e .  t h e  i n i t i a l  f o r c e  l e v e l s  

were aueh t h a t  i n  t h e  corresponding d e t e r m i n i s t i c  ba:ter t h e  opposing f o r c e s  

would be clocuer t o  "par i ty" ) ,  more p r o b a b i l i t y  would be absorbed on t h e  n-axj 

corresponding t o  a l a r g e r  va lue  f o r  P[X wins 1. 

The e f f e c t  of us ing  deterministic f o r c e - l e v e l  b reakpoin t s  i n  our  combc 

modal (cf. Sec t ions  3.2 and 3.4 above) i s  simply t o  reduce t h e  a t a t e  space,  

wi th  t h e  p r o b a b i l i t y  maae moving over time i n  t h e  same g e n e r a l  q u a l i t a t i v e  

manner a s  i n  t h e  p rev ious  example. To s e e  t h i s  i n  a s p e c i f i c  numerical  

example, l e t  us modify t h e  previous  example by changing each s i d e ' s  force-

l e v e l  breakpoint  from 0 t o  8 (=Table  4.111). The e v o l u t i o n  of t h e  j o i n t  

p r o b a b i l i t y  d i s t r i b u t i o n  f o r  t h i s  f ixed-force-level-breakpoint  b a t t l e  f o r  

0.50 f, 0.75 $, and 1.0 ty is shown i n  

Figures4.12 through 4.16 and c l o s e l y  resembles t h a t  of t h e  p rev ious  example, 

except  t h a t  t h e  s t a t e  space is  reduced t o  (m,n) wi th  m = 8, 9, ... , 40 
and n = 8, 9,  ... , 40. Hero f denotes  t h e  d u r a t i o n  of t h e  correspondix 

u e t e r m i n i o t i c  b a t t l e  ( " the  time f o r  Y t o  win t h e  d e t e r m i n i s t i c  b a t t l e " )  

and has  been computed according t o  t h e  r e s u l t  given i n  Table  2 .X  f o r  t h e  

d a t a  shown i n  Table  4.111 (see '  CRAIG [19] f o r  f u r t h e r  computat ional  r e s u l t s )  -




TABLE 4.111. Particulars for the Second Numerical Example for the Evol~tion 


of the Joint Probability Distribution for M(t) and N(t) for 


the F IF Stochastic LANCHESTER-Type ~ttrition Process (4.9.10) 

for a Fixed-Force-Level-Breakpoint Battle. 


1. Basic Input Data 


a = 0.008 X casualties/minute/Y firer 

b = 0.004 Y casualties/minute/X firer 

mo = 40 , no = 40 

2. Computed Quantities for Corresponding Deterministic Battle 


DY 

tw = 120.68 minutes 

with xf = 8 .OO and yf = 28.84 



X 

Force La 

Figure 4.12. Joint probability distribution for M(t) and N(t) 


for the F IF stochastic LANCHESTER-type attrition 

process (4.9.10) for the input data given in Table 


4.111 at t = 0.025 $DY. 



Force 

Force 

Figure 4.13. Joint probability distribution for M(t) and N ( t )  

for the P IF stochast ic  LANCHESTER-type a t t r i t i o n  

process (4.9.10) for the input data given i n  Table 

4 .111 a t  t = 0.25 $DY. 
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Level, n 

Aorce 


Figure 4.14. Joint probability distribution far M(t) and N(t) 


for the F I  F stochastic LANCHESTER-type attrition 

process (4*9.10) for the input data given in Tabla 

DY
4.111 at t = 0.50 cW . 
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Figure 4.15. Joint probability distribution for M(r) and N(t) 

for the F ( F stochast ic  LANCHESTER-type a t t r i t i o n  

process ( 4 . 9 0 )  forDYthe input data given i n  Table 

4.111 at  t 0.75 . 

Ti- '.4 



Y 

Level, 

Figure 4.16. Joint probability dietribution for Met) and N(t) 


for the F (F stochastic LANCHESTER-t:, p,: attrition 

process (4.9.10) for the input data given in Table 

DY
4.111 at t = 1.0 tW . 



4.10. The Probabi l i ty  of Winning. 

For such a s tochas t i c  combat model, other  quan t i t i e s  of i n t e r e s t  

t o  the combat ana lys t  ( r e c a l l  Table 4.1) a r e  (a)  the  probabi l i ty  of winnil 

(b) the d i s t r i b u t i o n  of the  winner's f i n a l  survivors  a t  the  end of b a t t l e ,  

and (c) the expected numbers of f i n a l  survivors .  In t h i s  sec t ion  we w i l l  

g ive the fundamental equat ions t h a t  y i e ld  the  f i r s t  two important q u a n t i t i  

and then we w i l l  give ana ly t i ca l  r e s u l t s  f o r  a l l  these q u a n t i t i e s  f o r  the  

bas ic  homogeneous-f orce LANCHESTER-type models f o r  the  FT 1FT, F 1F, and 

F ~ F Ta t t r i t i o n  processes. A s  we. have s t r e s sed  many times above (espec ia l1  

f o r  de t e rmin i s t i c  a t t r i t i o n  processes) ,  such r e s u l t s  a r e  heavi ly dependent 

on the nodel taken f o r  b a t t l e  termination. Moreover, a l l  the r e s u l t s  

given i n  t h i s  sec t ion  a r e  f o r  fixed-force-level-breakpaiat battles1' (a 

spec i a l  case of which i s  the  f i g h t  t o  the  f i n i s h ) .  

Thus, i n  t h t s  sec t ion  we w i l l  develop the fundamental par t ia l -d i f f  

ence equations f o r  determining 

(I) the  probabi l i ty  of winning, 

and (11) the d i s t r i b u t i o n  of the winner 's survivors ,  

f o r  iixed-force-level-breakpoint bact les .  Then we w i l l  gi1.e a n a l y t i c a l  

r e s u l t s  f o r  the following p robab i l i s t i c  versions of t he  homogeneous-force 

b a t t l e  (4.2.1) with s t a t i ona ry  t r a n s i t i o n  p r o b a b i l i t i e s  corresponding t o  

the  time-Independent a t t r i t i o n  r a t e s  (4.7.1): 



(a)  FT 1 FT s tochas t i c  LANCHESTER-type a t t r i t i o n  process 

IA(m,n) = camn and B(m,n) bmn , (4.10 

(b) F I F s tochas t i c  LANCHESTER-type a t t r i t i o n  process 

A(m,n) = an and B(m,n) = bn( , 

(c) F ~ F Tstochastic LANCHESTW-type a t t r i t i o n  process 

A(m,n) = an and B(m,n) = bmn . (4.1C 

Fina l ly ,  we w i l l  consider a n m e r i c a l  example t o  give the  reader  a f e e l  fc 

the  na ture  of such r e s u l t s .  

We begin by devaloping the  fundamental par t ia l -d i f fe rence  equatior 

f o r  t he  probabi l i ty  of winning f o r  a fixed-force-level-breakpoint b a t t l e .  

Let u s  denote PIX wins] a s  PX - PX(m0' n 0 ), where mo and no (as  us{ 

denote the  i n i t i a l  numbers of X and Y combatants i n  the b a t t l e .  Here! 

a win f o r  X means t h a t  the Y force  reached i t s  breakpoint f i r s t  (see 
Chapter 3 f o r  f u r t h e r  d e t a i l s ) ,  i . e .  N( t f )  = ty,P a t  the end of b a t t l e  

but M(t) > mgp throughout the b a t t l e  f o r  0 t 5 t f .  To develop the  

Ofundamental equation f o r  PX (m ,n O), we consider the event t h a t  X wins 

a b a t t l e  i n  which the i n i t i a l  X fo rce  l e v e l  is  mo and t h a t  of Y is 

no. Let the next casua l ty  occur and consider what X must do i n  order t~ 

win: 

1. i f  an X casua l ty  ha8 occurred, then X must win the 

remaining b a t t l e  i n  which h i s  i n i t i a l  force  l e v e l  i s  

(mO-1) and t h a t  of Y is no; 



2. i f  a Y casual ty has occurred, then X must win the remain- 

ing b a t t l e  i n  which h i s  i n i t i a l  force  l e v e l  i s  mo and t h a t  of 

Y is (nO'l). 

Since these events  a r e  mutually exclusive and exhauative, by the  theorem of 

t o t a l  p robabi l i ty  i t  fol.lowa tha t  

X

where PNC(mo,nO) = P[X casual ty lcasual ty occurs I ,  which is given by 

(4.7.14) .  and s imi l a r ly  f o r  ~ ~ ~ ( m ~ , n ~ ) .To make our mathematical model 

"properly posed," i,e .  have a well-determined so lu t ion  (c. g. see COURANT 

and HILBERT [18, pp. 226-2271 f o r  f u r t h e r  discussion) ,  we must a l s o  spec i fy  

the appropriate  boundary condit ions f o r  P (m ,nO). 
'The n a t u r a l  ones a r e  

X O 

t h a t  X must win i f  P s t a r t s  a t  h i s  breakpoint,  i .e .  PX (m 0 ,n BP) - 1 

f o r  mo > ap,and t h a t  Y must win i f  X s t a r t s  a t  h i s ,  i . e .  

PX(ap ,nO)  = 0 f o r  n0 > nBP. Thus, t he  fundamental par t ia l -d i f fe rence  

equation s a t i s f i e d  by the  p robab i l i t y  of X winning PX(mo.no) i n  a fixed-

force-level-breakpoint b a t t l e  Is given by ( fo r  mo > %p and no > ngp) 

with boundary condit ions 

'"BP 1 - 1  and PX(%p,no) = 0 .P ~ ( m o  



The i n i t i a l  s t a t e  apace and boundary condit ions a r e  a h m  i n  Figure 4.17. 

Since we have ass.umed [see assumption (A3) of Section 4.31 t h a t  c a s u a l t i e s  

ern only occur s ingly  :k n  they d o  occur ,  i . e .  P[mote than one: casua l ty  i n  

2 
=ahort  tim i n t e r v a l  of length ~ t ]  O((At) ) or  P[more than one caeual ty 

a t  a time] 0, i t  i s  impossible t o  have the  b a t t l e  end i n  a draw and then 

the probabi l i ty  t h a t  Y wins Py(mo,nO) is  given by Py (mQ ,no) = 

1 - PXb0  ,no). 

The probabi l i ty  d i s t r i b u t i o n  f o r  the  winner 's survivors  satisfies 

a s imi l a r  par t ia l -d i f fe rence  equation. Let us  denote P[X wins and has 

m survivors]  a s  P
m * % ~

(mQ,nO). To be more prec ise ,  P (rno ,no) r e a l l y  
m s xlBp 

denotes P [a t  some t i m e  during the  b a t t l e  t he re  a r e  m X suwivora  and 

nBP f o r  Y l ,  and the f a c t  t h a t  we a r e  considering a fixed-force-level-

breakpoint b a t t l e  (with no replasemexts mnd no withdrawals) y i e lds  t h a t  t h i  

probabi l ty  is  equivalent t o  P[X wins and has m surv ivors ] .  [ I f  we 

were t o  have need f o r  i t ,  P (mo,~O) would be s imi l a r ly  def ined.]  
~ E P J '  

Then, arguments s imi l a r  t o  those used above y i e ld  the  following fundamental 

par t ia l -d i f fe rence  equation f o r  t he  probabi l i ty  t h a t  X wins with m 

f i n a l  survivors  P (mo,nO) i n  a fixed-force-level-breakpoint b a t t l e  i a  
m s n ~ P  

given by (for mo 2 m > mgp and no > %P) 

with boundary condit ions 





P (mo'nBp) - 1 f o r  mo m > '=BP * 

m * n ~ ~  i 0 otherwise 

and 

The i n i t i a l  s t a t e  space and boundary condi t ions a r e  shown i n  Figure 4.16. 

It should be noted t h a t  the pa r t i a l -d i f f e r ence  equation (4.10.6) is just  a 

s p e c i a l  case of (4.9.231, but t h a t  the  boundary condi t ions f o r  t he  former 

(4.10.7) a r e  not  a s p e c i a l  case  of those f o r  t h e  l a t t e r  (4.9.24). We now 

a l s o  observe t h a t  

whence follow (4.10.4) and (4.10.5) from (4.10.6) and (4.1.0.7). We w i l l  

now examine what a n a l y t i c a l  r c q u l t s  for P (m ,n ) and Pm (mo ,no) havex o o  %r 
been obtained f o r  each of the above th ree  a t t r j t i c m  processes (4.10.1) 

through (4.10.3). 

For the  FT 1 PT ntochas t ic  LANCHESTER-type a t t r i t i o n  process with 

a t t r i t i o n  r a t e s  ( 4  0 1 , one f i n d s  that2' (E MORSE and KIMBALL ( 6 5 .  

pp. 67-68]; BROWN [15] ,  G. H. WEXSS [%9], and SMITH [75 ]  f o r  f u r t h e r  

d e t a i l s )  





Here, for example, P (mopno) as given by (4.10.9) is the solution 
m % ~  


the following partial-difference equation for mo )m > rqjp and no > 

Xwith boundary conditions (4.10.7), since PNC (mo,no)
a 

Y
A(m ,n )I{A(mo,nO) + B(m 0,il0) I  and similarly for PNC(mo,nO). The solutiol 0 0 


(4.10.9) to this partial-difference equation (4.10.13) with boundary 


conditions (4.10.7) is developed by the method of generating functions 


below in Appendix C. However, for the FTIE'Tstochas tic LANCHESTER-type 

battle, simple probabilistic arg&ents21 may also be used to obtain (4.10.9: 


Using the results of PEARSON [70], one may show that (see G. H. WEISS [89] 
-
for further details) 




where 


Ix(a,b) denotes the in~~omplete 
beta function,which may be defined by 


and B(a,b) denotes the usual beta function defined by 


Tables of the incomplete beta function (equivalently, cumul.atfve binomial 


probability distrfbution) are fairly readily available (e.8. see PEARSON -
[71] or WEINTRAUB [88]; -see also further tables listed in ABRAMOWITZ and 

STEGUN [l, p. 9631). We also have the conditional distribution 


(rno+nO-wnBp- 1) n -n 


no-nBp-1 0 BP 

P[ ~ ~ - m l 
x wins] = 

53("o-)sp 'mo-mg~) 
(4.U 


m

0
and the conditional expectation "k ~ ~ P + l  = mlx wins] given bj mP [ M ~  


(-see G. H. WEISS 1891 for further details) 



- - 

X 

where (as usual) 


For the F 1 F stochae tic LANCHESTER-type attrition proceee with 

attrition rates (4.10.2)' one finds that (see BROWN [15] and SMI'Ri [ 75 ]-
for futher details) 


mo-j m +n -m-ngp-1 

C j "  O r(;b j + %P + 1) 
P ' 

"BP jmm (mo-j)! (j - m)! r(-b j + n o  + 1)a 


with the corresponding expressions for P and Py being symmetric 

%P'" 


to the above results. SMITH'S [ 7 5 ]  results for P (mO,no) and 
m ' n ~ ~  


P m n ) with mBP = nBP = 0 have been subsequently rediscovered by 
0' 0 


GYE and Lewis [34] and extended to results equivalent to (4.10.21) and 


(4.10.22) by GOLDIE [31]. Here, for example, P (mo ,no) as given by 

m ' n ~ ~  


(4.10.21) is the solution to the following partial-difference equation for 




X 

with boundary conditions (4.10.5), since PNC(mo,no) 


X 

~ ( m ~ , n ~ ) / ~ ~ ( m ~ , n ~ )  and PNC(m 0 ,n O ) a 1 - PNC. The soht + ~ ( m ~ , n ~ ) l  Y 

(4.10.21) to this partial-difference equation (4.10.23) with boundary 


conditions (4.10.7) is developed by BROWN'S separation-of-variables 


method below in Appendix C. In obtaining PX from P 


22
use of the facts that 


and also that l/(j-m)! = l/r(j-~l) = 0 f o r  all integers J < m. 

For the F 1 FT stochiletic LANCHESTER-type attrition process wit 

attrition rates (4.10.3), one finds that (seeSMITH [75]  or KISI and 

[53] for further details) 




Here, for example, the solution (4.10.25) to the fundamental partial-dif fc 


ence equation for P (uO,nO) may be developed by BROWN'S separation-

a,'Igp 

of-variables method (see Appendix C) . Again, to obtain (for example) 

(4.10.27) from (4.10.25) one uses (4.10-24) and rha fact that 

1 j-m ! - j - 1 - 0 for all integers 3 < m. 

In Figure 4.19 we have plotted for the FT(FTattrition process and 


a fight to the finish Py versus the quantity bm /(ano), which the reade 

0 


may think of as the deterministic-battle-outcome-prediction variable. 

Although (strictly speaking) for fixed no and a given bound on mo 


the dependent variable Py is only defined for a finite set of values of 


the independent variable b%/ (ano) , we have taken the liberty of drawing 

"continuously-connected" curves. The reader can see that P depends

Y 


on the ab~olute numbers of initial combatants in the battle and that 


P + Ideterministic-battle-outcome-prediction result) as n
0 

-c + co ifY 


we give the appropriate probabilistic inte~pretation to the force-annihila- 


tion-prediction condition (i.e. Py 1.0 for x / y  < a/b). Thus, the 
0 0 


deterministic-battle-outcome-prediction result may be considered to be 


a step function when the probability of winning is piotted against the 


appropriate measltre of parity between the two opposing forces. The prob- 


ability of winning as a function of this mear~ure of parity asymptotically 


approaches this step function as the initial number of combatants becomes 


arbitrarily large. This same type ~f hehavior also holds for the other 


two stochastic LANCHESTER-type attrition processes considered above (i.e. 


the F I  F and F ~ F Tstochastic attrition process). In all the cases known 


to this author, the slope of the curve of the probability of winning 




FT)FT ATTRITION PROCESS 

deterministic 

Normalized Initial Force Ratio, bmg/(anol 

Figure 4.19. The probability that Y wins Py as a function 


of the normalized initial force ratio bmo/ (ano) 


for the FT(FT attrition process and ii fight to the 

finish. Shown here are curves for no rn 1, 2 ,  5, 

and 80 and also the corresponding d~terministic- 


battle-outcome-predfction result which corresponds 


to n 0 = +. For the calculations shown here we 

have taken a =  b ,  and consequently 

P,[X casualtylcasualey occurs] = 0.5. 



versus the appropr ia te  meaeure of force  p a r i t y  is  s t e e p e s t  a t  the point  

of p a r i t y  between the  forces .  In other  words, a t  p a r i t y  t he  add i t i on  of 

one more combatant i n i t i a l l y  t o  b a t t l e  has  i ts g r e a t e s t  i.mp,act on t he  

outcome of t he  b a t t l e  ( a s  quant i f ied  by the  p robab i l l t y  of winning) 

(-see LEE and WANNASILPA [57]  o r  CRAIG [19] f o r  many add i t i ona l  such plot  

of the  probabi l i ty  of winning versus  some measure of fo rce  p a r i t y ) ,  Here 

i t  has seemed appropr ia te  t o  say t h a t  two forces  a r e  a t  p a r i t y  i n  such a  

s t o c h a s t i c  b a t t l e  i f  e i t h e r  equal ly  l i k e l y  t o  win ( i . e .  



Approximations t o  t h e  P r o b a b i l i t y  of Winning. 

9A s  t h e  r e s u l t s  of the previous  s e c t i o n  show, t h e  exac t  a n a l y t i c a l  

express ion f o r  t h e  p r o b a b i l i t y  t h a t  a glven s i d e  w i l l  win i s  f a r  too  compli- 

23
ca ted  eo be of p r a c t i c a l  u s e  . Moreover, i f  one t r i e s  t o  use  such an exac t  

. a n a l y t i c a l  express ion  fo r  computatiDn on, f o r  example, a l a rge-sca le  d i g i t a l  

computer of r e s u l t s  for a b a t t l e % i t h  any apprec iab le  numbers of i n i t i a l  

combatants, one f i n d s  t h a t  t h e  a t tempt  t o  compute a f a c t o r i a l  q u a n t i t y  
Cmo+"o> 


such a s  (mo + no) ! o r  a power4quantity such as mo causes  a l l .  s o r t s  

of numerical  To avoid such numerical  problems, one can t r y  t o  

r e c u r s i v e l y  compute such q u a n t i t i e s ,  and a f t e r  much involved l a b o r  a long the 

l i n e s ,  one f i n d s  out  t h a t  he h a s  rediscovered t h e  fundamental p a r t i a l - d i f f e r  

ence equat ion t h a t  gave r i e e  t o  t h e  exac t  a n a l y t i c a l  r e s u l t s  i n  t h e  f i r s t  

p lace .  I n  o t h e r  words, i t  is e a s i e r  t o  use  t h e  fundamental p a r t i a l - d i f f e r -  

ence equat ion d i r e c t l y  i n  a numerical  a lgor i thm than t o  u s e  t h e  e x a c t  

a n a l y t i c a l  r e s u l t s  f o r  t h e  p r o b a b i l i t y  of winning o r  t h e  d i s t r i b u t i o n  of tht  

winner ' s  f i n a l  s u r v i v o r s  (seeCRAIG [19, p. 26 and pp. 43-521 f o r  f u r t h e r  

d e t a i l s ) .  Because of t h e s e  computational shortcomings of exac t  r e s u l t s ,  onc 

must r e l y  on approximations i n s t e a d  of exact  a n a l y t i c a l  r e s u l t s  t o  develop 

i n s i g h t s  i n t o  how t h e  d i s t r f b u t i o n  of b a t t l e  outcomes i s  c e l a t e d  t o  t h e  

i n i t i a l  numbers of combcranrs and t h e  p r o b a b i l i s t i c  combat dynamics25. Wha 

is needed is a simple approximation t h a t  w i l l  enab le  one t o  pe rce ive  t h e  

r o l e  played by t h e  combatants'  a t t r i t i o n  r a t e s  A(m,n) and B(m,n) and 

i n i t i a l  numbers i n  determining the  p r o b a b i l i t y  of winning. 

Thus, i n  t h i s  s e c t i ~ n  we w i l l  g ive  some simple approximations t o  

t h e  p r o b a b i l i t y  of winning f o r  t h e  F T I F T ,  F I F ,  and F ~ F T  a t t r t i o n  proceeses  



with a t t r i t i o n  r a t e s  (4.10.1) thrcugh (4.10.3) f o r  which we have developed 

exact a n a l y t i c a l  r e s u l t s  i n  the  previous sec t ion .  These r e s u l t s  a r e  given 

f o r  f ixed-force-level-breakpoint b a t t l e s  except f o r  t he  F I F a r t r i t i o n  proce 

f o r  which r e s u l t s  a r e  given only f o r  a f i g h t  t o  t h e  f i n i s h .  A l l  t he  approx 

mations given i n  t h i s  s ec t i on  f o r  the  s t o c h a s t i c  b a t t l e s  of the  previous 

s ec t i on  a r e  e s s e n t i a l l y  of t he  form 

where PX denotes the  approximation t o  6X (m ,n ) , $(v) denotes the  cumul O O 

d i s t r i b u t i o n  funct ion ( c  .d .f . ) of t he  u n i t  (o r  s tandardized)  normal devia te  

and the  argument v depends on the  type of a t t r i t i o n  process and the  b a t t l  

termination condi t ions.  However, KISI and HIROSE 1535 have gfven a POISSON 

approximation (see a l s o  SPRINGALL [77, pp. 133-136 and pp. 167-1711) f o r  

the  probabi l i ty  of winning i n  t he  F ~ F Tb a t t l e  (4.10.3).  

The g rea t  value of the  normal approximation (4.11.1), however, i s  

t h a t  t he  c.d.f .  of t he  u n i t  normal is  s o  extremely wel l  known and t a b l e s  ( a  

a l s o  computer rou t ines)  a r e  r ead i ly  ava i l ab l e  (e.g. ABRAMOWITZ and STEGUN 

[ l ,  pp. 966-9723). Furthermore, we w i l l  see  t h a t  a s  t he  i n i t i a l  fo rce  r a t i  

t i o  - mo/nO v a r i e s  between 0 and + m, the  argument v i n  (4.11.1) v a r i e s  

between -m and +, and we may the re fo re  invoke under the  apprapr ia tc  



c o n d i t i o n s  t h e  fol lowing asymptotic approximations based on t h e  well-known 

simple asymptotic approximations t o  the  c.d . f . f o r  t h e  normal d i s t r i b u t i o n  

(e.g.  3FELLER [25, p. 1661) 

1. f o r  V + + =: 

11. f o r  v + - -: 

where t h e  symbol is  used t o  i n d i c a t e  t h a t  t h e  r a t i o  of t h e  two s i d e s  t ends  

t o  one under t h e  s t a t e d  l i m i t i n g  condi t ion.  

Before we cons ider  t h e  pa r t i cu la r i s  of t h e  approximations t h a t  have 

been developed, t h e  au thor  would l i k e  t o  po in t  out  t o  t h e  r e a d e r  t h e  follow- 

i n g  shortcomings of t h i s  work: 

(S l )  no a p r i o r i  e r r o r  bounds e x i s t ,  

(S2) no g e n e r a l  method is  known f o r  developing such approximations.  

With r e s p e c t  t o  t h i s  l a t t e r  shortcoming l:S2), BROWN [15] (9a l s o  BROWN [14]) 

has  given an approach t h a t  might con ta in  t h e  germ of an i d e a  f o r  developing 

the d e s i r e d  u n i f i e d  approach. Let us  naw examine what approximations t o  t h e  



probabi l i ty  of winning have been developed f o r  t h e  above th ree  a t t r i t i o n  

processes with a t t r i t i o n  r a t e s  (4.10.1) through (4.10.3) f c r  n fixed-force- 

level-breakpoint For each of t he se  b a t t l e  types,  we  w i l l  denote 

t he  approximation t o  t he  p robab i l i t y  of winning a s  PX. 
I FT ~ t o c h a s t i c  LANCHESTER-type a t t r i t i o n  process with For t he  FT .- 

a t t r i t i o n  r a t e s  (4  

develop (see BROWN 

.10.1) x d  a fixed-force-level-breakpoint b a t t l e ,  one may 

29 I14; 151 and G. H. WEISS [89]  f o r  f u r t h e r  d e t a i l s  ) 

t he  approximation (4.11.1) with argument v given by 

Y X 
where R a a h ,  uo = mO/n,,, f C  - (1 - fgp) /(l - fBp) , and the  breakpoints  

P 

a r e  (as usual) expressed i n  the  form X Y 
%P 'BpXO and ' 3 ~  'gpyO It is  

X Y worthwhile not ing the  following s p e c i a l  case: fgp = fgp = 0 and a = b.  

In  t h i s  case (4.11.5) reduces t o  

which c l e a r l y  shows t h a t  t h e  p robab i l i t y  of winning is dependent upon the  

total number of combatants i n  t he  b a t t l e  except when p a r i t y  e x i s t s  between 

the  fo rces  and P = 0.5. There are "be t te r"  choices f o r  v i n  t h e  sense  
X 

t h a t  they g ive  closer approximations (E FELLER [231), but  the  above choice 

(made by BROWN [ l 5  1) has t h e  m e r i t  of s imp l i c i t y .  The above tipproximation 

(4.11.1) with ~rgurnent v given by (4.11.5) fallows from BROWN'S [15, p. 4221 

r e s u l t  f o r  a f i g h t  t o  t he  f i n i s h  and the  observation t h a t  t h e  exact  r e s u l t  

f o r  a fixed-force-level-breakpoint b a t t l e  (4.10.14) may be obtained from 

t h a t  f o r  a f i g h t  t o  t he  f i n i s h  by rep lac ing  rn by ($ - mgp) and n 
0 0 



by (no - "gp), whence follows (4.11.1) with argument v given by 

which is equivalent  t o  (4.11.5). 

For t he  F I F s t o c h a s t i c  LANCHESTER-type a t t r i t i o n  process with a t t r i t j  

r a t e s- (4.10.2) and a f i g h t  t o  t h e  f i n i s h ,  BROWN [14; 151 has developed the  

approximution (4.11.1) with argument. v given by 

Again, (4.11.7) shows u s  t h a t  t he  p robab i l i t y  of winnir~g ( a t  l e a s t  according 

t o  t he  above approximation) i s  dependent on the t o t a l  number of combatants 

i n  the  b a t t l e  except when p a r i t y  e x i a t s  between the  forces  with uo = &. 

For t he  F 1 FT s t o c h a s t i c  LAFICHESTER-type a t t r i t i o n  process with 

a t t r i t i o n  r a t e s  (4.10.3) and a fixed-force-level-breakpoint b a t t l e ,  KISE and 

HIROSE [53]  have developed the  following POISSON approximation from consider 

a t i on  of a generating funct ion 

2 2ere q - (mg - a p ) / ( 2 R )  and R = a / b .  However, s i nce  t he  POISSON and 

chi-square (or  y2)  d i s t r i b u t i o n s  arc r e l a t e d  (e.8. pee PARZEN [68, p.  178 



and p. 1811 o r  .4BRAMOWITZ and S T E G U N  11, p. 941]),  we m y  a l s o  wr i t e  

7 
where Q(x- 1 v) denotes t he  complementary cumulative d i s t r i b u t i o n  funct ion fc 

the x 2  d i s t r i b u t i o n  with v degrees of freedom. Althmgh (4.11.8) and 

(4.11.9) a r e ,  of course,  e n t i r e l y  equivalent ,  the l a t t e r  r e s u l t  i s  somewhat 

2

more s i g n i f i c a n t ,  s ince  not only a r e  more t ab l e s  ava i l ab l e  f o r  the x 

d i s  t r i b u t i m  but a l s o  there  a r e  well-known normal approximations t o  i t  (9. g. 

s ee  KENDALL (52, p. 2941 and A B W O W X T Z  and STEGUN [l, p. 9411) . Thus, we-
may u s e  normal approximations t o  the  x2 l i s t r l b u t i o n  t o  obta in  f u r t h e r  

(and i n  some sense simpler) approximations to  the probabi l i ty  of winning: 

namely, 

where 

( I )  f o r  no - ngp > 50, i = 1 and then the argument v1 is  given t 

(11) f o r  no - ngp > 15, i = 2 and then she argument v2 is given t 

with 



The above regions of a p p l i c a b i l i t y  f o r  the  approximation (4.11.10) a r e  baaed 

on condi t ions given by ABRAI4WITZ and STEGUN {I, p. 941) f o r  the  normal 
f l  

2
approximation t o  the  x . These limits f o r  the  regions of t h e  approxiaetion'o 

a p p l i c a b i l i t y  may be very conservntive,  and i n  p rac t i ce  one may be a b l e  t o  

use (4.11.11) and (4.11.12) f u r  t he  values of (no - asp) a s  small as 10. 

Almg theae l i n e s ,  it: w i l l  be i n s t r u c t i v e  t o  consider a numerical example due 

t o  K I S E  and HIROSE [53 ] :  let  mo = 100, no = 10, R - 500, and mgp nsp = 0 

Then one f i n d s  t h a t  

-
Pi = 0.5421 from (4.11.9) 

.a 

and P X ( v 2 )  - 0.5420 from (4.21.10) and (4.11.12). 

Thus (at l e a s t  i n  t h i s  one s p e c i f i c  example), t h e  above normal approximation 

(4.11.10) with argument given by e i t h e r  C 4 . l l . l l )  or (4.11.12) are very good 

( l e s s  than 2 percent e r r o r )  f o r  even no - nBp = 10, with the more complicat 

approximation (4.11.12) being more accura te  ( l e s s  than 1 percent e r r o r ) .  



4.12. The Average Force Levels . 
A s  we have seen above i n  Section 4.9, the  j o i n t  probabi l i ty  d i s t r i -  

bution f o r  the numbers of surv ivors  is not a  very enl ightening measure of a  

b o t t l e  ' Y progress f o r  even r a t h e r  modest numbers of combatants because of 

i t s  inherent  complexity i n  terms of number of components. Most decis ion 

makers and many p r a c t i c a l  ana lys ts  prefer  one number t o  represent  the m i l i t a  

s t rengrh  of each of the two opposing forces .  One such obvious number of 

i n t e r e s t  t o  the  m i l i t a r y  ana lys t  (cf.Table 4.1) i s  the  average number of 

combatants on each s i d e  (here assumed t o  be homogeneous). One is a l s o  interc 

i n  the  v a r i a b i l i t y  i n  the mean course of c ~ m b a t  ( i . e .  the  dispersion of the 

number of survivors  about i ts mean value) i n  order  t o  gauge the  r i s k  i n  usin1 

these mean values t o  represent  the p r o b a b i l i s t i c  evolut ion of combat. Thus, 

i n  t h i s  sec t ion  we w i l l  consider the  average fo rce  l e v e l s ,  while i n  the  next 

one we w i l l  examine the  vari=ce and covariance (e.g. see PARZEN [68, p. 3561 

of the force  l eve l s .  These q u a n t i t i e s  a r e  r e l a t ed  t o  the f i r s t  two moments c 

the  force  l eve l s ,  and f o r  purposes of discussing t h e i r  numerical computation, 

i t  is convenient t o  f i r s t  d i scuss  t h e  general  computation of force- level  

moments. 

There a r e  e s s e n t i a l . 1 ~  two methods f o r  computing the  moments of each 

s i d e ' s  force  leve l :  

(MMl')  compute them d i r e c t l y  from the  j o i n t  d i s t r i b u t i o n  of the  

numbers of survivors  [ i . e .  from P ( t  ,m,n) 1, 

(MM2') compute them by f i r s t  determining the d i f f e r e n t i a l  equation 

s a t i s f i e d  by the  moment under considerat ion and then aolving 

t h i s  equation. 
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For convenience, we will refer to these two baeic moment-calculation methods. 


simply as follows: 


(MMl)  direct-computation method, 

and (W)
moment-dffferential-equation method. 


The direct-computation method (MM1) uses the joint probability distribution fc 


the numbers of survivors, i.e. P(t ,m,n) for P $ ~(m ( mo and n
BP -< n nc 

to compute the moment under consideration directly from the definition of 


mathematical expectation, i.e. 


Consequently, one must have previously determined P(t, m,n) to use the direct- 


computation method. As we saw in Section 4.9, there are basically three 


methods for computing the distribution of survivors (i.e. the state probabilit 


vector): (MU the analytical method, (M2) the numerical method, and (M3) th 

hybrid analytical-numerical method. After P(t,m,n) has been numerlcally 


determined by one of these three computational methods, one can simply compute 

/ 

the desired moment directly from its definition. On the other hand, the 

moment-differential-equation method (MM2) is completely different in seeking 

to determine an equation for the rate of change of the force-level moment unde 


consideration by using, for example, the forward KOLMOGOROV equations, e.g. 


(4.7.2) through (4.7.8). The basic idea behind this method is ta be able 




t o  so lve  the  r e su l t i ng  moment d i f f e r e n t i a l  equation (or  system of equation6 

i f  the moment under considerat ion cannot be decoupled from others )  f o r  the  

sought quant i ty .  Unfortunately (ae we w i l l  s e e  below), one s t i l l  needs t o  

know P(t,m,n) t o  be ab l e  t o  solve the morcent d i f f e r e n t i a l  equation, but 

one can make some rough approximations t o  e l imina te  t h i s  requirement and aimplify 

t h i s  method. We w i l l  now examine these two moment-calculation methods (MM1) 

and (MM2) fu r the r ,  with emphasis being given t o  t he  second one ( M M 2 )  f o r  the  

ca lcu la t ion  of t he  average force  leve ls .  

Direct computation of the average fo rce  l eve l s ,  1 .e .  method (MMl), 

is s traightforward a ~ d  merely involves computing 

and 

where G(t )  denotes the average X force  l e v e l  a t  time t and sim.llar1.y f o r  

&t>.  As already mentiouod above, one must know P( t ,m,n) f o r  uj lp  L m mo 

and n < n no i n  order t o  use t h i s  f  orce-level-moment-calculation method,BP -
and we have previously discussed i n  Section 4.9 t h ree  methods f o r  numerically 

determining P ( t  ,m,n) . One poin t  t h a t  does mer i t  f u r t h e r  discussfon, however, 

is the tremendous computa t i~na l  advantage i n  using CLARK'S hybrid ana ly t ica l -  

numerical method f o r  such ca lcu la t ions ,  f o r  computing not  only the  jo in t  

p robab i l i t y  d i s t r i b u t i o n  f o r  t he  numbers of surv ivors  bu t  a l s o  the  moments 

of each s i d e ' s  force l e v e l  (including both the  average force l eve l s  and a l s o  



t h e i r  v a r i a b i l i t y ) .  G. CLARK [16, pp. 112-114) has shown t h a t  t he  ill? 

moment o f ,  f o r  example, the  X fo rce  l e v e l  may be computed a s  follows 

where a coe f f i c i en t  such a s  D(') i s  the  i-t h  "incomplete moment" of t h e  ern' 
j,k j 


c o e f f i c i e n t s  from CLARK'S hybrid expression f o r  the  s t a t e  p robab i l i t i e s .  Mor 

s p e c i f i c a l l y ,  t he  moment c o e f f i c i e n t s  D(')
I tk 

f o r  11 j 5 y, and 1( k i nc 

a r e  given by 

and 

where the  coe f f i c i en t s  pPna r e  given by (4.9.5) through (4.9.10) . The gre 
j ,k 

thcomputational advantage i n  computing the  i- moment from the  a n a l y t i c a l  

expression (4.12.3) with t he  O
f rk 

c o e f f i c i e n t s  numerically determined by 

(4.12.4) and (4.12.5) l i e s  i n  t he  f a c t s  t ha t  (1) these c o e f f i c i e n t s  a r e  

simply and e a s i l y  computed from the  numerical r e s u l t s  f o r  t h e  cmYneoeff ic :  
jSk 


of the  s t a t e  p r o b a b i l i t i e s  and (2) they need only ba computed once f o r  a  g i ~  

s e t  of b a t t l e  parameters. Thus, t h i s  hybrid analytical-numerical method i s  

very e f f i c i e n t  ( i n  f a c t ,  over 50 times f a s t e r  than using exact a n a l y t i c a l  

r e s u l t s  according t o  an example reported by CLARK [16, p. 1151) f o r  cornputin! 

time h i s t o r i e s  of t he  moments. 



Let ue now turn  t o  t h e  moment-differential-equation method (W)f o r  

computing t h e  average force  l e v e l s  f o r  t he  genera l  homogeneaue-force autonomou 

model given by (4.7.2) through (4.7.8). We w i l l  s ee  t h a t  although t h i e  method 

i s  no t  a t  a l l  u s e f u l  f o r  d i r e c t l y  c o q u t i u g  exact value8 of t he  average fo rce  

l e v e l s ,  i t  does provide considerable  i n s i g h t  i n t o  t he  behavior o f ,  f o r  example 

X's average fo rce  l e v e l ,  which (however) i s  much more e f f i c i e n t l y  computed 

from (4.12.3) with 1 = 1. For the general  model given by (4.7.2) through 

(4.7.8) we f i nd  t h a t  

where t h e  boundary-sum terms $(t)  and $ ( t )  3 0 a r e  given by 

and 



Thase terms a r i s e  from accumulation of p r o b a b i l i t y  on t h e  boucdary of t h e  s 

space a s  t h e  system evolves  over time and reaches  i ts  t e r m r n ~ l  s t a t e .  I n  t 

s teady  ( i .e .  i n  t h e  long run)  a l l  p r o b a b i l i t y  h a s  accumulated on t h e  s t a t e -  

space boundary and t h e  average f o r c e  l e v e l s  reach t h e i r  s t r i c t l y  p o s i t i v e  1 

i n s  values .  The houndery-sum terms p e r f o ~ m  f o r  t h i s  behavior  t h e  a t t e n d a n t  

bookkeeping i n  t h e  express ion  (4.12-6) f o r  t h e  average f o r c e  l e v e l s .  

Let us  now s k e t c h  t h e  d e r i v a t i d n  of (4.12.6). It s u f f i c e s  t o  consic 

t h e  f i r s t  equa t ion  of (4.12.6). Using (4.5.6) wi th  g(M) = M and h(N) = 

we f i n d  t h a t  

Also, r e c a l l i n g  (4.7.81, one can e a s i l y  show t h a t  

Combination of (4.12.9) and (4.12.10) y i e l d s  our d e s i r e d  r e s u l t ,  t h e  f i r s t  

equat ion of (4.12.6) wi th  CX(t) g iven by (4.12.7). 

-Example 4.12.1. For t h e  autonomous s t o c h a s t i c  FI F a t t r i t i o n  p r o c e ~  i n  wiiic 

G(t,m,n) = an  and H(t,m,n) = bm, t h e  average-farce- level  equa t ions  (4.12.L 

become 
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with ;(o) - mo , 

n(01 - no , 

where = E[M], ii = E[N] , 

and 


From their definitions, it is clear that both S (t) and Sy(t) > 0 for all 
X 


t > 0. The following interpretation for S (t) is worthy of note: SX(t)X 


is the expected number of X survivors in a battle-terminated state by time 


for a fixed-f orce-level-breakpoint battle. In particular, when mplp = nBP a 

SX(t) denotes the expected number of X survivors In a battle-terminated st 

(here, one side or the other annihilated) by time t for a fight to the finish 


A similar interpretation applies to Sy(t). Intuitively we know that both 


SX(t) and Sy(t) are "small," at least as long as there is little chance th 


the battle has ended by time t. Finally, since all but the teminal battle 


states are transient, the average force levels approach positive limiting 


values, and we may accordingly infer the asymptotic behavior 


and similarly for Sy(t). 




Example 4.12.2. For the ~utonumous stochastic FT~E'T attrition process in whic 


G(t,m,n) = a m  and H(t,m,n) = bum, the average-force-level equations (4.12.6 

become 


- E[M] = -aE[MN] + aS(t) with E[M(O)] = mo , 

-dt ETN] = -bE[HN] + bS(tj with E[N(O)] = no , 

where S(t) > 0 for t > 0 is given by 

Here, S(t) may be interpreted as the expected value for the product of the 


numbers of survivors in a battle-terminated state by time t for a fixed-force 


level-breakpoint battle. 


We will now briefly consider a preliminary theoretical analysi~ oi 


average force-level behavior based on the above average-force-level differenr 


equations (4.12.6). We wf.11 also mention some corroborating numerical 

investigations. 


For the autonomous stochastic F(F attrition process considered in 


Example 4.12.1 above, let us exanine how the average force levels compare wi 


those generated by the correspcnding deterministic model with the same 


attrition-rate coefficients a and b and the same initial numbers of 


combatants % and no. Thus, we consider the corresponding deterministic 

attrition process 




with x(0) = mo , 

with y(0) = no . 
Then, i f  we l e t  - -

A X W m - x ,  and A Y E " - Y ,  

i t  follows t h a t  

* - a ~  + aSy(t)  with AX(0) 0 ,
Y 

k A y  - -bAX + bSX(t) with Ay(0) a 0 , 

which has the so lu t ion  

and 

Here, f o r  example, A X(t) represents  the b i a s  i n  the  average force  l e v e l  of 

the X force i n  an F I F  WCHESTER-type s t x h a s t i c  a t t r i t i o n  process. It mea 

the departure of the  average X force  l e v e l  obtained from t h i s  s tochas t i c  mo 

fnom the X force  l e v e l  obtained from the  corresponding de t e rmin i s t i c  model 

with the same a t t r i t i o n - r a t e  coe f f i c i en t s  a and b and the  same i n i t i a l  

numbers of combatants mg and no. Thus, A X ( t )  > 0 means t h a t  the s tochaat  

model on the  average y i e lds  higher force  l e v e l s  than does the corresponding 



deterministic model for the eame set of input data. From (4.12.20) and (4.12.21) 

we can identify cases in which one can easily determine the signs of ~ ~ ( t )  


and %(t): 


1. X win8 very decisively in a fight to the finish. 

In this case Sy(t)* 0 811 durlng the battle, and from (4.12.20) 


and (4.12.21) we see that AX(t) < 0 and Ay(t) > 0 for all 

t > 0. Thus, m(t) < x(t) and a t )  > y(t) for all t > 0. 

2. Symmetric parit,y, i.e. a = b, mo no, and m~~ "BP* 

In this case SX(t) = Sy( t) = S(t) , and from (4.12.20) and 

(4.12.21) we find that +(t) - +(r)  s S(s) exp[&(t-s)]ds > 0 

Thus, G(t) > x ( t )  and a t )  > y(t) for all t > 0. 

Numerical investigations concerning the above biases have been pre- 


formed by CLARK [16] and CRAIG [19]. Figure 4.20 is from CLARK i16] and 

shows the large biases typically present for small numbers of combatants in 


the symmetric-parity case just discussed above. CRAIG [19] took C-'s 

[l6] work as a point of departure and did more extensive numerical invest%- 


gations. CRAIG [19] computed the average force levels from state prob- 

abilities determined by the numerical method (M2), i.e. numerical integration 


of the forward KOLMOGOROV equations. Based on consideration of many, many 


specific numerical examples, he formulated the following interesting hypotheses 


concerning the biases in the average force levels: 


(Hl) for fixed initial force levels and attrition-rate coefficients, 


the final force-level biases at the deterministic battle's end 


decrease as the breakpoint force levels increase (however, as 
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Average force level, 
i i i ! t  b E [ M ( t  11 or 
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Figure  4.20. Large b i a s e s  AX(t) and Cy(t) m the  average f o r c e  

levels i n  an F IF LANCHESTER-type s t o c h a s t i c  a t t , r i t i o n  

p rocess  for t h e  symmetric-pari ty case  wi th  smal l  numbers 

of i n i t i a l  combatants. Here t h e  bi .as i n  t h e  average,  

f o r  example, X f o r c e  l e v e l  ~ ~ ( t )is def ined  as 

( - ( t ) .  The inpu t  d a t a  f o r  t h i s  case  is 

a = 0.004 X (casua l t i e s / second)  p e r  Y f i r e r ,  

b = 0.004 Y (casua l t i e s / second)  p e r  X f i r e r ,  

mo = 6,  and no = 6. 



a percentage of casua l . t i e s  i n  t h e  d e t e r m i n i s t i c  model, 

t h e  b i a s e s  i n c r e a s e ) ;  

(H2) f o r  every th ing  e l a e  equa l ,  t h e  l a r g e r  t h e  i n i t i a l  f o r c e  l e v e l s  

became, t h e  l a r g e r  t h e  numerical  b i a s e s  become i n  a b s o l u t e  

terms but s m a l l e r  percentagewise;  

(H3) t h e  c l o s e t  t h e  f o r c e s  come t o  p a r i t y  i n  t h e  da te rminf . s t i c  b a t t l e ,  

the l a r g e r  become the b t a s e s  a t  t h e  t i m e  corresponding t o  t h e  

d e t e r m i n i s t i c  b a t t l e ' s  end, which i t s e l f  becomes extended i n  

tiuie; 

and (84) t h e  b i a s e s  a t  t imes corresponding t o  l e s s  than one-half t h e  

d u r a t i o n  of t h e  d e t e r m i n i s t i c  batt le a r e  negligible. 

For t h e  autonomous s t o c k . ~ s t i c  FT 1 FT a t t r i t i o n  p r o c e s s  considered i n  Example 4.1 

above, we w i l l  a l s o  t h e o r e t i c a l l y  examine t h e  b i a s e s  AX(t) and $(t). F i r s t  

though, l e t  us  develop a very  i n r e r e s t i u g  r e s u l t .  Mul t ip lying t h e  f i r s t  of 

equa t ions  (4.12.15) by b, t h e  second by a ,  and s u b t r a c t i n g ,  we o b t a i n  t h e  

s t o c h a s t i c  l i n e a r  law f o r  f ixed-force-level-breakpoint  b a t t l e s  

Th is  r e s u l t  is  p a r t i c u l a r l y  remarkable, s i n c e  no corresponding s imple  r e s u l t  

holds  f o r  t h e  F I  F s t o c h a s t i c  a t t r i t i o n  process .  Consider now t h e  correspondins 

d e t e r m i n i s t i c  a t t r i t i o n  process  f o r  t h e  FT~FTa t t r i t i o n  p rocess  under con-

s i d e r a t i o n  



with x(0) mg , 

with y(O) no . 

Prom (4.12.23) we obtain the deterministic linear law bx - ay bm - an0,0 

whence combination with CG.12.22) yie lda  

whence 


It is interesting to note that even when mgp rgp * 0 and consequently 

S(t) t 0 in (4.l2.lS), we still have, for example, AX(t) f 0. since 

E[MN] f E[M] E[N] (seeCLARK [16, pp. 81-83] for further derails). Numerics 

investigation of these biases theoretically considered here has been performe 


by CLARK [16, pp. 116-1241. Some typical results for relatively small number 


of combatants are shown in Figures 4 . 2 1  and 4.22, which are from CLARK 1161. 
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Figure 4.21. Bias BX(t) - a t )  - x(t) in the average X force 

level that is typical for small numbers o f  combatants 

in an F T I  FT MCHESTER-type etochastic attrition 


process. The input data for this case is a = 0.004 X 

(casualties/second) per Y firer, b = 0,001 P 

(casualties/srcond) per X firer, mg = 10, and no = 6. 
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FTIFT ATTRITION PROCESS 

Average Y force level, 
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MARKOV- chain model 

X ~ A S  

C~ force level, y (  t 1, fmm 
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BATTLE TIME t (SECONDS) 

Figure 4 . 2 2 .  Bias Ay(t) = & t )  - y ( t )  i n  the average Y force 

l e v e l  that is  typical  for  small numbers of combatants 

i n  an FT I FT LANCHESTER-type fi  tochasric aterf  t ion  

process. The input data for  t h i s  case ie a - 0.004 X 
(casualties/second) per Y f i r er ,  b = 0.001 Y 

(casualties/second) per X f i r e r ,  mo = 18,  and 

no = 6 .  



4 . 1 3 .  Var iab i l i t y  i n  the Mean Course of Combat. 

Besides the mean course of combat i t s e l f ,  one i e  a180 in te ree ted  i n  

i t s  v a r i a b i l i t y  ( i .  e.  the  d ispers ion  of the numbers of survivors  about t h e i r  

mean values) i n  order t o  gauge the  r i s k  i n  using these  mean values t o  represent 

the p robab i l i s t i c  evolut ion of combat. Thus, we w i l l  now consider the  variance 

and standard devia t ion  of a combatant's force  l eve l .  The reader  w i l l ,  of 

course, r e c a l l  t h a t  the  variance i n ,  f o r  example, X's force  l e v e l  VX(t) i s  

given by 

v,(t) - E ~ M ~ W I- I E ( [ M ( ~ ) I I *, (4.13.1 

and the standard devia t ion  is  the square root  of t h i s  qua t i ty .  Similar  t o  as 

we saw i n  general  f o r  the ca lcu la t ion  of the  force- level  moments i n  t h e  

prevf.ous sect ion,  there  a r e  e s s e n t i a l l y  two methods f o r  computing the variance 

of each s ide ' s  force leve l .  We w i l l  analogously r e f e r  t o  these  two variance- 

ca lcu la t ion  methods simply a s  f allaws : 

(VM1) direct-computation method, 

and (VM2) variance-covariance-differential-equation m-thod. 

The reader  should a l s o  r e c a l l  from above i n  Section 4.9 t h a t  t he re  a r e  bas i ca l  

th ree  methods of numerically ca lcu la t ing  the j o i n t  probabi l i ty  d i s t r i b u t i o n  of 

the numbers of survivors  f o r  use i n  t he  variance-direct-computation method 

(VM1): the  ana ly t i ca l  method (Ml), the numerical method (F!2), and the  hybrid 

analytical-numerical method (M3). 



Little that was not said in the previous section about the moment- 


calculation methods remains to be said about the above variance-calculation 


methods. The variance-direct-computation method (VMl) certainly deserves 

no further discussion, and we will cloee this section with an example of the 


variance-covariance-differential-equation nethod (VM2). Let us first, however 


review what various authors have found out and said about the variability in 


the m e a n  course of combat. 

Using analytical results for the distribution of survivors, F. C. BROOl 

[13] concluded that the FT 1 FT and F I F  stochastic LANCHESTER-type attrition 

processes (the latter only for the special case in which a - b) are 

stochastically determined. Here, stochastically determined means that the 


standard deviation in the losses is small compared to the initial numbers of 


weapons engaged. Following BROOKS [13, p. 21, we may then say that the model, 

although stochastic in detail, is very nearly deterministic in its gross 


behavior. BROOKS [13, p. 21 has stressed that "the presence of stochastic 

determinism suggests that the complex stochastic model may be subject to at 


least a crude approximation by a simpler deterministic model." On the other 


hand, G. CLARK [I61 concluded that var?ability in the mean course of battle 


can be appreciable in small unit engagements, although his evidence for 


large battles (i.e. 100,000 or more combatants on each side) was not incon- 


sistent with BROOKS' [13! conclusions an stochastic determinism. 

Using his hybrid-analytical-numerical-computation method, CLARK [ 16, 

pp. 124-1291 has computed the force-level variances for quite a few "typical" 


homogeneous-farce battles in which attrition was modelled as F I F  and FTlFT 


LANCHESTER-type stochastic processes. He concluded that the survtvor 




standard deviation depends on the following factors: 


(F1) force size, 


(F2) force ratio, 


(FE) battle time, 


and (F4) both attrition-rate coefficients. 


Unfortunately, one does not know a priori what this dependence is. For battl 


between small numbers of combatants (i.e. under 15 on each side), CLARK 


observed that the magnitude of stochastic~variahility can be sizeable: the 


standard deviation approaches an asymptotic limiting value sometimes greater 


than one third sf the initial force size and usually in the neighborhood of 


15 percent. 


Based on his computational studies for the F ~ F 
anu. F T ~ F TMCHESTER-


type stochastic attrition processes, CLARX [16, pp. 124-1231 has hypothesized 


that there are two characteristic types of behavior for the survivor standard 


deviation of a force as a functim of time: 


(Tl) the survivor standard deviation is an incre,ssing function of 


time until a maximum value is achieved, and then it decreases 


to an asymptotic limiting value; 




o r  (T2) t h e  aurv ivor  s t andard  d e v i a t i o n  is an i n c r e a s i n g  func t ion  

of time and is asymptotic t o  a l i m i t i n g  va lue .  

F igures  4.23 and 4.24 show these  two d i f fe ren t .  types  of behavior  f o r  t h e  

s u r v i v o r  s t andard  d e v i a t i o n .  Fur the r  computational s t u d i e s  on t h e  F I F 

a t t r i t i o n  process  st t h e  Naval Postgraduate  School led CRAIG [ l 9 ,  p. 1321 

t o  conclude t h a t  t h e  n a t u r e  of t h e  s u r v i v o r  .standard d e v i a t i o n ' s  t ime h i s t o r y  

is dependent on t h e  r e l a t i v e  a t t r i t i o n  of t h e  two opposing s i d e s  ( i . e .  t h e  

outcome of t h e  b a t t l e ) .  H e  h a s  hypothesized t h a t  i f  a s i d e  h a s  a high 

p r o b a b i l i t y  of winning, t h e  s t andard  d e v i a t i o n  i n  i t s  f o r c e  l e v e l  c o n t i n u a l l y  

grows over t i m e  [i.e. type (T2) behavior occurs] .  Furthermore, i f  a s i d e  

has  a high p r o b a b i l i t y  of l o s i n g ,  t h e  s tandard d e v i a t i o n  "peaks out' ' and 

then decreases  to  a asymptotic l i m i t i n g  v a l u e  [ i . e .  type (Tl)  behavior  

occurs]  ( s e e  -C U I G  [19; pp. 127-1341 f o r  f u r t h e r  d e t a i l s ) .  

We w i l l  now c l o s e  t h i s  s e c t i o n  by developing t h e  var iance-covar iance 

d i f f e r e n t i a l  equa t ion  f o r  t h e  F I F  LANCHESTER-type s t o c h a s t i c  a t t r i t i o n  process .  

Our r e s u l t s  show t h a t  t h e  variance-covariance-differential-eguation method 

(VM2) f a i l s  t o  e x p l i c i t l y  y i e l d  exac t  v a l u e s  f o r  t h e  sought q u a n t i t i e s  

( i . e .  t h e  v a r i a n c e s  and covar iance of t h e  f o r c e  l e v e l s )  because one s t i l l  

needs t o  know P(t,m,n) t o  be a b l e  t o  s o l v e  t h e  system of d i f f e r e n t i a l  

equa t ions .  A l l  is n o t  l o s t ,  however, s i n c e  some va luab le  i n s i g h t s  i n t o  t h e  

v a r i a b i l i t y  of t h e  mean course  of combat are sti l l  ob ta inab le .  Thus, from 

t h e  d e f i n i t i o n s  

2 
a = E[N ] - E

2 
[N] ,W 
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Figure 4.23. l$pe (Tl) behavior for the survivor scandard deviation. 

Shown here is the standard deviation of the X force
-
level $(t) in an F I F  LANCHESTER-type stochastic 


attrition process for the input data a = 0.004 X 


(caoualtieo/second) per Y firer, b = 0.001 Y 

(casualties/second) per X firer, a d  m = no = 8. 
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Figure 4.24. Type (T2) behavior for the survivor standard deviation. 


Shown here is the standard deviation of the X ,orce 


level 9in an F I  F LANCHESTER-type stochastic 


attrition process for the input data a = 0.004 X 

(casualties/~econd) per Y firer, b = 0.0015 Y 

(casualties/second) per X firer, m = 12, and 
0 


no = 6 .  



and the  r e l a t i o n  (4 .12.10)  , we f ind  that  for the F I  F LANCHESTER-type stochast ic  

a t t r i t i o n  process 

where SX ( t )  i s  given by (4 .12 .12) .  S y ( t )  i s  given by (4 .12 .13) .  



and S W ( t )  is  symmetric t o  SXX(t) It is u n f o r t u n a t e l y  impossible  t o  s o l v e  

t h e  above system of e q u a t i o n s  (4.13.3) wi thout  knowing P(t ,mSn) on t h e  

boundary of t h e  s t a t e  space.  

I n  l i g h t  of t h e  above e s s e n t i a l l y  i n s u p e r a b l e  d i f f i c u l t y ,  one i s  con-

sequen t ly  q u i t e  tempted t o  approximate t h e  s o l u t i o n  t o  t h i s  system of  d i f f e r -  

e n t i a l  equa t ions  by assuming t h a t  t h e s e  l a t t e r  s t a t e  p r o b a b i l i t i e s  a r e  

n e g l i g i b l e  and s o l v i n g  t h e  r e s u l t a n t  s i m p l i f i e d  system. Thus, f o r  S ( t )  -X 


Sp( t )  ;SXX(t) ' SXI( t )  I SW ( t )  2 0 ,  t h e  above system (4.13.13) becomes 



with uXy(0) = 0 , 

.. -
where m denotes' an approximation t o  m, e t c .  An equivalent  form of these 

equations was f i r s e  given by SNOW 176, p. 251 i n  1948. C W [l6, pp. 130-1321 

has solved an equivalent  form of t h i s  systemofequat ions t o  f ind  that: the  
fi A 

approximate var iance i n  X ' s  force l e v e l  VX(t) = o ( t )  is given by a. 


- (mo - 2noalb) )c o s h ( a  t )  - (2m' s i n t , (4.13.7)
3 


and s i m i l a r l y  f o r  Vy(r). Unfortunately,  t h i s  expression ( 4 . 1 3 . 7 )  is compli-

cated enough t h a t  i n s i 3 h t s  i n t o  how even the  approximate Eorce-level var iance 

evolves over time a r e  q u i t e  d i f f i c u l t  ( i f  not impossible) t o  ob ta in  without 

expenditure of considerable computational e f f o r t .  G. CLARK [16, pp. 133-1341 

haa b r i e f l y  numerically inves t iga ted  t he  behavior of these expressions f o r  

the  approximate force- level  var iances .  



4.14, _Monte Carlo Methode. 

One can use so-called Monte Car10 methoda t o  generate  a r e a l i z a t i o n  

of force-on-force combat modelled a8 a continvoue-parameter MARKOV chain 

(or ,  f o r  t h a t  mat ter ,  aa  any a r b i t r a r y  but  wel.1-defined ~ t o c h a s t i c  pracesa) 

and hence t o  generate  by appropr ia te  r e p l i c a t i o n  b a t t l e  d a t a  from which 

baztle-summary s t a t i s t i c s  can be computed. Here w e  use t h e  term Monte Carlo 

method t o  denote any procedure t h a t  u t i l i z e s  s t a t i s t i c a l  sampling techniques,  

involving t h e  use of random numbers (mora p rec i se ly ,  pseudorandom numbers 

[26, p. 171]) ,  t o  determine the  outcomes of random events .  Although w e  w i l l  

examine such methods here  only wlrhin t h e  context of developing es t imates  of 

des i red  s t a t i s t i c s  f o r  simple LANCHESTER-type b a t t l e s  a n a l y t i c a l l y  modelled 

a s  continuous-time MARKOV chains ,  these  methods can w e l l  be used with f a r  

mora d e t a i l e d  models ( i . e .  ones enriched i n  opera t iona l  d e t a i l s )  t h a t  may 

not  have such a corresponding simple a n a l y t i c a l  Formulation. The reader  

should bear i n  mind t h a t  we  w i l l  i l l u s t r a t e  t he  bas i c  ideas  hehind these  

Monte Carlo methods f o r  a n a l y t i c a l  models f o r  which o the r  computational 

procedures (e.g. see t h e  computatioaalmethods discussed i n  Sect ion 4.9 

above) a r e  more e f f i c i e n t .  Moreover, it is  t h e  au thor ' s  f i rm opinion t h a t  

many m i l i t a r y  OR ana lys t s  and ( t o  be ce r t a in )  m i l i t a r y  dec is ion  makers f e e l  

much mare comforrahle about using Monte Carlo methods because of t h e i r  

inherent  concreteness ( i . e .  the  generat ion of b a t t l e  r e a l i z a t i o n s )  than 

they do about using a n a l y t i c a l  models d i r e c t l y ,  even when t h e  des i red  inform 

t i on  about system performance may be f a r  more conveniently ex t rac ted  from 

the  appropriate  corresponding a n a l y t i c a l  model (see BONDER [ l l ,  pp. 74-75] 

f o r  f u r t h e r  discussion) .  

This s ec t i on  is organized i n  the  following fashion.  F i r s t ,  w e  d-11 

discuss  the  simple a n a l y t i c a l  s t o c h a s t i c  combat model t o  which we w i l l  



apply these methods and the; a n a l y t i c a l  tstructures t ha t  w i l l  be u t i i i z e d .  

Then, we w i l l  d i scuss  i n  general  t a m e  how to  generate needed samples of 

a given randm vnr i ab l s  from i ts  cumulative d i s t r i h u t i o n  funct ion and how 

t o  d e t ~ r m i a e  the outcoue of a needed associated random event.  Next, we wi3.1 

ehow ha.^ t h i a  general  me~hodology i e  applied t o  the  eimyle s tochoseic  combat 

model under coneiderntion. F ina l ly ,  we w i l l  present an a l t e r n a t  i ve  Mont l: 

Carlo approach and ~i11s u m a r i z e  the  two approaches t h a t  could be used 

f o r  t h i s  p a r t i c u l a r  example. 

We w i l l  consider the c l a s s  of s tochas t i c  b a t t l e s  considered in 

Section 4.7, i . e .  b a t t l e s  i n  which the  a t t r i t i o n  r a t e s  depend only on. t h e  

combatants' fo rce  l e v e l s  alid not e x p l i c i t l y  on time and which a r e  modelled 

as continuous-time MARKOV chains. For such b a t t l e s  with s t a t i ona ry  

t r a n s i t i o n  p robab i l i t i e s  (4.7.1) , we can bui ld  a simple Monte Carlo s h u -  

l a t i o n  baszd on the following two mathematical p roper t ies  given i n  Section 

4.7: 

(Pl) the time between c a s u a l t i e s  T&
m n 

is  e x p o n e n t i a l l ~  

d i s t r i bu ted  (with state-dependent a t t r i t i o n  r a t e s ) ,  i . e .  

and (P2) the probabi l i ty  t h a t  the next casua l ty  w i l l  be an X 

casua l ty  is given by 

P[X c a s u a l t y l c ~ ~ s u a l t y  A(m,n)occurs] = 
A(m,n) + B (m,n) . 



I f  wa ure i n  b a t t l e  s t a t e  (nr,n), then WH w i l l  denore the next caeuolty 

t o  occur 8. the  iG, where i - mo - m + u - n + 1. We w i l l  denote the
0 


BC
corresponding r e td i za t ion  of T ~ "  (--see Section 4 , , 6  f o r  explanarloa of 

notat ion)  simply as ti. The t o t a l  elapsed (o r  cumulatLvva) time f o r  the  

occurrencn of the  kth casualty w i l l  therefore have r e a l i ~ a r i o n  ty"". 
where 

The above two porper t ics  (PI) end (P2) a r e  used with a random-number gen-

e r a t o r  t h a t  produces samples of a random va r i ab le  t h a t  i s  uniformly d i s t r j  

buted over the  i n t e r v a l  [ O ,  I]. Two samplea from such a u n i t  u n i f ~ r m  

variste are required t o  produce the  r e a l i z a t i o n  of the  occurrence of each 

b a t t l e  casual ty.  In order t o  develop an algorithm t o  generate such rs.iJ.1-

za t ions ,  we must d i scuss  how t h e  following two tasks a r e  done by Monte 

Carlo methods: 

(Tl) generate a sample of a random va r i ab l e  ( r e v . )  f o r  which 

t he  cumulative d i s t r i b u t i o n  h n c t i o n  (c.d.f) is given, 

and (T2) generate  a sample Q£ a binomial ( o r ,  more general ly ,  multi-

nominal) random var iab le  that  models the various poss ib le  

outcomes of s random event with given probsbi:iries of 

occurrence. 



-- 

V 

We therefore now turn to  t h e  f i r e t  t m k  (TI!, t o  generate ii eampla 

oC er r . v ,  v i t b  given c.4.E. Cons15.der t.he continuously di8tributcd r . v ,  

w i t h  d l a t r i b u t i o n  f u n c t i o n  PV(v) - P [ V  -.< v ] .  Than for u F 10, 11, 

lire nay write 

iiowever, wc may cons ider  u and v t o  be r e a l i z a t i o n s  of t h e  random 

va.rioblen kr and V, with U E 10, 11 with  c e r t a i n t y .  Hence, we may writ 

where 17i1 denotes the  inverse function of r.re dis::riturion func~ion FV(r 

Such nn iin~ereefunc t ion  is w e l l  d e f i n e d  from p r o a e r t i e s  of che d i s t r i -

bueion f u n c t i o n  f o r  a cont inuously  disfr ibr l ted  random variable. It may be 

shown (e.g. ~e_eFXSHMAl3 [26, pp. 167-1623]) t h a t  U defined by {4.14,5) is 

a uniformly d i s t r i b u t e d  r e v .  oa [O, 11 .  Thus, we ran use (4.14.6) t o  

genera te  samples of t h e  r .v .  V from samples of the cnie uniform variate 

U ( see  FISUAH [26, p. 1673). This approach i s ,  not  unsurpnrising?)~,  

known as che inverse- t ransformat ion method. 

We may fo rmal ize  t h e  above approach by de . l ineat ing the  fol.lowing 

procedure (composed uf two s t e p s )  f o r  generating a sample of the  random 

'I. 
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va r i ab l e  V with cumulative d i e t r i b u t i o n  funct ion FV(v) = P[V ( v ]  by 

the  inverue-transformation method (E Figure 4.25, which i e  f o r  the 

important s p e c i a l  case i n  which V 2 0) : 

(S l )  generate sample of random v a r i a b l e  U uniformly 

d i s t r i b u t e d  on [O,  11, c a l l  t h i s  u; 

(S2) determine v such t h a t  E;(v) = u, i . e .  t he  des i red  

-1sample value is  v = FV (u) .  

As  shown i n  Figure 4.25, P[V L vo1 = P[U < u0] s o  t h a t  vo (generated by -
-1

vO = FV (uO), where uO 
is a sample of a u n i t  uniform v a r i a t e )  has a11 

the  s t a t i s t i c a l  p rope r t i e s  as a d i r e c t  sample of t h e  random v a r i a b l e  V. 

We may a l s o  use independent samples of t he  u n i t  uniform v a r i a t e  U 

t o  generate  r e a l i z a t i o n s  of d i s c r e t e  random events.  I n  t h e  s implest  case,  

we consider t he  BERNOULLI random v a r i a b l e  W, which takes  on the  value 1 

with p robab i l i t y  p and t h e  va lue  0 with p robab i l i t y  1 ) .  Thus, i f  

we de f ine  

1 f o r  O L U L p ,  

f o r  p <  U ( 1 ,  

then w e  can use samples of U t o  simulate sampling of W ,  s i nce  

P [0 ( U L p]  = P [W = I]. The above procedure i s  f o r  a binotuinal r .v. ,  

and extension t o  a multinomial r .v,  is ca r r i ed  out i n  t he  obvious manner. 





One can now easily build a Monte Carlo simulation of such a atochreti 


attrition process baaed on the fluw chart ehown in Figure 4.26. To generate 


a realization of the random occurrence of a casualty in our continuous- 


time MARKOV-chain combat-attrition modal, we must generate two independent 


samples of a unit uniform variate, denoted ae ul and ug, and operate on 

them in the following fashion. Firet, we use the first uniform-variate 

sample ul to generate a realization of the time of occurrence for the 

th
i-- casualty after the (i-1)- st ore with the following formula 


which is just the inverse-transf ormation method (4.14.6) applied to the 


exponentially-distributed time between casualties (4.14.1). The time of 


t'I cumoccurrence of the k+ casualty tk is then given by (4.14.3). Next,lwe 


use the second uniform-variate sample to determine the type of casualt: 
u2 


by the procedure that we have outlined above for binomial variates. 


Accordingly, we assess an X casualty if 0 ( u2 5 A(m,n) /{A(m,n) + ~(m,n)1 

and a Y casualty otherwise. Thus, one can build a Monte Carlo simulation 


to generate realizations of the stochastic homogeneous-force battle with 


stationary transition probabilities of Section 4.7, and extension to 


heterogeneous-force combat occurs in the obvious faehion (seeCLARK 

[16, pp. 166-1731 or ANDRIGHETTI 14, pp. 29-30] for further details). 


We will close this section by briefly mentioning an alternative 


method (still involving, however, the generation of two independent unit- 


uniform-variate samples for each caaulaty realization) for building such a 




lYES 

Figure 4.26. Flow chart of Nonte Carlo simulation of conein~ous-time 


MARKOV-chain model of LANCHESTER-type attrition process. 


Two independ-~t 
samples of a unit uniform variate are 


required for the realization of each casualty. The first 


is used to determine the time to the next casualty by 


(4.14.8) and the second to determine its type using (4.7 .l4) . 



Monte Car10 homogeneoue-force s imulat ion.  Instead of basing our Monte Carlo 

approach on the  two mathematicah p rope r t i e s  (Pl) and (P2) given above, we 

coulJ  base S t  on the following two equivalent  ones (again,  cf. Sect ion 4.7) : 

(PI ' )  the  time between occurrences of two X c a s u a l t i e s T:'" 

is  exponent&lly d i e t r i bu t ed  with r a r e  A(m,n), i .e.  

and (P2') !& t i m e  between occurrences of two Y casua l t ies ,  T!*" 

is exponent ia l ly  cps t r ibu ted  with r a t e  B(m,n) , i .e.  

From these two p rope r t i e s  (P l ' )  and (P2'), one can develop a Monte Carlo 

method which generates  a r e a l i z a t i o n  of t he  time i n t e r v a l  t o  the  next 

occurrence of both an X casua l ty  and a l s o  a Y one and then takes  t he  

e a r l i e r  of t he  two r e a l i z a t i o n s  t o  have occurred. Thuss w e  have out l ined  

two equivalent  Monte Carlo approaches: 

Method A: generate  t i m e  t o  next casua l ty  and then determine type, 

and Method B: generate  time t o  next casua l ty  of each type and then 

take  e a r l i e s t  event t o  have occurred. 



-
*4.15. Behavior f o r  Large Numbers. 

The r e s u l t s  concerning approximations t o  t he  probabi l i ty  of w i  

t h a t  we have given i n  Sect ion 4.11 above suggest t h a t  a l im i t i ng  d l s t r  

f o r  l a rge  numbers of combatants i n  t\e sense of t he  c l a s s i c  Cent ra l  L i l  

Theorem of p robab i l i t y  theory (e.g. FELLER [25,  p. 2291) l u rks  somc 

i n  the background of our s t o c h a s t i c  combat model, In  t h i s  s ec t i on  we 

w i l l  b r i e f l y  consider a few h e u r i s t i c  arguments t o  shed some l i g h t  ontc 

t h i s  mat ter ,  p a r t i c u l a r l y  a s  they pe r t a in  t o  the  mean course of combat, 

complete mathematical d i scuss ion ,  however, would contain a number of s~ 

mathematical po in ts  t h a t  a r e  w e l l  beyond the  scope of our cu r r en t  cursc 

examination (seePERLA and LEHOCZKY [ 7 2 ]  f o r  d e t a i l s  of such a deeper i 

gat ion invoking r e s u l t s  from t h e  theory of s t o c h a s t i c  d i f f e r e n t i a l  equa 

[S;  291 and d i f f u s i o n  approximations 124; 391). 

We begin by consider ing a h e u r i s t i c  argument t h a t  has appeared 

a number of places  i n  LANCHESTER combat theory ( ~ e gWILLARD [91],  ETTER 

and KOOPMAN [ 5 5 ] ) .  This argument w i l l  show us t h a t  a s  i n  s o  many o ther  

places In  mathematical ana lys i s ,  t he  taking of a l i m i t  can involve some 

s u b t l e  points .  As pe r t a in s  t o  MARKOVIAN combat-at t r i t ion processes,  i t  

means t h a t  t r a n s i t i o n  from a d i s c r e t e  s t a t e  space ( i . e .  MARKOV chain) tc 

a continuous one ( i . e .  d i f fu s ion  process) must be done i n  ouch a way thc 

s t a t i s t i c a l  p rope r t i e s  of the  process ( i . e .  means and var iances  of t he  

fo rce  l eve l s )  a r e  preserved. 

Thus, we w i l l  ( f o r  i l l u s t r a t i v e  purposes) consider the  forward 

KOLMOGOROV equations f o r  the  FIF a t t r i t l o n  process and h e u r i s t i c a l l y  

i nves t i ga t e  what happens a s  the  number of each type of combatant becomes 



l a rge .  Let us t he re fo re  r ewr i t e  (4.7.22) a s  

S t r i c t l y  speaking, m and n can take on only nonnegative i n t ege r  values .  

However, i t  is  i n t u i t i v e l y  appealing t o  r e l a x  t h i s  ree t r icLion  f o r  l a rge  

number4 of combatants and t o  rep lace  tn and n by x and y which a r e  

no longer r e s t r i c t e d  t o  be i n t ege r s .  Also, let  us observe t h a t  when m 

was r e s t r i c t e d  t o  i n t ege r  values ,  we could have w r i t t e n  

e . Am = 1, a d  s i m i l a r l y  f o r  An. Thus, we could rewrite (4.15.1) a s  

For l a r g e  numbers of combatants, Ax and Ay w i l l  be small compared t o  

x and y ,  and consequently passing t o  t he  l i m i t  a s  Ax + 0, Ay + 0,  and 

P(t ,x ,y)  + p( t ,x ,y) ,  w e  (naively)  ob ta in  t he  following f i r s t  o rder  p a r t i a l  

d i f f e r e n t i a l  equation (P.D.E.) 

with i n i t i a l  condi t ion 



I 

where 6(x) denotes the  so-called DIRAC d e l t a  funct ion which may be 

1: 9defined byZ $(x)  6 (x - a)dx = ((a) f o r  a l l  O(x) C {appropriately 

clef ined c l a s s  of " t e s t "  funct ions) .  Here p ( t  ,x,  y) denotes t he  j o i n t  

p--0babili ty dens i ty  func t i an  f o r  the  X and Y fo rces ,  i . e .  

X f o r ce  l e v e l  between x and x + dx and Y 
p(tsx,y)dx dy - P fo rce  l e v e l  between y and y + dy a t  t i m e  t. 

Thus, our i nves t i ga t ion  of the  behavior of aur  MARKOV-chain model 

of combat a t t r i t i o n  has  led  us t o  t h e  above f i r s t -o rde r  quasi- l inear  

p a r t i a l  d i f f e r e n t i a l  equat ion (P.D.E.) (4.15.3). To so lve  t h i s  equation 

f o r  the  j o i n t  p robabi l i ty  dens i ty  funct ion p ( t , x ,y ) ,  w e  w i l l  invoke the  

following r e s u l t  ( f o r  a  proof and f u r t h e r  d e t a i l s ,  s ee  COURANT and HILBEE 

[18, pp. 62-69] o r  GARABEDIAN [28, pp. 18-22]; a l s o  HILDEBRAND [36, 

pp. 368-3781) . 

THEOREM 4.15.1 (MONGE): The s o l u t i a n  t o  the  f i r s t - o r d e r  quasi-

l i n e a r  P.D.E. i n  the unknown funct ion z = z(x,y) 

is given by two independent i n t e g r a l s  t o  the  following system 

of f i r s t -o rde r  ordinary d i f f e r e n t i a l  equations 

Thus, solving (4.15.3) by the method of c h a r a c t e r i s t i c s  ( i . e .  invoking 

Theorem 4.15.1), w e  f i nd  t h a t  
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o r  p( t ,x ,y)  = CONSTANT f o r  

with x(0) = xo , 

with y(0) yo . 

It is a l s o  easltly shown using (4.15.4) and the  d e f i n i t i o n s  of average force 
-

l eve l s ,  e.g. x ( t )  = I
m a, 

xp( t%x,y)dx  dy , t h a t  
a -00 

with ;(o) = xo , 

with = yo . 
but t h a t  VX(t) s Vy(t) E 0, where ( fo r  example) VX ( t )  denotes t he  var ian  

i n  X ' s  f o r ce  l eve l .  Thus, i n  passing t o  t he  l i m i t  f o r  our s t o c h a s t i c  

combat model given by (4.7.19) through (4.7.24), we have recovered the  

de t e rmin i s t i c  b a t t l e  equations f o r  t he  F 1 F a t t r i t i o n  process ,  but we have 

inadvertent ly  destroyed the p r o b a b i l i s t i c  na ture  of the model i n  a r a t h e r  

cava l i e r  fashion. A more ca re fu l  passage t o  t he  l i m i t  is required.  A 

guidirig p r inc ip l e  i n  such a passage t o  t he  limit would be t o  preserve 

both the  force- level  means and a l s o  var iances ,  which w e  have computed t o  

be given by (4.13.3). Thus, our new r e s u l t s  (4.13.3) should play an 

important r o l e  i n  developing approximations t o  so lu t ions  of the forward 

KOMOGOROV equations.  



A more c a r e f u l  passage-to-the-limit argument has  been shown 

(-s e e  TAYLOR 178, pp. 1-42 through 1-46]) t o  y i e l d  t h e  fol lowing d i f f u s i o n .  

approximation (e .g .  eee FELLER [24] o r  ZCLEIiART [39]) to  t h e  forward 

KOLMOGOROV equa t ions  

with i n i t i a l  cond i t ion  (4.15.4). Here a > 0 and bl > 0 i n s u r e  t h a t  1 

t h e  p r o b a b i l i t y  d e n s i t y  d i f f u s e s  over  t i m e  (Efi. t h e  f i g u r e s  i n  Sec t ion  4 .9) .  

Unfor tunate ly ,  f i n d i n g  a s o l u t i o n  t o  t h e  p a r a b o l i c  P.D.E. (4.15.7) has  

proven t o  be q u i t e  e l u s i v e .  However, PERLA and LEHOCZKY [72]  have invoked 

r e s u l t s  from t h e  theory of s t o c h a s t i c  d i f f e r e n t i a l  equa t ions  (e.g.  see 
GIHMAN and SKOROHOD [ 2 9 ]  o r  ARNOLD [ 5 j )  t o  develop a d i f f u s i o n  approximation 

based on t h e  s t o c h a s t i c  d i f f e r e n t i a l  equa t ions  corresponding t o  the 

p a r a b o l i c  P.D.E. (4.15.7). PERLA and LEHOCZKY [72] have thereby obta ined 

t h e  approximate ?orce-level-mean-and-variance equa t ions  (4.13.6), which 

we have obta ined a s  approximations t o  t h e  exac t  systeni of equa t ions  (4.13.3) 

without any assumption concerning l a r g e  numbers of combatants. Furthermore,  

our  development i n  Sec t ion  4.13 shows t h a t  (4.13.6) is a good approximation 

t o  (4.13.3) only  a s  long as a s i g n i f i c a n t  amount of p r o b a b i l i t y  h a s  n o t  

accumulated on t h e  boundary of t h e  s t a t e  space 30. Thus, we f e e l  t h a t  t h e  

exact  force-level-mean-and-variance equa t ions  (4.13.3) developrd i n  

Sec t ion  4.13 should prove q u i t e  u s e f u l  f o r  developing a p p r o x i m t i o n s  t o  

t h e  forward KOI.MOGOROV equa t ions  i n  t h e  f u t u r e .  



Fina l ly ,  S t  should be pointed out t h a t  both C. C W [ l 6 ,  pp. 

133-1341 and a l s o  PERLA and LEHOCZKY [ 7 2 ]  ( t he  l a t t e r  authors  a l s o  giving 

r e s u l t s  f o r  o ther  a t t r i t i o n  processes) have numerically inves t iga ted  t he  

behavior of the approximate force-level-mean-and-variance equations f o r  the  

F I  F a t t r i t i o n  process. CIAK [16, y.  1371 concluded t h a t  the  force- level  

v a r i a b i l i t y  f o r  l a r g e r  u n i t s  ( i . e .  l a r g e  numbers) is l a r g e r  i n  abso lu te  

terms but is  a much smaller  percsntage of t h e  f o r c e  s i z e  than f o r  small  

un i te ,  PERM and LEHOCZKY [72 ,  p. 261 concluded that the  approximate 

equations (4.13.6) provide "good r e s u l t  st' f o r  i n i t i a l  f orcc l e v e l s  a s  

small  a s  30 on each s ide .  Extensive numerical computations and represan- 

t a t i v e  r e s u l t s  f o r  t h e  approximate force- level  means and s tandard 

devia t ions  and a comparison of these  approximations with exact  Monte Carlo 

r e s u l t s  (&. Sect ion 4.14) have a l s o  been reported by these l a t t e r  authors .  



4.16. Comparivon of Determinis t ic  a A n Stochas t ic  A t t r i t i o n  Models. 

In  t h i s  section we w i l l  consider the  important queatian, "Mow do 

ra~tdom f luc tua t ione  i n  the occurrence of c a s u a l t i e s  modify the r e s u l t s  obtained 

from deferminst ic  LANCBESTER-type combat modele?" A number of authors  (e.g. 

SPRINGALL [ 7 7 ] ,  CLARK (161, and CRAIG [19]) have invest igated varlous aspec ts  

of t h l s  very important question i n  considerable d e t a i l ,  and we w i l l  summarize 

t h e i r  f indings l a t e r  i n  t h i s  sec t ion .  However, t he re  is  a broader context i n  

which we can view t h i s  question and which is more cons is ten t  with the research 

philosophy espoused seve ra l  places elsewhere i n  this  monograph (cf.Sections 

4.4 and 6.3): we can view a s tochas t i c  force-on-force combat model a s  an 

abs t rac t ion  of r e a l i t y  t h a t  should capture the  essence of t he  combat-at t r i t ion 

process  and provide information on the  e s s q a t i a l  underlying dynamics of combat. 

This information i t s e l f  shauld, of course, be responsive t o  the demands of 

mi l i t a ry  OR/systems ana lys is  f o r  defense-planning purposes. The e s s e n t i a l  

underlying question concerning the comparison of de te rminis t ic  and s tochas t i c  

force-on-force a t t r i t i o n  models is then, "How does the  information t h a t  each 

combat-model type provides on the  dynamics of combat compare and inf luence 

defense decis ion making?" Unfortunatcly, we w i l l  only be ab le  t o  address t he  

f i r s t  aspect  ( i , e .  comparison of information generated by each combat-model 

type) here,  but the e n t i r e  i s sue  u l t imate ly  r e s t s  on the  second. 

Viewed within the context of information provided on the  dynamics of 

combat, one s i n g l e  model can never be s u f f i c i e n t  f o r  the purposes of m i l i t a r y  

OR. We sh.ould instead consul t  severa l  d i f f e r e n t  complementary models t h a t  

provide information over a spectrum of i s sues  a t  var ious l e v e l s  of d e t a i l .  

Within t h i s  context,  the c r u c i a l  question concerning the comparison of 



determinis t ic  and s tochas t i c  force-on-force a t t r i t i o n  m n d e l ~  i s  whether 

they both provide cons is ten t  information about the Jynmics of combat. X f  

( fo r  example) a de te rminis t ic  force-on-force c t t r i t i o n  modal providae " f i r e t -  

order" information about t rends,  while a s tochas t i c  one providea "second-ordc 

information about these t rends  t h a t  merely r e f i n e s  rsther than r ev i se s ,  then 

the choice of the  more appropriate  type of model rests s o i e l y  on how ref ined  

answer is desired.  Thia is the bas i c  concluaLon drawn by t h i s  author a f t e r  

considering many d i f f e r e n t  aspec ts  of the  problem and the r e s d t s  01 many uut 

In o ther  words, the de t e rmin i s t i c  models serve t o  provide us  with a bas ic  

o r i en t a t ion  about the  dynamics a f  combat, and the  s t o c h a s t i c  models usua l ly  

serve t o  r e f ine  t h i s  or ien ta t ion .  There a r e ,  of course,  exceptions and fu tu r  

research should concentrate on more c l e a r l y  de l inea t ing  when such exceptions 

occur. 

Basical ly ,  the de te rmin i s t i c  models provide information much more 

conveniently about the dynamics of combat than the corresponding s tochas t i c  

models do. In  general  t e rns ,  a s tochi ls t ic  combat model. provides d i s t r i b u t i o n  

information about combat outcomes. However, not only is  such p r o b a b i l i s t i c  

information r e l a t i v e l y  d i f f i c u l t  t o  e x t r a c t  from the  s t o c h a s t i c  model but one 

must a l s o  employ summary s t a t i s t 5 c s  t o  t r a n s f o m  i t  i n t o  a l e s s  complicated 

and more convenient form f o r  dec is ion  making. Moreover, _if such d i s t r i b u t i o n  

information i s  no t  used, then we do not l ea rn  any dore from the s t o c h a s t i c  

nodel than from the corresprn_Sinq o r i g i n a l  determi.t;istic model. Along these 

l i nes ,  such advantuiges and disadvatnages of de t e rmin i s t i c  and s t o c h a s t i c  

LANCHESi'ER-type combat model8 a r e  summarized i n  Table 4.IV. 

It is the  opinion of t h i s  authar  t h a t  de te rminio t ic  LANCHESTER-type 

combat models & capture the "f i rs t -order"  t rends of combat dynamics31 except 



-- 

TAWE 4 . N .  Advantages and Dieadvantages of 3eEerministic and Stochas t ic  

LANCHESTEB-Type Comba? Models. 

Dete&n:Letic LANCHESTER-Ty3e Combat Modela 

ADVANTAGES - DISADVANTAGES 
.. 

1. Tnformarion easily extracted 1. Further  abs t r ac t ion  from 

from model rea l . i ty  (randomness 

suppressed) 

2. Dynamics of combat trans-

parent ly revealed 

StochastL: LANCEESTER-Type Combat Models 

ADVANTAGES DISADVANTAGES
c-7. 4

1 1. Closer t o  r e a l i t y  i n  sense 1 1. Information not  e a s i l y  

I t ha t  one type of randomness I ex t rac ted  from model 

(and only then with con-

s ide rab le  computational 

c o s t )  

Dynamics of combat ( i . e .  

d r iv ing  f ac to r s )  not 

readi ly  revealed 



f a r  simall nunbets of p o t e n t i a l  c a s u a l t i e s  ( i . e .  each s i d e  can take under 20 

c a s u a l t i e s  before  i t s  breakpoint is reached) and i n i t i a l  condi t ions of near 

par i ty32 .  However, more experimental computation and t h e o r e t i c a l  work is 

required t o  i d e n t i f y  more p rec i s ly  a p r i u r i  circumetances under which r e s u l t s  

from the do t e tmin i s t i c  models may be misleading. We will now review what 

o ther  authors  have concluded about t h i s  important sub jec t .  

Work on t h e  t op i c  of comparieon of de t e rmin i s t i c  and s t o c h a s t i c  

LMCHESTER-type combat models f a l l s  n a t u r a l l y  i n t o  t h r ee  chronological  

ca tegor ies :  

(Cl) t h a t  done before the  work of SPRINGALL [77 1 and CLARK [161Y 

(C2) the  work of SPRINGALL [77] and CLARK [16],  

and (C3) t h a t  done a f t e r  t he  work of SPRINGALL [77] and CXSLRK [161. 

The work of SPRINGALL [77] and t h a t  of CLhlRK [16] must be regardedas  d e f i n i t i  

were done simultaneously and independently of each o ther ,  and reached apparen 

contradictory conclusions (SPRINGALL [77, p. 1861 concluding t h a t  a 

de t e rmin i s t i c  formulation captures  t he  essence of t rends  i n  such combat 

dynamics and CLARK [16, p. 2431 concluding t h a t  de t e rmin i s t i c  models a r e  

inadequate f o r  small-unit engagements). Work before  t h a t  of these  two author 

never sys temat ica l ly  examined the  i s s u e  of de t e rmin i s t i c  versus  s t o c h a s t i c  

LANCHESTER-type combat models as deeply, and su'bsequent work has  tended t o  

take  t h e i r  two Ph.D. theses  a s  a po in t  of departure .  



Work i n  t h e  f i r s t  ch rono log ica l  ca tegory (Cl) was done f a r  be fore  

LANCHESTER-type combat models had had any widespread a p p l i c a t i o n  t o  defense- 

p lanning problame and a l s o  be fore  t h e  widespread r o u t i n e  use  of t h e  large-sc 

d i g i t a l  computer i n  g e n e r a l  s c i e n t i f i c  computation. The c l a s s i c  book by 

MORSE and KIMBALL [65, pp. 63-71] con ta ins  n o t  only t h e  e a r l i e s t  work i n  the 

western  world (exc lus ive  of LANCHESTER1s [56 j o r i g i n a l  1914 paper) on s imple  

de te rmin i s t i c - type  models but a l s o  t h e  e a r l i e s t  work on s t o c h a s t i c  ones and 

comparison of t h e  d e t e r m i n i s t i c  and s t o c h a s t i c  models [65,  pp. 67-71:. 

MORE and KIMBALL made such comparisons f o r  t h e  F I F  and t h e  FT (FT ZANCHESTER- 

a t t r i t i o n  processes33 and concluded [ 6 5 ,  p. 69 and p. 711 t h a t  "as long as 

t h e  equa t ions  a r e  no t  pressed too  hard (such as by going t o  t h e  a n n i h i l a t i o n  

of one fo rce )"  such d e t e r m i n i s t i c  mode1.s do c a p t u r e  t h e  f i r s t - o r d e r  prsb-

a b i l i s t i c  t r e n d s  i n  t h e  dynamics of combat and may be  thought of as represen 

i n g  t h e  mean course  of combat ( i . e .  such d e t e r m i n i s t i c  models may be thought 

of as "expected-value" models). For both t h e  F ( F  and FT!FT a t t r i t i o n  proces 

MORSE and KIMBALL have compared some expected v a l u e s  from t h e  s t o c h a s t i c  mod 

with  f o r c e  l e v e l s  obta ined from t h e  corresponding d e t e r m i n i s t i c  model. For 

example, f o r  t h e  s t o c h a s t i c  F I F  LANCHESTER-type a t t r i t i o n  p rocess ,  MORSE 

and KIMBALL [65, Tables 3 and 4 on p. 701 (seea l s o  SNOW [76,  pp. 26-27]) 

e x p l i c i t l y  solved t h e  a p p l i c a b l e  system of 23 forward KOLMOGOROV equa t ions  

i n  a  s p e c i a l  c a s e  ( i . e .  mo = 5 ,  no = 3, and a = b = 1.0) and c a l c u l a t e d  

limt++00 E[M(t)l and l i m t + + - E[N(t) ]  t o  o b t a i n  t h e  r e s u l t s  shown i n  
34Table 4.V. SNOW [19] l a t e r  examined such q u e s t i o n s  i n  g r e a t e r  dep th  . 

H e  176, p. 271 apparen t ly  f i r s t  obtained t h e  average-force-level  equa t ions  

f o r  t h e  F (F a t t r i t i o n  p rocess  (4.12.11) i n  t h e  s p e c i a l  case  of a f i g h t  t o  t h  



TABLE 4.V. Comparison of End-of-Battle Results from Deterministic and 


Stochastic Models for the F I F  Attrition Process and o 


Fight to the Finish. 


LAmiting Value of 
Expected Force Level Force Level from 
from Stochastic Model Deterministic. Model 

* 
X Force Level 

Y Force Level 


* 
The number in the first column represents limt,+, E[M(t) 1 as determined 

from the stochastic model, while that in the second represents x(tf) as 


determined from the corresponding deterministic model when y(tf) = 0. 



- - f i n i s h ,  1 .e .  mgp %p 0 .  SNOW 176, p. 281 concY.udad t h a t  d e t e r m i n i s t i c  

LANCHESIER-type equa t ions  (at  least f o r  t h e  s p e c i a l  c a s e  of t h e  FIF a t t r i t i o n  

process) could be considered a s  approximations t o  t h e  mean-value equa t ions  £0, 

t h e  corresponding continuous-time MARKOV-chain model (cf.Sec t ion  4,12).  

This  m a t e r i a l  on comparing d e t e r m l n i s t i c  and s t o c h a s t i c  LANCHESTER-type 

combat models presented by MORSE and KU4BALL [65] and SNOW [76] i n  some Oense 

r e p r e s e n t s  t h e  p o i n t  of d e p a r t u r e  f o r  G. CLARK'S (161 much more d e t a i l e d  and 

comprehenisve i n v e s t i g a t i o n  of t h i s  importaut  modelling i s s u e .  Again, i t  

should be emphasized t h a t  t h e  need f o r  such a t h e o z e t i c a l  comparison d i d  n o t  

appear t o  be very important  t o  m i l i t a r y  OR workers u n t i l  circumstances ( in -

c lud ing  t h e  advent of t h e  l a rge-sca le  d i g i t a l  computer) hdd l e d  t o  t h e  

widespread use  of computer-based-combat-model d e c i s i o n ' a i d e  by t h e  U. S. 

Department of Defense i n  t h e  l a t e r  1960's .  A t  t h a t  time t h i s  t h e o r e t i c a l  

modelling i s s u e  assumed p r a c t i c a l  s ignLficance f o r  guiding t h e  development of 

o p e r a t i o n a l  models. 

Other work i n  t h e  f i r s t  chronological  ca tegory  (Cl) has  considered 

o ther  a s p e c t s  and i s s u e s  subsequent ly  i n v e s t i g a t e d  i n  t h e  s tochast ic-versus-  

determinist ic-models debate .  SNOW [Y6, p. 251 apparen t ly  f i r s t  r a i s e d  t h e  

ques t ion  about cons ider ing  t h e  h igher  moments ( i n  p a r t i c u l a r ,  the v a r i a b i l i t y )  

of t h e  s t o c h a s t i c  r e s u l t s .  BROOKS [13, p. 11 suggested t h a t  s u r v i v o r  va r i -  

a b i l i t y  (more p r e c i s e l y ,  s u r v i v o r  s t andard  d e v i a t i o n )  g e n e r a l l y  decreases  f o r  

many combat models i n  r e l a t i o n  t o  t h e  i u i t i a l  f o r c e  l e v e l s  a s  t h e  l a t t e r  a r e  

increased.  H e  concluded t h a t  s o c h a s t i c  deterruinism ( s e e  [13, pp. 1-21 o r.-

Sec t ion  4.13 above) e x i s t s  f a r  many force-on-force combat models and t h a t  

t h e r e  is  an approximately d e r e r m i n i s t i c  r e l a t i o n  between t h e  i n i t l a l  cond i t ions  



and t h e  gross r e s u l t s .  WILLARD [91] (E a l s o  KOOPMAN 1551 and ETTER [20]) 

suggested t h t t  the a tochne t ic  F I F LANCXESTER-type a c t x i t i o n  process converges 

t o  a de t e rmin i s t i c  process a s  force  s i z e s  increase  (E Sect ion 4.15 above, 

however), and CLARX [16, p. 541 subsequently perceived confusion on t h i s  

point  of force- level  v a r i a b i l i t y .  Other po in ts  of comparison have been i n v e ~  

gated by G, 8. WEISS [ 8 9 ,  901, whose e f f o r t s  more o r  l e s s  an t i c ipa t ed  t he  

l a t e r  mate de t a i l ed  and comprehensive i nves t i ga t iuns  of SPRINGALL [ 77 ] .  

G. H. WEISS [89; 901 concluded t h a t  t h e  de t e rmin i s t i c  models produced resul t1  

no t  contradicted by stochastic-model r e s u l t s  and t h a t  such q u a l i t a t i v e  agree 

increases  a s  t h e  numbers of combatants increases .  

SPRINGALL [77]  obtained time-dependent r e s u l t s  ( i n  p a r t i c u l a r ,  t he  

d i s t r i b u t i o n  f o r  t h e  dura t ion  of b a t t l e )  f o r  a l l  t he  simple LANCHESTER-type 

s t o ~ h a s t i c  combat models and developed expressions f o r  t he  v i c to ry  probabi l i  

and d i s t r i b u t i o n  of surv ivors  f o r  some more complicated models. H e  then use 

these  r e s u l t s  t o  i nves t i ga t e  the i s s u e  of s t o c h a s t i c  versus  de t e rmin i s t i c  

combat models. SPBINGALL [77 ,  p. 1521 pointed ou t  t h a t  although de te rminis t  

and s t o c h a s t i c  LGNCNESTER-type models y i e ld  r e s u l t s  t h a t  a r e  ( a t  f i r s t  s i g h t  

a t  l e a s t )  e n t i r e l y  d i f f e r e n t  i n  t h e i r  ba s i c  na ture  (although based on equdva 

l e n t  premises), one would expect t h a t  the two types of  models lead  t o  appro3 

mately t he  same conclusions concerning (g,the  a n a l y s i s  quest ions presentec 

i n  Table 4. I): 

(Ql) Who w i l l  be t he  v i c to r?  

(42) How many surv ivors  w i l l  he have? 

(43) How long w i l l  t he  b a t t l e  l a s t ?  

53 9 



SPRINGALL argued tha t  the  most important comparison c r i t e r i o n  was the  prcdj 

of b a t t l e  outcome and t h a t  i f  the  two types of models could not agree on rl 

there  would be l i t t l e  hope f o r  agreement on subs id ia ry  a t t r i b u t e s .  Baeed c 

both t h e o r e t i c a l  and a l s o  many numerical comparisons f o r  a number of d i f f e r  

models [77, pp. 151-1661, SPRINGALL [77, p. 1671 concluded t h a t  

(C1) t he  deterministic r e s u l t s  most adequately descr ibe  force-on- 

force  a t t r i t i o n  i n  combat when t h e  number of combatants on 

each s i d e  is l a rge35 , 

and (C2) although i t  is  capable of providing reasonable approximations 

t o  the  expected values  of the  fo rce  l e v e l s ,  a de t e rmin i s t i c  

model (by i ts very nature)  cannot give any i n s i g h t  i n t o  t h e i r  

var iances  (which can be appreciable) .  

These conclusions were based on considerat ion of numerical r e s u l t s  f o r  a 

v a r i e t y  of models concerning (1) pred ic t i on  of b a t t l e  outcome, ( 2 )  the  

average force  l eve l s ,  (3) f  orce-level v a r i a b i l i t y ,  and (4)  the  expected 

dura t ion  of b a t t l e .  A t  the  end of t h i s  t h e s i s ,  SPRINGALL [77, p. 187] tias 

r e i t e r a t e d  h i s  general  conclusion concerning these  two bas i c  types of 

models t ha t  (where appropriate)  a de t e rmin i s t i c  LANCHESTER-type conrbat mode: 

i s  increas ing ly  v a l i d  a s  an approximation t o  the  r e s u l t s  from a cor respondi~  

s tochas t i c- ( i . o .  continuous-time MARKOV-chain) model a;i t he  number of combat 

on each s i d e  increases .  The s t o c h a s t i c  r e s u l t s  however, d id  no t  seem t o  

converge completely t o  the  de t e rmin i s t i c  r e s u l t s  under a l l  condi t ions.  T h i ~  

l a t t e r  point  apparently d id  not  concern SPRINGALL very much (see [77,  p. 18; 



f u r t h e r  d e t a i l s ) ,  a l though i t  was t h e  source  of much concern f o r  

CLARK [16] . 
G. M. CLARK [16] has  presented an even more d e t a i l e d  and comprehensive 

comparison of deterministi::  and s t o c h a s t i c  LANCHESTER-type combat models 

i n  h i s  Ph.D. t h e s i s .  Much af  h i s  suppor t ing a n a l y s i s  has  a l ready  been presentc 

i n  Sect ions  4.9, 4.12, and 4.13 above, and consequent ly  complete d e t a i l s  need 

no t  be given here .  CLARK [16,  p. 2431 concluded t h a t  " a n a l y s i s  of t h e  b i a s  i n  

LANCHESTEK combat models and of t h e  s u r v i v o r  s t andard  d e v i a t i o n  suppor t s  t h e  

choice  of s t o c h a s t i c  models over  d e t e r m i n i s t i c  models when d e s c r i b i n g  small 

u n i t  engagements" (say under 12 weapons on each s i d e ) .  Here CLARK [16, p. 591 

took t h e  term b i a s  i n  t h e  d e t e r m i r l i s d c  model t o  mean t h e  d i f f e r e n c e  between 

t h e  d e t e r m i n i s t i c  model's r e s u l t  and t h e  expected s t a t e  of t h e  corresponding 

s t o c h a s t i c  a t t r i t i o n  process.  CLARK [16, p. 2431, however, added t h a t  f o r  

l a rge-un i t  engagements ( say ,  over  100,000 combatants on each s i d e )  r e s u l t s  

i n d i c a t e d  t h a t  d e t e r m i n i s t i c  force-on-force combat m o d e l s a r e ( f o r  t h e  most par 

s a t i s f a c t o r y ,  i.e. s u r v i v o r  b i a s  and s t o c h a s t i c  v a r i a b i l i t y  appear n e g l i g i b l e .  

CLARK apparen t ly  based t h e s e  conclus ions  on r a t h e r  e x t e n s i v e  computations 

of f o r c e - l e v e l  means and s tandard  d e v i a t i o n s  f o r  t h e  F I F  and FT/FT s t o c h a s t i c  

LANCHESTER-type combat models and comparison of t h e s e  stochastic-model xesultx 

wi th  t h e  a p p r o p r i a t e  corresponding determinis t ic-model  r e s u l t s .  Some of these 

computational r e s u l t s  a r e  shown i n  Tables 4.VI and 4.VfI (seeC L A X  [16] f o r  

f u r t h e r  d e t a i l s ;  a l s o  see t h e  f i g u r e s  ( e x t r a c t e d  from h i s  Ph.D. t h e s i s )  i n  

Sec t ions  4.12 and 4.13 above). It should be pointed out  t h a t  from CLARK'S 

computational r e s u l t s  it appears  t h a t  he  took t h e  term "small-unit  engagement' 

t o  mean approximately 12 o r  l e s s  c o m b a t a s s  on each si*. Thus, SPRINGALL'S 

and G. CLAM'S conclus ions  about t h e  comparative q u a n t i t a t i v e  behavior of 
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TABLE 4.VII. Typical Terminal Values for the Standard Deviation of a 


Combatant 's Force Level in an FT 1 FT LANCHESTER-type 
Stochastic Attrition Process and a Fight-to-the-Finish 


(from CL4RK [l61) . 

Initial Effectiveness of Individual Firers Battle Standard Deviat io~ 

Force Levels a b Time t of Force Level 


(Y combatant) (X combatant) (seconds) q i T  q5-

1500. 


1500. 


1500. 


2500. 


1500, 


1500. 


1500. 


2500. 


1500. 


1500. 


2500. 


1500. 




de te rmin i s t i c  and s t o c h a s t i c  LANCHESTER-type cambat models a r e  not  r e a l l y  

contradictory.  Each researcher  wau apparent ly  consider ing a d i f f s r e n t  realm 

of a p p l i c a b i l i t y  a s  regards i n i t i a l  fo rce  l e v e l s ,  CLARK t e n  o r  l e s s  on each 

s i d e  and SPRINGALL over t h i r t y .  

We next tu rn  t o  work i n  t he  l a s t  chronorogical category (C3), which 

has appeared subsequezt t o  t h a t  of SPRINGALL 1771 and CLARK [16].  It is 

indeed paradoxical t h a t  today when EANCHESTER-type models a r e  more widely 

used than ever before f o r  defense planning i n  t he  U.S. DoD and elsewhere 

(many times f o r  i nves t i ga t ing  very practical operational-planning ques t ions) ,  

very l i t t l e  mater ia l  is being published on such models, with next t o  n i l  

about s t o c h a s t i c  (and with a t  l e a s t  even an order  of magnitude 

l e s s  information appearing about comparisons of s t ochas t i c  with det m i n i s t i c  

LANCHESTER-type combat models). To be su re ,  t he re  a r e  s i g n i f i c a n t  research 

a c t i v i t i e s  going on, but f o r  var ious reasons most of i t  does not ever get  

documented andlor  published37. With t h i s  important q u a l i f i c a t i o n  being 

observed, w e  w i l l  now b r i e f l y  examine what i nves t i ga t ions  concerning comparison 

of de te rmin is t ic  and s tochas t i c  LANCHESTER-type combat models h t ~ e  appeared 

subsequent t o  1969. The major pieces  of work concerning such comparisons 

known t o  t h i s  author a r e  by CRAIG [19] and KARR [47; 481. The former a u t , . ~ r  

presents  f a r  more computational r e s u l t s  than does t he  l a t t e r  author ,  and 

consequently w e  w i l l  focus on CRAIG'S work [19],  which is  corroborated 

by t h a t  of KARR [47; 481. 

CRAIG [19] took SPRINGALL'S [77] and CLARK'S [I61 work a s  a point  of 

departure  and d id  extensive numerical ca l cu l a t i ons  upon which he based h i s  

com2arison of de t e rmin i s t i c  and s tochas t i c  LANCHESTER-type combat models. 



He considered only the F I  F detrition process,  though. CRAIG 119, p ,  1401 conc; 

t ha t  the complex random process of force-on-force combat can be adequately 

represented by a de terminis t ic  model if 

(1) there  a r e  a t  l e a s t  20 combatants on each a ide ,  

(2) force-level breakpoints a r e  such t h a t  each side i s  willing and 

capable of taking a t  l e a s t  20 casua l t i e s ,  

(3) t he  forces  a r e  not near pa r i t y ,  

and (4) i f  near pa r i t y ,  then each s i d e  i n i t i a l l y  has  at l e a s t  40 

combatants and is wi l l i ng  and capable of taking a t  least 20 

casua l t ies .  

I n  o the r  worda, unless  the two hoarogeneow fo rces  a r e  near  pa r i t y ,  e s s e n t i a l l y  

the  same information dmIt the  d y n d c s  of coabat is obtained froln both 

de termlnia t ic  and s tochae t i c  LANCHeSTER-type conbat models (i.e. the  d e l a  

a r c  not s i g n i f i c a n t l y  d i f f e r e n t  i n  terns of the outputs  t h a t  they produce, at 

l e a s t  i n  q u a l i t a t i v e  temm). CRAIG [19] based theee ccanclwionr on extensive 

computations of t he  probabi l i ty  of winning and the  f o r c e - l w e l  means and 

variances (sT a b l u  4.VIII a d  4 . U  f o r  som~,representa t ive  computational 

r e s u l t 8  from [19]).  
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TABLE 4.IX. Typical Terminal Values for the Standard Deviation of a Coabatant's Pcrce Level in 


an a F LANCHESTER-Type Stochastic Attrition Process and a Fixed-Force-Level-Breakpoint 
Battle (from CRAIG [69]). 

i 
Initial Effectiveness oC Individual Firers Force-Level Battle Standard 3euiatian 

Force Levels a b Breakpoints of Force Lew4 
(Y combatant) (X combatant) 2 z s l  1 h i p  Aqm 



Basad on careful raviow of all. the work discussed aimve, we have 

reached the coaclusFons regarding the relative m c ~ i t aof deterministic and 

stochastic WCHESTER-type combat models that we have pxesented earlier in 

this section: in esaence, unaeBs the force J.eve18 are appreciably below 20 

on each side and the forczs near pauity, a deterministic LANCHESTER-ty~ 


modal is quits adequate for representing force-on-force attrition (particularly 


if disttibutianal information is not required). These conclusions must be 


regarded as somewhat tentative, however, and more computational and theoretical 


work is required to more clearly delineste whau exceptions to the above general 

rule of thumb should be expected to occur. 




FOOTNOTES FOR CHAPTER 4 


I, The p r inc ipa l  subsequent works on s t o c h a s t i c  combat models t h a t  have 

appeared i n  t he  unclassified l i t e r a t u r e  a r e  the  ones by SNOW [76] ,  BROWN 

[14; 151, BROOKS [13], D. G. SMITH [75] ,  SPRINGALL [77],  CLARK [16; 171, 

GRUBBS and SHUFORD [33],  and BWEN 1251. The reader  may a l s o  f ind i t  

worthwhile t o  read the  more recent  paper by KOOPMAN [55]. It contains  a 

number of i n t e r e s t i n g  conceptual ideas  about t he  represen ta t ion  of combai 

a t t r i t i o n  as a s t o c h a s t i c  process.  For t he  sake of completeness we a l s o  

no te  he re  the  following papers: ISBELL and MARLOW [40], MARADUDIN and 

WEISS [591, WILLARD (911, C. MARSHALL [611, KISI and HIROSE [53],  MARMA 

and DEUTSCH [ 6 0 ] ,  WELDE [54],  J A I N  and NAGABHUSWAM [41],  SHUFOEiD and 

GRUBBS [74], FARXELL and FREEDMAN [22], WATSON [81], GYE and LEWIS [34],  

and GOLDIE [31].  F ina l ly ,  mention should be made of t h e  e i g h t  r epo r t s  

from the  Defence Operational Analysis Establishment (DOAE) (of t h e  

Ministry of Defence of the  United Kingdom) by W E 182-861, JENNINGS 

[42-433, and WEALE and PERYER [87], t he  work a t  t h e  I n s t i t u t e  f o r  Defense 

Analyses by KARR [45-491, and t h e  M.Sc. t h e s i s  by GRAINGER [32]. The 

f i r a t  seven DOAE r e p o r t s  [42-43; 82-87] have been reviewed and c r i t i qued  

by KARR [50] .  No f u r t h e r  r ead i ly  a v a i l a b l e  work on s t o c h a s t i c  

LAWCIIESTER-type models could be found i n  the  r ecen t ly  published list 

of references on the  LANCHESTER theory of combat by H A Y S W  and 

MORTAGY [ 35 ] . 



2. BARTLETT [7]  has pointed out t h a t  many d i f f e r e n t  s tochas t i c  birth-and- 

death models a r e  compatible with o given de t e rmin i s t i c  d i f f e r e n t i a l -  

equation population-growth model. Clear ly,  the  same. is t rue  f o r  combat 

a t t r i t i o n  models. For example, MARADUDIN and WEISS [ 5 9 ]  and G. H. WEISS 

[89] have considered d i f f e r e n t  s tochas t i c  birth-and-death models t h a t  

a r e  compatible with the  de t e rmin i s t i c  FTIFT a t t r i t i o n  process. 

Similar  ~ t o c h a s t i c  models a r i s e  i n  var ious  f i e l d s  of science and techno1 

such a s  mathematical biology [7;  8; 30; 51; 58; 891, ecology 1731, 

epidemiology [6; 901, e tc .  (e.g. se? BHARUCHA-REID [ l o ]  f o r  some furthe1 

f i e l d s  of appl ica t ion  i n  which such s imi l a r  models a r i s e ) .  Further r e f €  

ences t o  the  l i t e r a t u r e  a r e  t o  be found i n  t he  above c i t e d  work, which 

may be taken a s  an abbrevtated (but s e l e c t i v e )  guide f o r  f u r t h e r  readin1 

In pa r t i cu l a r ,  a f a i r l y  extensLve l i t e r a t u r e  on s t o c h a s t i c  p o p u l a t i ~ n  

models e x i s t s  and i s  r ead i ly  ava i l ab l e  to t he  in t e re s t ed  reader (s 
KENDALL [ S l ]  f o r  a review and summary oE e a r l i e r ,  i . e .  pre-1950, work 01 

s t ochas t i c  population models, while more recent  a c t i ~ ~ t i e s  have been 

reported i n  BARTLETT [S] ,  GOEL e t  al.  1301, and LUDWIG [58 1). It shoulc 

be pointed out,  however, t h a t  although concepts and even most d e t a i l s  o 

model formulation a r e  e s s e n t i a l l y  the  same i n  these r e l a t ed  f i e l d s  and 

LANCHESTER combat theory, few r e s u l t s  from these  a l l i e d  f i e l d s  have bee 

found t o  be d i r e c t l y  appl icable  t o  LANCHESTER-type combat models (see 
G. H. WEISS [ 8 9 ]  f o r  a notable  exceptton, though). The reasons f o r  t h i  

s t a t e  of a f f a i r s  a r e  apparently t h a t  CR1) somewhat d i f f e r e n t  Fnf ormation 

about a model is required i n  these r e l a t ed  f i e l d s  (g.Table 4 . 1  above) 



and (R2) combat models ( i n  con t r a s t  t o  such r e h e e d  models) apply t o  

systemi with bounded and e s s e n t i a l l y  always dec l in ing  numbers of 

combatants. 

4 .  As pointed out i n  Section 1.6, the s t a t e  va r i ab l e s  descr ibe  the  system 

s t a t e ,  which is t h e  minimum amount of information t h a t  allowe one t o  

pred ic t  the  system's fu tu re  from the  pas t .  This point is c r u c i a l  f o r  

appl ica t ions ,  s i n c e  it forms the  conceptual bas i s  f o r  formulating d i f f e r -  

e n t i a l  combat models. In  o ther  words, the  s t a t e  va r i ab l e s  a r e  t he  

s i g n i f i c a n t  va r i ab l e s  f o r  descr ibing and predic t ing ,  f o r  example, t he  

f u t u r e  evolut ion of the combat a t t r i t i o n  process. 

5. FELLER [25, p. 3691 has s a i d ,  "Conceputally, a MARKOV process is the  

p robaLi l i s t i c  analogue of the processes of c l a s s i c a l  mectantcs, where 

the  fu tu re  development is completely determined by the present  s t a t e  

and is independent of t he  way i n  which the  present  s t a t e  has  developed. 

The processes of mechanics a r e  i n  con t r a s t  t o  processes with a f t e r  

e f f e c t  ( o r  heredi ta ry  processes) ,  such a s  occur i n  the theory of p l a s t i c i  

where the  whole pas t  h i s t o r y  of the  system inf luences i t s  future."  

We observe t h a t  a l l .  t he  LANCHESTER-type combst processaa considered i n  

t h i s  book a r e  e q u i ~ a l e n t  t o  the  processes of c l a s s i c a l  mechanics i n  

the sense of not containing any heredi ta ry  e f f e c t s .  



6. For example, in a fixed-force-level-breakpoint battle (d.
Section 2.8 


and also Chapter 3) there will be (%+I - ap)X (no + 1 - %P) 

essential components in the state-probability vector, and corresponding 


to each such component is a differential-difference equation for its 


probabilistic evolution. Mere mBP denotes X's fixed force-level 


breakpoint, and similarly for %P. 


7 .  There are also backward KOLMOGOROV equations (e.8. see FELLER [25, 
pp, 426-4271), but these are not of interest to us here. 


8. The reader will find it instructive to show that such terms make no 


contribution to our final result ( 4 . 3 . 8 ) ,  since limAt,O O( ( ~ t )  =2, / ~ t  


9. The (continuous-parameter MARKOV-chain) stochastic process corresponding 


to LANCHESTER's equations for modern warfare (2.2.1) has been called by 


B. 0 .  KO(?PM [55, p. 8691 the LANCHESTER stochastic proceE. Here we 

have extended such terminology to include any stochastic-process version 


of LANCHESTER-type combat equations. 


PO. dawever, we may always use finite-difference techniques (see 
-Appenc!ix E) 

to numerically compute (with the aid of some type of automated computa- 


tional device) approximate results for any specific battle. 


11. We will omit m y  further explicit reference to the result (4.7.81, 


since it always holds. The reader should not forget this fact. 




12. A few add i t i ona l  methods f o r  cmpu t ing  the  j o i n t  p robab i l i t y  d i a t r i bu t io r  

of the numbers of surv ivors  a r e  given by KOOPMAN [ 5 5 ,  pp. 863-8661. The 

author knows of no app l i ca t i on  of any of these  add i t i ona l  methods t o  

LANCHESTFR combat theory. One s i g n i f i c a n t  omission by KOOPW [ 5 5 ]  

is  the  use of Monte Carlo methods, which a r e  discussed i n  d e t a i l  i n  

Sect ion 4.14 below. Although KOOPMAN [55 ,  pp. 866-8671 does t d l k  about 

Monte Carlo s imulat ions,  he I s  using the  term "Monte Carlo" in. the  sense 

of a modelling approach (E Chapter 1)  and not i n  the  sense of a 

computational procedure f o r  es t imat ing  the  s t a t e  p r o b a b i l i t i e s  o r  some 

o ther  s t n t i s t i c a l  measure of b a t t l e  outcome. 

13. For a very readable  in t roduc t ion  t o  d l t t e r e n c e  equat ions,  

HILPEBRAMD [38]. 

1 4 .  The r e l a t i onsh ip  between BROWN'S [14] genera l  r e s u l t  and CLARK'a [16] 

hybrid method f o r  t he  same genera l  model has  apparent ly  never been 

explored. 

See MORSE and KIMBALL 165, p. 701 f o r  an example of such a ca l cu l a t i on15. -
being ca r r i ed  out f o r  t h e  P I P  a t t r i t i o n  process with % - 5 and n = 

f o r  the  spec i a l  case  i n  which a = b. Nevertheless ( a s  we d i scuss  below 

i n  the  main t e x t ) ,  no genera l  a n a l y t i c a l  result t h a t  holds f o r  a l l  mo 

and no > 0 is known t o  t h i s  author.  It is  i n t e r e s t i n g  t o  no te  t h a t  

a 1  though the  CHAPMAN-KOLMOGQROV equat ion f o r  t he  autonomous model (4.7.2 

through (4 .7 .8 )  expresses  t he  semi-group property of t he  s t a t e  p robab i l i  

ties (see-KOOPMAN [55, pp. 862-6631) and consequently t h e  s ta te -probabi l  

vector  must be exp re s s ib l e  i n  terms of a matrix-exponential func t ion  (e.  

0 



BELLMAN [9,  pp. 173-174])(i.e. each s t a t e  p robab i l i t y  is  the  sum of 

appropr ia te ly  weighted exponent ia l  terms),  t h e  e x p l i c i t  a n a l y t i c a l  

represen ta t ion  of t h e  lat ter  can be a formidable t a sk  (although t r i v i a l  

t o  represen t  symbolically) a s  a t t e s t e d  t o  by the  lack  of a n a l y t i c a l  

r e s u l t s  f o r  the  state p r o b a b i l i t i e s  (g.the  a n a l y t i c a l  r e s u l t s  f o r  

heterogeneous-force models i n  Sect ion 7.8). Furthermore, CLARK'S hybric 

r e s u l t s  (4.9.2) throudh (4.9.4) may be considered t~ be a manifestat ion 

of t h i s  l a t t e r  f a z t  of e x p r e s s i b i l i t y  in terms of the  matr ix  exponentia: 

16. Recently, GOLDIE [31] has  given an a n a l y t i c a l  r e s u l t  t h a t  represen ts  

P(t,m,n) a s  a double summation of negat ive exponential8 s i m i l a r  t o  

CLARK'S [16] general  r e s u l t  (4.9.2) bu t  with undetermined c o e f f i c i e n t s  

( f o r  which generat ing funct ions have been given, though). Moreover, 

GOLDIE [31, p. 6061 has  i n f e r r ed  t h a t  t he  r e s u l t  (4.9.35) was f i r s t  g iv  

by GYE and LEWIS (E [34]) i n  1974, whereas i n  r e a l i t y  ISBELL and 

MARLOW'S [40] more general  r e s u l t  (4.9.22) da t e s  back t o  1956. GOLDIE 

131, p. 6081 a l s o  a t t r i b u t e s  (4.10.21) and (4.10.22) t o  GPE and LEWIS 

[34] and makes no mention at a l l  t o  t he  e a r l i e r  work of D. G. SMITH [75 

17. A r e l a t ed  h e u r i r t i c  d i scuss ion  of the  mechanisms of convective t ranspor  

and d i f fu s ion  of p robab i l i t y  i s  t o  be found i n  Sect ion 4.15 below. 

18. From t h i s  d i scues ion  t h e  reader should be ab l e  t o  geometrically v i sua l i  

the  r e l a t i onsh ip  of t he  j o i n t  p robab i l i t y  d i s t r i b u t i o n  t o  t he  win prob- 

a b i l i t i e s  f o r  such b a t t l e s :  t he  p robab i l i t y  t h a t  one a i d e  wins i s  simp1 

the t o t a l  amount of p robabi l i ty  t h a t  is "absorbed" onto t he  appropriate 

axie . 
554 



19. Except f o r  t he  r e s u l t s  of KISE and HIROSE [30] f o r  the  F!FT s t o c h a s t i c  

LANCHESTER-type a t t r i t i o n  process, a l l  t he  r e s u l t s  t h a t  have appeared 

i n  t h e  open l i t e r a t u r e  have been for a f i g h t  t o  t h e  f i n i s h .  

26. Here, a s  f o r  t he  F I F  a t t r i t i o n  process ,  a l l  t he  r e s u l t s  t h a t  have prew 

appeared i n  the  open l i t e r a t u r e  have been f o r  a f i g h t  t o  t 5e  f i n i s h  (2 

a l s o  Footnote 19 above). 

21. These arguments, which a r e  i d e n t i c a l  t o  thoae usua l ly  used t o  develop 

the  negat ive binomial d i s t r i b u t i o n  f o r  t he  number of independent BERN0 

t r i a l s  required t o  achieve a given number of successes  (e.g. see F E U E  

[25, p. 1551, go a s  follows. Denote t h e  p robab i l i t y  t h a t  the  next 

casua l ty  is an X casua l ty  a s  p * a/(a+b) - ~&(rn,n) and s i m i l a r l y  

q = 1 - p - ~ i ~ ( m . n ) .  The p robab i l i t y  t h a t  t he re  a r e  exac t ly  no - nB 

Y c a s u a l t i e s  out of 1 t o t a l  of m + n - m - n - 1 t o t e 1  c a s u a l t i  0 (3 BP 

is given by 

The event t h a t  X wins with m f i n a l  surv ivors  occurs i f  (and only i 

the  b a t t l e  state (m, nBg + I) has been reached, i .e ,  exac t ly  

no - nBP - 1 Y ca sua l t i e8  out of a t o t a l  of m + no - m - %P0 -
casua l t i e s ,  and the  next casua l ty  is a Y one, with t he  correeponding 

probabi l i ty  of occurrence begin given by 



whence follows (4.10.9). More formally, one could invoke (4.9.33) 

with 

(m ,n > = ( Y I + ~ ~ - ~ - ~ ~ ~ - ~ )o om - m  n - n  BP-1T 

Pm,n,p+l o o P “I 

"0 - %P -
Yand PNC(m,nBp+ 1) * q. 

22. Professor G. E. LATTA has generously p r iva t e ly  communicated t h e  following 

proof of (4.10.24) t o  the author,  

23. The reader  wi l l  recognize t h a t  t he  s i t u a t i o n  here  is exac t ly  analogous 

t o  t h a t  concerning the  p r a c t i c a l  usefulness of exact a n a l y t i c a l  expressic 

f o r  the s ta te -probabi l i ty  vector  (1.e. the j o i n t  probabi l i ty  d%st r ibut ioa  

f o r  t he  number of survivors  on each side), 



8024. For example, when mo a no = 30, we have (m, + no)! 1.39 X 10 

, and such a computed numerical r e s u l t  w i l l  cause an overflow 

on, f o r  exavple, t he  IBM 360/67 computer. 

25. One could, of course., use a large-scale  d i g i t a l  computer t o  compute 

f o r  "enough" cases  the  p ~ o b a b i l i t y  of winning d i r e c t l y  from t h e  

fundamental par t ia l -d i f fe rence  equat ion (4.10.4) and t o  determine from 

t h i s  "data" the func t iona l  r e l a t i onsh ip  between the battle-outcome 

probabi l i ty  d i s t r i b u t i o n  and the  b a t t l e ' s  parameters. Exactly how t o  

do t h i s  and how t o  determine how many cases  a r e  "enough" a r e  unanswered 

quest ions t h a t  doom t h i s  approach t o  f a i l u r e .  Thus, although i t  is easy 

t o  compute "by b r u t e  force" t he  p robab i l i t y  of winning f o r  s p e c i f i c  

numerical values  of t he  b a t t l e  parameters, the  parametric determinat ion 

of the  p r o b a b i l i s t i c  r e l a t i o n  between b a t t l e  i npu t s  and outputs  must 

apparent ly  depend on having ava i l ab l e  s implifying approximations t o  t he  

exact a n a l y t i c a l  r e s u l t s  f o r  t he  p robab i l i t y  of winning. 

26. In  the  second case  of t he  F I Fa t t r i t i o n  process,  however, t he  approximation 

app l i e s  t o  only a f i g h t  t o  the f i n i s h  ( i . e .  a fixed-f orce-level-breakpoint 

b a t t l e  i n  which %p yBp 0). 

27. Both BROWN [14; 151 and G. 8.  WEISS [89]  give t h e i r  r e s u l t s  f o r  a f i g h t  

t o  the  f i n i sh .  Our r e s u l t  (4.11.5) f o r  a fixed-force-level-breakpoint 

b a t t l e  follows from (4.10.14) and cons idera t ion  of t h e i r  r e s u l t s  (also, 

see below i n  main t e x t ) .-



28. Al1uoderncompur:ing systems cantairr a lgor i thms  f o r  genera t ing  aamyles 

Lof such u n i t  u n i f q m  v a r i a t e s  (a .8 .  ~ LNAYLOK et a l .  [ 6 6 ,  Chapter 31, 

EVPJS, WALLACE, and SUTHhaLAND 121, pp. 187-1891, o r  F I S W  [26,  

Chapter 71 ) . 

29. Herewehave def ined  t h e  DXRAi: d e l t a  f u n c t i o n  a s  a so-cal led  i d e a l  f u n c t i o n  

o r  d i a t r i b u t d o n  {e.g, COURANT and HZLBERT [18, pp. 766-7981 or 

FRIEDMAN [27] f o r  f u r t h e r  d e t a i l e ) .  

30. Previously ,  r e s e a r c h e r s  have always s t a t ~ d  t h a t  t h e  approximation is  

"good" as long as t h e r e  is " l i z t l e  p r o b a b i l i t y "  that e i c h e r  s i d e  is 

a n n i h i l a t e d ,  which is  q u i t e  d i f f e r e n t  from the  c o r r e c t  s t a tement  t h a t  

i t  is "good" as long as t h e r e  is  " l i t t l e  p r o b a b i l i t y "  t h a t  e i t h e r  s i d e  

has  reached i t s  breakpoint .  

This s t a tement  d e f i n i t e l y  appears  t o  hold  f o r  continucjus-time MARKCV-

chain  models i n  which t h e  times between c a s u a l t i e 6  a r e  exponen t ia l ly  

d i s t r i b u t e d .  There has been some computational evidence,  however, t h a t  

i n  o ther  c a s e s  (e.g. some o ther  d i s t r i b u t i o n  for  t h e  times between 

c a s u a l t i e s )  t h i s  i s  not  always t r u e .  Thus, wi thout  t h e  a p p r o p r i a t e  

q u a l i f i c a t i o n s  being observed, i t  i s  simply n o t  t r u e  t h a t  such a 

d e t e r m i n i s t i c  model i n v a r i a b l y  y i e l d s  t h e  same r e s u l t s  f o r  t h e  mean 

course  of combat a s  does  a corresponding s t o c h a s t i c  a t t r i t i o n  model, 

(e.g. a Monte Carlo s imula t ion) .  More g e n e r a l l y ,  a s  t h e  a u t h o r ' s  

col league Professor  C. J. ANCKER of t h e  Univers i ty  of Sauthern C a l i f o r n i a  



has emphasized [3 ]  t o  him, i t  i a  general ly  not  t r u e  t h a t  a so-called 

mean-value model (obtained by rep lac ing  a random va r i ab l e  i n  a s t o c h a s t i c  

inodd by i t s  mean value)  y i e l d s  a good approximation t o  t he  mean value 

of t he  corresponding s t o c h a s t i c  process. Hopefully, we w i l l  see f u r t h e r  

c l . a r i f i ca t i on  of t h i s  important point  i n  the  l i t e r a t u r e  i n  t he  fu tu re .  

As poinLed out by TAYLOR and PARRY [79, p. 5271 f o r  t he  (F + T) I (F+ T) 

a t t r i t i o n  process and a fixed-force-ratio-breakpoint b a t t l e ,  the  condi t ion 

of p a r i t y  ( i . e .  n e i t h e r  s i d e  can win) between f o r c e s  is  an uns tab le  

equilibrium point .  The author  conjec tures  t h a t  t h i s  s i t u a t i o n  holds  i n  

general  and l eads  t o  maximum dispers ion  of combat r e s u l t s  under ouch 

i n i t i a l  condi t ions f o r  s t o c h a s t i c  LANCHESTER-type models. 

These t w o a t t r i t i o n  processes  were t r e a t e d  i n  d i f f e r e n t  ways by MORSE and 

KIMBALL [65, pp. 67-71]. For t h e  F ( F  LANCHESTER-type s t o c h a s t i c  a t t r i t i o n  

process,  t h e  complete system of forward KOLMOGOROV equation8 were 

e x p l i c i t l y  solved i n  one s p e c i a l  case of numerical input  values ,  and the  

average fo rce  l e v e l s  a t  t he  end of b a t t l e  (one s i d e  o r  t h e  o the r  

annih i la ted)  computed from these  r e s u l t s  [65, pp. 70-711. For t he  FT ~ F T  

LANCHESTER-type s t o c h a s t i c  a t t r i t i0 .1  process,  only t he  random Kalk i n  

the  s t a t e  space (corresponding t o  t h e  s t a t e  equation which i n  t h i s  case  

is  the  l i n e a r  law) was considered [ 6 5 ,  pp. 67-69]. 

SNOW [ ? 6 ,  pp. 23-27] considered only t h e  CF + T) 1 (F+ T) LANCHESTER-type 

s tochas t i c  a t t r i t i o n  process (and i t s  important s p e c i a l  case,  t he  F ~ F  

a t t r i t i o n  process) i n  h i s  work. In other  words, the  ET IFT LANCHESTER-type 



s t o c h a s t i c  a t t r i t i o n  p rocess  was n o t  i n v e s t i g a t e d  by him a t  all. 

Moreover, f o r  t h e  F I F  s t o c h a s t i c  a t t r i t i o n  process ,  no new computational 

r e s u l t s  were presented by SNOW I761 which are n o t  t o  be  alreidy found i n  

MORSE and KZMBAJL [65, pp. 67-71]. 

35. From t h e  numerical  resdts presented by SPRINGALL [77 ,  pp. 151-3661, i t  

is apparent  t h a t  "large" h e r e  meam more than 30 or 40 combatants on 

each s i d e  ( in  c o n t r a s t  t o  CLARK'S [16, pp. 133-134, p .  137, and p. 2431 

i n  which "larget '  is  taken t o  mean 100,OOG o r  more combatants on each 

s i d e ) .  

36. Concer ingstochast . tc  MCHESTER-type combat models themselves,  t h e  f o l l w -

i n g  papera have appeared i n  t h e  open l i t e r a t u r e  pubsequent t o  t h e  work 

of SPRINGALL [77 ] and CLARK 1161: GRUBBS and SHUFORD i33],  MARMA and 

DEUTSCH [60],  MJELDE [64], JAIN and NAGABHUSHANAM [41], SHUFORli and 

GWUBBS [74], WATSON [ a l l ,  GYE and LEWIS 1341, and GOLDIE [31].  Mention 

should a l s o  be made of the r e p o r t s  by WEALE [82-861, JENNINGS [42-$31, 

WEALE and PERYER [87],  and KARR [45-501 and t h e  M.Sc. t h c a i ~by 

G U I N G E R  [32].  I n  [50] KARR has  reviewed and c r i t i q u e d  t h e  seven DOAE 

r e p o r t a  [42-43; 82-85; 871. 

37. Considerat ion of n a t i o n a l  s e c u r i t y  (I.e. c l a s s i f i e d  material) is  no t  a 

reason f o r  t h i s  state of a f f a i r s ,  s i n c e  t h e r e  i o  e x i s t  c l a s s i f i e d  

channels  of informat ion disseminat ion.  Along t h e s e  l i n e s ,  C. J. ANCKER 

/ 2 ]  has observed t h a t  a l though a n a l y s i s  of m i l i t a r y  o p e r a t i o n s  a s  a 



basis  :or many types of expensive decis ions consumes large amounts of 

t i m e  and money every year in  U .  S .  mil i tary eetablishmenta, re la t ive ly  

l i t t le  of the attention is focussed on actual combat (as opposed t o  

cmbat-support operations),  and even l a s s  on mathematical analysis  of 

combat (as  oppoaed t o  computer s iaulatfon of combat). 
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*APPENDIX C: SOLUTION OF THE FUNDAMENTAL PARTIAL-DIFFERENCE EQUATION FOR 


THE PROBABILITY THAT X WINS WITH m FINAL SURVIVORS 


1. Introduction. 


In this appendix we will show how to develop the analytical solution 


to the fundamental partial-difference equation for the probability that X 

wins with m final survivors P (mo,nO) for the stochastic FTlFT 

m % ~  


and FIF LANCHESTER-type attrition processes. We will also consider the 

analogous development for the probability that the course of the battle 


passes through the transient state (m,n) at some tlme during the Sattle 


for the F I F  attrition process. In all cases we will consider only a 


fixed-force-level-breakpoint battle. Not only are these results of interest 


in their own right, but the analytical-solution approaches presented here 

should be of use for solving other partial-difference equations that arise 


in the LANCHESTER theory of combat, e.g. the partial-difference equation 


for the coefficients in CLARK'S [ S ]  analytical representation of the 

state-probability vector (4.9.2) [seeequations (4.9.5) through (4.9.8) 


above]. We will show how to solve such partial-difference equations hy 


using both generating functions and also a seperation-of-variables approach. 


2. Development for the RIFT Attzition Pro*. 

For the FT~FTstochastic LANCHESTER-type attrition process, the 


fundamental partial-difference equation for the probability that X wins 


a fixed-force-level-treakpoint battle with m final survivors P m.nBp(m~~n~' 


reads for mo 2 m > O L ~ ~and no > "BP 



- - 

with boundary conditions 


for mo = m, 

for m g > m ,  


and 


Here, for convenience we have let 


a b 

',+b and q - 1 - p = -  a + b  ' 

The above partial-difference equation (C.1) with boundary condition 


(C.2) is most conveniently analytically solved (by nonprobabilistic methods) 


by using the generating-function approach (e. g. see HILDEBRAND (89 for-
further details) as foPlows. First, we observe that P (mo,no> = 0 

m ' n ~ ~  

when either < m or n < ngp, since it is impossible for either side 

?J 0 

to have a final force level greater than its initial one. Introducing the 


generating function 


we can multiply ((2.1) by amO and sum over $ from m to - to find 

after some straightforward manipulations that the fundamental partial-difference 




equation with its associated boundary conditione yi.elds the following 


ordinary-difference equation for the generating function : for no > "BP 

with initial condition 


Solving che above diffareace equation (C. 5) with initial condition (C.6) ,  

we find that the gecerating function ~ ( n ~ , s )is given by 


To obtain P (mopno) from its generating function G(nO,s) given by

m*"B~ 


(C. 73, we recall (C.4) and observe that 

Recalling LEIBNITZ 's rule that [ 7  j 

we see that 




Let US a180 observe that for  N 

(110 - nBP 
+ N - l)! 

'P 
W 

(no - nBp - 1) ! (C. 101 
s-0 


It follows from (C.8), (C.9), and (C. 10) that for  mg 2 m > mgp and no 2 n~~ 

(C. 11) 

Ueing (C. 3) , we f i n a l l y  obtain 

(C. 12) 

which appears i n  the main text  a s  (4.10.9). 



39 Uav&kop?ent fo r  t he  F I  F A t t r i t i o n  Process. 
,I--

For tho FIF a t t r i r i o n  process ,  t he  fundamental pa r t i a l -d i f f e r ence  

~ g u a t i o nfor P (mo,no) reads fnr mo 2 m > %P and no > nBP 
m ' n ~ ~  

with boundary condi t ions (C.2). Unfortunately,  t h e  generating-function approal 

used above no longer very conveniently y i e l d s  the  so lu t ion  to t h i s  p a r t i a l -  

d i f f e r ence  equat ion because of the complexity of i ts  coe f f i c i en t s .  

Following 8. H. BROWN 13; 41,  we w i l l  use  t h e  approach of separa t ion  

of va r i ab l e s  t o  s a lve  the  fundamental pa r t i a l -d i f f e r ence  equation (C.13). 

Accordingly, we essume t h a t  P (mosnO) has the  farm 
"$ %P 

It follows t h a t  f o r  no 2 m > mijp and no ) nRP 

Slnca the  :.eft-hand s i d e  of (C.15) i s  independent of 
"0 and the  right-hand 

s i d e  is  independent of mu, they each must be equal t o  the  same constant  

value (independent of both mo and no). Let us c a l l  t h i s  constant  va lue  



]./A end wr i t e  f o r  mo L m > msP and n ,> n
0 BP 

It follows t h a t  

- (, ' ) 
f o r  m

0 
2 m , 

and 

h(n.1 *(no-1) f o r  n > n (C.18) 
- A + n o  0 BP ' 

Hence, save f o r  mu l t ip l i ca t ive  f a c t o r s  t h a t  a r e  a r b i t r a v  functions of period 1 

(or  "periodic constants") [2 ;  8; 111, we f ind  t h a t  

(C. 19) 

and 

(C,20) 


L e t  us now formally acknowledge the  dependence of t he  g and h 

funct ions on X and wr i t e  . 

I f  g(X ,no) h(h ,no) F(X ,m.ngp) s a t i s f i e s  t he  l i n e a r  par t ia l -d i f  ference 

equations (C. 13), then so w i l l  1A € S X  
g(A,mg) h(X,no) F(A,m,ngp) f o r  any 



f i n i t e  s e t  of values f o r  h (here denoted as S;O. Hence, we w i l l  assume a 

so lu t ion  of the form 

and then w e  w i l l  t r y  t o  choose SA and F(A ,m,ngp) i n  order  t o  s a t i s f y  the 

boundary condit ion (C.2) .  By coas t ruc t ion  then, we w i l l  have obtained the  

ao lu t ion  t o  our problem (well-known to  be  unique) once the  borrndary condit ions 

(C. 2) have been e a t i s f l e d .  

Thus, we w i l l  look f o r  a so lu t ion  of the form 

The second boundary condit ion of (C.2) thac P (m'l,nO) = 0 for a l l  
msn~~ 

n0 -> %P y ie lds  t h a t  

whence X = m, el,m+2, ... , s i n c e  t h e  g- function i s  an ana ly t i c  function 

except f o r  i so l a t ed  poles a t  0 and in t ege r  poin ts  on the negat ive r e a l  ax i s  

i n  the complex plane [6, pp. 206-2071. Hense, X takes on only in t ege r  values,  

and w e  w i l l  henceforth always replace X by j. Observing t h a t  f o r  

J' = uj,+l, m,,+2, ... 



w e  f i nd  t h a t  t he  second boundary condi t ion of (C.2) haa yielded t h a t  

(C. 24) 

Before invoking t h e  f i r s t  boundary condi t ion of (C.2), however, i t  w P l l  be 

convenient t o  transform the  expression ((2.24) with no - nBp t o  a more u se fu l  

form. Thus l e t t i n g  k = mo-J, we f ind  t h a t  f o r  no - nBp (C. 24) becomes 

where M = % - m. Further manipulations then y i e l d  t h a t  we may w r i t e  (C.25) 

fo r  mo 2 m > mgp 

where 

Using the  above r e s u l t  (C. 26) f o r  P (mo, %p),  we f ind  t h a t  t he  
m % ~  

f i r s t  boundary condi t ion of (C.2) then y i e l d s  

(-1) M! f o r  M = 0 
k M (C.28)(1) - 1  ( k + d  G(k,m,%pl -

M 

k-0 
f o r  M > 0 .  



According t o  Leama C . l ,  which i e  s t a t e d  and proven i n  the  l a s t  section of 

t h i e  appendix, i t  follows t h a t  f o r  M > 0 and L 1 

I n  order  t h a t  (C.29) holds f o r  a l l  M > 0,  we must have L = 1, and hence 

f o r  M > O  

w i l l  s a t i s f y  t h e  lower condit ion on the  right-hand s i d e  of (C .  28). For 

M = 0, (C .28 )  y ie lds  t h a t  C = m and hence 

(C. 31) 

leads t o  the  s a t i s f y i n g  of the f i r s t  boundary condit ion of (C.2). From (C.27) 

i t  then follows t h a t  

whence 

which appears i n  the  main t e x t  as (4.10.21). We w i l l  r e f e r  t o  the above 

approach f o r  so lv ing  the  fundamental par t ia l -d i f fe rence  equation f o r  



P (mopno) as BROWN'ssepparation-of-variables method. It finally should 


be noted that (C.33) may also be written for no 2 m > ngp and no 2 ngp 

where k - j-m, M = mo-m, and NBp = no - %pa 

4 .  Development of the Transient-State-Passage Probability P,,n(mo,no) 

for the F I F  Attrition Process. 


For the F 1 P attrition process, the fundamental partial-dif ferenee 

equation for the probability that the battle passes through the trausient 


state (m,n) at some time during the battle Pmsn(mo,nO) reads for 


m > and no > n > nBp 

(C. 35) 

with houndary conditions 




1 for mo - m ,  

(C. 36) 

and 

P (m-l,no) - 0 for no ), n 
m, n BP 

It should be observed that Pm,n(mo,nO) satisfies the same fundamental 

partial-difference equation as does P <%,no) but that the boundary 
mg ='BP 

conditions differ for these two probabilities. In this respect, the reader 

should compare (C.2) with (C.36). 

Since the fundamental partial-difference equation fur Pnnn(~,nO) 

and its second boundary condition are the same as that for P 
m * $ ~  

BROWN'S sepsration-of-variables approach and use of the second boundary 

condition of (C.36) yield for mg 2 m > mgp and no 2 n > ngp 

Again, it is convenient to rewrite (C.37) for no n as 

where 



and 
k - j - m .  


L e t  us a l so  observe that the f i r s t  boundary condition of (C.36) may be written 

I t  is then convenient t o  write  (C.40) for M 1 0 as 

Applying the f i r s t  boundary condition of (C.36) i n  the form (C.41) 

t o  (C.38) ,  w e  f ind  that 

where 



(C. 43) 

It remains t o  f ind  H(k,m,n) such t h a t  (C.42) is s a t i s f i e d .  To do t h i s ,  let 

us f i r s t  observe t h a t  f o r  M 0, (C.42) y i e l d s  t h a t  

(C. 44)9 

which can then i t s e l f  be used i n  (C.43) with M = 1 t o  show t h a t  

. 

(C. 45) 

Using (C.44) and (C.45), we can then show with a somewhat l eng th i e r  ca l cu l a t i on  

f o r  M = 2 i n  (C.42) t h a t  

(C. 46) 

Thus, w e  are led  t o  conjec ture  t h a t  

w i l l  s a t i s f y  (C.421, and app l i ca t i on  of Lermma C.2, (which is s t a t e d  and proven 

i n  t h e  next s ec t i on  of t h i s  appendix) confirms t h i s  conjecture .  From (C.44) 

i t  then follows t h a t  

whence 
581. 




which appears in the main text as (4.9.30). It finally should be noted thst 


(C.49) may also be written as 

where k = j-m, M = mg-m, and N = no-n. 

5 .  -mlkImportant Identities Used in Solving the Fundamental Partial-Differenc 

Equations for the F 1 F Attrit3on Process. 

In this section we will state and prove two lemmas that we have invoke 


above in solving the fundamental partial-difference equations for P (mo,n 

m + 1 3 ~  


and Pm,n(mo,no) for the F I F  attrition process. 


LENMA C.l: For any integers M and N 2 0 and real number a, 

we have that 


for O i N < M ,  

M M
( ) - 1 )  k + a )  - for N .I M , (C.51) 

- 1 M + M a tar N = , 
k-0 



PROOF. Consider-

Consequently, 

whence follows 

We a l so  have that 

Observing that 

we may write (C.53) as  

whence follows 

(C. 5' 

Ihe lemma readily follows by equating the coeff iciants of xN i n  ( C .  52) 

and (C. 54). Q.E.D. 

58 3 



-- 

I t  shoul.d be noted t h a t  f o r  a = 0 the  above i d e n t i t y  (C.51) reduces t o  

an iuporkxnt r e s u l t  c lose ly  r e l a t ed  t o  the  d e f i n i t i o n  of STIRLING numbera 

of the  second kind (e.8. see ABRAMOWITZ and SI'EGUN [ l ,  p. 8241 o r  JORDAN 

[9,  pp. 168-1691; eee a l s o  SCHWATT [13, pp. 100-1011). 

Zhe above lemma allows us  t o  e a s i l y  prove the  following important 

r e s u l t ,  whose proof was generously provided t o  t h e  author  by G. E. LATTA. 

LEMMA C.2: For any in t ege r s  M and N such t h a t  0 ( N bS 

and real numbers a and 8 2 0 ,  we have that 

(C. 5 5 )  

PROOF (LATTA [ l o ] ) .  Define F(B, M, N) as follows 

Coasider now 

By Lemma C . l ,  howevar, we  know t h a t  F(0,  M, L) = 0 f o r  a l l  i n t e g e r s  L 

such t h a t  0 5 L < M, whence F(0,  M, N-1) - 9 f o r  all i n t ege r s  N such 



that 1 5 N M. Hence, (C.57) yields that for 0 < N 2 M 

F ( 0 ,  M, N) - - - F ( 6 ,  M, N-1) ,B 

whence for 0 (N ( M 

P(B, M. N) - ( - l lN  KN F(B, M, 0) . 

Recalling that the gamm function satisfies [6; 121 

for all positive real numbers x and y (and also serves to define the 

beta function), we consider 


which may also be written as 


whence follows 


and finally 


Observing that for 
M )_ 0 



one may also readily ahow that for M ?  0 

(C. 60) 

il il + B(k + a)) 
k-0 

n and 0 0. 

whence follows the lemma. Q.E.D. 



REF'EkFiNCES FOR APPENDIX C 


1. M. Abtamowitz and I. A. Stegun (Editors), Handbook of Mathematical 

Functions, National Bureau of Standards Applied Mathematics Series, 

No. 55, Washington, D.C., 1964. 


2. P. M. Batchelder, An Introduction to LSnear Difference Equations, Harvard 

University Press, Cambridge, Massachusetts, 1927 (reprinted by Dover 

Publications, Inc., New York, 1967). 


3. R. H. Brown, "The Solution of a Certain Difference Equation with Applications 

to Probability, Ph.D. Theeie, Columbia Unive.rsity, New York, New York, 
1951 (also available from University Microfilms Internationa1,P. 0 ,  Box 
1764, Ann Arbor, Michigan 48106 as Publication No. 3325). 


4. R. ti. Brown, "Theory of Combat: The Probability of Winning," Opns. Res. 

11, 418425 (1963) .-

5. C. M. Clark,"The Combat Analysis Model," Ph.D. Thesis, The Ohio State 
University, Columbus, Ohio, 1969 (also available from University 

Microfilms Internatf-onal as Publication No. 69-15,905). 


6 .  E. T. Copson, An Intrcrduction to theTheory of Functions of a Complex 
Variable, Oxford University Press, London, 1935. 


7 .  R. Courant and F. John, Introduction to Calm& and Analysis, Volume One, 
Interscience, New York, 1965. 


8. F. B. Hildebrand, Finite-Difference Equatio~ls and Simulations, Prentice- 

Hall, Englewood Cliffs, New Jersey, 1968. 


9. C. Jordan, Calculus of Finite Differences, Second Edition, Chelsea Publioh- 

ing Co., New York, 1950. 

'10. G. E. Latta, private commrmication, March 1980. 

11. K. S. Miller, An Introduction to the Calculus of Finite Differences and 

Difference Equations, Henry Holt and Co., New York, 1960. 


12. E. D. Rainville, Special Functiono, The Macmillan Co., New York, 1960 

(reprinted by Chelsea Publishing Co., Bronx, New York, 1971). 

13. I. J. Schwatt, An Introduction to the Opezations with Series, The University 

of Pennsylvania Press, Philadelphia, 1924 (reprinted by Chelsea Publishing 
-
Co., ~ t w -York, 1962). 



	dtic.mil
	/tardir/mig/a090842.tiff


