AFIT/GCS/ENG/99J-03

Methodology for Integrating the
Scenario Databases of Simulation
Systems

THESIS
Emilia M. Colonese

Captain, Brazilian Air Force

AFIT/GCS/ENG/99J-03

Approved for public release; distribution unlimited

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the

United States Government.

AFIT/GCS/ENG/99J-03

Methodology for Integrating the Scenario Databases of

Simulation Systems

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Computer Systems

Emilia M. Colonese
Captain, Brazilian Air Force

June 1999

Approved for public release; distribution unlimited

AFIT/GCS/ENG/99J-03

Methodology for Integrating the Scenario Databases of

Simulation Systems

Emilia M. Colonese
Captain, Brazilian Air Force

Approved:

Dr. Thomas C. Hartrum date
Committee Chair

Dr. Henry B. Potoczny date
Committee Member

Maj. Michael L. Talbert date
Committee Member

Table of Contents

Tible of Contents ii
List of Figures N
Y cknowledgments vi
bstract vii
. INTRODUCTION 1|
[1.1. BACKGROUND 1
[.2. DEFINITIONS 2
[1.3. PROBLEM 3
I1.4. PROBLEM STATEMENT 5
[1.5. SCOPE 5
[1.6. ASSUMPTIONS 6
[1.7. APPROACH 6
R. LITERATURE REVIEW 8|
D.1. INTRODUCTION 8
2.2. DISTRIBUTED INTERACTIVE SIMULATION (DIS) 8
D.2.1. Concept 9
D.2.2. Objectives 10
D.3. DOD MODELING AND SIMULATION MASTER PLAN (M&S MASTER PLAN) 10
P.3.1. Common technical framework for M&S 11
2.4. EXTENDED AIR DEFENSE SIMULATION (EADSIM) 14
P 4.1. EADSIM architecture 73|
D.4.2. Scenario file organization 15
D.5. SUPPRESSOR 16
D.5.1. Scenario file organization 17
D.6. SCHEMA INTEGRATION OF MULTI-DATABASE SYSTEMS 18
D.6. 1. Integration of objects 20
D.6.2. Interoperability of objects 21
D.0.3. Schema transformation 22
D.6.4. Object-model transformation 23
D.6.5. The Remote-Exchange Experimental Prototype System 26
D.7. SUMMARY 29
B. METHODOLOGY FOR INTEGRATING DATABASES 30|
3.1. INTRODUCTION 30
3.2. THE SCENARIO’S INTEGRATION ARCHITECTURE 32
3.2.1. Generation of a specific object-oriented model (exported schema) 33
3.2.2. Integration of specific object-oriented model 35
3.3. INTEGRATION DICTIONARY 38
3.3. 1. Extensions of the object-oriented common data model 38

il

3.3.2. Integration Dictionary architecture 39
3.4. CONFLICT RESOLUTION 43
3.4.1. Name conflict 44
3.4.2. Representation conflict 47
5.4.3. Class member conflict 50
3.4.4. Schema conflict 55
3.5. SCHEMA EVOLUTION OPERATIONS 60
B3.5.1. Modification to class definitions 61
5.5.2. Modification to the set of classes 63
3.5.3. Modification to inheritance hierarchy 63
3.6. METHODOLOGY FOR INTEGRATION 64
B.7. SUMMARY 66
4. IMPLEMENTATION OF THE PROTOTYPE 68|
d.1. INTRODUCTION 68
4.2, 00O-DBMS FOR IMPLEMENTATION 68
4.3. IMPLEMENTATION PLAN 70
4.3.1. Integrating a new scenario database 71
i.3.2. Generating a specific User’s View 72
4.4. IMPLEMENTATION OF THE INTEGRATION DICTIONARY 73
4.5. METADATA INTEGRATION 78
4.5.1. System structure 78
H.5.2. Conflict X System Functions 78
4.6. SCHEMA INTEGRATION 79
4.7. DATA INTEGRATION 80
4.8. USER’S VIEW GENERATION 80
4.9. SUMMARY 81
5. VALIDATION OF THE METHODOLOGY 83|
5.l. _ INTRODUCTION 83
5.2. INTEGRATING EADSIM 83
5.2. 1. Scope for integration 83
5.2.2. Definition of the exported schema 33
5.2.3. Integrating metadata 92
5.2.4. Integrating schema 92
5.2.5. Integrating data 100
5.2.06. User’s View definition 100
5.3. INTEGRATING SUPPRESSOR 101
5.3.1. Scope for integration 101
5.3.2. Definition of the exported schema 102
5.3.3. Integrating metadata 105
5.3.4. Integrating schema 110
5.3.5. Integrating data 119
5.3.6. User’s View definition 119
5.4. DATA VERIFICATION 120
5.5. SUMMARY 120

il

b. CONCLUSION 122]
p.1. MEETING OBJECTIVES 122
6.2. CONCLUSION 123
b.3. RECOMMENDATIONS 125
6.4. FUTURE WORK 125
[f. REFERENCES 128
Appendix A . View Constructor Program 131
Appendix B . Body code of the exported classes’ schemas 136
Appendix C . Body code of global classes’ schemas 142
Appendix D . Data conversion programs code 152
Appendix E . Data Verification program code 161
[Vita 167

v

List of Figures

| Figure 1: Scenario Creation Process for the Suppressor Simulation System 2
Fiocure 2: Object-Oriented Database for the Suppressor Simulation System.............................. 4
Figure 3. Global Object-Oriented Database for Simulation Systemsccc.ccccoeeu... 4
Fioure 4: Objectives of the M&S Master PIAncc....cccccueeeeiieieeiiaaeeiaeeeenaan.. 11
Fiocure 5. Levels of Abstraction in Simulation SYStemsc..ccueeeceeeeceeaeeaeceeaenaannnn, 13
Fiocure 6. EADSIM Scenario COMPOSIHIONccoouuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 16|
Fioure 7. Suppressor Scenario OFGaniZatiON..................cccccuuuuuiiieeeeeeeeiiiieeeeeeeieeenaneaeeeeennnens 18
Fioure 8: Player SITUCIUIe.ccoooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 18
Fiocure 9: The Remote-Exchange architeCture. ... 27|
'[Z igure 10: _Scenario’s Integration ArchiteCtureooooooovoooiiiiiiiiiiii 33
Figure 11: Example Transformation from a Relational Model to an Object-Oriented Model. .. 34
Figure 12: Generation Of A SCENATIO.cc.cccueiiueiiiiiaeieeiiiaieeeie et eeiiaeteeaseiseeisasiaeeaenanes 36|
Fioure 13: Generation Of A SCONAVIO.cc....cooeeeeaeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeaaaen. 37
Fioure 14: Integration DiCtionary MOACLcoooiuiiueeeeeeiiiiiieeeeeeseeeeeeeeeeeeeeeeeeeaaannes 40
Fioure 15: Integration of a New Scenario into the Global Schema................cccocccenn......... 66
Fioure 16: Implementation Plan to integrate a new scenario SChema........................c............. 70
Ficure 17: EADSIM Object MOdel...................ccccoouiaiiiaeciiaeiiaiiieeiieeeieeeieeieeeeeeeaeeiaan 84
Fioure 18: EADSIM Object Model scope for implementationcccc.cccooeeeeeeenan.... 84
Ficure 19: Suppressor Object Modelcccoocouoeeeeeeieiaciiaeiaeeeeeeeeeaeeaaaeaann 101
Figure 20: Object Model scope for implementation........................ccc..ccocooeccuieiiieniiineeinnannnnn 102
Fioure 21: Global Object Model after inteQration.......................cccccoooeeiueeeeiineeaeiieenaeecnnenann 110
Fiocure 22: Integration Dictionary Model.....................cc.cccueeeueeeiiaaiiiaeieaaeeaeiieaeaaeeaann. 126

Acknowledgments

I thank many people for their help and support during my time here at AFIT. For
those that I do not mention here “muito obrigada”.

I thank my thesis research advisor Dr. Thomas Hartrum for giving me so much of
his time, expert guidance, and perpetual patience.

I thank Major Michael Talbert for his amazing enthusiasm, for his many helpful
suggestions, and for serving on my thesis committee.

I also thank Dr. Henry Potoczny for teaching me how to enjoy learning, for his
unique sense of humor, and for serving on my thesis committee.

I must thank my beautiful young son Brenno for helping me to correctly
pronounce my English, for always making me laugh, and for his understanding during the
many times that I could not give him my full attention. His love and affection kept me
focused on what is really important.

Finally, I thank my parents. I thank my father Gilberto for his ceaseless love and
support. I also thank my mother Arlete for staying with Brenno and me here in Ohio, and

for her constant love and encouragement. She helped me more than I can say.

vi

Abstract

The use of many different simulation systems by the United States Department of Defense has
resulted in many different scenario data representations contained in heterogeneous databases.
These heterogeneous databases all represent the same data concept, but have different semantics
due to intrinsic variations among the data models. In this research, I describe a unified scenario
database to allow interoperability and reuse of the scenario data components while avoiding the
problems of data redundancy. Using the object-oriented approach, the data and schema of the
scenario databases, represented in an object-oriented model, are integrated into a global database
also represented in an object-oriented model. The global database schema is extended to allow
semantic interoperability of database components by explicitly associating the semantics of the
schema elements of the database components with the global metadata. I create the Integration
Dictionary to represent the semantic interoperability and to store the translation mappings
between each database component and the global database. The Integration Dictionary also
provides support for object-oriented views generation. Next, I describe a methodology to
integrate databases using the Integration Dictionary. My methodology is based on an analysis of
the semantics of conceptual schema elements and on the identification of related elements in the
global schema. My methodology defines the resolution for schema conflicts, and associates these
conflict resolutions with data changes in the Integration Dictionary. Selected parts of the
Extended Air Defense Simulation (EADSIM) and Suppressor scenario databases are integrated
into the global database to validate my methodology. I use the Object-Store database to
implement the global database. This methodology can be applied to other systems that require

database integration.

vii

1. Introduction

1.1. Background
The Air Force Research Laboratory uses several different systems for the modeling
and simulation of avionics systems. Some of these systems use Scenarios constructed by
tools which require substantial user interaction and interpretation. Figure 1 provides a
generic representation of the Scenario development process for the Suppressor Composite
Mission Simulation System (SMCS). The current method for the development,
construction and correlation of specific Scenarios is both complex and time consuming. It
requires a substantial amount of manual data generation and verification [7].
When the input for the Suppressor simulation system models a military Scenario
(represented as a database), the operator uses data from:
e the Multi-Spectral Force Deployment (MSFD), a flat file system containing
player/system locations, identifications and a command hierarchy;
e the Digitized Terrain Elevation Data (DTED), a flat file system containing the terrain
representation for the area of interest in the scenario; and
e various documents and reports that give specific threat parameters (Electronic
Warfare Identification Registry - EWIR), and tactics and doctrine (Concept of
Operations - CONOPS) to ensure an accurate representation of the

players/subsystems in the scenario.

Type
Database

Scenario
Instance
Database

Elevation
Datadase

CONOPS
EWIR —

Suppressor

Figure 1: Scenario Creation Process for the Suppressor Simulation System

1.2. Definitions

The following terms are used in this thesis:
Scenario Development Process — The User’s interpretation of input data to generate a
Scenario Instance.
Model — A Class that represents an object type. The model may be part of an inheritance
hierarchy.
Player — A System instance which can be part of a Scenario, e.g. an airplane, tank,
building, etc.
Scenario Instance Database — A Scenario Instance is a data repository that contains an
instance of a battle with specific Player information. It is normally generated from
information stored in a Scenario Database. It is also called Scenario.
Scenario Database — Data repository that contains necessary information to generate a
specific Scenario.

System — A set of Models. The system may contain aggregations of other Systems.

1.3. Problem

The first problem is that the current process for Scenario development in use by the
Air Force Research Laboratory is very expensive. It is also very time consuming to
generate new Scenario Instances because the current generation tools are uniquely
designed for each individual model. Each model requires different methods for the
generation of a representative database. Each model also relies on a subjective analysis
by the operator for the interpretation of the EWIR and CONOPS data. This often results
in discrepancies between the models, particularly in describing how they interact.

The data are similar in content for each system but they may vary due to the
operator’s interpretation. This reduces the correlation between systems. Additionally,
differences in the use of the models prevent an automatic interpretation of the correlation.

One possible solution for this problem (Figure 2) is described below.

e Create an object-oriented Scenario Database to store all data necessary to generate a
Scenario Instance and a translator program to translate the data from the object-
oriented Scenario Database to the specific data model of the Scenario file used by the
simulation system. This solution was addressed in Weber’s Master Thesis [32].

e C(reate a new environment that supports an automated input interface mechanism in
addition to unique input interface requirements to generate a Scenario. The Scenario
Instance is generated from information stored into the object-oriented Scenario

Database. The input interface was addressed in Stratton’s Thesis [29].

N

e
MSFD -
e
N~ S '
Suppressor Simulation
Scenario 1
N~
Y
\/\\ N
Input Scenario Suppressor ” gj i
Interface 00-DBMS Translator Scre)gario 2 Smeten
EWIR
N~
O
<D >
> Suppressor Simulation
p— Scenario 3
~__

Figure 2: Object-Oriented Database for the Suppressor Simulation System

The second problem is that the integration of different simulation system
scenarios is necessary to avoid data redundancy based on the assumption that simulation
systems use the same data concepts. Using the object-oriented database management
system (OO-DBMS) solution described above implemented by Stratton and Weber, an
extension is proposed to integrate the data and the classes structure of OO DBMSs,

extracted from any simulation system scenario file into a global OO _DBMS (Figure 3).

Y
Me—
Suppressor
OO0O-DBMS

N~

Suppressor
Scenario

GLOBAL
OO-DBMS

o
EADSIM
OO-DBMS

Ne—

Scenarios
Generator

Integration

Process EADSIM

Scenario

A 4

T
(—

J_Mass
OO-DBMS

N~

J_Mass
Scenario

Figure 3: Global Object-Oriented Database for Simulation Systems

This solution assumes that the scenario’s input data from these simulation systems were
previously translated into OO DBMSs by their respective specific input interfaces (when

necessary) and the translation programs were implemented.

1.4. Problem Statement
Provide common persistent data storage to support the requirements for Scenario
generation using object-oriented technology and provide methods:
e to analyze and to identify the data structure correlation and similarity between each
Scenario OO-DBMS and the common data storage;
e to integrate Scenario OO-DBMSs into the common data storage; and
e to support the generation of different Scenario Databases represented in an object-

oriented Model, based on information stored in the common data storage.

1.5. Scope

This research is concerned with the development of a common database structure
and related data persistence using the object-oriented approach, in order to support the
integration of Scenario OO-DBMSs of battle simulation systems. It is also concerned
with the necessary support to generate specific Scenarios from this common data storage.

This research provides a methodology to allow the user to extend the common
database to include a large variety of battle simulations’ Scenario Databases.

This research does not include the implementation of user interfaces, Scenario’ s
object-oriented Model extraction for the new environment (OO DBMS), since these

topics were already addressed by Stratton and Weber Master’s Thesis.

It also does not include the automatic generation of specific Scenario Databases to

be used by the simulation system components of the common database.

1.6. Assumptions

In order to conduct this research, it is necessary to make a few assumptions. First, it
is assumed that the existing database schemas and input structures are available. It is
assumed that the sponsor will provide valid and up-to-date documents about the system
and database schemas. This is necessary to complete the analysis of the current system

models. It is also assumed that the data for each system is similar in content.

1.7. Approach

e Gain an understanding of the target system — Conduct a survey of the current
database schemas and other files that are used as input data for the simulation
systems.

e Literature review — Analyze the methodology literature about the integration of
different representations of data (data models) into unique object-oriented data
models, with a focus on simulation systems.

e Learn the object-oriented language (Object-Store) — Complete the CSCE 646 and
CSCE 746 courses at AFIT.

e Create a methodology to integrate new battle models into the database — Define a
methodology to combine different battle object models into a single global database.

e [mplement the new database — Build a prototype global database to demonstrate the

new system.

e Verification and validation of the methodology - Add a new model into the prototype

global database to validate the methodology.

The following chapters describe my approach for solving the problem of
integrating different Scenario Databases. In my approach, the integration process has two
steps. The first step is the translation of the source scenario file to an object-oriented
model. The second step is the integration of the newly created object-oriented model into
a global object-oriented database. Chapter 2 contains analysis of the Scenario Database
of the EADSIM and Suppressor simulation systems. It also contains techniques for
integrating databases represented in different object models. Chapter 3 introduces my
methodology for integrating databases. Chapter 4 describes how I create a prototype to
implement my methodology by using the Object-Store database. My methodology is
verified in Chapter 5, where the Scenario Databases of EADSIM and Suppressor are
integrated into the global database. Finally, the results and conclusions of my approach,

as well as topics for future research are discussed in Chapter 6.

2. Literature Review

2.1. Introduction

This chapter summarizes the previous work in the two major research areas that are
relevant to this thesis. The first goal of this thesis was to create a common database to
represent Scenario elements of different simulations. To perform this task, I completed a
survey of the enabling and supporting simulation technology. The second goal was to
create a methodology that allows the integration of object models from other simulation
applications to the current object model. To accomplish the second goal, I reviewed the
literature on methodologies concerning the integration of database schemas written in
different data model representations and on the translation of battle simulation data
among simulation applications. The first section below provides an historical background
on the evolution of concepts of Distributed Interactive Simulation (DIS). Section 2.3
discusses the history and status of the DoD Modeling and Simulation (M&S) Master
Plan. The third section discusses the simulation database scenarios for EADSIM and
SUPPRESSOR, and focuses on how each scenario is structured and the differences
between them. Finally, the last section presents background information on the

integration of data from different data models.

2.2. Distributed Interactive Simulation (DIS)

To date, many researchers have focused on developing war game simulations
which have a particular strength for the particular research goal. New simulations with
new abilities are created sequentially, and the existing simulations are upgraded to be

more accurate and realistic. One feature that many simulations have in common is

standardization through the network for sharing data. This standardization has been
accomplished using DIS. DIS was started in 1989 when the Advanced Research Projects
Agency (ARPA) initiated a program to enhance the Simulation Network (SIMNET)
program. SIMNET was developed for building a cross-country network of interactive

combat simulators [23].

2.2.1. Concept

A demonstration of approximately 250 simulators successfully showed the
possibilities of distributed simulation. SIMNET technology is still used today to train
U.S. Army tank teams around the country. DIS is a set of protocols that carry messages
about entities and events through a network. It is an interconnected, time-coherent
simulation system which creates a distributed, interactive environment. DIS simulators
exchange information in formatted messages called Protocol Data Units (PDUs). These
PDUs provide data for the management and control of a DIS exercise and provide data
related to simulated entity states and to the types of entity interactions that take place in a
DIS exercise. It is possible for geographically separated simulators to interact with each
other via network communications by the DIS standard [14]. DIS is designed for linking
the interactive, free play activities of people in operational exercises to represent a time
and space coherent synthetic world environment. This environment is created through
the real-time exchange of data units between distributed, computationally autonomous
simulation applications, simulators, and between instrumented equipment interconnected
through standard computer network communications. In this environment, a “central”

computer does not control the simulation. Instead, local computers are responsible for

sending local copies of common data representing both terrain and models (e.g. tanks,

fighters, and naval vessels), and remote entities based on incoming PDU messages.

2.2.2. Objectives
The basic architectural concepts are as follow [14]:
e A central computer does not control the entire simulation exercise;
e Autonomous simulation applications are responsible for maintaining the state of one
or more simulation entities;
e A standard protocol is used for communicating “ground truth” data;
e Changes in the state of an entity are communicated by the simulation applications;
e Perception of events or other entities is determined by the receiving application; and

e Dead reckoning algorithms are used to reduce communications processing.

2.3. DoD Modeling and Simulation Master Plan (M&S Master Plan)

The demanding operational requirements of simulation systems led the US
Department of Defense to create the Modeling and Simulation View. This demand was
reflected by:

e New and more complex missions;

e Expansion of mission space;

e Increased complexity of systems and plans;
e Increased demand for joint training; and

e Security challenges (e.g. warfare).

10

The M&S provides readily available, operationally valid environments for use by
DoD components to train jointly, develop doctrine and tactics, formulate operational
plans, and access war-fighting situations. These environments also support technology
assessment, system upgrades, prototype and full-scale development, and force
structuring. In order to allow maximum utility and flexibility, M&S environments are
constructed from affordable, reusable components interoperating through an open system
architecture. The M&S Master Plan, developed in October 1995 [9], has six objectives
(Figure 4). The most important is the development of a common technical framework for

M&S.

1 - Provide a common technical framework for M&S

2 - Provide timely and authoritative representations of the natural environment
3 - Provide authoritative representation of systems

4 - Provide authoritative representation of human behavior

5 - Provide an M&S infrastructure to meet developer and end-user needs

6 - Share the benefits of M&S

Figure 4: Objectives of the M&S Master Plan

2.3.1. Common technical framework for M&S

The common technical framework ensures appropriate interoperability across
different simulations, reuse of simulation components (entities, applications, and
systems), insertion of new technologies, and flexibility to respond to changing

requirements. It defines the frameworks described below.

11

2.3.1.1. High-Level Architecture (HLA) [§]

The High Level Architecture (HLA) is an integrated architecture which has been
developed to provide a common architecture for M&S. The purpose of the HLA is to
facilitate interoperability among simulations and promote reuse of simulations and their
components. It is a common framework that provides major functional elements,
interfaces, and design rules pertaining, as feasible to all DoD simulation applications.
Any simulation developed for particular DoD components or functional areas must
conform to the HLA standards. Further, HLA is being developed as an industry/DoD
standard technical architecture for constructive, live and virtual interactive simulation,
which supports the DIS standard. The rationale for HLA design is based on three basic
premises. The first premise is that no single, monolithic simulation can satisfy the needs
of all users. The second premise is that all uses of simulations and useful ways of
combining them cannot be anticipated in advance. The last premise is that future
technological capability and variety of operating configurations must be accommodated.
HLA describes four levels of simulation, as shown in Figure 5, where each level
represents a different level of abstraction. The interoperability is performed among these
levels of simulation. Suppressor, EADSIM, SWENG, and SAGE are examples of
mission level simulations.

In support of HLA goals, an object model (OM) is required to describe
federations (set of simulations) and individual federates (one simulation). This OM

identifies the data exchanged at runtime in order to achieve federation objectives.

12

Mission I
Engagement l

Engineerin‘g/Physics
(effects)

Figure 5: Levels of Abstraction in Simulation Systems

The following entities provide data support to the HLA:
e Object Model Template (OMT): a common method for recording the information
contained in the required object model for each simulation. It prescribes the format and
syntax for recording the information in HLA object models, to include objects, attributes,
interactions, and parameters, but it does not define the specific data (e.g., vehicles, unit
types) that will appear in the object models;
e Object Model Data Dictionary (OMDD): a common data framework that contains
object model components consistent with DoD and other authoritative data standards;
e Object Model Library (OML): a set of commonly applicable interaction rules that
allow interoperability and reuse of components through easy access to other simulation
object models; and
e Automated tools for federation development, including the Data Interchanging
Formats (DIF) that support the interface specifications needed for a runtime interface

(RTI).

13

2.3.1.2. Conceptual Model of the Mission Space (CMMS)

A conceptual model is defined for each DoD mission area in order to provide a
common basis (real-world view) for development of consistent and authoritative M&S
representation. It is a hierarchical description of the actions and interactions among the
various entities associated with a particular mission area. CMMS provides a common
framework for knowledge acquisition with a standard format for expressions. This
knowledge is validated and contains relevant actions and interactions organized by

specific task and entity/organization.

2.3.1.3. Data Standards (DS)

DS is a common representation of data, which enables data suppliers to provide
the M&S community with cost-effective, timely, and certified data to promote:
e the reuse and sharing of data;
e the interoperability of models and simulations within themselves and with the war-
fighter’s command, control, communications, computers, and intelligence (C41); and

e the credibility of the modeling and simulation results.

2.4. Extended Air Defense Simulation (EADSIM)

EADSIM is a simulation of air and missile warfare ranging from few-vs-few to
many-vs-many. Each platform is individually modeled and the interaction among the
platforms is also individually modeled. EADSIM also models the Command and Control
(C2) decision processes and the communications among the platforms on a message-by

message basis. Intelligence gathering is explicitly modeled as is the intelligence

14

information used in both offensive and defensive operations. The general areas modeled
are: air defense, offensive air operations, multi-stage ballistic missiles, air breathers,
sensors, jammers, satellites, early warning generic noncombatants, communications,

electronic warfare, terrain, weaponry, and areas of interest.

2.4.1. EADSIM architecture

The EADSIM Scenario model is based on several processes, which are grouped
into three basic functions: simulation setup, execution of scenarios, and post-processing
and analysis. User interface tools are used for simulation setup and post-processing and

analysis. Run-time models perform the execution of Scenarios.

2.4.2. Scenario file organization

A Scenario is made by the Scenario Generation tool during the simulation setup
process. The Scenario’s data is organized in a hierarchical structure in which each
additional level of the hierarchy is based on the preceding lower levels. The lowest level
in the hierarchy is a non-decomposable component element. Combinations of these
elements are used to compound system elements, which are deployed to form platforms.
Groupings of platforms are built into laydowns. The platforms are interconnected with
networks, which use the protocol elements. This platform level is composed of entities,
which can be defined as the unit of communication in the network. All processes in
EADSIM rely on data files for storage and retrieval of definitions of everything in the

scenario. The data files reflect the level of abstraction used in a Scenario. Scenarios are

15

further combinations of lower level data. Figure 6 shows the levels of abstraction of an
EADSIM Scenario.

A system is a collection of element files, which represent communication devices,
jammers, sensors, weapons, radar cross sections, probability of kill, infrared signatures,
wingman formation, and rule sets (guidelines to use elements). In the case of aircraft

platforms, parameters that affect how the aircraft will fly can be specified.

e ——

Scenario Preferences

e ———

2

Environment Maps Laydown ACI Routes

Platform Network

2

System

Element

Figure 6: EADSIM Scenario Composition

2.5. Suppressor

Suppressor is a mission-level digital simulation that models multiple-sided conflicts
involving air, ground and naval systems. The first drawback of this simulation
application is the non-existence of a logic for specifying types of systems or systems
interaction. The second is the non-persistence of tactics, rules of engagement, and control
structure, which have to be defined as Suppressor input each time a simulation runs. The

Suppressor input is based on five on-line and two off-line processes:

16

e Environment database (EDB) and Defense Mapping Agency (DMA): off-line
processes that describe the terrain to be used with a scenario;

e Language definition: defines the input syntax definition and is executed only once,
for installation;

e Type database (TDB): defines data associated with types of players;

e Scenario database (SDB): defines information specific to each occurrence of each
player, such as location, movement path, zones, etc;

e Model Simulation Run (MOD): defines data to be saved for analysis and the
instructions for executing the scenario; and

e Analysis database (ADB): defines data to be summarized from the run, what data

should be filtered, and output statistics.

2.5.1. Scenario file organization

A player is the fundamental unit in a Suppressor Simulation. The power and
flexibility in the model are derived largely from the flexibility in defining each player, its
composition, and its tactics for interacting with other players. A player belongs to one or
more command chains. A command chain belongs to one side. Figure 7 shows the
Suppressor scenario organization.

A player is composed of one or more locations. Laydowns are used to define
locations for each occurrence of a player. A location is composed of one or more
elements, which are defined with susceptibility. Elements are composed of systems,
which may expand resources and are defined with capabilities. Figure 8 shows the player

structure.

17

Side A

Command Command
chain A chain B
| |
| [|
Player A Player B Player C

Figure 7: Suppressor Scenario Organization

PLAYER-STRUCTURE player A
TACTIC tactic-a

LOCATION

ELEMENT
SUSCEPTIBITY suscep -a

SYSTEM
CAPABILITY capab-a

Figure 8: Player Structure

2.6. Schema integration of multi-database systems

A multi-database system (MDBS) is a confederation of autonomous and possibly
heterogeneous database systems. The database systems that participate in the
confederation are called local or component database systems. Creating a MDBS is a
hard task since it has to deal with the heterogeneity of its component systems. This

heterogeneity is caused by differences at the database system levels, including

18

discrepancies among data models. When a component database system participates in a
multi-database system, its data model is mapped to a global data model which is common
to all participating systems. This global model is called a Common Data Model (CDM).
The CDM allows users to access the MDBS. The conceptual schema of each component
system is called a local schema. This schema is expressed in the native data model in
which the system was designed. Thus, the local schemas of different component
databases may be expressed in different data models.

To facilitate access to the MDBS, the translation of the local schemas into a CDM
is performed. Each database participates in the federation by exporting a part of its
component schema (the common part), called an export or sharable schema. A federate or
global schema is created by the integration of the export schemas of the component
databases.

The integration must be based on some underlying data model. The relevant
integration for this thesis is object data model integration. Recently, many researchers
have suggested the use of object-oriented models to build multi-database systems [3, 11,
22]. The information stored on various systems is modeled as objects, while the services
of translation and access are modeled as methods of these objects. The object technology
offers an efficient method for the modeling and implementation of CDM, and facilitates
the use of semantic information. It generates metaclasses (classes that contain
information about classes), which accommodate both heterogeneity and autonomy
requirements of a MDBS. Support for heterogeneity is provided by the interface of the

objects and the communication among them is independent of their internal

19

implementation. The autonomy of the systems is respected because they may operate

independently.

2.6.1. Integration of objects [22]

The schema translation solves the problem of using different data models. If
during the integration process, the concepts expressed in each component schema are
different, then the federate schema will be the union of all the component schemas.
However, the same concepts may be expressed in different databases and furthermore,
these concepts may be represented differently (heterogeneity of concepts). Users and
designers must define the portion of the component schemas (sharable schema) that are to
be merged.

Conflicts can occur between component schemas. The following types of
conflicts are independent of the type of Common Data Model used.

e Identity conflicts occur when different objects in different component databases
represent the same concept.

e Schema conflicts occur when the component schemas that represent the same
concepts are not identical. This kind of conflict can be divided in two parts. Naming
conflicts occur when the same name is used for different concepts (homonyms), or when
the same concept is described by different names (synonyms). Structural conflicts occur
when the same concept is represented by different constructs of data or when the same
concept is modeled by the same construct, but the constructs used have either different
structure (different or missing entities and attributes) or different behavior (different or

missing methods).

20

e Semantic conflicts occur when the same concept is interpreted differently in different
component databases. This category includes scale differences.

e Data conflicts occur when the data values of the same concept are different in
different component databases.

In order to perform integration, it is necessary to identify the set of common
concepts and the set of different concepts in different schemas that are mutually related
by some semantic property. By applying the following outlines, these conflicts can be
solved:

e Identity conflicts are handled by specifying which objects are equivalent. These
objects could share the same object identifier (OID) or functions could be defined so that
equivalent objects can be treated as the same object.

e Naming conflicts are handled by defining renaming operators.

o Structural conflicts correspond to restructuring of the class hierarchy or to
modifications of the aggregate relations.

o Semantic and data conflicts are resolved by defining appropriate functions to the

related classes in the global schema.

2.6.2. Interoperability of objects

Interoperability of multiple database systems is the capability of exchanging and
combining data while, at the same time, preserving the autonomy of each existing system.
Various architectures have been proposed to address the database interoperability
problem [6, 11, 13, 15, 19]. Those architectures range from the integration of objects into

a centralized global database to the sharing of objects among database systems while

21

retaining their autonomy. This thesis is concerned with the identification and resolution
of the semantic heterogeneity that exists between related information in different
databases.

Semantic interoperability ensures that the data exchange makes sense. The user
and the system provider have a common understanding of the “meaning” of the requested
services and data. Generally, the semantics of procedures and data are explicit.
Therefore, semantic agreements are necessary to associate semantics with data and
procedure names, type definitions and type hierarchies, screen layouts and report formats.
Making semantics explicit in metadata (conceptual schema) would allow designers and
developers to detect mismatched assumptions and to create required mappings to

overcome them.

2.6.3. Schema transformation

Transformation is a mapping from the source data model to the target data model.
The first step of a transformation is to combine all original models into a combined
model. During the combined model generation, a set of constraints that express
interrelated data among component databases is defined. After that, the model is aligned
with the scope and purpose of the global schema. The schema transformation must
preserve the semantics of the original model. This alignment corresponds to the
restructuring and optimizing of the combined model. The following steps are proposed
for schema transformation [31]:
e Combination: integrates schemas and merges the concepts that do not present any

conflict.

22

e Schema Restructuring: solves redundancies and conflicts that cannot be directly
integrated. The transformations must be applied in conformity with the semantic
constraints so that merging of classes and attributes becomes possible.

e Optimization: reduces the size of the new schema and redundancies. Primitive
transformations (including merging of restructured concepts) support the schema
optimization.

e View definitions: generates new mappings and translators between the global schema
and the schemas of the component databases in order to access the new integrated

concepts.

2.6.4. Object-model transformation

An object-model transformation is a process that changes an object-model
described in some syntax into a semantically similar object-model described in a different
syntax. This section presents two lists of primitive transformations on the object model.
The object model characterizes the static structure and the dynamic behavior of things
(objects and their behavior). The structure and behavior are regarded as a group of
analogous objects (classes) in relation to their similarities and differences (generalization
and specialization), and their relationships with one another (associations).

The transformation has three categories related to information content:
equivalence transformation, reducing transformation, and augmenting transformation.

A primitive transformation is one that cannot be decomposed into lesser
transformations. This first list [5] does not present a transformation on methods. The

primitive transformations are:

23

1 - Transformation on a single construct type (attributes, classes or associations)
The following outline is applied to this kind of transformation:
e Remove or add constructs

Assert a construct is not derived or derived

Transform a multi-valued attribute

Reorder attributes

Transform an enumeration attribute

Partition a construct or merge constructs

e Compose associations

2 - Transformation on multiple construct types (among more than one construct)

The following outline is applied to this kind of transformation:

Combine associated classes or partition class
e Move an attribute across an association

e Move an attribute or association across generalization levels

3 - Transformation on a hierarchy chain
The following outline is applied to this kind of transformation:

e Remove or add a subclass

Push sub-class up or specialize

e Fragment multiple inheritance

Factor multiple inheritance

24

4 — Conversions
The following outline is applied to this kind of transformation:
e Convert generalization to/from exclusive-or associations
e (Convert generalization to/from exclusive associations
e Convert link attribute to/from object attribute

e Convert association to/from class

According to [1], the primitive transformations are:

—_—

- Modifying the class definition

The following outline is applied to this kind of transformation:

Modifying attributes: adding, deleting, renaming, modifying the domain, modifying
the inheritance, modifying shared attributes, and transforming composite attributes into
non-composite attributes.

e Modifying methods: adding, deleting, renaming, implementation, and modifying

inheritance.

2 - Moditying the hierarchy chain

The following outline is applied to this kind of transformation:
e Making super-class
e Removing super-class

e Modifying order of super-classes

25

3 - Modifying the set of classes

The following outlines is applied to this kind of transformation:
e Creating classes
e Deleting classes

e Renaming classes

2.6.5. The Remote-Exchange Experimental Prototype System [11]

This architecture extends the traditional federated architecture in supporting two
key aspects: first, to discover the location and content of related non-local information
units (simple objects, types of objects, units of behavior, etc.); second, to identify and
resolve the semantic heterogeneity that exists between related information in different
database components. In order to achieve interoperability, a common model for
describing the sharable data must be defined and utilized. This model should be
semantically expressive enough to capture the meanings of conceptual schemas, which
may reflect heterogeneity. It supports the following basic features of object-oriented
models:

e Complex objects (aggregation);
e Type membership (classification);
e Sub-type to super-type relationships (generalization); and

e Inheritance of properties (attributes) and user-defined functions (methods).

Figure 9 illustrates the Remote-Exchange experimental system.

26

C Interconnection: Sharing and Transmission (MODM) >

Semantic
Dictionary

Sharing
Advisor

Sharing
Heuristics

Registration Discovery Semantic Unification
Heterogeneity
Resolution

Figure 9: The Remote-Exchange architecture

The Sharing Advisor manages the Semantic Dictionary which holds the
knowledge about existing type objects. It also provides the following services:
Registration, Discovery, Semantic Heterogeneity Resolution and Unification.

The Semantic Dictionary is based on a dynamic concept hierarchy. Its increasing
size depends on the knowledge and information received from the sharing advisor. A
type object represents a specific view of a corresponding real world concept, and it is
tailored to the focus and interest of the related database. Therefore, the set of properties
associated with the type object can be viewed as a subset of those associated with the real
world concept.

Sharing Heuristics provides the distinguishing capability of a property with
respect to a concept. This allows the sharing advisor to determine if the meaning of a
type object that is being registered can be determined based upon its properties, or

whether further assistance from users is necessary.

27

The Registration process allows a new system to integrate its schema into the
shared common schema. It establishes the initial sharing context within the federation by
logically connecting the exported information to the Semantic Dictionary via the sharing
advisor. Incremental registration allows a system to augment the common schema with
new information. The newly acquired knowledge and the newly registered information
are stored in the Semantic Dictionary.

The Discovery process identifies appropriate information relevant to a request of a
component system that is initializing a sharing procedure. This operation is based on
three kinds of discovery requests between the common schema and the exported schema
of the new system to be integrated: similar concepts, complementary information, and
overlapping information.

The Semantic Heterogeneity Resolution process determines how discovered
information can be unified with local data (conceptual schema) of a system component
due to semantic discrepancies that may exist between related concepts in different
systems.

The Unification process allows the non-local object(s) to be unified with the
corresponding local object(s). It happens after the semantic heterogeneity resolution is
performed. In some cases, the local metadata framework must be restructured to achieve

a result that is complete, minimal, and understandable.

28

2.7. Summary

In Chapter 1, I propose the use of a unified Scenario Database to integrate different
Scenario Databases. Since the simulation systems must be autonomous, I choose the
object-oriented technique to implement the common database. The objects stored in the
common database respect the heterogeneity and autonomy of the source implementation.
In this chapter, I present the techniques for building a common unified object-oriented
database. The techniques are used as a base to construct a unified Scenario Database. |
present a unified analysis of the process of building an object-oriented database from
heterogeneous databases. Also, I show a framework for identifying conflicts during the
integration of component databases into the unified database. The definition of the
schema conflicts in my methodology is based on this framework. I introduce the
Integration Dictionary to support the registration of similarity among type objects, which
is critical to the success of this thesis.

I load part of the EADSIM Scenario Database into the common database in order to
serve as a base for data integration. I use part of the Suppressor Scenario to validate the

methodology for integrating databases. I describe the methodology next in Chapter 3.

29

3. Methodology for integrating databases

3.1. Introduction

Users of a shared database usually need to access just part of the stored data, which
relates to their own application systems. Views provide the data independence necessary
to implement this kind of data access. Several researchers have investigated the
integration of heterogeneous data repositories via object-oriented views [2, 3, 28], since
they can provide interoperability by hiding the idiosyncrasies of the component systems’
schemas to be integrated into one unified, federated system schema. In Ra’s approach
[25], all objects are associated with a single underlying global schema and each version
of the schema is implemented via a view defined on the global schema. In Hammer’s
approach [11], objects from different sources are integrated into a single global schema,
which uses an object-based model to implement the interoperability. Hammer also
proposes a system for automatically identifying and accessing these non-local objects.

I propose the use of a unified object-oriented global schema to implement the
integration of battle simulation scenarios. This unified global schema is used as a basis
for views of the different scenario schemas. It also provides a standard metamodel in
order to abstract the models to be integrated and their respective connections with the
metamodel. All models must be compared to the metamodel standard concept
(represented by the global schema), thus providing integration through a standardization
related to the semantics of data. The metamodel may be incomplete and cover only those
elements of models for which integration is necessary. Therefore, I created a global
schema (introduced in Chapter 5) to support the exported schemas of different simulation

system schemas. Based on the global schema, I create an object-oriented database to store

30

the Scenarios’ data in a common global format. Any exported schema that is to be
integrated into the global schema needs to be created by the Integration Administrator
(IA). The IA translates the local database schema into a common intermediate
representation.
I also propose the Integration Dictionary. This dictionary registers the translation
relations between local schemas and the global schema. The Integration Dictionary
defines the conceptual objects, attributes, and methods, and relates them to the local
objects, attributes, and methods of each simulation system, which are parts of the global
schema. By using the object-oriented approach the global schema will integrate different
modeling schemas into one consistent battle simulation scenario model. The access to
shared data is performed through the global schema interfaces.
This methodology is based on the following ideas:

e all of the component scenario schemas are already translated into the common data
model (object-oriented model);

e integration of part of the component schemas (exported part) and data into the
common global database;

e specification and implementation of the Integration Dictionary, which is composed of
the metadata of the unified global schema; and

e specification of the User’s Views (specific Scenario Databases) of the common global
database to be used by the scenario generators of the simulation system components.

The User’s Views are generated using global schema interfaces (methods).

31

The remainder of this chapter is organized as follows. Section 3.2 describes the
scenario’s integration architecture. Section 3.3 describes the Integration Dictionary.
Section 3.4 describes the conflict resolutions to be applied when integrating different
exported schemas into the global schema. Section 3.4 describes the methodology for
integrating a new schema into the existing global schema. Section 3.5 describes the
schema modification operations, which are applied using the conflict resolution. Finally,
Section 3.6 defines the methodology of integration as ordered steps that must be followed

and implemented when necessary.

3.2. The scenario’s integration architecture

Integration of dissimilar scenario databases requires a pre-translation of their
schemas and data into a common intermediate representation. Then, the schemas are
integrated. The proposed integration architecture (Figure 10) includes a model that
integrates source scenario files of different simulation systems into a unified global
object-oriented database. In order to integrate a new source scenario file into the global
database, the source file must first be translated into an intermediate representation in the
object-oriented model (OO-Model), called the exported schema. This OO-Model is
implemented in an object-oriented database, called the User’s View. Second, the schema
and data of the User’s View are integrated into the global database. In contrast, to
generate a specific simulation system scenario, the data stored in the global object-
oriented database must first be accessed and transformed back into the specific simulation

system’s intermediate representation in the OO-Model. Then, the specific OO-Model

32

representation must be translated back into the source scenario file. The translation

between the OO-Model and the source scenario file are beyond the scope of this research.

—

User's View
Scenario

Translation

pe———
Source
Scenario
File
Simulation
System

e
Global
Database

Integration

— 2

User's View
Scenario

Translation

pe———
Source
Scenario
File
Simulation
System 2

—

User's View
Scenario

Translation

e ———
Source
Scenario
File
Simulation
System 3

Figure 10: Scenario’s Integration Architecture

3.2.1. Generation of a specific object-oriented model (exported schema)

Each local database schema can be defined using different data models such as a
file system, relational model, entity-relationship model, or an object-oriented model. The
schema translation is performed when a schema represented in one data model is mapped
to an equivalent schema represented in a different data model. Therefore, any schema that
is not represented in the object-oriented model must be translated. This translation is the
subject of several research efforts [10, 12, 17, 32]. The Integration Administrator (IA)
must have the knowledge to perform re-engineering of the heterogeneous databases in
order to perform the translation. Figure 11 shows an example of a schema translation

from the relational model to the object-oriented model.

33

Relational Database Object Model

Table Class

Row Object Instance
Column Attribute
Primary key. A table to store the Primary Key, the Table Name and the Object ID Object Key and
must be created. The Primary Key would be the Object Key. Object ID (OID)

With this approach, the facility of RDBMS in terms of navigation and referential
integrity is kept.

Dependent table. The Primary Key of the parent table is a Foreign Key in the Relationship “is-a”. The
dependent table. The Primary Key of the dependent table forms the Object Key and inheritance definition must be
the Primary key of the parent table is not mapped. inserted for this table.
Relationship “1:n” and “n:1”. The Primary key of the “1” side table is a Foreign Multi-valued attribute is created
Key in the “n” side table. Foreign key is not mapped. in the 1 side table to reference

the n side table objects
(single attribute is created in the
n side table to reference the 1

side table object)

Relationship “1:1”. The Primary key of either table is the Foreign Key in the other Single attribute is created in the

table. Foreign key is not mapped. one of the table to reference the
other side table object (or in
both tables)

A table in a relational database represents an aggregated object. So, the Primary Key | Aggregation “part-of”. A single

of the table, which has the aggregated object, is the foreign key in the table that attribute in the table that

represents the aggregate. Foreign key is not mapped. contains the aggregated object
is created to reference that
object.

Relationship “n:n”. A third table is used to represent the relationship “n:n”. The Multi-valued attribute is created

Primary key of this third table is formed by Foreign Keys, which are the Primary in one of the n side table to

Keys of the tables in the relationship. Foreign keys are not mapped. reference the other n side table
objects (or created in both
tables)

Stored Procedures* and procedures to keep referential integrity Methods

* Procedures that are activated on insertion, update and deletion of attributes or tables.

Figure 11: Example Transformation from a Relational Model to an Object-Oriented Model.

This operation generates the mappings that correlate the original schema to the
translated schema, now represented as an object-oriented model. The translation
mappings of each simulation system scenario file must be stored in order to be applied in
further translations (from an OO Model to a source model) of new scenarios. The
translation operation and mappings is not in the scope of this research. An example of the
translation operation and mappings (for Suppressor and SWEG) can be found in Weber’s

research [32].

34

3.2.2. Integration of specific object-oriented model
The Integration Administrator (IA) also performs the integration of a specific OO-

Model into the global Model. This thesis provides a framework for comparing, solving
the conflicts, restructuring, and merging the schemas. After the schema translation of the
source scenario file is performed, the User’s View as represented in an OO-Model is
generated. The schema and data of the User’s View must be integrated into the unified
global database.

The integration operation also generates mappings for each specific User’s View
component, which is stored in the Infegration Dictionary described in the next section.

The translation and integration mappings can be used for two kinds of
transformations back to the original file. The first transformation is performed before
running the scenario generator of the specific simulation system (Figure 12). It is
performed in two steps:
e Transformation of the global data (represented in an OO-Model) stored in the global

database into the specific scenario User’s View, also in an OO-Model; and

e Translation of the specific scenario User’s View to the original scenario file.

35

Simulation System "A"

Scenario

Scenario "A"

Generator

e 1
Mappings
(translation)

Scenario
file (source
schema)

User's View
(exported
schema)

Integration

Mappings
Dictionary

(integration)

Global
OODBMS
globa schema

Figure 12: Generation of a Scenario

The second is a direct transformation of the specific simulation system scenario
from the global object-oriented model to an original scenario file during the execution of
the related scenario generator. The scenario generators could use these mappings
(translation and integration) to directly access common data from the global database and

generate a new scenario (second solution). The automatic translation and integration

mappings are shown in Figure 13.

36

Simulation System
A"

L

Scenario
N
\T/ Scenario "A"
Generator

‘ Scenario ‘ Mappings User's View ‘

File (source (translation and (exported
‘ schema) ‘ integration) schema) ‘
| i L

Integration
Dictionary

Global
OODBMS
globa schema

Figure 13: Generation of a Scenario

The first solution is the one adopted for this thesis, and transforms the required data
from the global schema to the object-oriented scenario database, which must be further
translated into the original scenario file in order to run the simulation. The focus of this
thesis is to address the problem of schema integration.

The translation into a common representation reduces the number of translations as
introduced in [21], which relates two schemas at a time. For each existing schema,
translations to all other schema components are required and must be stored. The
translations are translation of the source schema to a prototype and translation of the
prototype to the specific target schema. The approach used in this thesis facilitates the
integration of new simulation system Scenario Databases into the common Scenario
Database since it does not use prototypes. The schema translations of a specific Scenario

Database to be integrated into the global database are required just for the specific

37

schema and the global schema. It also facilitates access to the information since the

access to the common database is made by the global database interfaces.

3.3. Integration Dictionary

The common data model, created from the integration process of heterogeneous
simulation system components, must be semantically expressive enough to capture the
intended meanings of each exported schema. The basic object-oriented model lacks some
concepts necessary for a common data model. Thus, it is necessary extend the data
model to facilitate unification and integration. The Integration Dictionary supports the
unification and integration of models based on the exported schemas of battle
simulations, providing the required extensions. It is a metamodel that allows exported
scenario schemas of each component simulation system to be mapped to a common

concept while storing the semantic properties.

3.3.1. Extensions of the object-oriented common data model
The first required extension is the extension of classes. This extension stores the
set of all object instances that “belong-to” a class. A hierarchy of extensions of classes
must exist when a related class hierarchy exists. For example, if class A is a subclass of
class B then the extension of class A is a subset of the “deep” extension of class B. Each
time new instances are created or deleted the extent of a class changes.
The second required extension is the set of schema evolution operations required to
represent a common data model. These operations dynamically define and modify the

global database schema, such as the class definitions and the inheritance structure. These

38

operations play an important role in restructuring the global schema resulting from the
merging of component schemas. The operations are:
e Adding and deleting classes;
e Adding and deleting members of classes;
e Changing the type of a class member;
e Renaming an attribute;
e Initializing instances of a new attribute from attributes of old or existing instances;
e Moving attributes to/from a derived or base class; and
e Adding or adjusting references.
Finally, the last required extension is the semantic extension. This extension is
necessary to capture the semantics of component schemas and their relationships with the
global unified schema. They can be implemented using the metaclass mechanism of the

basic model to provide a mapping between global and component schemas.

3.3.2. Integration Dictionary architecture

The Integration Dictionary is an application system that extends the OO-DBMS
capability to support the unified global schema. This system is constructed on top of the
global scenario database. It consists of conceptual classes and methods. It provides access
to metadata defined for each conceptual class in the Integration Dictionary. Classes
determined to be similar by the Integration Administrator are classified into a collection
called aliases within the related conceptual class. The aliases set increases after the
schema integration of a new specific Scenario Database into the global database. A

conceptual class can be part of a concept hierarchy and inherits the attributes and

39

methods of the super-conceptual class. The conceptual class is composed of class-aliases,

attribute definitions, method definitions and the real class identifier as shown in Figure

14.

Integration Dictionary

<>

Dictionary Method Conceptual Class

name
description

<> <>

Conceptual
Attribute

name

description name
attribute-type description
type-name type
unit_representation

attribute-size

Conceptual Real Class
Method

name
structure-file
complimentary-file
class-root

Figure 14: Integration Dictionary model

3.3.2.1. Dictionary Methods

These methods are data conversion procedures. The dictionary methods consist of the
method signature and method code. The creation of the dictionary methods is necessary
when inconsistencies between attribute representations or data types of semantically
related attributes are detected during the schema integration process (specific schema and

global schema). The implementation of dictionary methods is addressed in Section 3.4.

40

3.3.2.2. Conceptual Classes
Conceptual classes are created in order to represent the set of exported classes that

express similar concepts. These exported classes are merged during the integration

process. Conflicts between elements of both schemas that are being merged may occur.

In order to solve these conflicts the conceptual class must be restructured and eventually

may form a conceptual hierarchy. The Conceptual-Class is composed of:

e Conceptual class name: The conceptual name must reflect a high level of abstraction
of a concept in order to represent entities with a similar concept.

e Description: Describes the concept and the class functionality.

e Super-conceptual classes: This aggregate component identifies the immediate
parent(s) class(es) in an inheritance hierarchy.

e Attribute definitions: This is an aggregate component called a conceptual attribute.

e Method definitions: This is an aggregate component called a conceptual method.

e Real Class definitions: This is an aggregate component called real class.

e C(lass-aliases: This is an aggregate component called Alias. It holds exported class
names similar to the related concept. This is necessary since these names were
mapped from the data models of individual simulation systems into the common data

model.

The sub-sections 3.3.2.3 to 3.3.2.6 describe each element of the Conceptual-Class.

41

3.3.2.3. Conceptual Attribute

This object describes the metadata of an attribute. It is composed of a Conceptual-
Attribute name, description, attribute-type, type-name, unit of representation, attribute-
size and Attribute-Aliases. Attribute-Aliases is an aggregate component called Alias,
which holds all the Conceptual-Attribute names that were defined for the exported class
represented by the Conceptual-Class. The attribute type holds three kinds of attributes:
e single type: represents single types or atomic types such as string, integer, etc;
e object type: represents a user-defined class; and
e multi-valued type: represents set, bag, list, collection, etc. of single types or object

types.

3.3.2.4. Conceptual Method

This object describes the metadata of a method. It is composed of a conceptual
method name, description, type and Method-Aliases. Type describes the function of the
method. Example types include Get, Set, Constructor, and Destructor. Method-Aliases is
an aggregated object called Alias, which holds all the method names that were defined

for the exported class represented by the Conceptual-Class.

3.3.2.5. Alias
This object is composed of name and is used to represent similar names of
classes, attributes and methods of component simulation systems related to Conceptual-

Classes, Conceptual-Attributes and Conceptual-Methods respectively.

42

3.3.2.6. Real Class

This object is the Integration Dictionary representation of the actual global schema
for the related conceptual class. It is composed of the Real-Class name (this would
usually be the same as the Conceptual-Class name, but is subject to the naming rules of
the OO-DBMS), filenames of the class structure (user defined type) represented in the
OO-DBMS, and the Real-Class class-root (root of the extent of a class). The
corresponding Real-Class schema in the OO-DBMS contains all the attributes defined by
the Conceptual-Attributes and all the methods defined by the Conceptual-Methods. The
class-root attribute holds the root name that points to the extent of a class, which contains

all the instances of the class.

3.4. Conflict Resolution

Integration of schemas from independent databases will result in conflicts most of
the time. The concepts implicit in classes of both databases being merged may be
inconsistent. The schema conflicts described in this section are based on Kim’s approach
[15] where several schema conflicts are described. I selected the relevant conflicts for this
work to be used in this section. In my approach, the resolutions for the schema conflicts
between two schemas (the new schema to be integrated represented in an object-oriented
model and the conceptual schema represented in an object-oriented model) use the
Integration Dictionary. I also define the Integration Dictionary changes and global
schema updates for each kind of conflict. The use of the Integration Dictionary facilitates
the schema integration and avoids schema evolution for naming conflicts and some of the

schema evolutions for structural conflicts. The sub-sections of this section describe the

43

selected schema conflicts grouped by categories: name, representation, class member and
schema. For each conflict the related conflict resolution, changes in the Integration
Dictionary and in the global schema code, as well as necessary schema evolution

operation are described.

3.4.1. Name conflict

e C(Class Name

Conflicts with the class name can arise when the name of the new (exported) class is not
defined in the set of Class-Aliases of the similar concept class in the Integration
Dictionary.

Resolution: Associate the semantically related class names.

Integration Dictionary changes: The new class name must be included in the Class-

Aliases set of the Conceptual-Class (Example 1).

Global schema code changes: No schema change is necessary.

Global schema evolution operation: No schema evolution is necessary.

44

Example 1

Airplane (Conceptual)
Airframe

airplane_id airframe_id

type type

New Class Base Class

Conceptual Class: AIRFRAME
Conceptual class name: airframe
Description: object designed to be capable of atmospheric flight
Super-conceptual class: null
Class-aliases: [{aircraft}]
Attribute Definition: [Conceptual attribute name: airframe_id
Description: unique identification of the airframe
Attribute-aliases: [{aircraft id}]
Attribute-type: Single
Attribute-type-name: string
Attribute-size: 30
Unit of representation: null]
Method Definition: [Conceptual method name: get_airframeid
Description: get unique identification of the airframe
Method-aliases: [{get_aircraftid}];
Conceptual method name: set_airframeid
Description: set unique identification of the airframe
Method-aliases: [{set_aircraftid}]]
Real Class Definition: [Class name: airframe
Class structure file: airframe.hh
Class complementary file: airframe.cc
Class-root: airframe_root]

New class to be integrated: Airplane
Change: Class-aliases: {aircraft, airplane}

e Attribute Name

After identifying the concept of the new (exported) class, the new (exported)
attributes are compared with the related Conceptual-Attributes. Conflicts with the
attribute name will arise when the name of the new attribute is not defined in the set of
Attribute-Aliases of the similar concept attribute in the Integration Dictionary.
Resolution: Associate the semantically related attribute names.

Integration Dictionary changes: The new Conceptual-Attribute must be included in the

Attribute-Aliases set of the Conceptual-Attribute (example 2).

Global schema code changes: No schema change is necessary.

45

Global schema evolution operation

: No schema evolution is necessary.

Conceptual Class: AIRFRAME

Super-conceptual class: null

Method Definition: [Conceptual
Description:
Method-alia

Description:

New attribute to be integrated to the

Example 2
Airplane (Conceptual)
Airframe
airplane_id airframe_id
type type
New Class Base Class

Conceptual class name: airframe
Description: object designed to be capable of atmospheric flight

Class-aliases: [{aircraft, airplane}]

Attribute Definition: [Conceptual attribute name: airframe_id
Description: unique identification of the airframe
Attribute-aliases: [{aircraft_id}]
Attribute-type: Single
Attribute-type-name: string
Attribute-size: 30
Unit of representation: null]

method name: get airframeid
get unique identification of the airframe
ses: [{get_aircraftid}];

Conceptual method name: set_airframeid

set unique identification of the airframe

Method-aliases: [{set_aircraftid}]]
Real Class Definition: [Class name: airframe
Class structure file: airframe.hh
Class complementary file: airframe.cc
Class-root: airframe_root]

conceptual attribute airframe_id: airplane_id

Change: Attribute-aliases: {aircraft_id, airplane_id}

Method name

After identifying the concept of the new (exported) class and comparing names, the

new (exported) methods are compared with the related Conceptual-Methods. Conflicts

with the new method name will aris

the set of Method-Aliases of the similar Concept-Method in the Integration Dictionary. In

this case the new method uses the same conceptual parameter(s) as defined in the related

Conceptual-Method.

e when the name of the new method is not defined in

Resolution: Associate the semantically related method names.

46

Integration Dictionary changes: The new method must be included in the Method-Aliases

set of the Conceptual-Method (example 3).

Global schema code changes: No schema change is necessary.

Global schema evolution: No schema evolution is necessary.

Example 3
Airplane (Conceptual)
Airframe
set_airplane set_airframe
get_airplane get_airframe
New Class Base Class

Conceptual Class: AIRFRAME
Conceptual class name: airframe
Description: object designed to be capable of atmospheric flight
Super-conceptual class: null
Class-aliases: [{aircraft, airplane}]
Attribute Definition: [Conceptual attribute name: airframe_id
Description: unique identification of the airframe
Attribute-aliases: [{aircraft_id, airplane id}]
Attribute-type: Single
Attribute-type-name: string
Attribute-size: 30
Unit of representation: null]
Method Definition: [Conceptual method name: get_airframeid
Description: get unique identification of the airframe
Method-aliases: [{get aircraftid}];
Conceptual method name: set_airframeid
Description: set unique identification of the airframe
Method-aliases: [{set_aircraftid}]]
Real Class Definition: [Class name: airframe
Class structure file: airframe.hh
Class complementary file: airframe.cc
Class-root: airframe_root]

New method to be integrated to the conceptual method get_airframe: get_airplane
Changes in Method get_airframe: Method-aliases: {get_aircraft, get_airplane}
Changes in Method set_airframe: Method-aliases: {set_aircraft, set_airplane}

3.4.2. Representation conflict

e Expressions

This conflict arises when both schemas that represent the same piece of information

use different expressions (scalar values).

47

Resolution: Define an isomorphism between the values. This can be achieved by creating
a static lookup table (example 4).

Integration Dictionary changes: Add a new dictionary method in the Integration

Dictionary schema (to implement the resolution described above) in addition to the
creation of a new Conceptual-Method in the related Conceptual-Class.

Global schema code changes: Add the new method signature and code in the related

global class schema.

Global schema evolution operation: Update the global schema structure.

Example 4

Table look-up for different codes denoting distinct flight modes:

1 BALLISTIC B
2 FLIGHT PATH ANGLE CURVE C
3 FLY TO POINT P

e Units

This conflict arises when numeric data denoting the same physical quantity are
represented in different units in both schemas.
Resolution: Define a method to convert the numeric value in one unit to another (example
5) and to provide this functionality to other classes that need the same kind of conversion.

Integration Dictionary changes: Add a new dictionary method in the integration

dictionary schema (to implement the resolution described above) in addition to the

creation of a new Conceptual-Method in the related Conceptual-Class.

48

Global schema code changes: Add the new method signature and code in the related

global class schema.

Global schema evolution operation: Update the global schema structure.

Example 5

The height is stored in different units in database 1 (cm) and 2 (inches). The unit chosen for
integration is inches. The appropriate method conversion must be created, in which height in cm
is converted to inches:

float Convert_cm_inches (float value)
{ float v_inches = value/2.54;
return v_inches; }

e Precision

This conflict arises when semantically equivalent attributes draw values from domains
with different cardinalities. This difference in cardinality results in different scales of
precision for similar data. In example 6, database 1 defines three possible values for
velocity-category attribute: high, medium, and low. Database 2 does not have this kind of
attribute, but it defines bounds of velocity that give the category of the velocity. It implies
that while database 2 represent the information using two attributes, databasel represents
the same information using one attribute.

Resolution: The solution is to define an isomorphism between the values. This can be
achieved by creating a static lookup table to map domains of semantically equivalent
attributes.

Integration Dictionary changes: Add a new dictionary method in the integration

dictionary schema (to implement the resolution described above) in addition to the

creation of a new Conceptual-Method in the related Conceptual-Class.

49

Global schema code changes: Add the new method signature and code in the related

global class schema.

Global schema evolution operation: Update the global schema structure.

Example 6

Table look-up for different code representation (database 1 uses string code
whereas database 2 numeric code in knots) of velocity category:

Velocity category Lbound Velocity Ubound Velocity
HIGH 900
MEDIUM 300 899
LOW 0 299

3.4.3. Class member conflict (between new class and semantically equivalent
conceptual class)

e Attribute composition

This conflict arises when there are structural differences in both classes such that the
domain of a semantically equivalent attribute in the Conceptual-Class is a user-defined
class, whereas that in the new (exported) class is an atomic type.
Resolution: The domain must be homogenized. A new method must be created in order
to transform the domain projection (example 7).

Integration Dictionary changes: A new Conceptual-Method must be created in the related

Conceptual-Class.

Global schema code changes: Add the new method signature and code in the related

global class schema. The new method must project the atomic type instead of the whole
class.

Global schema evolution operation: Update the global schema structure.

50

Example 7

Airplane (Conceptual)
Airframe
airplane_id airframe_id
type type
radar_id : string(25) radar: Radar
New Class Base Class

The domain of attribute radar id in Airplane is string whereas in the Base (conceptual)
Class Airframe is the (conceptual) Class Radar. Therefore, a conceptual-Method to project
the radar_id used by the new class must be created in the Conceptual-Class Airframe

e Attribute data type

This conflict arises when the domains (types) are different in both schemas for
semantically equivalent attributes.
Resolution: Convert the domains. If automatic conversion is not defined in the database
language that implements the Integration Dictionary, the IA must supply an explicit
conversion (example 8).

Integration Dictionary changes: A dictionary method must be created in order to provide

this functionality for all semantically related attributes that need the conversion, besides
the creation of a new Conceptual-Method in the Conceptual-Class.

Global schema code changes: Add the new method signature and code in the related

global class schema.
The new method in the global class schema calls the related conversion dictionary
method defined in the Integration Dictionary.

Global schema evolution operation: Update the global schema structure.

51

Example 8

The Attribute A in database 1 is float and in database 2 is integer. The unit chosen for
integration is float. The appropriate method conversion must be created in order convert
to integer to float:

float Convert_int float (value: int)
return itof(value);

e Attribute concatenation

This conflict arises when information captured by a single attribute in the new
(exported) class is equivalent to that in more than one attribute belonging to the related
Conceptual-Class.
Resolution: A method must be defined to concatenate attributes (example 9).

Integration Dictionary changes: A new Conceptual-Method must be created in the related

Conceptual-Class.

Global schema code changes: Add the new method signature and code in the related

global class schema.

Global schema evolution operation: Update the global schema structure.

Example 9

(Conceptual)

Aircraft Airframe

airframe_id

aircraft_id
- type

New Class Base Class

The Attribute aircraft id in New Class is composed of aircraft type and the aircraft id, and in the
Base (conceptual) Class Airframe these two attributes are distinct. Therefore, a method to created
the concatenation of type + airframe_id must be created.

52

e Missing attribute

This conflict arises when the number of attributes in the new (exported) class is
greater than in the related global class.
Resolution: Insert the new attribute in the related global class.

Integration Dictionary changes: The Conceptual-Attribute must be created in the related

Conceptual-Class in the Integration Dictionary (example 10). The conflict resolution for
attribute names must be applied and all required data must be inserted into the newly
created instance.

Global schema code changes: Add a new attribute in the related global class schema.

Global schema evolution operation: Update the global schema structure.

Example 10
Airplane (Conceptual)
Airframe
airplane_id airframe_id
type type
wing_area .
Base Class

New Class \ /

(Conceptual)
Airframe

airframe_id

type
wing_area

Base Class after transformation

53

e Missing method

This conflict arises when there is some method in the new (exported) class that does
not exist in the related global class.
Resolution: Create the new method.

Integration Dictionary changes: The Conceptual-Method must be created in the related

Conceptual-Class in the Integration Dictionary (example 11). The conflict resolution for
method names must be applied and all required data must be inserted into the newly
created instance.

Global schema code changes: Add the new method signature and code in the related

global class schema.

Global schema evolution operation: Update the global schema structure.

Example 11
Airplane (Conceptual)
Airframe
get_airplane_id get_airframe_id
get_type get_type
get_wing_area ..
Base Class

New Class \ /

(Conceptual)
Airframe

get_airframe_id
get_type
get_wing_area

Base Class after transformation

54

3.4.4. Schema conflict
e Missing class
This conflict arises when the concept of the new (exported) class doesn’t correspond
to any Conceptual-Class of the Integration Dictionary.
Resolution: Create a new class.

Integration Dictionary changes: The Conceptual-Class must be created in the Integration

Dictionary (example 12). The conflict resolution for class names must be applied and all
required data must be inserted into the newly created instance. The Real-Class must be
created in the related conceptual-Class in the Integration Dictionary.

Global schema code changes: Create the new class in the global schema. After the

creation of the new class schema, a pointer to the class extent (set that stores all the
classes’ instances) must be created and the pointer name must be stored in the class-root
attribute of the related Real-Class object in the Integration Dictionary.

Global schema evolution operation: Update the global schema structure.

Example 12
(Conceptual)
Radar Radar
i —_—
radar_id radar_id
New Class Base Class

55

e Missing super-class (generalization)

This conflict arises when two semantically equivalent classes (base and new) have

similar and different attributes. The base class (related Conceptual-Class) does not have
the necessary meaning to store the similar attributes.
Resolution: Generalize the base class defined in the global schema creating a super-class.
This new super-class will contain the similar attributes of the both classes. The two
classes (base and new) also have different attributes. Therefore, the base class schema
will be transformed into a sub-class of this newly created super-class and will contain the
different attribute(s) related only to this base class. The new (exported) class may also
have different attribute(s). In this case, another sub-class class of this newly created
super-class must be created to store the attribute(s) of the new class that cannot stay in the
super-class (example 13).

Integration Dictionary changes: Generalize the related Conceptual-Class and Real-Class.

This related Conceptual-Class only contains the different attribute(s). The similar
attribute(s) in this Conceptual-Class is (are) deleted. In the example 13, the similar
attributes are ir_id in Infra_Red class and radar id in Radar class.

A new Conceptual-Class must be created in the Integration Dictionary to represent the
super-class, which will contain the similar attribute(s). In example 13, the similar
attribute (now called sensor id) is moved to the newly created super-class. The super-
conceptual class attribute of the original Conceptual-Class must be filled with the name
of Conceptual-Class that represents the super-class.

If another sub-class must be created to reflect the different attributes of the new

(exported) class, then another Conceptual-Class is created and will contain the different

56

attributes of the new class. In this case, its super-conceptual class attribute must also be
filled with the name of the Conceptual-Class that represents the super-class.

The conflict resolution for missing a class must be applied for the classes that must be
created, and all required data must be inserted into this (these) newly created Integration
Dictionary class(es).

Global Schema code changes: Generalize the related global class. Modify the related

global class schema deleting the attributes and related methods that are similar. Create the
global super-class schema that will contain the deleted attributes and methods. If the
other sub-class (related to the different attributes of the new class) needs to be created,
then create the related global sub-class schema. If the new super-class is an abstract class,
the pointer to the class extent doesn’t need to be created (the related Real-Class root-
name will be null).

Global Schema evolution operation: Update the global schema structure and data

migration. The data migration process moves the attribute value(s) of the original global

class that is to be generalized and include it (them) into the newly created super-class.

Inf Red (Conceptual)
nira_Re Radar

ir_id
definition_metod
transmission_power

radar_id
saturation_level
optical_transmission

New Class \ / Base Class

(Conceptual)
Sensor

sensor_id

(Conceptual) (Conceptual)
Infra_Red Radar
definition_metod saturation_level
transmission_power optical_transmission
Example 13

57

e Missing sub-class (specialization)

This conflict arises when two semantically equivalent classes (base and new) have
similar and different attributes and the base class (related Conceptual-Class) has the
necessary meaning to store the similar attributes.

Resolution: Specialize the base class defined in the global schema creating sub-classes.

Integration Dictionary changes: Specialize the Conceptual-Class and related Real-Class.

The existing Conceptual-Class will contain the similar attributes. At least one new
Conceptual-Class must be created to reflect the specialization of the existing Conceptual-
Class (example 14).

The Conceptual-Attribute(s) related to the existing Conceptual-Class that is (are) to be
specialized is (are) moved to the newly created specialized Conceptual-Class.

The conflict resolution for missing class needs to be applied to the new Conceptual-
Class(es), and all required conceptual data must be inserted into the newly created
instance. In this case, the super-conceptual class attribute of the new Conceptual-
Class(es) must be filled with the Conceptual-Class name that contains the similar
attributes (super-class). The root of the new specialized class(es) must be created and if
the super-class is an abstract class the related Real-Class root-name will become null.

Global schema code changes: Specialize the existing global class schema. Create the

global sub-class schema(s) that will contain the different attributes and methods. Modify
the specialized global class schema moving the attributes and related methods that are
different the newly created sub-class schema. If the other sub-class (related to the

different attributes of the new class) needs to be created, then create another global sub-

58

class schema. If the new super-class is an abstract class, the pointer to the class extent
doesn’t need to be created (the related Real-Class root-name will be null).

Global schema evolution operation: Update the global schema structure and data

migration. The data migration process moves the different attribute(s) of the original

existing global class and includes it (them) into the newly created sub-class.

Example 14

Helicopter (Conceptual)
Airframe

helicopter_id
fuselagem_area airframe_id
type
wing_area

New Class
/ Base Class

(Conceptual)
Airframe

airframe_id
type

Helicopter Airplane

fuselagem_area wing_area

e Different inheritance hierarchy

This is a more complex conflict. This conflict arises when an inheritance hierarchy
from the new (exported) schema is to be integrated with a semantically related hierarchy
from the base (global) schema, which has a different structure. An example of this kind

of conflict is shown in Chapter 5 when the Suppressor Scenario Database schema is

integrated into the global schema.

59

Resolution: This is a compound conflict that can be resolved by decomposing it into more
primitive conflicts described in this section. Specialization, generalization, missing
attribute, and missing method conflict resolution may be applied whenever necessary.

Integration Dictionary changes: The Integration Dictionary changes for specialization,

generalization, missing attribute, and missing method may be applied whenever
necessary.

Global schema code changes: The global schema code changes for specialization,

generalization, missing attribute, and missing method may be whenever necessary.

Schema evolution operation: Update the global schema structure and data migration. The

schema evolution operation defined for specialization, generalization, missing attribute

and missing method may be applied depending on the schema changes.

3.5. Schema evolution operations

Schema evolution operations must be defined and implemented using the database
language to allow update of the schema structure and data migration from the old schema
to the newly modified schema. If the schema changes do require data migration, then
only the schema structure must be updated to reflect the changes realized in the database
schema. For each kind of schema modification an implementation solution is given, as
well as the data updates. Data updates specify how existing instances of a given class in
the original schema are transformed to conform to a new class definition or reclassified
into the newly derived sub-class. This might involve adding or deleting attributes or
aggregated objects, changing the type of a field, or deleting entire objects. Two examples

of schema evolution are shown in Examples 13 and 14 where data reclassification is

60

required. In example 13, the data stored in the attribute radar id of the Base Class Radar
must be reclassified in the newly created class Sensor. In example 14, the data stored in
the attribute wing_area of the Base Class Airframe must be reclassified in the newly

created class Airplane.

3.5.1. Modification to class definitions
Changes in the class structure may require schema evolution. The class structure
is composed of attributes and methods. The next two sub-sections of this section describe

the necessary schema evolution for class structure changes.

3.5.1.1. Attributes
e Add anew attribute.

When an attribute is added to a class, a new storage is created with this schema
change and the initialization process is applied. The default initialization provided by the
object-oriented database is the appropriate representation of zero.

If no default initialization is provided by the database or the required initialization of
this new attribute is different from the default initialization, a schema evolution program
is necessary to change the default initialization of its instances. In this case, the class with
the new attribute must have an associated function that is user-supplied. This function
can supply the missing initialization or override the default initialization, by generating a

value for the new field.

61

e Deleting an attribute.
Update of the schema structure is required when the representation of a class
instances is changed by removing an attribute. Since no new storage is created by this

schema change, the issue of initialization does not arise.

e (Change the data type of an attribute.

The schema evolution is necessary to change the representation of any of its instances
by adjusting the size of the attribute’s storage (if necessary) and reinitializing that storage
with default values. If default initialization is provided by the object-oriented database,
two types of initialization can occur. The first type is the initialization of the attribute
instances with assignment-compatible values when the old and new types are compatible
(e.g. the old type is integer and the new type is float). The second type is the initialization
of the attribute instances with the appropriate representation of zero when the old and

new types are not compatible.

3.5.1.2. Methods
Adding a new method or deleting a method has no effect on the layout of class
instances, therefore schema evolution to migrate data is not necessary. But update of the

schema structure is required.

62

3.5.2. Modification to the set of classes
e Addanew class

This operation only requires update of the schema structure.

e Delete a class

This operation only requires update of the schema structure.

3.5.3. Modification to inheritance hierarchy
e Adding base classes (generalization)

This schema change requires schema evolution to perform instance reclassification
(data migration from the sub-class(es) to the base class). When a base class A is added to
an existing class B, instances of B (and its sub-instances, if they exist) must be modified

to remove the part corresponding to A.

e Removing base classes

This schema change requires schema evolution to perform instance reclassification (if
the data migration from the base class to the sub-class(es) is necessary). When the base
class A is deleted, its subclass B must be modified so that it no longer inherits attributes
and methods from class A. Each instance of B is modified (if necessary) by adding the

part corresponding to A.

63

e Adding sub-classes (specialization)

This schema change requires schema evolution to perform instance reclassification
(data migration from the original class to a subclass). When an instance is reclassified, it
acquires at least one new object derived from the original class, which contains the
specialized attribute(s). The schema change also involves deleting the attribute(s) of the

original class to be specialized.

3.6. Methodology for integration

In order to integrate a new schema into the global schema that cannot be directly
integrated due to redundancies and anomalies, a methodology for integration must be
used to guide the global schema transformation. The identification of the common and
different concepts in different schemas that are mutually related to some semantic
properties (scope or members) is the key to success.
This methodology proposes four steps for schema integration using the Integration

Dictionary.

Step 1: Comparison.

During this step the exported schema is semantically compared to the global
schema to identify inter-schema relations and to detect conflicts in their representation.
The meaning of objects being integrated is identified based upon similar concepts stored
in the integration dictionary. The similarity is manually analyzed by comparison of the

exported schema classes with the conceptual classes in the Integration Dictionary.

64

Step 2: Conflict solving.
After the detection of conflicts, the rules for solving conflicts described in Section
3.4 and 3.5 are manually applied. During this step both exported and global schemas are

brought into compatibility for later unification.

Step 3: Restructure.

This step implements the conflict resolution for schemas, which was applied in
the previous step. The metadata of the global schema stored in the Integration Dictionary
is updated to absorb the new integrated scenario. The Integration Dictionary also stores

the relationship between the exported schema and the newly updated global schema.

Step 4: Merge.

This step unifies both the exported and the global schema structures, and their
data. The data of the transformed source schema represented by the exported object-
oriented schema is moved into the global schema. Figure 15 shows the integration of a
new scenario into the global schema. Based on this unified global schema, all of the
User’s Views (exported schema) must be generated and populated before running the

respective scenario generator.

65

Integration
Methodology
uses
A
ES)::%oerrtnes Integration | | Integration
(OODBMS) Administrator eEES Dictionary
» Global Schema
updates (OODBMS)
-~

Figure 15: Integration of a New Scenario into the Global Schema

3.7. Summary

In this chapter I presented my solution for data integration of different underlying
databases. The focus of this work is on scenario databases for simulation systems. My
approach creates a common database repository with semantic interoperability using
object-oriented technology. The Integrator Administrator must understand database
systems and simulation systems in order to discover the semantic information from a
source database and to perform the mappings of the exported schema and data from a
specific scenario to the Integration Dictionary and common database repository,
respectively. I created the Integration Dictionary in order to allow interoperability. It
contains the semantics of the metadata, inter-component mappings between components
of each system and the common database, and an implementation class associated with
each class-component of the data dictionary. The mappings allow the generation of views

of the common database, which are the specific scenario databases for simulation

66

systems. Finally, I introduced the conflict resolutions for schema integration using the

Integration Dictionary.

67

4. Implementation of the Prototype

4.1. Introduction

In this chapter I describe the implementation of a prototype to demonstrate the
methodology for integrating databases based on the design I presented in Chapter 3. I
implement this prototype using Object-Store [18]. Object-Store is an object-oriented
database that provides an ideal environment for implementing this methodology. I begin
the chapter by describing some important Object-Store operations that access metadata. I
describe my implementation plan for the methodology in Section 4.3. Section 4.4
contains my implementation of the Integration Dictionary. In Section 4.5 the system I
created to integrate metadata is described. Section 4.6 describes how I integrated
exported schemas into the global schema. Section 4.7 describes the integration of data
from exported schemas into the global schema. Finally in Section 4.8, I describe how the

generation of Users’ Views is performed.

4.2. OO-DBMS for implementation

In this thesis, Object-Store is the object-oriented database system I used to
implement the global schema for scenarios of simulation systems. It has the first required
extension (extension of classes) already embedded in its data model. This is implemented
by the extent set. The extent stores all the object instances of a class.

Any change in the code of an Object-Store schema must be reflected in the system
schema file. A program must be written to move the references of old schema classes to

the newly modified schema.

68

The Object-Store database handles the following automatic changes in data, which
do not involve user-defined instance initializations but instead involve default
initializations.

e Adding and deleting classes.

e Adding and deleting members of classes.

e Changing the type of a class member. If the “new type” and the “old type” are
assignment compatible (e.g. float type and integer type), the Object-Store assigns the
value of the old class member to the new member applying standard conversions
defined by the C++ language. If the “new type” and the “old type” are assignment

compatible, the new member is initialized with the appropriate representation of zero.

The following operations require application-specific transformer functions.
e Renaming an attribute.
e Initializing instances of a new attribute from old or existing attribute instances.
e Moving attributes to/from a derived or base class.

e Adding or adjusting references.

These last operations need to be written in the Object-Store language in order to

perform the movement of data. The data will be moved from the old class schemas to the

newly transformed class schemas. More details can be found in [18].

69

4.3. Implementation plan

Figure 16 shows my general plan for implementing the methodology. The
Integration Dictionary contains the metadata of the global schema. Following the
methodology for integration, the Integration Administrator updates the Integration
Dictionary (Restructuring step), after completing the first two steps of the methodology
(Comparison and Conflict Solving). Then, the Integration Administrator updates the
global schema to reflect the newly integrated exported schema. This last procedure is
related to the last step of the methodology (Merge). Finally, the integration process is
completed when the exported data is merged into the global schema.

The User’s Views are implemented based on the exported schemas, which are
generated from the global database. In order to run a specific scenario generator, the
User’s View must be generated (translation from the global schema to the related
exported schema) and the User’s View must be translated to the source scenario file

(translation from the exported schema to the source schema).

Integration Administrator

schema /ﬁ ’
» Metadata update . |nFegratlon
LJ metadata Dictionary

schema
Specific v Global
0O-DBMS Global Schema . 0O-DBMS
(Exported update schema (Global

Schema) Schema)

> Data update
data \ / data

/ User's View \

data \ genaration) data

metadata

Figure 16: Implementation Plan to integrate a new scenario schema

70

4.3.1. Integrating a new scenario database

In Chapter 3 Section 3.2, I described the scenario’s integration. In this section I
introduce a step-by-step guide to be applied by the IA when performing the integration
process.

Assuming that the schema translation was already performed from the source
scenario file to the OO-Model (exported schema), the first schema (base schema) is
integrated to the empty global database. In this case the first two steps of the
methodology are not applied (comparison and conflict solving). The concepts of the first
exported schema are inserted into the Integration Dictionary and the global schema will
have the same schema structure as this exported schema.

The following steps of the integration methodology must be applied to integrate a
new scenario database into the non-empty global database.

e The [A compares the exported schema to the global schema using the concepts
stored into the Integration Dictionary, and detects the conflicts and similarities
between both schemas.

e The IA solves the conflicts detected in the previous step, applying the conflict
resolution defined in Chapter 3, Section 3.4 - Resolution.

e During this step the IA implements the resolution by applying the Integration
Dictionary changes defined in Chapter 3, Section 3.4 — Integration Dictionary
changes, restructuring the metadata information through the Integration Dictionary
interface system (described in Section 4.5) and creating the relations (mappings)

between both schemas.

71

In this last step the IA merges both schemas by transforming the global schema
structure (as defined in Chapter 3, Section 3.4 — Global schema changes and Global
schema evolution) to reflect the newly integrated schema; and by merging their data.
The IA must write the necessary modification in the global schema classes. In order
to merge data the IA must solve the data conflicts (if detected) and write an Object-
Store program using methods defined in the exported schema to read the data and

constructor methods defined in the global schema to write the data.

4.3.2. Generating a specific User’s View

The global database contains integrated data of all simulation system components.

In order to run a simulation system, a scenario must be specified and created. The first

step to create this scenario is to generate the specific User’s View. This requires a

translation program for the specific User’s View. The second step is to translate the

User’s View to the source scenario file. This second step is not in the scope of this thesis

but it was investigated by Weber [32].

To create the User’s View translation program, the IA must follow the steps

below:

Run the View Constructor program (discussed in Section 4.8), which gives the
exported class names to be generated as well as the methods of the related global
classes (classes of the global database) that access the global attributes needed as
parameters for constructing the classes of the specific User’s View.

Write an Object-Store program (User’s View translation program) using the

constructor methods defined for the classes of the User’s View (the class names were

72

given by the View Constructor program and are defined in the exported schema) to
insert new instances into the User’s View database. The parameters of specific User’s
View constructor methods are attribute values stored into the related classes. These
attribute values are accessed by the read methods of the global schema also given by

the View Constructor program.

4.4. Implementation of the Integration Dictionary
The Integration Dictionary classes were created based on the integration dictionary
model described in Chapter 3. They store the metadata information of the global schema.

Below, the header codes of all the Integration Dictionary classes’ schema are described.

Conceptual-Class:

The attribute Conceptual RealClass is implemented as a pointer to the respective
aggregate object. The attributes Conceptual ClassAliases, Conceptual SuperClasses,
Conceptual Attributes and Conceptual Methods are implemented, respectively, as a set
of pointers to Classalias, Conceptual Classes, Conceptual Attributes and

Conceptual Methods aggregate set of objects.

Conceptual-Class header

extern os_Set<conceptual class*> *conceptual class_extent;

class conceptual class

{

public:
const char* Class GetName() {return Conceptual ClassName;}
const char* Class_GetSuperClassName () ;

real class* Class GetRealClass() {return Conceptual RealClass;}
void Class_SetRealClass (real class* rclass) ;

os_Set<conceptual class*> Class GetSuperClasses() { return Conceptual SuperClasses;
}

void Class RemoveSuperClass (conceptual class* cclass) {
Conceptual SuperClasses.remove (cclass); }

void Class_InsertSuperClass (conceptual class* cclass) ;

73

os_Set<conceptual attribute*> Class GetAttributes() { return Conceptual Attributes;

void Class RemoveAttribute (conceptual attribute* attribute name) {
Conceptual Attributes.remove (attribute name); }
void Class_InsertAttribute (conceptual_ attribute* attribute name) ;

os_Set<conceptual method*> Class GetMethods() { return Conceptual Methods; }
void Class_RemoveMethod (conceptual method* method name) {

Conceptual Methods.remove (method name); }
void Class_InsertMethod (conceptual method* method name) ;

os_Set<classalias*> Class GetAlias() { return Conceptual ClassAliases; }
void Class_RemoveAlias (char* alias_name) ;
void Class_InsertAlias(classalias* alias_name) ;

void Class_Setclass (const char* class_descrp, conceptual_ class* class_superclass) ;

conceptual_class (const char* class name, const char* class_descrp, conceptual class*
superclass) ;

void Class_Show(ostream& os) ;

static os_typespec* get_ os_typespec() ;

~conceptual_class() ;

private:
char Conceptual ClassName [51];
char Conceptual ClassDescription[201];
os_Set<conceptual class*> Conceptual SuperClasses;
os_Set<classalias*> Conceptual ClassAliases;
os_Set<conceptual attribute*> Conceptual Attributes;
os_Set<conceptual method*> Conceptual Methods;
real class* Conceptual RealClass;

Conceptual-Attribute:

The attribute Conceptual AttributeAliases is implemented as a set of pointers to

Attralias aggregate objects.

Conceptual-Class header

class conceptual attribute

{

public:
const char* Attribute GetUnit () {return Conceptual UnitofRepresentation;}
const char* Attribute GetName () {return Conceptual AttributeName;}
char Attribute GetAttributeType() {return Conceptual AttributeType; }
const char* Attribute GetTypeName() {return Conceptual TypeName;}

os_Set<attralias*> Attribute GetAlias() { return Conceptual AttributeAliases; }
void Attribute RemoveAlias (char* alias name) ;
void Attribute InsertAlias(attralias* alias_name) ;

void Attribute Setattribute(const char* attr description, const char* attr_unit,
char attr type, const char* attr typename, int attr sz);

conceptual attribute (const char* attr name, const char* attr description, const
char* attr unit, char attr type, const char* attr typename, int attr sz);

~conceptual_attribute() ;

void Attribute Show(ostream& os) ;

static os_typespec* get os_ typespec();

private:
char Conceptual AttributeName [51];
char Conceptual AttributeDescription[201];
char Conceptual UnitofRepresentation([21];

74

char Conceptual AttributeType;
char Conceptual TypeName [31];

int Conceptual AttributeSize;
os_Set<attralias*> Conceptual AttributeAliases;

Conceptual-Method:

The attribute Conceptual MethodAliases is implemented as a set of pointers to

Methalias aggregate objects.

Conceptual-Method header

class conceptual method

{

public:
const char* Method GetName () {return Conceptual MethodName; }
int Method GetType() {return Conceptual MethodType;}

os_Set<methalias*> Method GetAlias() { return Conceptual MethodAliases; }
void Method RemoveAlias (char* alias_name) ;
void Method InsertAlias(methalias* alias_name) ;

void Method Show (ostream& os) ;
void Method Setmethod (int mtype, char* meth description) ;
conceptual method(char* meth name, int mtype, char* meth description) ;
~conceptual method() ;
static os_typespec* get os_ typespec() ;
private:
char Conceptual MethodName [51] ;
int Conceptual MethodType;
char Conceptual MethodDescription[201];
os_Set<methalias*> Conceptual MethodAliases;

Real Class:

Real-Class header

class real class

{

public:
const char* RealClass_GetClassRoot () {return Real ClassRoot;}
const char* RealClass GetName() { return Real ClassName; }

void RealClass_Setrealclass(char* root name, char* struct file, char*
complementary file);

real_ class(char* class_name, char* root_name, char* struct_file, char*
complementary file);

~real class();

void RealClass_Show (ostream& os) ;

75

static os_typespec* get os_ typespec();

private:
char Real ClassName [51] ;
char Real ClassRoot [51];
char Real ClassStructureFile[51];
char Real ClassComplementaryFile[51];

Alias:

This class was split into three classes in order to allow the implementation of
aggregate objects with two-way pointers. Two-way pointers facilitate the user’s view
implementation since the programmer has the flexibility of accessing the related
Conceptual-Class, Conceptual-Attribute or Conceptual-Method given a respective alias
name. Each alias class has an attribute that points back to the aggregated class. This
means that an instance of any of the three alias classes will point back to the instance of
the related Conceptual-Class, Conceptual-Attribute or Conceptual-Method instance from

which it is aggregated.

e (lassalias

The attribute Alias_RelatedClass points back to an instance of the Conceptual-Class.

Classalias header

class classalias

{

public:
char* Classalias GetAlias() {return Alias Class;}
classalias(const char* alias_name, conceptual_ class* classnm);
~classalias () ;
static os_typespec* get os_ typespec() ;

private:
char Alias Class[61];
conceptual class* Alias RelatedClass;

}i

76

e Attralias
The attribute Alias RelatedAttribute points back to an instance of the Conceptual-

Attribute class.

Attralias header

class attralias
{
public:
char* Attralias GetAlias() {return Alias Attribute;}
conceptual attribute* Attralias GetRealatedAttribute() {return
Alias RelatedAttribute;}
attralias(const char* alias name, conceptual attribute* attrnm);
~attralias() ;
static os_typespec* get_ os_typespec() ;

private:
char Alias Attribute[61];
conceptual_attribute* Alias RelatedAttribute;

}i

e Methalias
The attribute Alias RelatedMethod points back to an instance of the Conceptual-

Method class.

Methalias header

class methalias

public:
char* Methalias GetAlias() {return Alias Method;}
conceptual method* Methalias GetRealatedMethod() {return Alias RelatedMethod;}
methalias (const char* alias name, conceptual method* methnm) ;
~methalias () ;
static os_typespec* get_os_typespec() ;

private:
char Alias Method[61];
conceptual method* Alias RelatedMethod;

77

4.5. Metadata integration
4.5.1. System structure

I created a system to implement metadata integration. This system updates the
metadata stored in the Integration Dictionary through a user’s interface. It uses methods
defined for each class of the Integration Dictionary schema. The insertion process for the
Integration Dictionary = components (Conceptual-Classes, Conceptual-Attributes,
Conceptual-Methods and Real-Classes) can read input data stored in text files (when

more than one instance needs to be inserted) or typed directly from the keyboard.

4.5.2. Conflict X System Functions
Below I list the system functions to be applied for each possible conflict

(discussed in Chapter 3) that can arise from the integration of two schemas.

Table 1: Conflict X System Functions

Conflict Functions to be applied

Class Name Change Alias of a Class/Insert

Attribute Name Change Alias of an Attribute/Insert

Method Name Change Alias of a Method/Insert

Expressions A Dictionary Method must be created*
Insert a Method

Units A Dictionary Method must be created*
Insert a Method

Precision A Dictionary Method must be created*
Insert a Method

Attribute Composition Insert a Method

Attribute Data Type A Dictionary Method must be created*
Insert a Method

Attribute Concatenation Insert a Method

Missing Attribute Insert an attribute

Missing Method Insert a Method

Missing Class Insert a Class
Insert a Real Class

78

Missing Super-Class
(Generalization)

- Change Attribute of a Class/ Remove (remove similar
attributes from the existing sub-class)

- Insert a Class (super-class class that will hold the
similar attributes)

- Change Attributes of a Class/Insert (insert the
previously removed attributes into the newly created
super-class)

- Change Super-Classes/Insert (insert the newly created
super-class name into the super-classes set of the sub-
class)

- Change Real Class/Insert (set the real-class attribute of
the newly created super-class to the same real-class as
stored in the real-class attribute of the sub-class)

Missing Sub-Class
(Specialization)

- Change Attribute of a Class/ Remove (remove different
attributes from the existing super-class)

- Insert a Class (sub-class that will hold the different
attributes, the attribute super-class will contain the name
of the existing super-class)

- Change Attributes of a Class/Insert (insert the
previously removed attributes into the newly created sub-
class)

- Change Real Class/Insert (set the real-class attribute of
the newly created sub-class to the same real-class as
stored in the real-class attribute of the super-class)

*Dictionary Methods are written in separate files: dictionary.hh for signatures and
dictionary.cc for implementation code.

4.6. Schema integration

The TA must create specific programs to allow schema evolution (if necessary) when

schema integration is performed. These programs can use the pre-defined functions

described in Section 4.2 or new functions defined by the Integration Administrator.

There are two cases of schema evolution. The first involves schema modification which

just requires update of the schema structure. The second involves schema modification

followed by data modification which requires update of the schema structure and data

migration. The second case is applied when:

e changes in a hierarchy structure are necessary;

79

e initialization of instances of a new attribute is made based on old or existing attribute
instances; and
e automatic transformation of values cannot be applied when the type of a class

member is changed.

4.7. Data integration

Specific programs must be created to implement data integration. These programs
are the mappings between the exported schema and the global schema. They must be
created for each simulation system component of the global schema in order to integrate
their instances into the global schema. Data conflict must be solved by the IA and, if

necessary, the data administrator of the system component.

4.8. User’s View generation

Specific programs must be written to create the User’s Views. These programs are
mappings between the global schema and the exported schemas. They use metadata
stored in the Integration Dictionary as well as data stored in the global schema to
generate the related view. These views must be generated for each simulation system
component of the global schema before running the respective scenario generator. The
View Constructor program was created to help the Integrator Administrator (IA) with the
last task for completion of the schema integration — the creation of the User’s View for
each component system. In order to be able to use this tool, each exported schema must
have a naming rule that includes, for each component of the schema, the corresponding

system-code located in the three first characters of its name

80

The TA must input the system-code of the component system for the specific view
generation (for example EAD for EADSIM). The system shows all the Conceptual-
Classes related to the User’s View. For each Conceptual-Class the program shows the

information listed below.

e The related exported class name.

e The access methods of the global schema used to construct instances of the exported
class. These methods are used as parameters of the exported class constructor
method.

e All the attribute values stored in the real class of the Integrator Dictionary: real class
name and real class root. These values are used to reference the global class in the
User’s View translation program.

e The construction strategy for aggregated attributes. The program outputs
information about the attributes that are multi-valued objects and single objects. It
also outputs the classes of these objects which must be generated before the class(es)
that contains the aggregated objects.

e In the case where the generation of instances of an exported class come from two or
more global classes (join operation), the program shows the same exported class

name for these global classes.

4.9. Summary

In this chapter I described my implementation plan used to perform database

integration. I discussed each task of this plan. The first task is to update the metadata. I

81

created a system tool to do this. For the second task (integrate schema code) no specific
tool was designed since the code must be directly modified using the specific OO-DBMS
definition language and any specific case of schema evolution must be written in the
specific OO-DBMS manipulation language. Also, no specific tool was designed for the
third task (integrate data) since it needs specific programs in order to perform data
integration. Finally, for the fourth task (generating User’s Views) I designed a tool to
show the IA how to construct a specific view. In the next chapter, I integrate two
simulation system scenarios into the global schema to validate this prototype and the

integration methodology.

82

5. Validation of the Methodology

5.1. Introduction

Two simulation systems are used to validate my methodology for database
integration: EADSIM and Suppressor, both described in Chapter 2. All steps necessary
for integration, described in Chapter 4, are applied in both systems’ integration. Also, all
specific programs for data and schema integration and User’s View generation are written
for each one of the systems. The scope for integration is limited to a subset of the
respective systems to allow a demonstration of the new methodology within the available
time limits. This definition is focused on basic elements of the simulation system’s
scenario. The data used to demonstrate the validation is fictitious. In Section 5.2 I
describe the EADSIM scenario integration and in Section 5.3 I describe the Suppressor
scenario integration. In Section 5.4 I examine if the data examples were successfully

inserted in the global database.

5.2. Integrating EADSIM
The following sub-sections of this section describe all the steps used to integrate

the EADSIM Scenario Database (OO-DBMS) into the global database.

5.2.1. Scope for integration
Part of the EADSIM Scenario Database schema was selected to demonstrate the
integration. In Figure 17 the system Object Model is shown. A system aggregates basic

elements, as well as other systems.

83

NuclearResponse
DetectionSusceptibility

W]

RCS IRSignature
Weapon Tanker

Asset RulerSet SyStem —
Sensor Jammer

CommunicationDevice

Airframe
Ground Aircraft Missile
. . Flight
Airplane Helicopter Section
FlightMode LiftForceTable

ThrustindDragTable
Non-ThrustingDragTable
IRSignature RCS

Figure 17: EADSIM Object Model

In the system scope, three basic elements were chosen to be implemented in the
global schema example: Airplane, Helicopter and Missile (the Missile aggregates are not

in the scope). The scope for implementation is shown in Figure 18.

Airframe
Aircraft Missile
. . Flight
Airplane Helicopter Section

Figure 18: EADSIM Object Model Scope for Implementation

84

5.2.2. Definition of the exported schema

For each class shown in Figure 17, I created the implementation code using the
Object-Store schema definition language. According to Section 4.7, the naming rule must
be applied to allow view generation. All schema components have EAD in the three first
characters of their names.

Also, only the lower level classes of the hierarchy (Airplane, Helicopter and
Missile) were implemented as concrete classes. The body codes of the EADSIM exported
classes’ schema are shown in Appendix B, Section 1. Below I present the header code of

the classes’ schema.

Class EAD_Airframe

EAD Airframe header

class EAD Airframe
{
public:
// Get Methods
char* EAD Get Airframe ID() {return EAD Airframe ID;}

// Set Methods
void EAD Set Airframe ID(char* ID) {strcpy(EAD Airframe ID, ID);}

// Constructor and Destructor Methods
EAD_Airframe (char* Airframe ID) ;
~EAD Airframe () ;

static os_typespec* get os_ typespec();

protected:
char EAD Airframe ID[31];
}i

Class EAD_Aircraft

EAD Aircraft header

class EAD Aircraft : EAD_Airframe
public:
// Get Method calls parent
char* EAD Get Aircraft ID() {return EAD Airframe::EAD Get Airframe ID();}

85

// Get Methods

int EAD Get Aircraft NonAerodynamic () {return EAD Aircraft NonAerodynamic;}

int EAD Get Aircraft MAXSpeed() {return EAD Aircraft MAXSpeed;}

int EAD Get Aircraft MINSpeed() {return EAD Aircraft MINSpeed;}

float EAD Get Aircraft MAXG() {return EAD Aircraft MAXG;}

int EAD Get Aircraft EmptyWeight () {return EAD Aircraft EmptyWeight;}

int EAD Get Aircraft FuelWeight () {return EAD Aircraft FuelWeight;}

int EAD Get Aircraft RTBFuelBingoLimit () {return EAD Aircraft RTBFuelBingoLimit; }

int EAD Get Aircraft AirRefuelBingoLimit () {return
EAD Aircraft AirRefuelBingoLimit;}
int EAD Get Aircraft MaxFuelReceivingRate() {return
EAD Aircraft MaxFuelReceivingRate;}
float EAD Get Aircraft LookAheadInterval() {return EAD Aircraft LookAheadInterval;}
float EAD Get Aircraft MultiplicationFactor() {return
EAD Aircraft MultiplicationFactor;}
int EAD Get Aircraft TerrainSamples() {return EAD Aircraft TerrainSamples;}
int EAD Get Aircraft FeedbackControlGain() {return
EAD Aircraft FeedbackControlGain;}
int EAD Get Aircraft MAXClimbAngle () {return EAD Aircraft MAXClimbAngle;}

// Set Methods from the parent
void EAD Set Aircraft ID(char* ID) {EAD Airframe::EAD Set Airframe ID(ID);}

// Set Methods
void EAD Set Aircraft NonAerodynamic (int NonAerodynamic)
{EAD Aircraft NonAerodynamic = NonAerodynamic;}
void EAD Set Aircraft MAXSpeed (int MAXSpeed) {EAD Aircraft MAXSpeed = MAXSpeed; }
void EAD Set Aircraft MINSpeed (int MINSpeed) {EAD Aircraft MINSpeed = MINSpeed;}
void EAD Set Aircraft MAXG(float MAXG) {EAD Aircraft MAXG = MAXG;}
void EAD Set Aircraft EmptyWeight (int EmptyWeight) {EAD Aircraft EmptyWeight =
EmptyWeight; }
void EAD Set Aircraft FuelWeight (int FuelWeight) {EAD Aircraft FuelWeight =
FuelWeight;}
void EAD Set Aircraft RTBFuelBingoLimit (int RTBFuelBingoLimit)
{EAD Aircraft RTBFuelBingoLimit = RTBFuelBingoLimit;}
void EAD Set Aircraft AirRefuelBingoLimit (int AirRefuelBingoLimit)
{EAD Aircraft AirRefuelBingoLimit = AirRefuelBingoLimit; }
void EAD Set Aircraft MaxFuelReceivingRate (int MaxFuelReceivingRate)
{EAD Aircraft MaxFuelReceivingRate = MaxFuelReceivingRate;}
void EAD Set Aircraft LookAheadInterval (float LookAheadInterval)
{EAD Aircraft LookAheadInterval = LookAheadInterval;}
void EAD Set Aircraft MultiplicationFactor (float MultiplicationFactor)
{EAD Aircraft MultiplicationFactor = MultiplicationFactor;}
void EAD Set Aircraft TerrainSamples (int TerrainSamples)
{EAD Aircraft TerrainSamples = TerrainSamples;}
void EAD Set Aircraft FeedbackControlGain(int FeedbackControlGain)
{EAD Aircraft FeedbackControlGain = FeedbackControlGain; }
void EAD Set Aircraft MAXClimbAngle (int MAXClimbAngle) {EAD Aircraft MAXClimbAngle =
MAXClimbAngle; }

// Constructor and Destructor Methods

EAD Aircraft (char* Airframe ID, int NonAerodynamic, int MAXSpeed, int MINSpeed,
float MAXG, int EmptyWeight, int FuelWeight, int RTBFuelBingoLimit, int
AirRefuelBingoLimit, int MaxFuelReceivingRate, float LookAheadInterval, float
MultiplicationFactor, int TerrainSamples, int FeedbackControlGain, int MAXClimbAngle) ;

~EAD Aircraft();

static os_typespec* get_os_typespec() ;

protected:
int EAD Aircraft NonAerodynamic;
int EAD Aircraft MAXSpeed;
int EAD Aircraft MINSpeed;
float EAD Aircraft MAXG;
int EAD Aircraft EmptyWeight;
int EAD Aircraft_ FuelWeight;
int EAD Aircraft RTBFuelBingoLimit;
int EAD Aircraft AirRefuelBingoLimit;
int EAD Aircraft MaxFuelReceivingRate;

86

float EAD Aircraft LookAheadInterval;
float EAD Aircraft MultiplicationFactor;

int EAD Aircraft TerrainSamples;
int EAD Aircraft FeedbackControlGain;
int EAD Aircraft MAXClimbAngle;

Class EAD_Airplane

EAD Airplane header

class EAD Airplane : EAD_Aircraft
{
public:
// Get Methods call parent
char* EAD Get Airplane ID() {return EAD Aircraft::EAD Get Aircraft ID();}
int EAD Get Airplane NonAerodynamic () {return
EAD Aircraft::EAD Get Aircraft NonAerodynamic () ;}
int EAD Get Airplane MAXSpeed() {return EAD Aircraft::EAD Get Aircraft MAXSpeed();}
int EAD Get Airplane MINSpeed() {return EAD Aircraft::EAD Get Aircraft MINSpeed();}
float EAD Get Airplane MAXG() {return EAD Aircraft::EAD Get Aircraft MAXG();}
int EAD Get Airplane EmptyWeight() {return
EAD Aircraft::EAD Get Aircraft EmptyWeight () ;}
int EAD Get Airplane FuelWeight () {return
EAD Aircraft::EAD Get Aircraft FuelWeight () ;}
int EAD Get Airplane RTBFuelBingoLimit () {return
EAD Aircraft::EAD Get Aircraft RTBFuelBingoLimit () ;}
int EAD Get Airplane AirRefuelBingoLimit () {return
EAD Aircraft::EAD Get Aircraft AirRefuelBingoLimit () ;}
int EAD Get Airplane MaxFuelReceivingRate() {return
EAD Aircraft::EAD Get Aircraft MaxFuelReceivingRate();}
float EAD Get Airplane LookAheadInterval() {return
EAD Aircraft::EAD Get Aircraft LookAheadInterval();}
float EAD Get Airplane MultiplicationFactor() {return
EAD Aircraft::EAD Get Aircraft MultiplicationFactor();}
int EAD Get Airplane TerrainSamples() {return
EAD Aircraft::EAD Get Aircraft TerrainSamples();}
int EAD Get Airplane FeedbackControlGain() {return
EAD Aircraft::EAD Get Aircraft FeedbackControlGain() ;}
int EAD Get Airplane MAXClimbAngle () {return
EAD Aircraft::EAD Get Aircraft MAXClimbAngle () ;}

// Get Methods

int EAD Get Airplane ABSpeed() {return EAD Airplane ABSpeed;}

int EAD Get Airplane MAXThrust () {return EAD Airplane MAXThrust;}

float EAD Get Airplane WingArea() {return EAD Airplane WingArea;}

float EAD Get Airplane WingSpan() {return EAD Airplane WingSpan;}

int EAD Get Airplane CruiseAltMSL() {return EAD Airplane CruiseAltMSL;}
int EAD Get Airplane CruiseSpeed() {return EAD Airplane CruiseSpeed;}
int EAD Get Airplane FuelFlow() {return EAD Airplane FuelFlow; }

float EAD Get Airplane TSFC() {return EAD Airplane TSFC;}

int EAD Get Airplane MAXSpeedCruiseAlt () {return EAD Airplane MAXSpeedCruiseAlt;}
float EAD Get Airplane CDO() {return EAD Airplane CDO;}

// Set Methods from the parent
void EAD Set Airplane ID(char* ID) {EAD Aircraft::EAD Set Aircraft ID(ID);}
void EAD Set Airplane NonAerodynamic (int NonAerodynamic)
{EAD Aircraft::EAD Set Aircraft NonAerodynamic (NonAerodynamic) ;}
void EAD Set Airplane MAXSpeed (int MAXSpeed)
{EAD Aircraft::EAD Set Aircraft MAXSpeed (MAXSpeed) ;}
void EAD Set Airplane MINSpeed(int MINSpeed)
{EAD Aircraft::EAD Set Aircraft MINSpeed (MINSpeed) ;}
void EAD Set Airplane MAXG(float MAXG) {EAD Aircraft::EAD Set Aircraft MAXG (MAXG) ; }
void EAD Set Airplane EmptyWeight (int EmptyWeight)
{EAD Aircraft::EAD Set Aircraft EmptyWeight (EmptyWeight) ;}

87

void EAD Set Airplane FuelWeight (int FuelWeight)
{EAD Aircraft::EAD Set Aircraft FuelWeight (FuelWeight) ;}
void EAD Set Airplane RTBFuelBingoLimit (int RTBFuelBingoLimit)
{EAD Aircraft::EAD Set Aircraft RTBFuelBingoLimit (RTBFuelBingoLimit) ;}
void EAD Set Airplane AirRefuelBingoLimit (int AirRefuelBingoLimit)
{EAD Aircraft::EAD Set Aircraft AirRefuelBingoLimit (AirRefuelBingoLimit) ;}
void EAD Set Airplane MaxFuelReceivingRate (int MaxFuelReceivingRate)
{EAD Aircraft::EAD Set Aircraft MaxFuelReceivingRate (MaxFuelReceivingRate) ;}
void EAD Set Airplane LookAheadInterval (float LookAheadInterval)
{EAD Aircraft::EAD Set Aircraft LookAheadInterval (LookAheadInterval);}
void EAD Set Airplane MultiplicationFactor (float MultiplicationFactor)
{EAD Aircraft::EAD Set Aircraft MultiplicationFactor (MultiplicationFactor) ;}
void EAD Set Airplane TerrainSamples (int TerrainSamples)
{EAD Aircraft::EAD Set Aircraft TerrainSamples (TerrainSamples) ;}
void EAD Set Airplane FeedbackControlGain(int FeedbackControlGain)
{EAD Aircraft::EAD Set Aircraft FeedbackControlGain (FeedbackControlGain) ;}
void EAD Set Airplane MAXClimbAngle (int MAXClimbAngle)
{EAD Aircraft::EAD Set Aircraft MAXClimbAngle (MAXClimbAngle) ;}

// Set Methods
void EAD Set Airplane ABSpeed(int ABSpeed) {EAD Airplane ABSpeed = ABSpeed;}
void EAD Set Airplane MAXThrust (int MAXThrust) {EAD Airplane MAXThrust = MAXThrust;}
void EAD Set Airplane WingArea(float WingArea) {EAD Airplane WingArea = WingArea;}
void EAD Set Airplane WingSpan(float WingSpan) {EAD Airplane WingSpan = WingSpan;}
void EAD Set Airplane CruiseAltMSL(int CruiseAltMSL) {EAD Airplane CruiseAltMSL =
CruiseAltMSL; }
void EAD Set Airplane CruiseSpeed (int CruiseSpeed) {EAD Airplane CruiseSpeed =
CruiseSpeed; }
void EAD Set Airplane FuelFlow(int FuelFlow) {EAD Airplane FuelFlow = FuelFlow; }
void EAD Set Airplane TSFC(float TSFC) {EAD Airplane TSFC = TSFC;}
void EAD Set Airplane MAXSpeedCruiseAlt (int MAXSpeedCruiseAlt)
{EAD Airplane MAXSpeedCruiseAlt = MAXSpeedCruiseAlt;}
void EAD Set Airplane CDO(float CD0) {EAD Airplane CDO = CDO;}

// Constructor and Destructor Methods

EAD Airplane(char* Airframe ID, int NonAerodynamic, int MAXSpeed, int MINSpeed,
float MAXG, int EmptyWeight, int FuelWeight, int RTBFuelBingoLimit, int
AirRefuelBingoLimit, int MaxFuelReceivingRate, float LookAheadInterval, float
MultiplicationFactor, int TerrainSamples, int FeedbackControlGain, int MAXClimbAngle, int
ABSpeed, int MAXThrust, float WingArea, float WingSpan, int CruiseAltMSL, int
CruiseSpeed, int FuelFlow, float TSFC, int MAXSpeedCruiseAlt, float CDO) ;

~EAD Airplane () ;

static os_typespec* get os_ typespec() ;

private:
int EAD Airplane ABSpeed;
int EAD Airplane MAXThrust;
float EAD Airplane WingArea;
float EAD_Airplane WingSpan;
int EAD Airplane CruiseAltMSL;
int EAD Airplane CruiseSpeed;
int EAD Airplane FuelFlow;
float EAD_Airplane_ TSFC;
int EAD Airplane MAXSpeedCruiseAlt;
float EAD Airplane CDO;

Class EAD Helicopter

EAD Helicopter header

class EAD Helicopter : EAD Aircraft

{

public:

88

// Get Methods call parent
char* EAD Get Helicopter ID() {return EAD Aircraft::EAD Get Aircraft ID();}

int EAD Get Helicopter NonAerodynamic() {return
EAD Aircraft::EAD Get Aircraft NonAerodynamic () ;}
int EAD Get Helicopter MAXSpeed() {return
EAD Aircraft::EAD Get Aircraft MAXSpeed () ;}
int EAD Get Helicopter MINSpeed() {return
EAD Aircraft::EAD Get Aircraft MINSpeed() ;}
float EAD Get Helicopter MAXG() {return EAD Aircraft::EAD Get Aircraft MAXG();}
int EAD Get Helicopter EmptyWeight () {return
EAD Aircraft::EAD Get Aircraft EmptyWeight () ;}
int EAD Get Helicopter FuelWeight() {return
EAD Aircraft::EAD Get Aircraft FuelWeight () ;}
int EAD Get Helicopter RTBFuelBingoLimit () {return
EAD Aircraft::EAD Get Aircraft RTBFuelBingoLimit () ;}
int EAD Get Helicopter AirRefuelBingoLimit () {return
EAD Aircraft::EAD Get Aircraft AirRefuelBingoLimit () ;}
int EAD Get Helicopter MaxFuelReceivingRate() {return
EAD Aircraft::EAD Get Aircraft MaxFuelReceivingRate();}
float EAD Get Helicopter LookAheadInterval() {return
EAD Aircraft::EAD Get Aircraft LookAheadInterval();}
float EAD Get Helicopter MultiplicationFactor() {return
EAD Aircraft::EAD Get Aircraft MultiplicationFactor();}
int EAD Get Helicopter TerrainSamples() {return
EAD Aircraft::EAD Get Aircraft TerrainSamples();}
int EAD Get Helicopter FeedbackControlGain() {return
EAD Aircraft::EAD Get Aircraft FeedbackControlGain();}
int EAD Get Helicopter MAXClimbAngle() {return
EAD Aircraft::EAD Get Aircraft MAXClimbAngle () ;}

// Get Methods

float EAD Get Helicopter Power () {return EAD Helicopter Power; }

float EAD Get Helicopter PSFC() {return EAD Helicopter PSFC;}

float EAD Get Helicopter DecelarationG() {return EAD Helicopter DecelarationG;}
int EAD Get Helicopter Blades() {return EAD Helicopter Blades;}

float EAD Get Helicopter BladeRadius() {return EAD Helicopter BladeRadius;}
float EAD Get Helicopter BladeChord() {return EAD Helicopter BladeChord;}
float EAD Get Helicopter BladeCl() {return EAD Helicopter BladeCl;}

float EAD Get Helicopter BladeCDO() {return EAD Helicopter BladeCDO;}

float EAD Get Helicopter TipVelocity() {return EAD Helicopter TipVelocity;}
float EAD Get Helicopter FuselageArea() {return EAD Helicopter FuselageArea;}
float EAD Get Helicopter FuselageCdO() {return EAD Helicopter FuselageCdo;}

// Set Methods from the parent
void EAD Set Helicopter ID(char* ID) {EAD Aircraft::EAD Set Aircraft ID(ID);}
void EAD Set Helicopter NonAerodynamic (int NonAerodynamic)
{EAD Aircraft::EAD Set Aircraft NonAerodynamic (NonAerodynamic) ;}
void EAD Set Helicopter MAXSpeed(int MAXSpeed)
{EAD Aircraft::EAD Set Aircraft MAXSpeed (MAXSpeed) ;}
void EAD_ Set Helicopter MINSpeed (int MINSpeed)
{EAD Aircraft::EAD Set Aircraft MINSpeed (MINSpeed) ;}
void EAD Set Helicopter MAXG(float MAXG)
{EAD Aircraft::EAD Set Aircraft MAXG (MAXG);}
void EAD Set Helicopter EmptyWeight (int EmptyWeight)
{EAD Aircraft::EAD Set Aircraft EmptyWeight (EmptyWeight) ;}
void EAD Set Helicopter FuelWeight (int FuelWeight)
{EAD Aircraft::EAD Set Aircraft FuelWeight (FuelWeight) ;}
void EAD Set Helicopter RTBFuelBingoLimit (int RTBFuelBingoLimit)
{EAD Aircraft::EAD Set Aircraft RTBFuelBingoLimit (RTBFuelBingoLimit) ;}
void EAD Set Helicopter AirRefuelBingoLimit (int AirRefuelBingoLimit)
{EAD Aircraft::EAD Set Aircraft AirRefuelBingoLimit (AirRefuelBingoLimit) ;}
void EAD Set Helicopter MaxFuelReceivingRate (int MaxFuelReceivingRate)
{EAD Aircraft::EAD Set Aircraft MaxFuelReceivingRate (MaxFuelReceivingRate) ;}
void EAD Set Helicopter LookAheadInterval (float LookAheadInterval)
{EAD Aircraft::EAD Set Aircraft LookAheadInterval (LookAheadInterval);}
void EAD Set Helicopter MultiplicationFactor (float MultiplicationFactor)
{EAD Aircraft::EAD Set Aircraft MultiplicationFactor (MultiplicationFactor) ;}
void EAD Set Helicopter TerrainSamples (int TerrainSamples)
{EAD Aircraft::EAD Set Aircraft TerrainSamples (TerrainSamples) ;}
void EAD_ Set Helicopter FeedbackControlGain(int FeedbackControlGain)
{EAD Aircraft::EAD Set Aircraft FeedbackControlGain (FeedbackControlGain) ;}

&9

void EAD Set Helicopter MAXClimbAngle (int MAXClimbAngle)
{EAD Aircraft::EAD Set Aircraft MAXClimbAngle (MAXClimbAngle) ;}

// Set Methods

void EAD Set Helicopter Power (float Power) {EAD Helicopter Power = Power;}

void EAD Set Helicopter PSFC(float PSFC) {EAD Helicopter PSFC = PSFC;}

void EAD Set Helicopter DecelarationG(float DecelarationG)
{EAD Helicopter DecelarationG = DecelarationG;}

void EAD Set Helicopter Blades (int Blades) {EAD Helicopter Blades = Blades;}

void EAD Set Helicopter BladeRadius(float BladeRadius) {EAD Helicopter BladeRadius
BladeRadius; }

void EAD Set Helicopter BladeChord(float BladeChord) {EAD Helicopter BladeChord =
BladeChord; }

void EAD Set Helicopter BladeCl(float BladeCl) {EAD Helicopter BladeCl = BladeCl;}

void EAD Set Helicopter BladeCDO (float BladeCDO) {EAD Helicopter BladeCD0O =
BladeCDO; }

void EAD Set Helicopter TipVelocity(float TipVelocity) {EAD Helicopter TipVelocity
TipVelocity;}

void EAD Set Helicopter FuselageArea (float FuselageArea)
{EAD Helicopter FuselageArea = FuselageArea;}

void EAD Set Helicopter FuselageCdO(float FuselageCd0) {EAD Helicopter FuselageCdo
FuselageCdo; }

// Constructor and Destructor Methods

EAD Helicopter (char* Airframe ID, int NonAerodynamic, int MAXSpeed, int MINSpeed,
float MAXG, int EmptyWeight, int FuelWeight, int RTBFuelBingoLimit, int
AirRefuelBingoLimit, int MaxFuelReceivingRate, float LookAheadInterval, float
MultiplicationFactor, int TerrainSamples, int FeedbackControlGain, int MAXClimbAngle,
float Power, float PSFC, float DecelarationG, int Blades, float BladeRadius, float
BladeChord, float BladeCl, float BladeCDO, float TipVelocity, float FuselageArea, float
FuselageCdo) ;

~EAD Helicopter() ;

static os_typespec* get_os_typespec();

private:
float EAD_Helicopter Power;
float EAD Helicopter PSFC;
float EAD Helicopter DecelarationG;
int EAD Helicopter Blades;
float EAD_Helicopter BladeRadius;
float EAD Helicopter BladeChord;
float EAD Helicopter BladeCl;
float EAD Helicopter BladeCDO;
float EAD_Helicopter TipVelocity;
float EAD Helicopter FuselageArea;
float EAD Helicopter FuselageCdo;

Class EAD Missile

EAD Missile header

class EAD Missile : EAD Airframe
public:
// Get Methods call parent
char* EAD Get Missile ID() {return EAD Airframe::EAD Get Airframe ID();}

// Get Methods
float EAD Get Missile InitialVelocity() {return EAD Missile InitialVelocity;}
float EAD Get Missile LaunchRailLenght () {return EAD Missile LaunchRailLenght;}
float EAD Get Missile LaunchElevationAngle() {return

EAD Missile LaunchElevationAngle;}

90

float EAD Get Missile MAXDivertVelocity() {return EAD Missile MAXDivertVelocity;}
float EAD Get Missile MaxDivertLateralAcceleration() {return

EAD Missile MaxDivertLateralAcceleration;}
os_Set<EAD FlightSection*> EAD Get Missile FlightSections() {return
EAD Missile FlightSections;}

// Set Method from the parent
void EAD Set Missile ID(char* ID) {EAD Airframe::EAD Set Airframe ID(ID);}

// Set Methods

void EAD Set Missile InitialVelocity(float InitialVelocity)
{EAD Missile InitialVelocity = InitialVelocity;}

void EAD Set Missile LaunchRailLenght (float LaunchRailLenght)
{EAD Missile LaunchRaillenght = LaunchRailLenght; }

void EAD Set Missile LaunchElevationAngle (float LaunchElevationAngle)
{EAD Missile LaunchElevationAngle = LaunchElevationAngle;}

void EAD Set Missile MAXDivertVelocity (float MAXDivertVelocity)
{EAD Missile MAXDivertVelocity = MAXDivertVelocity;}

void EAD Set Missile MaxDivertLateralAcceleration (float
MaxDivertLateralAcceleration) {EAD Missile MaxDivertLateralAcceleration =
MaxDivertLateralAcceleration;}

void EAD Set Missile FlightSection(EAD FlightSection* FlighSection) ;

// Constructor and Destructor Methods

EAD Missile(char* Airframe ID, float InitialVelocity, float LaunchRailLenght, float
LaunchElevationAngle, float MAXDivertVelocity, float MaxDivertLateralAcceleration) ;

~EAD Missile();

static os_typespec* get_os_typespec() ;

private:
float EAD Missile InitialVelocity;
float EAD_Missile LaunchRailLenght;
float EAD Missile LaunchElevationAngle;
float EAD Missile MAXDivertVelocity;
float EAD Missile MaxDivertLateralAcceleration;
os_Set<EAD FlightSection*> EAD Missile FlightSections;

Class EAD_FlightSection

EAD FlightSection header

class EAD FlightSection
{
public:
// Get Methods
float EAD Get FlightSection EndTime() {return EAD FlightSection EndTime;}
float EAD Get FlightSection MAXG() {return EAD FlightSection MAXG;}
float EAD Get FlightSection SpecificImpulse() {return
EAD FlightSection SpecificImpulse;}
float EAD Get FlightSection NozzleExitArea() {return
EAD FlightSection NozzleExitArea;}
float EAD Get FlightSection ReferenceArea() {return
EAD FlightSection ReferenceArea; }
float EAD Get FlightSection InitialMass() {return EAD FlightSection InitialMass;}
float EAD Get FlightSection MaxAlpha() {return EAD FlightSection MaxAlpha;}
float EAD Get FlightSection ResponseTime() {return EAD FlightSection ResponseTime;}
float EAD Get FlightSection ProNavGuidanceGain() {return
EAD FlightSection ProNavGuidanceGain;}
float EAD Get FlightSection IntegrationTimeStep() {return
EAD FlightSection IntegrationTimeStep;}
float EAD Get FlightSection IRSignature() {return EAD FlightSection IRSignature;}
float EAD Get FlightSection RCS() {return EAD FlightSection RCS;}

91

// Set Methods
void EAD Set FlightSection EndTime (float EndTime) {EAD FlightSection EndTime =
EndTime; }
void EAD Set FlightSection MAXG(float MAXG) {EAD FlightSection MAXG = MAXG;}
void EAD Set FlightSection SpecificImpulse(float SpecificImpulse)
{EAD FlightSection SpecificImpulse = SpecificImpulse;}
void EAD Set FlightSection NozzleExitArea(float NozzleExitArea)
{EAD FlightSection NozzleExitArea = NozzleExitArea;}
void EAD Set FlightSection ReferenceArea(float ReferenceArea)
{EAD FlightSection ReferenceArea = ReferenceArea;}
void EAD Set FlightSection InitialMass(float InitialMass)
{EAD FlightSection InitialMass = InitialMass;}
void EAD Set FlightSection MaxAlpha(float MaxAlpha) {EAD FlightSection MaxAlpha =
MaxAlpha; }
void EAD_Set FlightSection ResponseTime (float ResponseTime)
{EAD FlightSection ResponseTime = ResponseTime;}
void EAD Set FlightSection ProNavGuidanceGain (float ProNavGuidanceGain)
{EAD FlightSection ProNavGuidanceGain = ProNavGuidanceGain; }
void EAD Set FlightSection IntegrationTimeStep (float IntegrationTimeStep)
{EAD FlightSection IntegrationTimeStep = IntegrationTimeStep;}
void EAD Set FlightSection IRSignature(float IRSignature)
{EAD FlightSection IRSignature = IRSignature;}
void EAD Set FlightSection RCS(float RCS) {EAD FlightSection RCS = RCS;}

// Constructor and Destructor Methods

EAD FlightSection(float EndTime, float MAXG, float SpecificImpulse, float
NozzleExitArea, float ReferenceArea, float InitialMass, float MaxAlpha, float
ResponseTime, float ProNavGuidanceGain, float IntegrationTimeStep, float IRSignature,
float RCS);

~EAD FlightSection() ;

static os_typespec* get os_ typespec();

private:
float EAD FlightSection EndTime;
float EAD FlightSection MAXG;
float EAD_FlightSection SpecificImpulse;
float EAD_FlightSection NozzleExitArea;
float EAD FlightSection ReferenceArea;
float EAD FlightSection InitialMass;
float EAD_FlightSection MaxAlpha;
float EAD_FlightSection ResponseTime;
float EAD FlightSection ProNavGuidanceGain;
float EAD FlightSection IntegrationTimeStep;
float EAD_FlightSection IRSignature;
float EAD FlightSection RCS;

5.2.3. Integrating metadata
The Integration Dictionary system was used to insert metadata into the database.

Since the global schema was empty, there was no schema conflict to solve.

5.2.4. Integrating schema
After the metadata of the EADSIM exported schema was integrated into the

global schema, the schema code was also integrated. Since the global schema was empty,

92

the schema code for the global schema was written and the programs to update the
schema structure or to perform data migration from the old schema to the new schema
didn’t need to be written. The global schema object model is the same as shown in Figure
18. The body codes of the global classes’ schema are shown in Appendix C, Section 1.

Below I present the header code of the global classes’ schema.

Airframe

Airframe header

class Airframe

{

public:
// Get Methods
char* Get Airframe ID() {return Airframe ID;}

//Set Methods
void Set Airframe ID(const char* ID) {strcpy(Airframe ID, ID);}

// Show method
void Airframe_ Show(osstream& os) ;

// Constructor and Destructor Methods
Airframe (const char* ID);
~Airframe () ;

static os_typespec* get os_ typespec();

protected:
char Airframe ID[31];

Aircraft
Aircraft header
class Aircraft : Airframe
{
public:
// Get Method call parent
char* Get Aircraft ID() {return Airframe::Get Airframe ID();}

// Get Methods

int Get Aircraft NonAerodynamic() {return Aircraft NonAerodynamic; }

int Get Aircraft MAXSpeed() {return Aircraft MAXSpeed;}

int Get Aircraft MINSpeed() {return Aircraft MINSpeed;}

float Get Aircraft MAXG() {return Aircraft MAXG;}

int Get Aircraft EmptyWeight () {return Aircraft EmptyWeight;}

int Get Aircraft FuelWeight () {return Aircraft FuelWeight;}

int Get Aircraft RTBFuelBingoLimit () {return Aircraft RTBFuelBingoLimit;}

int Get Aircraft AirRefuelBingoLimit () {return Aircraft AirRefuelBingoLimit; }

93

int Get_ Aircraft MaxFuelReceivingRate ()
float Get Aircraft LookAheadInterval ()

float Get Aircraft MultiplicationFactor ()
{return Aircraft TerrainSamples;}

int Get_Aircraft TerrainSamples ()
int Get_Aircraft FeedbackControlGain ()
int Get Aircraft MAXClimbAngle ()

{return Aircraft MaxFuelReceivingRate; }
{return Aircraft LookAheadInterval;}

{return Aircraft MultiplicationFactor; }

{return Aircraft FeedbackControlGain;}

{return Aircraft MAXClimbAngle;}

// Set Methods from the parent
void Set Aircraft ID(char* ID) {Airframe::Set Airframe ID(ID);}
// Set Methods
void Set_ Aircraft NonAerodynamic (int NonAerodynamic)
NonAerodynamic; }

{Aircraft NonAerodynamic

void Set Aircraft MAXSpeed (int MAXSpeed) {Aircraft MAXSpeed = MAXSpeed;}
void Set Aircraft MINSpeed (int MINSpeed) {Aircraft MINSpeed = MINSpeed;}
void Set Aircraft MAXG(float MAXG) {Aircraft MAXG = MAXG;}

EmptyWeight; }

Set Aircraft EmptyWeight (int EmptyWeight) {Aircraft EmptyWeight
FuelWeight; }

Set Aircraft FuelWeight (int FuelWeight) {Aircraft FuelWeight

void Set Aircraft RTBFuelBingoLimit (int RTBFuelBingoLimit)
{Aircraft RTBFuelBingoLimit = RTBFuelBingoLimit;}

void Set_ Aircraft AirRefuelBingoLimit (int AirRefuelBingoLimit)
{Aircraft AirRefuelBingoLimit = AirRefuelBingoLimit; }

void Set Aircraft MaxFuelReceivingRate (int MaxFuelReceivingRate)
{Aircraft MaxFuelReceivingRate MaxFuelReceivingRate; }

void Set Aircraft_ LookAheadInterval (float LookAheadInterval)
{Aircraft LookAheadInterval = LookAheadInterval;}

void Set Aircraft MultiplicationFactor (float MultiplicationFactor)
{Aircraft MultiplicationFactor = MultiplicationFactor;}

void Set_ Aircraft TerrainSamples (int TerrainSamples)
TerrainSamples; }

void Set Aircraft FeedbackControlGain(int FeedbackControlGain)
{Aircraft FeedbackControlGain = FeedbackControlGain; }

void Set Aircraft MAXClimbAngle (int MAXClimbAngle)
MAXClimbAngle; }

void
void

{Aircraft TerrainSamples

{Aircraft MAXClimbAngle

// Constructor and Destructor Methods

Aircraft (char* Airframe ID, int NonAerodynamic,
MAXG, int EmptyWeight, int FuelWeight, int RTBFuelBingoLimit,
int MaxFuelReceivingRate, float LookAheadInterval, float MultiplicationFactor,
TerrainSamples, int FeedbackControlGain, int MAXClimbAngle) ;

~Aircraft () ;

int MAXSpeed, int MINSpeed, float
int AirRefuelBingoLimit,
int

// Show method
void Aircraft Show(osstream& os) ;

static os_typespec* get_os_typespec();
protected:

int Aircraft NonAerodynamic;

int Aircraft MAXSpeed;

int Aircraft MINSpeed;

float Aircraft MAXG;

int Aircraft EmptyWeight;

int Aircraft FuelWeight;

int Aircraft RTBFuelBingoLimit;

int Aircraft AirRefuelBingoLimit;

int Aircraft MaxFuelReceivingRate;

float Aircraft LookAheadInterval;

float Aircraft MultiplicationFactor;

int Aircraft TerrainSamples;

int Aircraft FeedbackControlGain;

int Aircraft MAXClimbAngle;

94

Airplane

Airplane header

class Airplane : Aircraft

{

public:

// Get Methods call parent

char* Get Airplane ID() {return Aircraft::Get Aircraft ID();}

int Get Airplane NonAerodynamic() {return Aircraft::Get Aircraft NonAerodynamic();}
int Get Airplane MAXSpeed() {return Aircraft::Get Aircraft MAXSpeed() ;}

int Get Airplane MINSpeed() {return Aircraft::Get Aircraft MINSpeed() ;}

float Get Airplane MAXG() {return Aircraft::Get Aircraft MAXG();}

int Get Airplane EmptyWeight () {return Aircraft::Get Aircraft EmptyWeight () ;}

int Get Airplane FuelWeight () {return Aircraft::Get Aircraft FuelWeight () ;}

int Get Airplane RTBFuelBingoLimit () {return

Aircraft::Get Aircraft RTBFuelBingoLimit () ;}

int Get Airplane AirRefuelBingoLimit () {return
Aircraft::Get Aircraft AirRefuelBingoLimit();}

int Get Airplane MaxFuelReceivingRate() {return
Aircraft::Get Aircraft MaxFuelReceivingRate();}

float Get Airplane LookAheadInterval() {return

Aircraft::Get Aircraft LookAheadInterval();}

float Get Airplane MultiplicationFactor() {return
Aircraft::Get Aircraft MultiplicationFactor();}

int Get Airplane TerrainSamples() {return Aircraft::Get Aircraft TerrainSamples();}

int Get Airplane FeedbackControlGain() {return

Aircraft:

:Get_Aircraft FeedbackControlGain() ;}

int Get Airplane MAXClimbAngle() {return Aircraft::Get Aircraft MAXClimbAngle() ;}

// Get Methods
int Get Airplane ABSpeed() {return Airplane ABSpeed;}
)

int Get_ Airplane MAXThrust (

{return Airplane MAXThrust;}

float Get Airplane WingArea() {return Airplane WingArea;}

float Get Airplane WingSpan() {return Airplane WingSpan;}

int Get Airplane CruiseAltMSL() {return Airplane CruiseAltMSL;}

int Get Airplane CruiseSpeed() {return Airplane CruiseSpeed;}

int Get Airplane FuelFlow() {return Airplane FuelFlow;}

float Get Airplane TSFC() {return Airplane TSFC;}

int Get Airplane MAXSpeedCruiseAlt () {return Airplane MAXSpeedCruiseAlt;}
float Get Airplane CDO() {return Airplane CDO;}

// Set Methods from the parent

void
void
{pircraft
void

{Aircraft:

void

{pircraft:

void
void

{Aircraft:

void

{pircraft:

void

{Aircraft:

void

{pircraft:

void

{Aircraft:

void

{pircraft:

void

{Aircraft:

void

{pircraft:

void
{Aircraft

Set Airplane ID(char* ID) {Aircraft::Set Aircraft ID(ID);}
Set Airplane NonAerodynamic (int NonAerodynamic)
::Set_Aircraft NonAerodynamic (NonAerodynamic) ;}

Set_Airplane MAXSpeed (int MAXSpeed)

:Set Aircraft MAXSpeed (MAXSpeed) ; }

Set Airplane MINSpeed(int MINSpeed)

:Set Aircraft MINSpeed (MINSpeed) ; }

Set Airplane MAXG (float MAXG) {Aircraft::Set Aircraft MAXG (MAXG) ;}
Set_Airplane EmptyWeight (int EmptyWeight)

:Set_ Aircraft EmptyWeight (EmptyWeight) ;}

Set Airplane FuelWeight (int FuelWeight)

:Set_Aircraft FuelWeight (FuelWeight) ;}

Set_Airplane RTBFuelBingoLimit (int RTBFuelBingoLimit)

:Set Aircraft RTBFuelBingoLimit (RTBFuelBingoLimit) ;}

Set Airplane AirRefuelBingoLimit (int AirRefuelBingoLimit)
:Set Aircraft AirRefuelBingoLimit (AirRefuelBingoLimit) ;}
Set_Airplane MaxFuelReceivingRate (int MaxFuelReceivingRate)
:Set Aircraft MaxFuelReceivingRate (MaxFuelReceivingRate) ; }
Set Airplane LookAheadInterval (float LookAheadInterval)
:Set_Aircraft LookAheadInterval (LookAheadInterval);}
Set_Airplane MultiplicationFactor (float MultiplicationFactor)
:Set Aircraft MultiplicationFactor (MultiplicationFactor) ;}
Set Airplane TerrainSamples (int TerrainSamples)

:Set Aircraft TerrainSamples (TerrainSamples) ;}
Set_Airplane FeedbackControlGain (int FeedbackControlGain)
::Set Aircraft FeedbackControlGain (FeedbackControlGain) ;}

95

void Set Airplane MAXClimbAngle (int MAXClimbAngle)
{Aircraft::Set Aircraft MAXClimbAngle (MAXClimbAngle) ;}

// Set Methods

void Set Airplane ABSpeed(int ABSpeed) {Airplane ABSpeed = ABSpeed;}

void Set Airplane MAXThrust (int MAXThrust) {Airplane MAXThrust = MAXThrust;}

void Set Airplane WingArea (float WingArea) {Airplane WingArea = WingArea;}

void Set Airplane WingSpan (float WingSpan) {Airplane WingSpan = WingSpan;}

void Set Airplane CruiseAltMSL (int CruiseAltMSL) {Airplane CruiseAltMSL =
CruiseAltMSL;}

void Set Airplane CruiseSpeed(int CruiseSpeed) {Airplane CruiseSpeed = CruiseSpeed;}

void Set Airplane FuelFlow(int FuelFlow) {Airplane FuelFlow = FuelFlow;}
void Set Airplane TSFC(float TSFC) {Airplane TSFC = TSFC;}
void Set Airplane MAXSpeedCruiseAlt (int MAXSpeedCruiseAlt)
{Airplane MAXSpeedCruiseAlt = MAXSpeedCruiseAlt;}
void Set Airplane CDO(float CD0) {Airplane CDO = CDO;}

// Show method
void Airplane Show(osstream& os) ;

// Constructor and Destructor Methods
Airplane (char* Airframe ID, int NonAerodynamic, int MAXSpeed, int MINSpeed, float
MAXG, int EmptyWeight, int FuelWeight, int RTBFuelBingoLimit, int AirRefuelBingoLimit,

int MaxFuelReceivingRate, float LookAheadInterval, float MultiplicationFactor, int
TerrainSamples, int FeedbackControlGain, int MAXClimbAngle, int ABSpeed, int MAXThrust,
float WingArea, float WingSpan, int CruiseAltMSL, int CruiseSpeed, int FuelFlow, float
TSFC, int MAXSpeedCruiseAlt, float CDO) ;

~Airplane () ;

static os_typespec* get os_ typespec();

private:
int Airplane ABSpeed;
int Airplane MAXThrust;
float Airplane WingArea;
float Airplane WingSpan;
int Airplane CruiseAltMSL;
int Airplane CruiseSpeed;
int Airplane FuelFlow;
float Airplane TSFC;
int Airplane MAXSpeedCruiseAlt;
float Airplane CDO;

Helicopter

Helicopter header

class Helicopter : Aircraft
{
public:

// Get Methods call parent

char* Get Helicopter ID() {return Aircraft::Get Aircraft ID();}

int Get Helicopter NonAerodynamic () {return
Aircraft::Get Aircraft NonAerodynamic();}

int Get Helicopter MAXSpeed () {return Aircraft::Get Aircraft MAXSpeed();}

int Get Helicopter MINSpeed() {return Aircraft::Get Aircraft MINSpeed();}

float Get Helicopter MAXG() {return Aircraft::Get Aircraft MAXG() ;}

int Get Helicopter EmptyWeight () {return Aircraft::Get Aircraft EmptyWeight () ;}

int Get Helicopter FuelWeight () {return Aircraft::Get Aircraft FuelWeight () ;}

int Get Helicopter RTBFuelBingoLimit () {return
Aircraft::Get Aircraft RTBFuelBingoLimit () ;}

int Get Helicopter AirRefuelBingoLimit () {return
Aircraft::Get Aircraft AirRefuelBingoLimit () ;}

96

int Get Helicopter MaxFuelReceivingRate() {return

Aircraft::Get_Aircraft MaxFuelReceivingRate() ;
float Get Helicopter LookAheadInterval() {return

Aircraft::Get Aircraft LookAheadInterval();}
float Get Helicopter MultiplicationFactor() {return

Aircraft::Get Aircraft MultiplicationFactor();}
int Get Helicopter TerrainSamples() {return
Aircraft::Get Aircraft TerrainSamples();}

int Get Helicopter FeedbackControlGain() {return
Aircraft::Get Aircraft FeedbackControlGain() ;}

int Get Helicopter MAXClimbAngle() {return Aircraft::Get Aircraft MAXClimbAngle();}

// Get Methods

float Get Helicopter Power() {return Helicopter Power;}

float Get Helicopter PSFC() {return Helicopter PSFC;}

float Get Helicopter DecelarationG() {return Helicopter DecelarationG;}
int Get Helicopter Blades() {return Helicopter Blades;}

float Get Helicopter BladeRadius() {return Helicopter BladeRadius;}
float Get Helicopter BladeChord() {return Helicopter BladeChord;}
float Get Helicopter BladeCl() {return Helicopter BladeCl;}

float Get Helicopter BladeCDO() {return Helicopter BladeCDO;}

float Get Helicopter TipVelocity() {return Helicopter TipVelocity;}
float Get Helicopter FuselageArea() {return Helicopter FuselageArea;}
float Get Helicopter FuselageCd0() {return Helicopter FuselageCdo;}

// Set Methods from the parent

void Set Helicopter ID(char* ID) {Aircraft::Set Aircraft ID(ID);}

void Set Helicopter NonAerodynamic (int NonAerodynamic)
{Aircraft::Set Aircraft NonAerodynamic (NonAerodynamic) ;}

void Set Helicopter MAXSpeed (int MAXSpeed)
{Aircraft::Set Aircraft MAXSpeed (MAXSpeed) ;}

void Set Helicopter MINSpeed (int MINSpeed)
{Aircraft::Set Aircraft MINSpeed (MINSpeed) ;}

void Set Helicopter MAXG(float MAXG) {Aircraft::Set Aircraft MAXG (MAXG) ;}

void Set Helicopter EmptyWeight (int EmptyWeight)
{Aircraft::Set Aircraft EmptyWeight (EmptyWeight) ;}

void Set_ Helicopter FuelWeight (int FuelWeight)
{Aircraft::Set Aircraft FuelWeight (FuelWeight) ;}

void Set Helicopter RTBFuelBingoLimit (int RTBFuelBingoLimit)
{Aircraft::Set Aircraft RTBFuelBingoLimit (RTBFuelBingoLimit) ;}

void Set Helicopter AirRefuelBingoLimit (int AirRefuelBingoLimit)
{Aircraft::Set Aircraft AirRefuelBingoLimit (AirRefuelBingoLimit) ;}

void Set Helicopter MaxFuelReceivingRate (int MaxFuelReceivingRate)
{Aircraft::Set Aircraft MaxFuelReceivingRate (MaxFuelReceivingRate) ;}

void Set Helicopter LookAheadInterval (float LookAheadInterval)
{Aircraft::Set Aircraft LookAheadInterval (LookAheadInterval) ;}

void Set Helicopter MultiplicationFactor (float MultiplicationFactor)
{Aircraft::Set Aircraft MultiplicationFactor (MultiplicationFactor) ;}

void Set Helicopter TerrainSamples (int TerrainSamples)
{Aircraft::Set Aircraft TerrainSamples (TerrainSamples) ;}

void Set Helicopter FeedbackControlGain (int FeedbackControlGain)
{Aircraft::Set Aircraft FeedbackControlGain (FeedbackControlGain) ;}

void Set Helicopter MAXClimbAngle (int MAXClimbAngle)
{Aircraft::Set Aircraft MAXClimbAngle (MAXClimbAngle) ;}

// Set Methods
void Set Helicopter Power (float Power) {Helicopter Power = Power; }
void Set Helicopter PSFC(float PSFC) {Helicopter PSFC = PSFC;}

void Set Helicopter DecelarationG(float DecelarationG) {Helicopter DecelarationG =

DecelarationG;}

void Set Helicopter Blades (int Blades) {Helicopter Blades = Blades;}

void Set Helicopter BladeRadius (float BladeRadius) {Helicopter BladeRadius
BladeRadius; }

void Set Helicopter BladeChord (float BladeChord) {Helicopter BladeChord =
BladeChord;}

void Set Helicopter BladeCl (float BladeCl) {Helicopter BladeCl = BladeCl;}

void Set Helicopter BladeCDO(float BladeCDO) {Helicopter BladeCDO = BladeCDO;}

void Set Helicopter TipVelocity(float TipVelocity) {Helicopter TipVelocity
TipVelocity;}

void Set Helicopter FuselageArea (float FuselageArea) {Helicopter FuselageArea =

FuselageArea; }

97

void Set Helicopter FuselageCd0 (float FuselageCd0) {Helicopter FuselageCd0 =
FuselageCdo; }

// Show method
void Helicopter_ Show(osstream& os) ;

// Constructor and Destructor Methods

Helicopter (char* Airframe ID, int NonAerodynamic, int MAXSpeed, int MINSpeed, float
MAXG, int EmptyWeight, int FuelWeight, int RTBFuelBingoLimit, int AirRefuelBingoLimit,
int MaxFuelReceivingRate, float LookAheadInterval, float MultiplicationFactor, int
TerrainSamples, int FeedbackControlGain, int MAXClimbAngle, float Power, float PSFC,
float DecelarationG, int Blades, float BladeRadius, float BladeChord, float BladeCl,
float BladeCDO, float TipVelocity, float FuselageArea, float FuselageCdo) ;

~Helicopter () ;

static os_typespec* get_os_typespec() ;

private:
float Helicopter Power;
float Helicopter PSFC;
float Helicopter DecelarationG;
int Helicopter Blades;
float Helicopter BladeRadius;
float Helicopter BladeChord;
float Helicopter BladeCl;
float Helicopter BladeCDO;
float Helicopter TipVelocity;
float Helicopter FuselageArea;
float Helicopter FuselageCdo;

Missile

Missile header

class Missile : Airframe
{
public:
// Get Method call parent
char* Get Missile ID() {return Airframe::Get Airframe ID();}

// Get Methods

float Get Missile InitialVelocity() {return Missile InitialVelocity;}

float Get Missile LaunchRaillLenght () {return Missile LaunchRaillLenght;}

float Get Missile LaunchElevationAngle() {return Missile LaunchElevationAngle;}

float Get Missile MAXDivertVelocity() {return Missile MAXDivertVelocity;}

float Get Missile MaxDivertLateralAcceleration() {return
Missile_MaxDivertLateralAcceleration;}

os_Set<FlightSection*> Get Missile FlightSections() {return Missile FlightSections;}

// Set Methods from the parent
void Set Missile ID(char* ID) {Airframe::Set Airframe ID(ID);}

// Set Methods

void Set Missile InitialVelocity(float InitialVelocity) {Missile InitialVelocity =
InitialVelocity; }

void Set Missile LaunchRailLenght (float LaunchRailLenght) {Missile LaunchRailLenght
= LaunchRailLenght; }

void Set Missile LaunchElevationAngle (float LaunchElevationAngle)
{Missile LaunchElevationAngle = LaunchElevationAngle;}

void Set_Missile MAXDivertVelocity(float MAXDivertVelocity)
{Missile MAXDivertVelocity = MAXDivertVelocity;}

void Set Missile MaxDivertLateralAcceleration(float MaxDivertLateralAcceleration)
{Missile MaxDivertLateralAcceleration = MaxDivertLateralAcceleration;}

98

void Set Missile FlightSection(FlightSection* FlighSection) ;

// Show method
void Missile Show(osstream& os) ;

// Constructor and Destructor Methods

Missile (char* Airframe ID, float InitialVelocity, float LaunchRailLenght, float
LaunchElevationAngle, float MAXDivertVelocity, float MaxDivertLateralAcceleration) ;

~Missile() ;

static os_typespec* get_os_typespec() ;

private:
float Missile InitialVelocity;
float Missile_ LaunchRailLenght;
float Missile_ LaunchElevationAngle;
float Missile MAXDivertVelocity;
float Missile MaxDivertLateralAcceleration;
os_Set<FlightSection*> Missile FlightSections;

FlightSection

FlightSection header

class FlightSection
{
public:
// Get Methods
float Get FlightSection EndTime() {return FlightSection EndTime;}
float Get FlightSection MAXG() {return FlightSection MAXG;}
float Get FlightSection SpecificImpulse() {return FlightSection SpecificImpulse;}
float Get FlightSection NozzleExitArea() {return FlightSection NozzleExitArea;}
float Get FlightSection ReferenceArea() {return FlightSection ReferenceArea; }
float Get FlightSection InitialMass() {return FlightSection InitialMass;}
float Get FlightSection MaxAlpha() {return FlightSection MaxAlpha;}
float Get FlightSection ResponseTime () {return FlightSection ResponseTime;}
float Get FlightSection ProNavGuidanceGain() {return
FlightSection ProNavGuidanceGain;}
float Get FlightSection IntegrationTimeStep() {return
FlightSection IntegrationTimeStep; }
float Get FlightSection IRSignature() {return FlightSection IRSignature;}
float Get FlightSection RCS() {return FlightSection RCS;}

// Set Methods
void Set FlightSection EndTime (float EndTime) {FlightSection EndTime = EndTime; }
void Set FlightSection MAXG(float MAXG) {FlightSection MAXG = MAXG;}
void Set FlightSection SpecificImpulse (float SpecificImpulse)
{FlightSection SpecificImpulse = SpecificImpulse;}
void Set_FlightSection NozzleExitArea(float NozzleExitArea)
{FlightSection NozzleExitArea = NozzleExitArea;}
void Set FlightSection ReferenceArea(float ReferenceArea)
{FlightSection ReferenceArea = ReferenceArea; }
void Set FlightSection InitialMass(float InitialMass) {FlightSection InitialMass =
InitialMass; }
void Set FlightSection MaxAlpha (float MaxAlpha) {FlightSection MaxAlpha = MaxAlpha;}
void Set FlightSection ResponseTime (float ResponseTime) {FlightSection ResponseTime
= ResponseTime; }
void Set FlightSection ProNavGuidanceGain(float ProNavGuidanceGain)
{FlightSection ProNavGuidanceGain = ProNavGuidanceGain;}
void Set FlightSection IntegrationTimeStep (float IntegrationTimeStep)
{FlightSection IntegrationTimeStep = IntegrationTimeStep;}
void Set FlightSection IRSignature(float IRSignature) {FlightSection IRSignature =
IRSignature; }

99

void Set FlightSection RCS(float RCS) {FlightSection RCS = RCS;}

// Show method
void FlightSection_Show (osstream& os) ;

// Constructor and Destructor Methods

FlightSection(float EndTime, float MAXG, float SpecificImpulse, float
NozzleExitArea, float ReferenceArea, float InitialMass, float MaxAlpha, float
ResponseTime, float ProNavGuidanceGain, float IntegrationTimeStep, float IRSignature,
float RCS);

~FlightSection() ;

static os_typespec* get_ os_typespec();
private:

float FlightSection EndTime;

float FlightSection MAXG;

float FlightSection SpecificImpulse;

float FlightSection NozzleExitArea;

float FlightSection ReferenceArea;

float FlightSection InitialMass;

float FlightSection MaxAlpha;

float FlightSection ResponseTime;

float FlightSection ProNavGuidanceGain;

float FlightSection IntegrationTimeStep;

float FlightSection IRSignature;

float FlightSection RCS;

5.2.5. Integrating data

Data from the exported schema must be merged with the data constant of the
global schema. Since the global schema was empty, there was no data conflict to be
solved. A specific program to convert the data from the exported schema to the global

schema was written manually.

5.2.6. User’s View definition

The User’s View Construct program is used to help the IA with the User’s View
generation. The User’s View translation program for EADSIM was written manually
based on the output generated by the User’s View Construct program listed in Appendix

A, Section 1.

100

5.3. Integrating Suppressor
The following sub-sections of this section describe all the steps used to integrate

the Suppressor Scenario Database (OO-DBMS) into the global database.

5.3.1. Scope for integration

Part of the Suppressor scenario database schema was selected to demonstrate the
integration. In Figure 19 the system Object Model is shown. A Player aggregates one or
more Locations. A Location aggregates one or more Elements. An Element aggregates
one or more Systems. A System aggregates basic resources, which can be Radar, Sensor,

Weapon, Mover, Communication, Jammer etc. Each resource has capabilities.

Player
Location
Element

|

|
— "o
Status
Capability

System

Sensor Mover Weapon
Capability . . Capability
Sensor Airplane Helicopter Weapon
L Capability J
Mover

Figure 19: Suppressor Object Model

101

In order to demonstrate the methodology for database integration, the Mover resource
hierarchy and its aggregations were chosen to be implemented in the global schema

example. The scope for the implementation is shown in Figure 20.

Mover

Airplane Helicopter

L Capability J

Mover

Figure 20: Object Model scope for implementation

5.3.2. Definition of the exported schema

For each class shown in Figure 20, the implementation code was created using the
Object-Store definition language. According to Section 4.7 of Chapter 4, the naming rule
must be applied to allow the User’s View generation. All schema components have SUP
in the three first characters of their names.

Also, only the lower level classes of the hierarchy (MoverAirplane and
MoverHelicopter) were implemented as concrete classes. The body codes of the
Suppressor exported classes’ schema are shown in Appendix B, Section 2. Below I

present the header code of the classes’ schema.

102

SUP_Mover

SUP Mover header

class SUP_Mover
{
public:
// Get Methods
int SUP_Get Mover SystemID() {return SUP Mover SystemID;}
char* SUP_Get Mover Name () {return SUP Mover Name;}
char* SUP_Get Mover Type() {return SUP Mover Type;}

// Set Methods

void SUP_Set Mover SystemID(int SystemID) {SUP Mover SystemID = SystemID;}
void SUP_Set Mover Name (char* Name) {strcpy(SUP Mover Name, Name) ;

void SUP_Set Mover Type (char* MType) {strcpy(SUP Mover Type, MType);}

protected:
// Constructor and Destructor Methods
SUP_Mover (int SystemID, const char* Name) ;
~SUP_Mover () ;

int SUP Mover SystemID;
char SUP_Mover Name [31];
char SUP_Mover Type [51];

SUP MoverAirplane

SUP MoverAirplane header

class SUP_MoverAirplane : SUP_Mover

{

public:
// Constructor and Destructor Methods
SUP_MoverAirplane (int SystemID, const char* MoverName, SUP_CapabilityMover* CapMov) ;
~SUP_MoverAirplane() ;

// Get Methods from parent

int SUP_Get MoverAirplane SystemID() {return SUP Mover::SUP Get Mover SystemID();}

char* SUP_Get MoverAirplane Name () {return SUP Mover::SUP_Get Mover Name();}

char* SUP _Get MoverAirplane Type() {return SUP Mover::SUP _Get Mover Type();}

SUP_CapabilityMover* SUP Get MoverAirplane CapabilityAirplane() {return
SUP_MoverAirplane CapabilityAirplane;}

// Set Methods from parent
void SUP_Set MoverAirplane SystemID(int SystemID)

{SuP Mover::SUP_Set Mover SystemID (SystemID) ;}
void SUP_Set MoverAirplane Name (char* Name) {SUP Mover::SUP_Set Mover Name (Name) ;}
void SUP_Set MoverAirplane Type (char* MType) {SUP Mover::SUP_Set Mover Type (MType) ; }
void SUP_Set MoverAirplane CapabilityAirplane (SUP_CapabilityMover* CapMov)

{SUP MoverAirplane CapabilityAirplane = CapMov;}

static os_typespec* get os_typespec();
private:

SUP_CapabilityMover* SUP_MoverAirplane CapabilityAirplane;

}i

103

SUP_MoverHelicopter

SUP MoverHelicopter header

class SUP_MoverHelicopter : SUP_Mover

{

public:
// Constructor and Destructor Methods
SUP_MoverHelicopter (int SystemID, const char* MoverName, SUP CapabilityMover* CapMov) ;
~SUP_MoverHelicopter () ;

// Get Methods from parent
int SUP_Get MoverHelicopter SystemID() {return SUP Mover::SUP _Get Mover SystemID() ;}
char* SUP_Get MoverHelicopter Name() {return SUP Mover::SUP_Get Mover Name () ;}
char* SUP_Get MoverHelicopter Type() {return SUP Mover::SUP Get Mover Type();}
SUP CapabilityMover* SUP Get MoverHelicopter CapabilityHelicopter() {return
SUP MoverHelicopter CapabilityHelicopter; }

// Set Methods from parent
void SUP_Set MoverHelicopter SystemID(int SystemID)
{SUP Mover::SUP_Set Mover SystemID (SystemID) ;}
void SUP_Set MoverHelicopter Name (char* Name) {SUP Mover::SUP_Set Mover Name (Name) ; }
void SUP_Set MoverHelicopter Type (char* MType) {SUP Mover::SUP Set Mover Type (MType);}
void SUP_Set MoverHelicopter CapabilityHelicopter (SUP_CapabilityMover* CapMov)
{SUP_MoverHelicopter CapabilityHelicopter = CapMov;}

static os_typespec* get_os_typespec() ;
private:

SUP_CapabilityMover* SUP_MoverHelicopter CapabilityHelicopter;

}i

SUP_CapabilityMover

SUP_ CapabilityMover header

class SUP_CapabilityMover

public:
// Get Methods
const char* SUP_Get CapabilityMover Name() {return SUP_CapabilityMover Name;}
const char* SUP_Get CapabilityMover CommitAlt () {return
SUP CapabilityMover CommitAlt;}
const char* SUP_Get CapabilityMover FuelUsage() {return
SUP CapabilityMover FuelUsage;}
const char* SUP_Get CapabilityMover NavErrorData () {return
SUP CapabilityMover NavErrorData;}
float SUP Get CapabilityMover MAXAcceleration() {return
SUP CapabilityMover MAXAcceleration;}
float SUP Get CapabilityMover MINSpeed() {return SUP_CapabilityMover MINSpeed;}
float SUP Get CapabilityMover MAXSpeed() {return SUP CapabilityMover MAXSpeed;}
float SUP Get CapabilityMover MINTurnRadius() {return
SUP CapabilityMover MINTurnRadius;}
float SUP Get CapabilityMover MINAltitude() {return
SUP CapabilityMover MINAltitude;}
float SUP_Get CapabilityMover MAXAltitude() {return
SUP CapabilityMover MAXAltitude;}
float SUP Get CapabilityMover MAXDiveRate () {return
SUP CapabilityMover MAXDiveRate;}
float SUP_Get CapabilityMover MAXClimbRate () {return
SUP CapabilityMover MAXClimbRate;}

104

// Set Methods
void SUP_Set CapabilityMover Name (const char* Name)

{strcpy (SUP_CapabilityMover Name, Name);}

void SUP_Set CapabilityMover CommitAlt (const char* CommitAlt)
{strcpy (SUP_CapabilityMover CommitAlt, CommitAlt);}

void SUP_Set CapabilityMover FuelUsage (const char* FuelUsage)
{strcpy (SUP_CapabilityMover FuelUsage, FuelUsage);}

void SUP_Set CapabilityMover NavErrorData (const char* NavErrorData)
{strcpy (SUP_CapabilityMover NavErrorData, NavErrorData);}

void SUP_Set CapabilityMover MAXAcceleration(float MAXAcceleration)
{SUP_CapabilityMover MAXAcceleration = MAXAcceleration;}

void SUP_Set CapabilityMover MINAltitude (float MINAltitude)
{sup_CapabilityMover MINAltitude = MINAltitude;}

void SUP_Set CapabilityMover MAXAltitude (float MAXAltitude)
{SuP CapabilityMover MAXAltitude = MAXAltitude;}

void SUP_Set CapabilityMover MINTurnRadius (float MINTurnRadius)
{sup_capabilityMover MINTurnRadius = MINTurnRadius;}

void SUP_Set CapabilityMover MINSpeed (float MINSpeed) {SUP CapabilityMover MINSpeed
= MINSpeed;}

void SUP_Set CapabilityMover MAXSpeed (float MAXSpeed) {SUP CapabilityMover MAXSpeed
= MAXSpeed; }

void SUP_Set CapabilityMover MAXDiveRate (float MAXDiveRate)
{SUP CapabilityMover MAXDiveRate = MAXDiveRate;}

void SUP_Set CapabilityMover MAXClimbRate (float MAXClimbRate)
{sup_CapabilityMover MAXClimbRate = MAXClimbRate; }

// Constructor and Destructor Methods

SUP_CapabilityMover (const char* Name, const char* CommitAlt, const char* FuelUsage,
const char* NavErrorData, float MAXAcceleration, float MINAltitude, float MAXAltitude,
float MINTurnRadius, float MINSpeed, float MAXSpeed, float MAXDiveRate, float
MAXClimbRate) ;

~SUP_CapabilityMover () ;

static os_typespec* get_os_typespec();

private:
char SUP_CapabilityMover Name [31];
char SUP_CapabilityMover CommitAlt [31];
char SUP_CapabilityMover FuelUsage[31];
char SUP_CapabilityMover NavErrorDatal[51];
float SUP_CapabilityMover MAXAcceleration;
float SUP_CapabilityMover MINAltitude;
float SUP_CapabilityMover MAXAltitude;
float SUP_CapabilityMover MINTurnRadius;
float SUP_CapabilityMover MINSpeed;
float SUP_CapabilityMover MAXSpeed;
float SUP_CapabilityMover MAXDiveRate;
float SUP_CapabilityMover MAXClimbRate;

5.3.3. Integrating metadata
The exported schema must be compared to the global schema and all schema
conflicts must be solved. This comparison is the first step of the methodology defined in

Chapter 3.

105

Step 1: The classes that belong to the SUP Mover hierarchy were semantically

compared to the global schema. The SUP_Mover classes had no representation in the
global schema but the SUP_MoverCapability has the same semantics as Airplanes and

Helicopters. The schema conflicts detected were the following:

Conflict 1: Missing related classes for SUP Mover, SUP MoverAirplane and

SUP_Mover Helicopter.

Conflict 2: The attribute SUP_Mover Name of class SUP_Mover, defined as string, is

related to the Airframe ID of class Airframe in the global schema.

Conflict 3: SUP_MoverCapability has the following semantically related attributes:

e SUP MoverCapability MAXAccelelation: This attribute is related to
Aircraft MAXG and both have the same representation.

e SUP MoverCapability MINSpeed: This attribute is related to Aircraft MINSpeed,
but they have different representations. In the exported suppressor schema it is
represented by float and in the global schema it is represented by integer.

e SUP MoverCapability MAXSpeed: This attribute is related to Aircraft MAXSpeed,
but they have different representations. In the exported suppressor schema it is
represented by float and in the global schema it is represented by integer.

e SUP MoverCapability MAXClimbRate: This attribute is related to Aircraft MAX
ClimbAngle, but they have different representations. In the exported suppressor schema it

is represented by float and in the global schema it is represented by integer.

106

Conflict 4: The following attributes belong to the class SUP_MoverCapability and don’t
have representation in the semantically related class in the global schema:

e SUP MoverCapability Name

e SUP MoverCapability CommitAlt

e SUP MoverCapability FuelUsage

e SUP MoverCapability NavErrorData

e SUP MoverCapability MINTurnRadius

e SUP MoverCapability MINAltitude

e SUP MoverCapability MAXAltitude

e SUP MoverCapability MAXDiveRate

Conflict 5: All methods of the missing classes are missing and all methods that are

related to the missing attributes are also missing.

Conflict 6: All methods that are related to semantically similar attributes have different

names.

Step 2: The conflicts between MoverCapability and Airplanes/Helicopters need to be

solved. The resolution for the conflicts detected above are shown below:

Resolution for conflict 1: Create the classes Mover, MoverAirplane and
MoverHelicopter related to SUP_Mover, SUP_MoverAirplane and

SUP_MoverHelicopter, respectively.

107

Resolution for conflict 2: The attribute SUP Mover Name, constant of the class
SUP_Mover, is related to Airframe ID of class Airframe in the global schema. Therefore
it will exist in the class Mover. Create new methods Set Mover Name and
Get Mover Name for class Mover. These methods are semantically related to
SUP_Set Mover Name and SUP_Get Mover Name respectively and will manipulate

the Airframe ID attribute value in the class Airframe.

Resolution for conflict 3: Insert the following attribute-aliases:

e SUP MoverCapability MAXAccelelation for attribute Aircraft MAXG

e SUP MoverCapability MINSpeed for attribute Aircraft MINSpeed

e SUP MoverCapability MAXSpeed for attribute Aircraft MAXSpeed

e SUP_ MoverCapability MAXClimbRate for attribute Aircraft MAXClimbAngle

The three latter attributes have different representations than the related attributes in the
global schema. As the float representation is more generic than the integer representation,
the attribute type integer of these three attributes in the global schema needs to be
changed to float. As integer and float data types have automatic transformation in the
Object-Store database, no new method needs to be implemented to perform this

transformation.

Resolution for conflict 4: Create the following attributes in the class Aircraft, since this
class is the parent class of both Airplane and Helicopter classes:
e Aircraft Name to represent SUP_MoverCapability Name

e Aircraft CommitAlt to represent SUP_MoverCapability CommitAlt

108

e Aircraft FuelUsage to represent SUP_MoverCapability FuelUsage

e Aircraft NavErrorData to represent SUP__MoverCapability NavErrorData

e Aircraft MINTurnRadius to represent SUP_MoverCapability MINTurnRadius
e Aircraft MINAltitude to represent SUP__MoverCapability MINAltitude

e Aircraft MAXAlItitude to represent SUP_MoverCapability MAXAItitude

e Aircraft MAXDiveRate to represent SUP_MoverCapability MAXDiveRate

Resolution for conflict 5: Create all missing methods for the newly created classes and

attributes.

Resolution for conflict 6: Insert the method-aliases:

e SUP MoverCapability MAXAccelelation for attribute Aircraft MAXG
e SUP MoverCapability MINSpeed for attribute Aircraft MINSpeed

e SUP_ MoverCapability MAXSpeed for attribute Aircraft MAXSpeed

e SUP MoverCapability MAXClimbRate for attribute Aircraft MAXClimbAngle

Step 3: Apply the resolutions described in the previous step for metadata information

modifying information in the Integration dictionary to reflect the integration. The new

global object model is shown in Figure 21.

109

Mover Airframe

Mover Mover . L
Airplane Helicopter Aircraft Missile
‘ ? | j>1)
. _ Flight
Hel t .
Airplane elicopter Section

Figure 21: Global Object Model after integration

5.3.4. Integrating schema

Step 4: Change the global schema code in order to reflect the Suppressor exported
schema integration.

The body codes of the transformed global classes’ schemas (Aircraft, Airplane and
Helicopter) are shown in Appendix C, Section 2. The header codes of the transformed

global classes’ schemas are shown in the following descriptions:

Aircraft

Aircraft header

class Aircraft : Airframe
{
public:
// Get Method call parent
const char* Get Aircraft ID() {return Airframe::Get Airframe ID();}

// Get Methods

const char* Get Aircraft CapabilityName() {return Aircraft CapabilityName;}
const char* Get Aircraft CommitAlt() {return Aircraft CommitAlt;}

const char* Get Aircraft FuelUsage() {return Aircraft FuelUsage;}

const char* Get Aircraft NavErrorData() {return Aircraft NavErrorData;}

int Get Aircraft NonAerodynamic() {return Aircraft NonAerodynamic; }

float Get Aircraft MAXSpeed() {return Aircraft MAXSpeed;}

float Get Aircraft MINSpeed() {return Aircraft MINSpeed;}

float Get Aircraft MAXG() {return Aircraft MAXG;}

110

int Get Aircraft EmptyWeight () {return Aircraft EmptyWeight;}

int Get Aircraft FuelWeight () {return Aircraft FuelWeight;}

int Get Aircraft RTBFuelBingoLimit () {return Aircraft RTBFuelBingoLimit;}

int Get Aircraft AirRefuelBingoLimit () {return Aircraft AirRefuelBingoLimit; }
int Get Aircraft MaxFuelReceivingRate () {return Aircraft MaxFuelReceivingRate;}
float Get Aircraft LookAheadInterval() {return Aircraft LookAheadInterval;}
float Get Aircraft MultiplicationFactor() {return Aircraft MultiplicationFactor;}
int Get Aircraft TerrainSamples() {return Aircraft TerrainSamples;}

int Get Aircraft FeedbackControlGain() {return Aircraft FeedbackControlGain; }
float Get Aircraft MAXClimbAngle() {return Aircraft MAXClimbAngle;}

float Get Aircraft MINTurnRadius() {return Aircraft MINTurnRadius;}

float Get Aircraft MINAltitude() {return Aircraft MINAltitude;}

float Get Aircraft MAXAltitude() {return Aircraft MAXAltitude;}

float Get Aircraft MAXDiveRate() {return Aircraft MAXDiveRate;}

// Set Methods from the parent
void Set Aircraft ID(const char* ID) {Airframe::Set Airframe ID(ID);}

// Set Methods

void Set Aircraft CapabilityName (const char* CapabilityName)
{strcpy (Aircraft CapabilityName, CapabilityName) ;}

void Set Aircraft CommitAlt (const char* CommitAlt) {strcpy(Aircraft CommitAlt,
CommitAlt) ; }

void Set Aircraft FuelUsage (const char* FuelUsage) {strcpy(Aircraft FuelUsage,
FuelUsage) ; }

void Set_ Aircraft NavErrorData(const char* NavErrorData)
{strcpy (Aircraft NavErrorData, NavErrorData) ;}

void Set Aircraft NonAerodynamic (int NonAerodynamic) {Aircraft NonAerodynamic =
NonAerodynamic; }

void Set Aircraft MAXSpeed (float MAXSpeed) {Aircraft MAXSpeed = MAXSpeed;}

void Set Aircraft MINSpeed (float MINSpeed) {Aircraft MINSpeed = MINSpeed;}

void Set Aircraft MAXG(float MAXG) {Aircraft MAXG = MAXG;}

void Set Aircraft EmptyWeight (int EmptyWeight) {Aircraft EmptyWeight = EmptyWeight;}

void Set Aircraft FuelWeight (int FuelWeight) {Aircraft FuelWeight = FuelWeight;}

void Set_ Aircraft RTBFuelBingoLimit (int RTBFuelBingoLimit)
{Aircraft RTBFuelBingoLimit = RTBFuelBingoLimit;}

void Set Aircraft AirRefuelBingoLimit (int AirRefuelBingoLimit)
{Aircraft AirRefuelBingoLimit = AirRefuelBingoLimit; }

void Set Aircraft_ MaxFuelReceivingRate (int MaxFuelReceivingRate)
{Aircraft MaxFuelReceivingRate = MaxFuelReceivingRate;}

void Set Aircraft LookAheadInterval (float LookAheadInterval)
{Aircraft LookAheadInterval = LookAheadInterval;}

void Set Aircraft MultiplicationFactor (float MultiplicationFactor)
{Aircraft MultiplicationFactor = MultiplicationFactor;}

void Set Aircraft TerrainSamples (int TerrainSamples) {Aircraft TerrainSamples =
TerrainSamples; }

void Set_ Aircraft FeedbackControlGain(int FeedbackControlGain)
{Aircraft FeedbackControlGain = FeedbackControlGain; }

void Set Aircraft MAXClimbAngle (float MAXClimbAngle) {Aircraft MAXClimbAngle =
MAXClimbAngle; }

void Set Aircraft MINTurnRadius (float MINTurnRadius) {Aircraft MINTurnRadius =
MINTurnRadius; }

void Set Aircraft MINAltitude (float MINAltitude) {Aircraft MINAltitude
MINAltitude; }

void Set Aircraft MAXAltitude (float MAXAltitude) {Aircraft MAXAltitude
MAXAltitude;}

void Set Aircraft MAXDiveRate (float MAXDiveRate) {Aircraft MAXDiveRate =
MAXDiveRate; }

// Show method
void Aircraft Show(ostream& os) ;

// Constructor and Destructor Methods

// suppressor

Aircraft (const char* ID, const char* CapabilityName, const char* CommitAlt, const
char* FuelUsage, const char* NavErrorData, float MAXSpeed, float MINSpeed, float MAXG,
float MAXClimbAngle, float MINTurnRadius, float MINAltitude, float MAXAltitude, float
MAXDiveRate) ;

111

// eadsim

Aircraft (const char* ID, int NonAerodynamic, int MAXSpeed, int MINSpeed, float MAXG,
int EmptyWeight, int FuelWeight, int RTBFuelBingoLimit, int AirRefuelBingoLimit, int
MaxFuelReceivingRate, float LookAheadInterval, float MultiplicationFactor, int
TerrainSamples, int FeedbackControlGain, int MAXClimbAngle) ;

//general

Aircraft (const char* ID, const char* CapabilityName, const char* CommitAlt, const
char* FuelUsage, const char* NavErrorData, int NonAerodynamic, float MAXSpeed, float
MINSpeed, float MAXG, int EmptyWeight, int FuelWeight, int RTBFuelBingoLimit, int
AirRefuelBingoLimit, int MaxFuelReceivingRate, float LookAheadInterval, float
MultiplicationFactor, int TerrainSamples, int FeedbackControlGain, float MAXClimbAngle,
float MINTurnRadius, float MINAltitude, float MAXAltitude, float MAXDiveRate) ;

~Aircraft () ;

protected:
char Aircraft CapabilityName[31];
char Aircraft CommitAlt [31];
char Aircraft FuelUsage[31];
char Aircraft NavErrorData[51];
int Aircraft NonAerodynamic;
float Aircraft MAXSpeed;
float Aircraft MINSpeed;
float Aircraft MAXG;
int Aircraft EmptyWeight;
int Aircraft FuelWeight;
int Aircraft RTBFuelBingoLimit;
int Aircraft AirRefuelBingoLimit;
int Aircraft MaxFuelReceivingRate;
float Aircraft LookAheadInterval;
float Aircraft MultiplicationFactor;
int Aircraft TerrainSamples;
int Aircraft FeedbackControlGain;
float Aircraft MAXClimbAngle;
float Aircraft MINTurnRadius;
float Aircraft MINAltitude;
float Aircraft MAXAltitude;
float Aircraft MAXDiveRate;

Airplane

Airplane header

class Airplane : Aircraft

public:

// Get Methods call parent

const char* Get Airplane ID() {return Aircraft::Get Aircraft ID();}

const char* Get Airplane CapabilityName() {return
Aircraft::Get Aircraft CapabilityName();}

const char* Get Airplane CommitAlt() {return Aircraft::Get Aircraft CommitAlt();}

const char* Get Airplane FuelUsage() {return Aircraft::Get Aircraft FuelUsage();}

const char* Get Airplane NavErrorData() {return
Aircraft::Get Aircraft NavErrorData();}

int Get Airplane NonAerodynamic() {return Aircraft::Get Aircraft NonAerodynamic();}

float Get Airplane MAXSpeed () {return Aircraft::Get Aircraft MAXSpeed();}

float Get Airplane MINSpeed() {return Aircraft::Get Aircraft MINSpeed();}

float Get Airplane MAXG() {return Aircraft::Get Aircraft MAXG();}

int Get Airplane EmptyWeight () {return Aircraft::Get Aircraft EmptyWeight () ;}

int Get Airplane FuelWeight () {return Aircraft::Get Aircraft FuelWeight () ;}

int Get Airplane RTBFuelBingoLimit () {return
Aircraft::Get Aircraft RTBFuelBingoLimit () ;}

112

int Get Airplane AirRefuelBingoLimit () {return
i

Aircraft::Get_Aircraft AirRefuelBingoLimit ()
int Get_ Airplane MaxFuelReceivingRate() {return

Aircraft::Get Aircraft MaxFuelReceivingRate();}
float Get Airplane LookAheadInterval() {return
Aircraft::Get Aircraft LookAheadInterval();}
float Get Airplane MultiplicationFactor() {return
Aircraft::Get Aircraft MultiplicationFactor();}
int Get Airplane TerrainSamples() {return Aircraft::Get Aircraft TerrainSamples();}
int Get Airplane FeedbackControlGain() {return
Aircraft::Get Aircraft FeedbackControlGain() ;}
float Get Airplane MAXClimbAngle() {return Aircraft::Get Aircraft MAXClimbAngle () ;
float Get Airplane MINTurnRadius() {return Aircraft::Get Aircraft MINTurnRadius () ;
float Get Airplane MINAltitude() {return Aircraft::Get Aircraft MINAltitude();}
float Get Airplane MAXAltitude() {return Aircraft::Get Aircraft MAXAltitude();}
float Get Airplane MAXDiveRate() {return Aircraft::Get Aircraft MAXDiveRate();}

// Get Methods

int Get Airplane ABSpeed() {return Airplane ABSpeed;}

int Get Airplane MAXThrust() {return Airplane MAXThrust;}

float Get Airplane WingArea() {return Airplane WingArea;}

float Get Airplane WingSpan() {return Airplane WingSpan;}

int Get Airplane CruiseAltMSL() {return Airplane CruiseAltMSL;}
int Get Airplane CruiseSpeed() {return Airplane CruiseSpeed;}
int Get Airplane FuelFlow() {return Airplane FuelFlow;}

float Get Airplane TSFC() {return Airplane TSFC;}

int Get Airplane MAXSpeedCruiseAlt () {return Airplane MAXSpeedCruiseAlt;}
float Get Airplane CDO() {return Airplane CDO;}

// Set Methods from the parent

void Set Airplane ID(const char* ID) {Aircraft::Set Aircraft ID(ID);}

void Set Airplane CapabilityName (const char* CapabilityName)
{Aircraft::Set Aircraft CapabilityName (CapabilityName) ;}

void Set Airplane CommitAlt (const char* CommitAlt)
{Aircraft::Set Aircraft CommitAlt (CommitAlt) ;}

void Set Airplane FuelUsage (const char* FuelUsage)
{Aircraft::Set Aircraft FuelUsage (FuelUsage) ; }

void Set_ Airplane NavErrorData(const char* NavErrorData)
{Aircraft::Set Aircraft NavErrorData (NavErrorData) ;}

void Set Airplane NonAerodynamic (int NonAerodynamic)
{Aircraft::Set Aircraft NonAerodynamic (NonAerodynamic) ;}

void Set Airplane MAXSpeed(float MAXSpeed)
{Aircraft::Set Aircraft MAXSpeed (MAXSpeed) ;}

void Set Airplane MINSpeed (float MINSpeed)
{Aircraft::Set Aircraft MINSpeed (MINSpeed);}

void Set Airplane MAXG(float MAXG) {Aircraft::Set Aircraft MAXG(MAXG) ;}

void Set Airplane EmptyWeight (int EmptyWeight)
{Aircraft::Set Aircraft EmptyWeight (EmptyWeight) ;}

void Set_ Airplane FuelWeight (int FuelWeight)
{Aircraft::Set Aircraft FuelWeight (FuelWeight) ;}

void Set Airplane RTBFuelBingoLimit (int RTBFuelBingoLimit)
{Aircraft::Set Aircraft RTBFuelBingoLimit (RTBFuelBingoLimit) ;}

void Set_ Airplane AirRefuelBingoLimit (int AirRefuelBingoLimit)
{Aircraft::Set Aircraft AirRefuelBingoLimit (AirRefuelBingoLimit) ;}

void Set Airplane MaxFuelReceivingRate (int MaxFuelReceivingRate)
{Aircraft::Set Aircraft MaxFuelReceivingRate (MaxFuelReceivingRate) ;}

void Set Airplane LookAheadInterval (float LookAheadInterval)
{Aircraft::Set Aircraft LookAheadInterval (LookAheadInterval);}

void Set Airplane MultiplicationFactor (float MultiplicationFactor)
{Aircraft::Set Aircraft MultiplicationFactor (MultiplicationFactor) ;}

void Set_ Airplane TerrainSamples (int TerrainSamples)
{Aircraft::Set Aircraft TerrainSamples (TerrainSamples) ;}

void Set Airplane FeedbackControlGain(int FeedbackControlGain)
{Aircraft::Set Aircraft FeedbackControlGain (FeedbackControlGain) ;}

void Set_ Airplane MAXClimbAngle (float MAXClimbAngle)
{Aircraft::Set Aircraft MAXClimbAngle (MAXClimbAngle) ;}

void Set Airplane MINTurnRadius (float MINTurnRadius)
{Aircraft::Set Aircraft MINTurnRadius (MINTurnRadius) ;}

113

void Set Airplane MINAltitude (float MINAltitude)

{Aircraft::Set Aircraft MINAltitude (MINAltitude) ;}
void Set Airplane MAXAltitude (float MAXAltitude)

{Aircraft::Set Aircraft MAXAltitude (MAXAltitude) ;}

void Set Airplane MAXDiveRate (float MAXDiveRate)
{Aircraft::Set Aircraft MAXDiveRate (MAXDiveRate) ;}

// Set Methods
void Set Airplane ABSpeed(int ABSpeed) {Airplane ABSpeed = ABSpeed;}
void Set Airplane MAXThrust (int MAXThrust) {Airplane MAXThrust = MAXThrust;}
void Set Airplane WingArea (float WingArea) {Airplane WingArea = WingArea;}
void Set Airplane WingSpan(float WingSpan) {Airplane WingSpan = WingSpan;}
void Set Airplane CruiseAltMSL (int CruiseAltMSL) {Airplane CruiseAltMSL =
CruiseAltMSL;}
void Set Airplane CruiseSpeed(int CruiseSpeed) {Airplane CruiseSpeed = CruiseSpeed;}
void Set Airplane FuelFlow(int FuelFlow) {Airplane FuelFlow = FuelFlow;}
void Set Airplane TSFC(float TSFC) {Airplane TSFC = TSFC;}
void Set Airplane MAXSpeedCruiseAlt (int MAXSpeedCruiseAlt)
{Airplane MAXSpeedCruiseAlt = MAXSpeedCruiseAlt;}
void Set Airplane CDO(float CD0) {Airplane CDO = CDO;}

// Show method
void Airplane Show(ostream& os) ;

// Constructor and Destructor Methods

// general

Airplane (const char* ID, const char* CapabilityName, const char* CommitAlt, const
char* FuelUsage, const char* NavErrorData, int NonAerodynamic, float MAXSpeed, float
MINSpeed, float MAXG, int EmptyWeight, int FuelWeight, int RTBFuelBingoLimit, int
AirRefuelBingoLimit, int MaxFuelReceivingRate, float LookAheadInterval, float
MultiplicationFactor, int TerrainSamples, int FeedbackControlGain, float MAXClimbAngle,
float MINTurnRadius, float MINAltitude, float MAXAltitude, float MAXDiveRate, int
ABSpeed, int MAXThrust, float WingArea, float WingSpan, int CruiseAltMSL, int
CruiseSpeed, int FuelFlow, float TSFC, int MAXSpeedCruiseAlt, float CDO);

//suppressor

Airplane (const char* ID, const char* CapabilityName, const char* CommitAlt, const
char* FuelUsage, const char* NavErrorData, float MAXSpeed, float MINSpeed, float MAXG,
float MAXClimbAngle, float MINTurnRadius, float MINAltitude, float MAXAltitude, float
MAXDiveRate) ;

//eadsim

Airplane (const char* ID, int NonAerodynamic, int MAXSpeed, int MINSpeed, float MAXG,
int EmptyWeight, int FuelWeight, int RTBFuelBingoLimit, int AirRefuelBingoLimit, int
MaxFuelReceivingRate, float LookAheadInterval, float MultiplicationFactor, int
TerrainSamples, int FeedbackControlGain, int MAXClimbAngle, int ABSpeed, int MAXThrust,

float WingArea, float WingSpan, int CruiseAltMSL, int CruiseSpeed, int FuelFlow, float
TSFC, int MAXSpeedCruiseAlt, float CDO) ;

~Airplane() ;

static os_typespec* get_os_typespec() ;
private:

int Airplane ABSpeed;

int Airplane MAXThrust;

float Airplane WingArea;

float Airplane WingSpan;

int Airplane CruiseAltMSL;

int Airplane_ CruiseSpeed;

int Airplane_ FuelFlow;

float Airplane TSFC;

int Airplane MAXSpeedCruiseAlt;

float Airplane CDO;

114

Helicopter

Helicopter header

class Helicopter : Aircraft
{
public:

// Get Methods call parent

const char* Get Helicopter ID() {return Aircraft::Get Aircraft ID();}

const char* Get Helicopter CapabilityName() {return
Aircraft::Get Aircraft CapabilityName () ;}

const char* Get Helicopter CommitAlt () {return Aircraft::Get Aircraft CommitAlt();}

const char* Get Helicopter FuelUsage() {return Aircraft::Get Aircraft FuelUsage();}

const char* Get Helicopter NavErrorData() {return
Aircraft::Get Aircraft NavErrorData();}

int Get Helicopter NonAerodynamic () {return
Aircraft::Get Aircraft NonAerodynamic();}

float Get Helicopter MAXSpeed() {return Aircraft::Get Aircraft MAXSpeed();}

float Get Helicopter MINSpeed() {return Aircraft::Get Aircraft MINSpeed();}

float Get Helicopter MAXG() {return Aircraft::Get Aircraft MAXG() ;}

int Get Helicopter EmptyWeight () {return Aircraft::Get Aircraft EmptyWeight () ;}

int Get Helicopter FuelWeight () {return Aircraft::Get Aircraft FuelWeight () ;}

int Get_Helicopter_RTBFuelBingoLimit() {return
Aircraft::Get Aircraft RTBFuelBingoLimit () ;}

int Get Helicopter . AerefuelBlngolelt() {return
Aircraft::Get Aircraft AerefuelBlngolelt(),}

int Get Helicopter MaxFuelReceivingRate() {return
Aircraft::Get Aircraft MaxFuelReceivingRate() ;}

float Get Helicopter LookAheadInterval() {return
Aircraft::Get Aircraft LookAheadInterval();}

float Get Helicopter MultiplicationFactor() {return
Aircraft::Get Aircraft MultiplicationFactor();}

int Get Helicopter TerrainSamples() {return
Aircraft::Get Aircraft TerrainSamples();}

int Get Helicopter FeedbackControlGain() {return
Aircraft::Get Aircraft FeedbackControlGain() ;}

float Get_Helicopter_MAXClimbAngle() {return
Aircraft::Get Aircraft MAXClimbAngle();}

float Get Helicopter | MINTurnRadlus() {return
Aircraft::Get Aircraft MINTurnRadius();}

float Get Helicopter MINAltitude() {return Aircraft::Get Aircraft MINAltitude();}

float Get Helicopter MAXAltitude() {return Aircraft::Get Aircraft MAXAltitude() ;}

float Get Helicopter MAXDiveRate() {return Aircraft::Get Aircraft MAXDiveRate() ;}

// Get Method

float Get Helicopter Power() {return Helicopter Power;}

float Get Helicopter PSFC() {return Helicopter PSFC;}

float Get Helicopter DecelarationG() {return Helicopter DecelarationG;}
int Get Helicopter Blades() {return Helicopter Blades;}

float Get Helicopter BladeRadius() {return Helicopter BladeRadius;}
float Get Helicopter BladeChord() {return Helicopter BladeChord;}
float Get Helicopter BladeCl() {return Helicopter BladeCl;}

float Get Helicopter BladeCDO() {return Helicopter BladeCDO;}

float Get Helicopter TipVelocity() {return Helicopter TipVelocity;}
float Get Helicopter FuselageArea() {return Helicopter FuselageArea;}
float Get Helicopter FuselageCd0() {return Helicopter FuselageCdo;}

// Set Methods from the parent

void Set Helicopter ID(const char* ID) {Aircraft::Set Aircraft ID(ID);}

void Set Helicopter CapabilityName (const char* CapabilityName)
{Aircraft::Set Aircraft CapabilityName (CapabilityName) ;}

void Set Helicopter CommitAlt (const char* CommitAlt)
{Aircraft::Set Aircraft CommitAlt (CommitAlt) ;}

void Set Helicopter FuelUsage (const char* FuelUsage)
{Aircraft::Set Aircraft FuelUsage (FuelUsage) ; }

void Set_ Helicopter NavErrorData (const char* NavErrorData)
{Aircraft::Set Aircraft NavErrorData (NavErrorData) ;}

void Set Helicopter NonAerodynamic (int NonAerodynamic)
{Aircraft::Set Aircraft NonAerodynamic (NonAerodynamic) ;}

115

void Set Helicopter MAXSpeed(float MAXSpeed)

{Aircraft::Set Aircraft MAXSpeed (MAXSpeed) ;}
void Set Helicopter MINSpeed(float MINSpeed)

{Aircraft::Set Aircraft MINSpeed (MINSpeed) ;}

void Set Helicopter MAXG(float MAXG) {Aircraft::Set Aircraft MAXG (MAXG) ;}

void Set Helicopter EmptyWeight (int EmptyWeight)
Aircraft::Set Aircraft EmptyWeight (EmptyWeight) ;}

void Set_ Helicopter FuelWeight (int FuelWeight)
{Aircraft::Set Aircraft FuelWeight (FuelWeight) ;}

void Set Helicopter RTBFuelBingoLimit (int RTBFuelBingoLimit)
{Aircraft::Set Aircraft RTBFuelBingoLimit (RTBFuelBingoLimit) ;}

void Set Helicopter AirRefuelBingoLimit (int AirRefuelBingoLimit)
{Aircraft::Set Aircraft AirRefuelBingoLimit (AirRefuelBingoLimit) ;}

void Set Helicopter MaxFuelReceivingRate (int MaxFuelReceivingRate)
{Aircraft::Set Aircraft MaxFuelReceivingRate (MaxFuelReceivingRate) ;}

void Set Helicopter LookAheadInterval (float LookAheadInterval)
{Aircraft::Set Aircraft LookAheadInterval (LookAheadInterval) ;}

void Set Helicopter MultiplicationFactor (float MultiplicationFactor)
{Aircraft::Set Aircraft MultiplicationFactor (MultiplicationFactor) ;}

void Set Helicopter TerrainSamples (int TerrainSamples)
{Aircraft::Set Aircraft TerrainSamples (TerrainSamples) ;}

void Set Helicopter FeedbackControlGain (int FeedbackControlGain)
{Aircraft::Set Aircraft FeedbackControlGain (FeedbackControlGain) ;}

void Set Helicopter MAXClimbAngle (float MAXClimbAngle)
{Aircraft::Set Aircraft MAXClimbAngle (MAXClimbAngle) ;}

void Set Helicopter MINTurnRadius (float MINTurnRadius)
{Aircraft::Set Aircraft MINTurnRadius (MINTurnRadius);}

void Set Helicopter MINAltitude (float MINAltitude)
{Aircraft::Set Aircraft MINAltitude (MINAltitude) ;}

void Set Helicopter MAXAltitude (float MAXAltitude)
{Aircraft::Set Aircraft MAXAltitude (MAXAltitude) ;}

void Set Helicopter MAXDiveRate (float MAXDiveRate)
{Aircraft::Set Aircraft MAXDiveRate (MAXDiveRate) ; }

// Set Methods

void Set Helicopter Power (float Power) {Helicopter Power = Power; }

void Set Helicopter PSFC(float PSFC) {Helicopter PSFC = PSFC;}

void Set Helicopter DecelarationG(float DecelarationG) {Helicopter DecelarationG =
DecelarationG;}

void Set Helicopter Blades (int Blades) {Helicopter Blades = Blades;}

void Set Helicopter BladeRadius(float BladeRadius) {Helicopter BladeRadius =
BladeRadius; }

void Set Helicopter BladeChord (float BladeChord) {Helicopter BladeChord =
BladeChord;}

void Set Helicopter BladeCl (float BladeCl) {Helicopter BladeCl = BladeCl;}

void Set Helicopter BladeCDO(float BladeCD0) {Helicopter BladeCDO = BladeCDO;}

void Set Helicopter TipVelocity(float TipVelocity) {Helicopter TipVelocity =
TipVelocity;}

void Set Helicopter FuselageArea (float FuselageArea) {Helicopter FuselageArea =
FuselageArea; }

void Set Helicopter FuselageCd0 (float FuselageCd0) {Helicopter FuselageCd0 =
FuselageCdo; }

// Constructor and Destructor Methods

// general

Helicopter (const char* ID, const char* CapabilityName, const char* CommitAlt, const
char* FuelUsage, const char* NavErrorData, int NonAerodynamic, float MAXSpeed, float
MINSpeed, float MAXG, int EmptyWeight, int FuelWeight, int RTBFuelBingoLimit, int
AirRefuelBingoLimit, int MaxFuelReceivingRate, float LookAheadInterval, float
MultiplicationFactor, int TerrainSamples, int FeedbackControlGain, float MAXClimbAngle,
float MINTurnRadius, float MINAltitude, float MAXAltitude, float MAXDiveRate, float
Power, float PSFC, float DecelarationG, int Blades, float BladeRadius, float BladeChord,
float BladeCl, float BladeCDO, float TipVelocity, float FuselageArea, float FuselageCdo) ;

// suppressor

Helicopter (const char* ID, const char* CapabilityName, const char* CommitAlt, const
char* FuelUsage, const char* NavErrorData, float MAXSpeed, float MINSpeed, float MAXG,
float MAXClimbAngle, float MINTurnRadius, float MINAltitude, float MAXAltitude, float
MAXDiveRate) ;

116

// eadsim
Helicopter (const char* ID, int NonAerodynamic, int MAXSpeed, int MINSpeed, float

MAXG, int EmptyWeight, int FuelWeight, int RTBFuelBingoLimit, int AirRefuelBingoLimit,
int MaxFuelReceivingRate, float LookAheadInterval, float MultiplicationFactor,

int TerrainSamples, int FeedbackControlGain, int MAXClimbAngle, float Power, float PSFC,
float DecelarationG, int Blades, float BladeRadius, float BladeChord, float BladeC1,
float BladeCDO, float TipVelocity, float FuselageArea, float FuselageCdo) ;

~Helicopter () ;

// Show method
void Helicopter Show(ostream& os) ;

static os_typespec* get os_ typespec();

private:
float Helicopter Power;
float Helicopter PSFC;
float Helicopter DecelarationG;
int Helicopter Blades;
float Helicopter BladeRadius;
float Helicopter BladeChord;
float Helicopter BladeCl;
float Helicopter BladeCDO;
float Helicopter TipVelocity;
float Helicopter FuselageArea;
float Helicopter FuselageCdo;

The header codes of the new global schema classes are as follows:
Mover

Mover header

class Mover
{
public:
// Get Methods

int Get Mover SystemID() {return Mover SystemID;}
const char* Get Mover Type() {return Movernype;}

//Set Methods
void Set Mover SystemID(int SystemID) {Mover SystemID = SystemlD;}
void Set Mover Type (const char* MType) {strcpy(Mover Type, MType);}

// Show method.
void Mover Show(ostream& os) ;

// Constructor and Destructor Methods
Mover (int SystemID) ;
~Mover () ;

protected:
int Mover SystemID;
char Mover Typel[51];

}i

117

MoverAirplane

MoverAirplane header

class MoverAirplane : Mover

{

public:
// Get Methods from parent
int Get MoverAirplane SystemID() {return Mover::Get Mover SystemID() ;}
const char* Get MoverAirplane Type() {return Mover::Get Mover Type();}

// Get Methods
const char* Get MoverAirplane Name () ;
Airplane* Get MoverAirplane CapabilityAirplane() {return CapabilityAirplane;}

// Set_Methods from parent
void Set MoverAirplane SystemID (int SystemID) {Mover::Set Mover SystemID (SystemID) ;}
void Set MoverAirplane Type (const char* MType) {Mover::Set Mover Type (MType) ;}

// Set Methods
void Set MoverAirplane CapabilityAirplane (Airplane* CapAirplane) ;
void Set_ MoverAirplane Name (const char* Name) ;

// Show method
void MoverAirplane Show (ostream& os) ;

// Constructor and Destructor Methods

MoverAirplane (int SystemID, Airplane* CapAirplane) ;
~MoverAirplane () ;

static os_typespec* get_os_typespec() ;
private:

Airplane* CapabilityAirplane;

}i

MoverHelicopter

MoverHelicopter header

class MoverHelicopter : Mover

{

public:

// Get Methods from parent
int Get MoverHelicopter SystemID() {return Mover::Get Mover SystemID();}
const char* Get MoverHelicopter Type() {return Mover::Get Mover Type();}

// Get Methods
Helicopter* Get MoverHelicopter CapabilityHelicopter () {return CapabilityHelicopter;}
const char* Get_MoverHelicopter Name() ;

// Set_Methods from parent
void Set MoverHelicopter SystemID(int SystemID) {Mover::Set Mover SystemID (SystemID);}
void Set MoverHelicopter Type (const char* MType) {Mover::Set Mover Type (MType) ;}

// Set_Methods
void Set_ MoverHelicopter CapabilityHelicopter (Helicopter* CapHelicopter) ;
void Set_MoverHelicopter Name (const char* Name) ;

118

// Show method
void MoverHelicopter Show(ostream& os) ;

// Constructor and Destructor Methods

MoverHelicopter (int SystemID, Helicopter* CapHelicopter) ;
~MoverHelicopter () ;

static os_typespec* get_os_typespec() ;
private:

Helicopter* CapabilityHelicopter;

}i

Step 4 (continuation): Apply the resolutions described in the previous step for the

schema code. Some schema transformations of old global schema to new global schema
(Chapter 3 Section 3.4. — Schema evolution operation) require the 1A to write global
schema evolution programs. These programs perform update of the schema structure and
data migration from the old schema to the new schema (if necessary). In Object-Store,
programs are necessary for schema changes (references) even if there isn’t any change in

data.

5.3.5. Integrating data

Step4 (continuation): All data stored in the exported database must be moved to the

global database. If there are similar instances of related objects with value conflicts, the
DBA and IA must decide what values will be constant in the global schema. A program

for moving the data must be written by the IA.

5.3.6. User’s View definition
One important characteristic of object-oriented languages is that we can overload
constructors. The constructors are used to create a new instance of a class. For each

system component of the global schema, there is an associated constructor for related

119

classes. In my methodology, this feature plays an important role since it avoids the
changes of previously generated User’s Views.

The new view is generated based on the output generated by the User’s View
Constructor program listed in Appendix A, Section 2. The code of the User’s View

translation program for Suppressor is shown in Appendix D.

5.4. Data verification

Using show methods (which print all the attribute values of a class instance)
defined for each class of the global schema, a data view program was written manually to
show the data stored in the global database and to compare it with the input data. The

program code for verification is in Appendix E.

5.5. Summary

In this Chapter I created a global database example in order to validate my
methodology for integrating scenario databases of simulation systems. The base classes
were created when I integrated the first system — EADSIM. Since the global schema
(until that moment) had no classes, no integration conflicts arose. All the classes,
attributes and methods were practically copied into the global schema. The real
integration work was performed when the second simulation system was integrated into
the non-empty global schema. Then, the four steps of my proposed methodology
(Chapter 3) were successfully applied, validating the methodology. Also, the integration
of a new system using this methodology has shown that the previously created User’s

View translation program didn’t need to be changed since the method signatures used by

120

these programs didn’t change. This important feature of the methodology led me to
conclude that the integration of new Scenario Databases will not change the previously

created User’s View translation programs.

121

6. Conclusion

6.1. Meeting Objectives

This work was motivated by the need to have a unified database to support
different simulation system scenarios. The fundamental motivation was to facilitate the
data manipulation and integration. In this thesis I suggest the approach of creating a
common data repository where all the scenarios’ data is to be stored. In order to
implement this approach, an object-oriented database is used since it allows integration of
different application environments. However, object-oriented databases still do not
support the implementation of views, which are necessary when the integration of
different application data is performed. User’s Views are the visualization of part of the
data stored in the common repository related to a specific simulation system scenario,
which is a component of this global database. While the idea of a common database
represented in an OO-Model is not new, my research extended the OO-Model with a
layer containing the metadata of the global data stored in a common database and User’s
View information. This extension is the Integration Dictionary. This layer is then used to
integrate a new User’s View into the common database and to filter the data from this
common database to create a specific view for each simulation system component.

The structure of this OO-Model extension is shown in Chapter 3, where the
methodology for integrating databases is described. In this methodology, the integration
is based on common concepts stored in the extended layer. The common concept
approach groups classes (of different scenarios), which are semantically similar. The
approach also explicitly maintains the interrelationship between classes of simulation

system scenarios. This extension (Integration Dictionary) facilitates the necessary

122

translations (mappings) between specific scenarios and the common database. Also, the
methodology shows how to solve schema conflicts during the integration process.

I presented an implementation of this solution using Object-Store database in
Chapter 4, where I describe:

e the structure of the Integration Dictionary as well as its manipulation system;

e an association of each schema integration conflict with a function of this system; and

e a system that generates all the parameters necessary to construct a specific user’s
view.

The automatic view generation of specific simulation system scenarios in the OO-
Model (User’s View) from the global database could not be implemented due to lack of
time, but could be the subject of future research.

I presented a validation of my methodology in Chapter 5, where parts of two
simulation system scenarios were integrated into the common database. First EADSIM
was integrated, followed by Suppressor. The mapping programs were written for both
scenarios, but the schema evolution programs were not written since they are particular

for each object-oriented language.

6.2. Conclusion

It was not an objective of this work to create a complete and accurate global
schema for simulation system scenarios. Once the implementation phase began, it
became readily apparent that the amount of work required would exceed what could be
accomplished in the thesis development time. Instead, a global scenario sample was

created to validate the methodology based on two simulation systems’ scenarios.

123

The integration of the first simulation system scenario (EADSIM) was easily made
since the database was empty and no conflict resolution was applied. After the EADSIM
integration the global database schema had the necessary schema base to validate the
methodology. The complexity of integrating the second simulation system was reduced
by my Integration Dictionary approach. It reduces considerably the schema evolution
work necessary to integrate another schema into the basic schema. Only the changes in
the hierarchy chain and data types that are not automatically handled by the database
require specific programs to migrate the stored data. The main advantage of this approach
is that updates of user’s view generation programs of simulation systems that were
previously integrated into the global database are rarely necessary. It happens because the
view generation program uses method’s signatures defined for each class to generate the
specific view, and these existing methods signatures are not required to change when a
new database is integrated into the global database. The need to change the User’s View
arises when a global class is deleted or previously defined method’s signatures are
changed.

The Integrator Administrator is the person who applies the methodology in order to
integrate new system scenarios. This person needs to have knowledge of the object-
oriented database definition and manipulation language, which is to be used to implement
the global database, as well as knowledge of the scenario’s schemas of the simulation
system components and the global scenario schema. The IA has an important role in the
integration process, since a successful result depends on his or her work. Although this
work can be done following the directions given in this thesis, it would be improved if it

were performed automatically. However, no computer system can figure out by itself the

124

intrinsic concepts hidden in the classes of any simulation system scenario. An interactive

system to help the IA is the best that can be accomplished.

6.3. Recommendations

The following recommendations avoid changes in the User’s View generation
program:
e During the global schema evolution, only delete classes if it cannot be avoided since,
once deleted, the programs that generate User’s Views that use the related deleted classes
must be changed.
e [f new methods need to be created, do not use the same method names already
defined in the global schema. Instead, create new signatures. Also, do not delete a method
unless it is not used by any User’s View translation program. This solution avoids

changes in these programs that use the changed or deleted method signature(s).

6.4. Future work
Future work falls into two categories described below.
e Improvement of the user interface.
The improvement can be achieved by using a graphic user interface to manipulate
data stored in the Integration Dictionary, as well as data stored in the global database.
e Automation of the User’s View Constructor program.
The actual stored parameters work well for the manual translation, but for the

automatic translation a connection of the constructors’ parameters to methods of the

125

Integration Dictionary is necessary. However, all the parameters necessary for the
automatic User’s View generation can be stored in the Integration Dictionary.

In Chapter 5, the respective constructor for each system component (EADSIM
and Suppressor) was implemented to generate the proper views. It was manually written
in the respective User’s View generation program as shown in Appendix D.

The Conceptual-Methods can have an aggregate attribute used for the method
type “Constructor”, which will be the set of all constructors for the related class. The
constructors’ names are the same for all of them. The difference will be the parameters
and the associated access method. Therefore, at least one more class must be
implemented to represent the aggregated objects. Figure 22 shows the proposed

aggregation in the Integration Dictionary schema.

Integration Dictionary

<F

1+ 1+

Dictionary Method Conceptual Class

name
description

| R

1+ 1+
Caniptual Conceptual Real Class
ttribute Method
name name name
des_crlptlon description structure-file
attribute-type tvpe P complimentary-file
type-name ypP class-root
unit_representation
attribute-size 1+
1+ Alias 1+ Conceptual
Constructor
1+
name system code
parameriD
GetMethod Name

Figure 22: Integration Dictionary Model

126

Some necessary attributes (for this new class) are the following:

e System Code: this attribute stores the system code to which the construct belongs.

e For each parameter, the parameter identification and the related access method in the
Integration Dictionary must be stored.

The algorithm must select all concrete classes from the Integration Dictionary that
contain the required system code. From this set of classes the algorithm needs to identify
the classes that have aggregations. The aggregate objects must be created first and then
aggregated to the aggregation class. Also, this algorithm must have a solution for joins
(join of two classes) to treat the case of an exported class to be broken into two or more
global classes. Finally, the use of index structures should be considered in order to
improve the queries’ performance applied to the required selections of the Integration

Dictionary data.

127

7. References

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Banarjee, J., Kim, W., Kim, N. K., and Korth, H.F., “Semantics and Implementation of
Schema Evolution in Object-Oriented Databases”, in Proceedings of ACM —SIGMOD
International Conference on Management of Data, San Francisco CA, May 1987.

Bertino, E., “4 view mechanism for object-oriented databases”, in 3" International
Conference on Extending Database Technology, p. 64-69, March 1992.

Bertino, E., Negri, M., Pellagatti, G., Sbattella, L., “Integration of Heterogeneous
Database Applications through an Object-Oriented Interface”, Information Systems,
Vol. 14, no. 5, p. 407-420, 1989.

Bertino, E., Martino, L., “Object-Oriented Database Systems — Concepts and
Architectures”, Addison-Wesley, 1994.

Blaha, M., Premerlani, W., “4 Catalog of Object Model Transformations”, in 31
Working Conference on Reverse Engineering, Monterey CA, November 1996.

Cattel, R., and others, “Object Database Standard: ODMG 2.0” , Morgan Kaufmann,
1997.

Defense Research Associates Inc., “Collaborative Engineering Real Time Base
Correlation tool”, Report Number AF97-136 prepared for DoD - Small Business
Innovation Research (SBIR) Program, 1997.

DoD, “High-Level Architecture Object Model Template Specification”, Version 1.3,
February 1998, accessible at [attp:/hla.dmso.mil/hla/|

DoD, “Modeling & Simulation Master Plan”, October 1995, accessible at

http://www.dmso.mil/|

Hainaaut, J-L., Chandelon, M., Tonneau, C., Joris, M., “Contribution to a Theory of
Database Reverse Engineering”, Proc. of the IEEE Working Conference on Reverse
Engineering, Baltimore, 1993.

Hammer, J., McLeod D., Si, A., “An Intelligent System for Identifying and Integrating
Non-Local Objects in Federated Database Systems”, IEEE in Proceedings of 27"

Annual Hawaii International Conference on Systems Science, 1994.

Henrard, J., Englebert, V., Hick, J-M., Roland, D., and Hainaaut, J-L., “Program
understanding in database reverse engineering”, ACM journals, January 1998.

128

http://hla.dmso.mil/hla/
http://www.dmso.mil/

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Hull R., “Managing Semantic Heterogeneity in Databases:A Theoretical Perspective”,
in Proceedings of the 16™ ACM SIGMOD — SIGART Symposium on Principles of
Database Systems, p. 51-61, 1997.

Institute for Simulation and Training, “Standard for Distributed Interactive Simulation
Protocols. Version 2.0 Fourth draft”, Technical Report IST-CR-93-40, University of
Florida, March 1994,

Kim, W., “Modern Database Systems : The Object Model, Interoperability, and
Beyond”, Chapter 25, p.526-548, Addison Wesley, 1995.

Kuno, H.A., Ra, Y.G., Rundensteiner, E.A., “The Object-Slicing Technique: A flexible
object representation and its evolution”, Technical Report CSCE-TR-241-95,
University of Michigan, 1995.

Linhares Lima, Pedro, “Methodology for reengineering relational database to an
object-oriented database*, Masters’ Thesis AFIT/GCS/ENG/96J-01

Object Design, Inc, “Object Store Release 5.0 for all platforms”, Technical Manual
Kit, March 1997.

Object Management Group, “CORBA/IIOP 2.2 Specification”, accessible at
http://www.org.org/corba/corbiiop.htm|

Mullaney, J. P., “4 General Object Transformation System”, Masters’ Thesis AFIT/
GCS/ENG/94D-18.

Park, H.-G., “The Development of a Scenario Translator for Distributed Simulations”,
Masters’ Thesis AFIT/GCS/ENG/96D-22.

Pitoura, E., Burhes, O., Elmagarneid, A., “Object Orientation Multidatabase”, ACM
Computing Surveys, Vol. 17, no. 2, June 1995.

Pope, A. R., “The SIMNET Network and Protocols”, Bolt and Newman Inc. Report
Number 7627 prepared for Defense Advanced Research Projects Agency, June 1991.

Quilici, Alex, “Reverse Engineering of Legacy Systems: A Path Toward Success”,
ICSE’95, Seattle - Washington, 1995.

Ra, Y. G., Rundensteiner, E. A., “A Transparent Object-Oriented Schema Change
Approach using View Schema Evolution”, in IEEE International Conference on Data

Engineering, p.165-172, March 1995.

Rizza, R.J., “An Object-Oriented Military Simulation Baseline for Parallel Simulation
Research”, Masters’ Thesis AFIT/GCS/ENG/90D-12.

129

http://www.org.org/corba/corbiiop.htm

[27]

[28]

[29]

[30]

[31]

[32]

Rumbaugh, J. and others, “Object-Oriented Modeling and Design”, Englewood Cliffs,
New Jersey: Prentice Hall, 1991.

Rundensteiner, E. A., “Multiview: A Methodology for Supporting Multiple View
Schemata in Object-Oriented Databases”, Technical Report 92-07, University of
California, Irvine, 1992.

Stratton, Phillip, “A Metrics-based Analysis of Interface Usability Improvements by
Applying Intelligent Agents”, Masters’ Thesis AFIT/GCS/ENG/99M-18

Teledyne Brown Engineering, “User’s Manual for EADSIM — Version 5.01”, 22 June
1996.

Vidal, V., Winslett, M., “Preserving Update Semantics in Schema Integration”, in
Proceedings of the 3™ International Conference on Information and Knowledge

Management, p. 263-271, 1994.

Weber, Robert, “4 Methodology for extracting a Common Object Model for
Simulation Systems”, Masters’ Thesis AFIT/GCS/ENG/99M-20

130

Appendix A. View Constructor Program

Section 1: Output parameters for User’s View Constructor program for EADSIM

Section 2: Output parameters for User’s View Constructor program for Suppressor

131

Section 1. OQutput parameters for User’s View Constructor program for EADSIM

conceptual classes used to generate view for EAD:

1)Airplane
for exported class => EAD Airplane

methods of this class used to construct instance of class EAD Airplane for system EAD:
Get_Airplane WingArea
Get_Airplane MAXG

Get Airplane MultiplicationFactor
Get_Airplane MINSpeed
Get_Airplane MaxFuelReceivingRate
Get_Airplane LookAheadInterval
Get Airplane MAXSpeedCruiseAlt
Get Airplane MAXThrust
Get_Airplane NonAerodynamic
Get_Airplane AirRefuelBingoLimit
Get_Airplane TSFC

Get Airplane TerrainSamples
Get_Airplane EmptyWeight
Get_Airplane WingSpan

Get Airplane CDO

Get Airplane MAXClimbAngle
Get_Airplane MAXSpeed
Get_Airplane ABSpeed
Get_Airplane ID

Get Airplane FeedbackControlGain
Get Airplane CruiseAltMSL
Get_Airplane FuelWeight
Get_Airplane CruiseSpeed

Get Airplane RBTFuelBingoLimit
Get_Airplane FuelFlow

real class information for this class
=== Real Class Name: Airplane
Real Class Root: Airplane extent root
Structure File Name: Airframe.hh
Complementary File Name: Airframe.cc

2)Helicopter
for exported class => EAD Helicopter

methods of this class used to construct instance of class EAD Helicopter for system
EAD:

Get_Helicopter BladeCdo0

Get Helicopter EmptyWeight

Get Helicopter FuelWeight

Get Helicopter RBTFuelBingoLimit
Get_Helicopter AirRefuelBingoLimit
Get_Helicopter TipVelocity

Get Helicopter MultiplicationFactor
Get Helicopter MaxFuelReceivingRate
Get_Helicopter_ ID

Get_Helicopter TerrainSamples

Get Helicopter FeedbackControlGain
Get Helicopter MINSpeed
Get_Helicopter BladeRadius
Get_Helicopter_ PSFC

Get Helicopter BladeChord

Get Helicopter DecelarationG
Get_Helicopter BladeCl
Get_Helicopter LookAheadInterval
Get Helicopter FuselageArea

Get Helicopter MAXClimbAngle
Get_Helicopter NonAerodynamic
Get_Helicopter MAXSpeed

Get Helicopter Blades

132

Get_Helicopter Power
Get Helicopter FuselageCdo
Get_ Helicopter MAXG

real class information for this class
=== Real Class Name: Helicopter
Real Class Root: Helicopter extent root
Structure File Name: Airframe.hh
Complementary File Name: Airframe.cc

3)Missile
for exported class => EAD Missile

==> This class has the multivalued attribute Missile FlightSections as aggregate
objects of set of type FlightSection

==> The multivalued object must be generated first in the exported schema, if it has
the same aggregation, and then aggregated to the instance of class EAD Missile

methods of this class used to construct instance of class EAD Missile for system EAD:
Get_Missile InitialVelocity

Get_Missile LaunchRailLenght

Get Missile FlightSections

Get Missile ID

Get Missile LaunchElevationAngle

Get_Missile MAXDivertVelocity

Get_Missile MaxDivertLateralAcceleration

real class information for this class
=== Real Class Name: Missile
Real Class Root: Missile extent_ root
Structure File Name: Airframe.hh
Complementary File Name: Airframe.cc

4)FlightSection
for exported class => EAD FlightSection

methods of this class used to construct instance of class EAD FlightSection for system
EAD:

Get FlightSection SpecificImpulse
Get_FlightSection ReferenceArea
Get_FlightSection IntegrationTimeStep
Get FlightSection MAXG

Get FlightSection ResponseTime
Get_FlightSection InitialMass
Get_FlightSection IRSignature

Get FlightSection EndTime

Get FlightSection NozzleExitArea

Get FlightSection ProNavGuidanceGain
Get_FlightSection MaxAlpha
Get_FlightSection RCS

real class information for this class

=== Real Class Name: FlightSection
Real Class Root: FlightSection extent root
Structure File Name: FlightSection.hh
Complementary File Name: FlightSection.cc

133

Section 2. Qutput parameters for User’s View Constructor program for Suppressor

conceptual classes used to generate view for SUP:

1)Airplane
for exported class => SUP_CapabilityMover

methods of this class used to construct instance of class SUP_CapabilityMover for
system SUP:

Get_ Airplane MAXG
Get_Airplane NavErrorData
Get_Airplane CommitAlt

Get Airplane MAXClimbAngle
Get Airplane MAXDiveRate
Get_Airplane MINSpeed
Get_Airplane MAXSpeed

Get Airplane CapabilityName
Get Airplane MINTurnRadius
Get_Airplane FuelUsage
Get_Airplane MINAltitude
Get_Airplane MAXAltitude

real class information for this class
=== Real Class Name: Airplane
Real Class Root: Airplane extent_ root
Structure File Name: Airframe.hh
Complementary File Name: Airframe.cc

2)Helicopter
for exported class => SUP_CapabilityMover

methods of this class used to construct instance of class SUP_CapabilityMover for
system SUP:

Get Helicopter MAXDiveRate
Get_Helicopter MINTurnRadius
Get_Helicopter MAXClimbAngle
Get Helicopter FuelUsage

Get Helicopter MINAltitude
Get_Helicopter MAXSpeed
Get_Helicopter MAXAltitude
Get_ Helicopter MAXG

Get Helicopter CommitAlt

Get Helicopter CapabilityName
Set_Helicopter MAXDiveRate
Get_Helicopter MINSpeed

Get Helicopter NavErrorData

real class information for this class
=== Real Class Name: Helicopter
Real Class Root: Helicopter extent root
Structure File Name: Airframe.hh
Complementary File Name: Airframe.cc

3)MoverAirplane
for exported class => SUP_MoverAirplane

==> This class has the attribute CapabilityAirplane as aggregate object of type
Airplane

==> The aggregate object must be generated first in the exported schema, if it has the
same aggregation, and then aggregated to the instance of class SUP _MoverAirplane

methods of this class used to construct instance of class SUP_MoverAirplane for system
SUP:

Get_MoverAirplane SystemID

Get_MoverAirplane Name

Get MoverAirplane Type

Get MoverAirplane CapabilityAirplane

134

real class information for this class

=== Real Class Name: MoverAirplane
Real Class Root: MoverAirplane extent root
Structure File Name: Mover.hh
Complementary File Name: Mover.cc

4)MoverHelicopter
for exported class => SUP_MoverHelicopter

==> This class has the attribute CapabilityHelicopter as aggregate object of type
Helicopter

==> The aggregate object must be generated first in the exported schema, if it has the
same aggregation, and then aggregated to the instance of class SUP_MoverHelicopter

methods of this class used to construct instance of class SUP MoverHelicopter for
system SUP:

Get_MoverHelicopter SystemID

Get MoverHelicopter Name

Get MoverHelicopter Type

Get_MoverHelicopter CapabilityHelicopter

real class information for this class

=== Real Class Name: MoverHelicopter
Real Class Root: MoverHelicopter extent root
Structure File Name: Mover.hh
Complementary File Name: Mover.cc

135

Appendix B. Body code of the exported classes’ schemas

Section 1: Body code of the EADSIM exported classes’ schema.

Section 2: Body code of the Suppressor exported classes’ schema.

136

Section 1. Body code for EADSIM exported classes’ schema

-- EAD airframe.cc
-- Airframe Implementation for EADSIM exported schema

-- Capt Emilia Colonese

#include <string.h>

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include "EAD Airframe.hh"
#include "EAD FlightSection.hh"

EAD Airframe::EAD Airframe (const char* Airframe ID)

{
}

EAD Airframe::~EAD Airframe ()

{
}

EAD Aircraft::EAD Aircraft (const char* Airframe ID, int NonAerodynamic, int MAXSpeed,
MINSpeed, float MAXG, int EmptyWeight, int FuelWeight, int RTBFuelBingoLimit, int
AirRefuelBingoLimit, int MaxFuelReceivingRate, float LookAheadInterval, float
MultiplicationFactor, int TerrainSamples, int FeedbackControlGain, int MAXClimbAngle)
:EAD_Airframe (Airframe ID)

{

strcpy (EAD _Airframe ID, Airframe ID);

EAD Aircraft NonAerodynamic = NonAerodynamic;

EAD Aircraft MAXSpeed = MAXSpeed;

EAD Aircraft MINSpeed = MINSpeed;

EAD Aircraft MAXG = MAXG;

EAD Aircraft EmptyWeight = EmptyWeight;

EAD Aircraft FuelWeight = FuelWeight;

EAD Aircraft RTBFuelBingoLimit = RTBFuelBingoLimit;

EAD Aircraft AirRefuelBingoLimit = AirRefuelBingoLimit;
EAD Aircraft MaxFuelReceivingRate = MaxFuelReceivingRate;
EAD Aircraft LookAheadInterval = LookAheadInterval;

EAD Aircraft MultiplicationFactor = MultiplicationFactor;
EAD Aircraft TerrainSamples = TerrainSamples;

EAD Aircraft_ FeedbackControlGain = FeedbackControlGain;
EAD Aircraft MAXClimbAngle = MAXClimbAngle;

}

EAD Aircraft::~EAD Aircraft ()

{
}

EAD Airplane::EAD Airplane (const char* Airframe ID, int NonAerodynamic, int MAXSpeed,
MINSpeed, float MAXG, int EmptyWeight, int FuelWeight, int RTBFuelBingoLimit, int
AirRefuelBingoLimit, int MaxFuelReceivingRate, float LookAheadInterval, float
MultiplicationFactor, int TerrainSamples, int FeedbackControlGain, int MAXClimbAngle,
ABSpeed, int MAXThrust, float WingArea, float WingSpan, int CruiseAltMSL, int
CruiseSpeed, int FuelFlow, float TSFC, int MAXSpeedCruiseAlt, float CDO)
:EAD_Aircraft (Airframe ID, NonAerodynamic, MAXSpeed, MINSpeed, MAXG, EmptyWeight,
FuelWeight, RTBFuelBingoLimit, AirRefuelBingoLimit, MaxFuelReceivingRate,
LookAheadInterval, MultiplicationFactor, TerrainSamples, FeedbackControlGain,
MAXClimbAngle)
{

EAD Airplane ABSpeed = ABSpeed;

EAD Airplane MAXThrust = MAXThrust;

EAD Airplane WingArea = WingArea;

EAD Airplane WingSpan = WingSpan;

EAD Airplane CruiseAltMSL = CruiseAltMSL;

EAD Airplane CruiseSpeed = CruiseSpeed;

EAD Airplane TSFC = TSFC;

137

int

int

int

EAD Airplane MAXSpeedCruiseAlt = MAXSpeedCruiseAlt;
EAD Airplane CDO = CDO;
EAD Airplane extent->insert (this);

}

EAD Airplane::~EAD Airplane ()
{

EAD Airplane_extent->remove (this) ;

}

EAD Helicopter::EAD Helicopter (const char* Airframe ID, int NonAerodynamic, int MAXSpeed,
int MINSpeed, float MAXG, int EmptyWeight, int FuelWeight, int RTBFuelBingoLimit, int
AirRefuelBingoLimit, int MaxFuelReceivingRate, float LookAheadInterval, float
MultiplicationFactor, int TerrainSamples, int FeedbackControlGain, int MAXClimbAngle,
float Power, float PSFC, float DecelarationG, int Blades, float BladeRadius, float
BladeChord, float BladeCl, float BladeCDO, float TipVelocity, float FuselageArea, float
FuselageCdo)
:EAD_Aircraft (Airframe ID, NonAerodynamic, MAXSpeed, MINSpeed, MAXG, EmptyWeight,
FuelWeight, RTBFuelBingoLimit, AirRefuelBingoLimit, MaxFuelReceivingRate,
LookAheadInterval, MultiplicationFactor, TerrainSamples, FeedbackControlGain,
MAXClimbAngle)
{

EAD Helicopter Power = Power;

EAD Helicopter PSFC = PSFC;

EAD Helicopter DecelarationG = DecelarationG;

EAD Helicopter_ Blades = Blades;

EAD Helicopter BladeRadius = BladeRadius;

EAD Helicopter BladeChord = BladeChord;

EAD Helicopter BladeCl = BladeCl;

EAD Helicopter BladeCDO = BladeCDO;

EAD Helicopter TipVelocity = TipVelocity;

EAD Helicopter FuselageArea = FuselageArea;

EAD Helicopter FuselageCd0 = FuselageCdo;

EAD Helicopter_ extent->insert (this);

}

EAD Helicopter::~EAD_Helicopter ()
{

EAD Helicopter extent->remove (this);

}

void EAD Missile::EAD Set Missile FlightSection (EAD_FlightSection* FlighSection)

{

EAD Missile FlightSections.insert (FlighSection) ;

}

EAD Missile::EAD Missile(const char* Airframe ID, float InitialVelocity, float
LaunchRailLenght, float LaunchElevationAngle, float MAXDivertVelocity, float
MaxDivertLateralAcceleration)
:EAD_Airframe (Airframe_ID)
{
EAD Missile InitialVelocity = InitialVelocity;
EAD Missile LaunchRailLenght = LaunchRaillLenght;
EAD Missile LaunchElevationAngle = LaunchElevationAngle;
EAD Missile MAXDivertVelocity = MAXDivertVelocity;
EAD Missile MaxDivertLateralAcceleration = MaxDivertLateralAcceleration;
EAD Missile extent->insert (this);

}

EAD Missile::~EAD Missile()

{

EAD Missile_ extent->remove (this) ;

}

138

-- EAD FlightSection.cc
-- AD FlightSection Implementation for EADSIM Exporte Schema
-- Capt Emilia Colonese

#include <string.h>

#include <ostore/ostore.hhs>
#include <ostore/coll.hh>
#include "EAD FlightSection.hh"

EAD FlightSection::EAD FlightSection(float EndTime, float MAXG, float SpecificImpulse,
float NozzleExitArea, float ReferenceArea, float InitialMass, float MaxAlpha, float
ResponseTime, float ProNavGuidanceGain, float IntegrationTimeStep, float IRSignature,
float RCS)

{

EAD FlightSection EndTime = EndTime;
EAD_FlightSection MAXG = MAXG;

EAD_FlightSection_ SpecificImpulse = SpecificImpulse;

EAD FlightSection NozzleExitArea = NozzleExitArea;

EAD FlightSection ReferenceArea = ReferenceArea;

EAD FlightSection InitialMass = InitialMass;
EAD_FlightSection_ MaxAlpha = MaxAlpha;

EAD_FlightSection ResponseTime = ResponseTime;

EAD FlightSection ProNavGuidanceGain = ProNavGuidanceGain;
EAD FlightSection IntegrationTimeStep = IntegrationTimeStep;
EAD _FlightSection IRSignature = IRSignature;
EAD_FlightSection RCS = RCS;

EAD FlightSection extent->insert (this);

}
EAD FlightSection::~EAD_FlightSection()

EAD FlightSection_ extent->remove (this) ;

139

Section 2. Body code for Suppressor exported classes’ schema

-- SUP_Mover.cc

-- SUP_Mover Implementation for Suppressor exported schema

-- Capt Emilia Colonese

#include <string.h>

#include <stdlib.h>

#include <fstream.h>

#include <ostore/ostore.hhs>
#include <ostore/coll.hh>
#include "SUP_Mover.hh"

#include "SUP CapabilityMover.hh"

SUP_Mover: :SUP_Mover (int SystemID, const char* Name)

{

SUP_Mover SystemID = SystemID;
strcpy (SUP_Mover Name, Name) ;

}

SUP_Mover: : ~SUP_Mover ()

{
}

SUP_MoverAirplane::SUP_MoverAirplane (int SystemID, const char* MoverName,

SUP_CapabilityMover* CapMov)
:SUP_Mover (SystemID, MoverName)

SUP_Set Mover Type ("Airplane");
SUP_MoverAirplane CapabilityAirplane = CapMov;
SUP_MoverAirplane_ extent->insert (this) ;

}

SUP_MoverAirplane: :~SUP_MoverAirplane ()

{
}

SUP_MoverHelicopter: :SUP_MoverHelicopter (int SystemID,
SUP_CapabilityMover* CapMov)
:SUP_Mover (SystemID, MoverName)

{

SUP_MoverAirplane_ extent->remove (this) ;

SUP_Set_Mover Type ("Helicopter");
SUP_MoverHelicopter CapabilityHelicopter = CapMov;
SUP_MoverHelicopter extent->insert (this);

}

SUP_MoverHelicopter: :~SUP_MoverHelicopter ()

{
}

SUP_MoverHelicopter extent->remove (this);

140

const char* MoverName,

#include <string.h>

#include <stdlib.h>

#include <fstream.h>

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include "SUP_ CapabilityMover.hh"

SUP_CapabilityMover::SUP_CapabilityMover (const char* Name, const char* CommitAlt, const
char* FuelUsage, const char* NavErrorData, float MAXAcceleration, float MINAltitude,
float MAXAltitude, float MINTurnRadius, float MINSpeed, float MAXSpeed, float
MAXDiveRate, float MAXClimbRate)
{

strcpy (SUP_CapabilityMover Name, Name) ;

strcpy (SUP_CapabilityMover CommitAlt, CommitAlt) ;

strcpy (SUP_CapabilityMover FuelUsage, FuelUsage) ;

strcpy (SUP_CapabilityMover NavErrorData, NavErrorData) ;

SUP_CapabilityMover MAXAcceleration = MAXAcceleration;

SUP_CapabilityMover MINAltitude = MINAltitude;

SUP_CapabilityMover MAXAltitude MAXAltitude;

SUP_CapabilityMover MINTurnRadius = MINTurnRadius;

SUP_CapabilityMover MINSpeed = MINSpeed;

SUP_CapabilityMover MAXSpeed = MAXSpeed;

SUP_CapabilityMover MAXDiveRate = MAXDiveRate;

SUP_CapabilityMover MAXClimbRate = MAXClimbRate;

SUP_CapabilityMover extent->insert (this);

}

SUP_CapabilityMover: :~SUP_CapabilityMover ()

{
}

SUP_CapabilityMover extent->remove (this) ;

141

Appendix C. Body code of global classes’ schemas

Section 1: Global classes after EADSIM integration.

Body code of the global classes’ schemas after integrating EADSIM exported classes’
schemas into the (empty) global schema.

Section 2: Global classes after Suppressor integration.

Body code of the global classes’ schemas. After integrating Suppressor exported classes’

schemas into the (non-empty) global schema.

142

Section 1. Global Classes after EADSIM integration

-- Airframe.cc
-- Airframe Implementation for Global schema

-- Capt Emilia Colonese

#include <string.h>
#include <stdlib.h>
#include <fstream.h>
#include <ostore/ostore.hhs>
#include <ostore/coll.hhs>
#include "Airframe.hh"
#include "FlightSection.hh"

Airframe: :Airframe (const char* ID)

{

strcpy (Airframe ID, ID);

/* Airframe extent->insert (this); This insertion cannot be implemented in the parents
of a hierarchy. This implementation must be made in the main program for insertion. */

}

Airframe: :~Airframe ()

{

Airframe extent->remove (this) ;

}

void Airframe::Airframe_ Show(ostream& os)

{
}

Aircraft::Aircraft (char* ID, int NonAerodynamic, int MAXSpeed, int MINSpeed, float MAXG,
int EmptyWeight, int FuelWeight, int RTBFuelBingoLimit, int AirRefuelBingoLimit, int
MaxFuelReceivingRate, float LookAheadInterval, float MultiplicationFactor, int
TerrainSamples, int FeedbackControlGain, int MAXClimbAngle)

:Airframe (ID)

{

0s << "=== Airframe ID: " << Airframe ID << endl;

Aircraft NonAerodynamic = NonAerodynamic;

Aircraft MAXSpeed = MAXSpeed;

Aircraft MINSpeed = MINSpeed;

Aircraft MAXG = MAXG;

Aircraft EmptyWeight = EmptyWeight;

Aircraft FuelWeight = FuelWeight;

Aircraft RTBFuelBingoLimit = RTBFuelBingoLimit;

Adlrcraft AirRefuelBingoLimit = AirRefuelBingoLimit;

Aircraft MaxFuelReceivingRate = MaxFuelReceivingRate;

Aircraft LookAheadInterval = LookAheadInterval;

Aircraft MultiplicationFactor = MultiplicationFactor;

Aircraft TerrainSamples = TerrainSamples;

Alrcraft FeedbackControlGain = FeedbackControlGain;

Aircraft MAXClimbAngle = MAXClimbAngle;

/* Aircraft extent-s>insert (this); This insertion cannot be implemented in the parents
of a hierarchy. This implementation must be made in the program for insertion. */

}

Aircraft::~Aircraft ()

Aircraft extent->remove (this) ;

}

void Aircraft::Aircraft Show(ostream& os)

{

Airframe::Airframe_Show(os) ;
0s << "=== NonAerodynamic: " << Aircraft NonAerodynamic << endl;
0s << "=== MAXSpeed: " << Aircraft MAXSpeed << endl;

143

0s << MINSpeed: " << Aircraft MINSpeed << endl;

0s << MAXG: " << Aircraft MAXG << endl;

os << EmptyWeight: " << Aircraft EmptyWeight << endl;

os << FuelWeight: " << Aircraft_ FuelWeight << endl;

os << RTBFuelBingoLimit: " << Adircraft RTBFuelBingoLimit << endl;

os << AirRefuelBingoLimit: " << Aircraft AirRefuelBingoLimit << endl;
os << MaxFuelReceivingRate: " << Aircraft MaxFuelReceivingRate << endl;
08 << LookAheadInterval: " << Alrcraft LookAheadInterval << endl;

os << MultiplicationFactor: " << Aircraft MultiplicationFactor << endl;
os << TerrainSamples: " << Aircraft TerrainSamples << endl;

0s << FeedbackControlGain: " << Aircraft FeedbackControlGain << endl;
0s << "=== MAXClimbAngle: " << Aircraft MAXClimbAngle << endl;

}

Airplane::Airplane (char* ID, int NonAerodynamic, int MAXSpeed, int MINSpeed, float MAXG,
int EmptyWeight, int FuelWeight, int RTBFuelBingoLimit, int AirRefuelBingoLimit, int
MaxFuelReceivingRate, float LookAheadInterval, float MultiplicationFactor, int
TerrainSamples, int FeedbackControlGain, int MAXClimbAngle, int ABSpeed, int MAXThrust,
float WingArea, float WingSpan, int CruiseAltMSL, int CruiseSpeed, int FuelFlow, float
TSFC, int MAXSpeedCruiseAlt, float CDO)
:Aircraft (ID, NonAerodynamic, MAXSpeed, MINSpeed, MAXG, EmptyWeight, FuelWeight,
RTBFuelBingoLimit, AirRefuelBingoLimit, MaxFuelReceivingRate, LookAheadInterval,
MultiplicationFactor, TerrainSamples, FeedbackControlGain, MAXClimbAngle)
{

Airplane ABSpeed = ABSpeed;

Airplane MAXThrust = MAXThrust;

Airplane WingArea = WingArea;

Airplane WingSpan = WingSpan;

Airplane CruiseAltMSL = CruiseAltMSL;

Airplane CruiseSpeed = CruiseSpeed;

Airplane TSFC = TSFC;

Airplane MAXSpeedCruiseAlt = MAXSpeedCruiseAlt;

Airplane CDO = CDO;

Airplane extent->insert (this);

}

Airplane: :~Airplane ()

{
}

void Airplane::Airplane Show(ostream& os)

{

Airplane extent->remove (this) ;

Aircraft::Aircraft Show(os) ;

os << ABSpeed: " << Airplane ABSpeed << endl;

08 << MAXThrust: " << Airplane MAXThrust << endl;

os << WingArea: " << Airplane WingArea << endl;

os << WingSpan: " << Airplane WingSpan << endl;

0s << CruiseAltMSL: " << Airplane CruiseAltMSL << endl;

os << CruiseSpeed: " << Airplane CruiseSpeed << endl;

0os << TSFC: " << Airplane TSFC << endl;

os << MAXSpeedCruiseAlt: " << Airplane MAXSpeedCruiseAlt << endl;
0os << "=== C(CDO: " << Airplane CDO << endl;

}

Helicopter: :Helicopter (char* ID, int NonAerodynamic, int MAXSpeed, int MINSpeed, float
MAXG, int EmptyWeight, int FuelWeight, int RTBFuelBingoLimit, int AirRefuelBingoLimit,
int MaxFuelReceivingRate, float LookAheadInterval, float MultiplicationFactor, int
TerrainSamples, int FeedbackControlGain, int MAXClimbAngle, float Power, float PSFC,
float DecelarationG, int Blades, float BladeRadius, float BladeChord, float BladeC1l,
float BladeCDO, float TipVelocity, float FuselageArea, float FuselageCdoO)
:Aircraft (ID, NonAerodynamic, MAXSpeed, MINSpeed, MAXG, EmptyWeight, FuelWeight,
RTBFuelBingoLimit, AirRefuelBingoLimit, MaxFuelReceivingRate, LookAheadInterval,
MultiplicationFactor, TerrainSamples, FeedbackControlGain, MAXClimbAngle)
{

Helicopter Power = Power;

Helicopter PSFC = PSFC;

Helicopter DecelarationG = DecelarationG;

Helicopter Blades = Blades;

Helicopter BladeRadius = BladeRadius;

Helicopter BladeChord = BladeChord;

144

Helicopter BladeCl = BladeCl;
Helicopter BladeCDO = BladeCDO;
Helicopter TipVelocity = TipVelocity;
Helicopter FuselageArea = FuselageArea;
Helicopter FuselageCd0 = FuselageCdo;
Helicopter extent->insert (this);

}

Helicopter: :~Helicopter ()

{
}

void Helicopter::Helicopter Show(ostream& os)

{

Helicopter extent->remove (this) ;

Aircraft::Aircraft_Show(os) ;

0os << "=== Power: " << Helicopter Power << endl;
0s << PSFC: " << Helicopter PSFC << endl;
0s << DecelarationG: " << Helicopter DecelarationG << endl;
08 << Blades: " << Helicopter Blades << endl;
08 << BladeRadius: " << Helicopter BladeRadius << endl;
0s << BladeChord: " << Helicopter BladeChord << endl;
0s << BladeCl: " << Helicopter BladeCl << endl;
0s << BladeCDO: " << Helicopter BladeCDO << endl;
os << TipVelocity: " << Helicopter TipVelocity << endl;
os << FuselageArea: " << Helicopter FuselageArea << endl;
os << TipVelocity: " << Helicopter TipVelocity << endl;
os << FuselageCdO: " << Helicopter FuselageCd0 << endl;

}

void Missile::Set Missile FlightSection(FlightSection* FlighSection)

{

Missile FlightSections.insert (FlighSection) ;

}

Missile::Missile(char* ID, float InitialVelocity, float LaunchRailLenght, float
LaunchElevationAngle, float MAXDivertVelocity, float MaxDivertLateralAcceleration)
:Airframe (ID)
{

Missile InitialVelocity = InitialVelocity;

Missile LaunchRailLenght = LaunchRailLenght;

Missile LaunchElevationAngle = LaunchElevationAngle;

Missile MAXDivertVelocity = MAXDivertVelocity;

Missile MaxDivertLateralAcceleration = MaxDivertLateralAcceleration;

Missile_ extent->insert (this) ;

}

Missile::~Missile()

{
}

// Show method
void Missile::Missile_ Show(ostream& os)

{

Missile_extent->remove (this) ;

Airframe: :Airframe Show(os) ;

os << InitialVelocity: " << Missile InitialVelocity << endl;

os << LaunchRaillLenght: " << Missile LaunchRailLenght << endl;

os << LaunchElevationAngle: " << Missile LaunchElevationAngle << endl;

os << MAXDivertVelocity: " << Missile MAXDivertVelocity << endl;

os << "=== MaxDivertLateralAcceleration: " << Missile MaxDivertLateralAcceleration
<< endl;

}

145

-- FlightSection.cc
-- FlightSection Implementation for Global Schema

-- Capt Emilia Colonese

#include <string.h>
#include <stdlib.h>
#include <fstream.h>
#include <ostore/ostore.hhs>
#include <ostore/coll.hhs>
#include "FlightSection.hh"

FlightSection: :FlightSection (float EndTime, float MAXG, float SpecificImpulse, float
NozzleExitArea, float ReferenceArea, float InitialMass, float MaxAlpha, float
ResponseTime, float ProNavGuidanceGain, float IntegrationTimeStep, float IRSignature,
float RCS)

{

FlightSection EndTime = EndTime;

FlightSection MAXG = MAXG;

FlightSection SpecificImpulse = SpecificImpulse;
FlightSection NozzleExitArea = NozzleExitArea;
FlightSection ReferenceArea = ReferenceArea;
FlightSection InitialMass = InitialMass;

FlightSection MaxAlpha = MaxAlpha;

FlightSection ResponseTime = ResponseTime;
FlightSection ProNavGuidanceGain = ProNavGuidanceGain;
FlightSection IntegrationTimeStep = IntegrationTimeStep;
FlightSection IRSignature = IRSignature;
FlightSection RCS = RCS;

FlightSection extent->insert (this);

}

FlightSection: :~FlightSection()

{
}

void FlightSection::FlightSection_ Show (ostream& os)

{

FlightSection extent->remove (this) ;

0s << EndTime: " << FlightSection EndTime << endl;

0os << MAXG: " << FlightSection MAXG << endl;

os << LaunchElevationAngle: " << FlightSection SpecificImpulse << endl;
os << SpecificImpulse: " << FlightSection NozzleExitArea << endl;

0s << ReferenceArea: " << FlightSection ReferenceArea << endl;

0s << InitialMass: " << FlightSection InitialMass << endl;

os << MaxAlpha: " << FlightSection MaxAlpha << endl;

os << ResponseTime: " << FlightSection ResponseTime << endl;

0s << ProNavGuidanceGain: " << FlightSection ProNavGuidanceGain << endl;
os << IntegrationTimeStep: " << FlightSection IntegrationTimeStep << endl;
os << IRSignature: " << FlightSection IRSignature << endl;

0s << "=== RCS: " << FlightSection RCS << endl;

146

Section 2. Global Classes after Suppressor integration

-- Airframe.cc
-- Airframe Implementation for Global schema

-- Capt Emilia Colonese

#include <string.h>
#include <stdlib.h>
#include <fstream.h>
#include <ostore/ostore.hhs>
#include <ostore/coll.hh>
#include "Airframe.hh"
#include "FlightSection.hh"

Airframe: :Airframe (const char* ID)

{

strcpy (Airframe ID, ID);

}

Airframe: :~Airframe ()

{
}

void Airframe::Airframe_ Show(ostream& os)

{
}

// constructor used for SUPRESSOR

Aircraft::Aircraft (const char* ID, const char* CapabilityName, const char* CommitAlt,
const char* FuelUsage, const char* NavErrorData, float MAXSpeed, float MINSpeed, float
MAXG, float MAXClimbAngle, float MINTurnRadius, float MINAltitude, float MAXAltitude,
float MAXDiveRate)

:Airframe (ID)

{

0s << "=== Airframe ID: " << Airframe ID << endl;

strcpy (Aircraft CapabilityName, CapabilityName) ;
Aircraft MAXSpeed = MAXSpeed;

Aircraft MINSpeed = MINSpeed;

Aircraft MAXG = MAXG;

Aircraft MAXClimbAngle = MAXClimbAngle;
Aircraft MINTurnRadius = MINTurnRadius;
Aircraft MINAltitude = MINAltitude;

Alrcraft MAXAltitude = MAXAltitude;

Aircraft MAXDiveRate = MAXDiveRate;

strcepy (Aircraft CommitAlt, CommitAlt) ;
strcpy (Aircraft FuelUsage, FuelUsage) ;
strcpy (Aircraft NavErrorData, NavErrorData) ;

}

// constructor used for EADSIM
Aircraft::Aircraft (const char* ID, int NonAerodynamic, int MAXSpeed, int MINSpeed, float
MAXG, int EmptyWeight, int FuelWeight, int RTBFuelBingoLimit, int AirRefuelBingoLimit,
int MaxFuelReceivingRate, float LookAheadInterval, float MultiplicationFactor, int
TerrainSamples, int FeedbackControlGain, int MAXClimbAngle)
:Airframe (ID)
{

Aircraft NonAerodynamic = NonAerodynamic;

Aircraft MAXSpeed = float (MAXSpeed) ;

Aircraft MINSpeed = float (MINSpeed) ;

Aircraft MAXG = MAXG;

Aircraft EmptyWeight = EmptyWeight;

Aircraft FuelWeight = FuelWeight;

Aircraft RTBFuelBingoLimit = RTBFuelBingoLimit;

Adlrcraft AirRefuelBingoLimit = AirRefuelBingoLimit;

147

}

Aircraft MaxFuelReceivingRate = MaxFuelReceivingRate;
Aircraft LookAheadInterval
Aircraft MultiplicationFactor = MultiplicationFactor;
Aircraft TerrainSamples = TerrainSamples;

Aircraft_ FeedbackControlGain

LookAheadInterval;

= FeedbackControlGain;

Aircraft MAXClimbAngle = float (MAXClimbAngle) ;

// general constructor
Aircraft::Aircraft (const char* ID, const char* CapabilityName, const char* CommitAlt,

const char* FuelUsage,
float MINSpeed, float MAXG,
AirRefuelBingoLimit,
MultiplicationFactor,
float MINTurnRadius,

:Airframe (ID)

}

const char* NavErrorData, int NonAerodynamic, float MAXSpeed,
int EmptyWeight, int FuelWeight, int RTBFuelBingoLimit,
int MaxFuelReceivingRate, float LookAheadInterval, float

int TerrainSamples, int FeedbackControlGain, float MAXClimbAngle,
float MINAltitude, float MAXAltitude, float MAXDiveRate)

strcpy (Aircraft CapabilityName, CapabilityName) ;
Aircraft_ NonAerodynamic = NonAerodynamic;
Aircraft MAXSpeed = MAXSpeed;

Aircraft MINSpeed = MINSpeed;

Aircraft MAXG = MAXG;
Aircraft EmptyWeight = EmptyWeight;
Aircraft_ FuelWeight = FuelWeight;
Aircraft RTBFuelBingoLimit

Aircraft AirRefuelBingoLimit

RTBFuelBingoLimit;
= AirRefuelBingoLimit;

Aircraft MaxFuelReceivingRate = MaxFuelReceivingRate;
Aircraft_LookAheadInterval
Ailrcraft MultiplicationFactor = MultiplicationFactor;
Aircraft TerrainSamples = TerrainSamples;

Aircraft FeedbackControlGain = FeedbackControlGain;
Aircraft MAXClimbAngle = MAXClimbAngle;

Aircraft MINTurnRadius = MINTurnRadius;

Aircraft MINAltitude = MINAltitude;

Aircraft MAXAltitude = MAXAltitude;

Aircraft MAXDiveRate = MAXDiveRate;

strcpy (Aircraft CommitAlt,
strcpy (Aircraft FuelUsage,
strcpy (Aircraft NavErrorData, NavErrorData) ;

Aircraft:

{
}

:~Aircraft ()

LookAheadInterval;

CommitAlt) ;
FuelUsage) ;

void Aircraft::Aircraft Show(ostream& os)

{

Airframe:

os
os
Oos
Oos
os
os
Oos
Oos
os
os
Oos
Oos
os
os
Oos
Oos
os
os
Oos
Oos
os
os

<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<

CapabilityName:
CommitAlt: " <<
FuelUsage: " <<
NavErrorData: "

MAXSpeed: " <<
MINSpeed: " <<

EmptyWeight: "

TerrainSamples

MAXClimbAngle:
MINTurnRadius:
MINAltitude: "
MAXAltitude: "
MAXDiveRate: "

NonAerodynamic:

:Airframe_ Show (os) ;

" << Alrcraft CapabilityName << endl;
Aircraft CommitAlt << endl;
Aircraft FuelUsage << endl;
<< Alrcraft NavErrorData << endl;

" << Aircraft NonAerodynamic << endl;
Aircraft MAXSpeed << endl;
Aircraft MINSpeed << endl;

MAXG: " << Aircraft MAXG << endl;

<< Aircraft EmptyWeight << endl;

FuelWeight: " << Aircraft FuelWeight << endl;

RTBFuelBingoLimit: " << Aircraft RTBFuelBingoLimit << endl;
AirRefuelBingoLimit: " << Aircraft AirRefuelBingoLimit << endl;
MaxFuelReceivingRate: " << Aircraft MaxFuelReceivingRate << endl;
LookAheadInterval: " << Aircraft LookAheadInterval << endl;
MultiplicationFactor: " << Aircraft MultiplicationFactor << endl;

" << Aircraft TerrainSamples << endl;

FeedbackControlGain: " << Aircraft FeedbackControlGain << endl;

" << Alrcraft MAXClimbAngle << endl;
" << Aircraft MINTurnRadius << endl;
<< Alrcraft MINAltitude << endl;
<< Aircraft MAXAltitude << endl;
<< Aircraft MAXDiveRate << endl;

148

int

}

// general constructor
Airplane: :Airplane (const char* ID, const char* CapabilityName, const char* CommitAlt,
const char* FuelUsage, const char* NavErrorData, int NonAerodynamic, float MAXSpeed,
float MINSpeed, float MAXG, int EmptyWeight, int FuelWeight, int RTBFuelBingoLimit, int
AirRefuelBingoLimit, int MaxFuelReceivingRate, float LookAheadInterval, float
MultiplicationFactor, int TerrainSamples, int FeedbackControlGain, float MAXClimbAngle,
float MINTurnRadius, float MINAltitude, float MAXAltitude, float MAXDiveRate, int
ABSpeed, int MAXThrust, float WingArea, float WingSpan, int CruiseAltMSL, int
CruiseSpeed, int FuelFlow, float TSFC, int MAXSpeedCruiseAlt, float CDO)
:Aircraft (ID, CapabilityName, CommitAlt, FuelUsage, NavErrorData, NonAerodynamic,
MAXSpeed, MINSpeed, MAXG, EmptyWeight, FuelWeight, RTBFuelBingoLimit,
AirRefuelBingoLimit, MaxFuelReceivingRate, LookAheadInterval, MultiplicationFactor,
TerrainSamples, FeedbackControlGain, MAXClimbAngle, MINTurnRadius, MINAltitude,
MAXAltitude, MAXDiveRate)
{

Airplane ABSpeed = ABSpeed;

Airplane MAXThrust = MAXThrust;

Airplane WingArea = WingArea;

Airplane WingSpan = WingSpan;

Airplane CruiseAltMSL = CruiseAltMSL;

Airplane CruiseSpeed = CruiseSpeed;

Airplane TSFC = TSFC;

Airplane MAXSpeedCruiseAlt = MAXSpeedCruiseAlt;

Airplane CDO = CDO;

Airplane extent->insert (this);

}

// constructor used for EADSIM
Airplane::Airplane (const char* ID, int NonAerodynamic, int MAXSpeed, int MINSpeed, float
MAXG, int EmptyWeight, int FuelWeight, int RTBFuelBingoLimit, int AirRefuelBingoLimit,
int MaxFuelReceivingRate, float LookAheadInterval, float MultiplicationFactor, int
TerrainSamples, int FeedbackControlGain, int MAXClimbAngle, int ABSpeed, int MAXThrust,
float WingArea, float WingSpan, int CruiseAltMSL, int CruiseSpeed, int FuelFlow, float
TSFC, int MAXSpeedCruiseAlt, float CDO)
:Aircraft (ID, NonAerodynamic, MAXSpeed, MINSpeed, MAXG, EmptyWeight, FuelWeight,
RTBFuelBingoLimit, AirRefuelBingoLimit, MaxFuelReceivingRate, LookAheadInterval,
MultiplicationFactor, TerrainSamples, FeedbackControlGain, MAXClimbAngle)
{

Airplane ABSpeed = ABSpeed;

Airplane MAXThrust = MAXThrust;

Airplane WingArea = WingArea;

Airplane WingSpan = WingSpan;

Airplane CruiseAltMSL = CruiseAltMSL;

Airplane CruiseSpeed = CruiseSpeed;

Airplane TSFC = TSFC;

Airplane MAXSpeedCruiseAlt = MAXSpeedCruiseAlt;

Airplane CDO = CDO;

Airplane_ extent->insert (this);

}

// constructor used for SUPRESSOR

Airplane::Airplane (const char* ID, const char* CapabilityName, const char* CommitAlt,
const char* FuelUsage, const char* NavErrorData, float MAXSpeed, float MINSpeed, float
MAXG, float MAXClimbAngle, float MINTurnRadius, float MINAltitude, float MAXAltitude,
float MAXDiveRate)

:Aircraft (ID, CapabilityName, CommitAlt, FuelUsage, NavErrorData, MAXSpeed, MINSpeed,
MAXG, MAXClimbAngle, MINTurnRadius, MINAltitude, MAXAltitude, MAXDiveRate)

{

Airplane extent->insert (this);

}

Airplane::~Airplane ()

{
}

void Airplane::Airplane Show(ostream& os)

{

Airplane_ extent->remove (this) ;

Aircraft::Aircraft_Show(os) ;

149

0s << "=== ABSpeed: " << Airplane ABSpeed << endl;

0s << MAXThrust: " << Airplane MAXThrust << endl;

os << WingArea: " << Airplane WingArea << endl;

os << WingSpan: " << Airplane WingSpan << endl;

08 << CruiseAltMSL: " << Airplane_ CruiseAltMSL << endl;

os << CruiseSpeed: " << Airplane CruiseSpeed << endl;

0s << TSFC: " << Airplane TSFC << endl;

os << MAXSpeedCruiseAlt: " << Airplane MAXSpeedCruiseAlt << endl;
08 << CDO: " << Airplane CDO << endl;

}

// general constructor
Helicopter: :Helicopter (const char* ID, const char* CapabilityName, const char* CommitAlt,
const char* FuelUsage, const char* NavErrorData, int NonAerodynamic, float MAXSpeed,
float MINSpeed, float MAXG, int EmptyWeight, int FuelWeight, int RTBFuelBingoLimit, int
AirRefuelBingoLimit, int MaxFuelReceivingRate, float LookAheadInterval, float
MultiplicationFactor, int TerrainSamples, int FeedbackControlGain, float MAXClimbAngle,
float MINTurnRadius, float MINAltitude, float MAXAltitude, float MAXDiveRate, float
Power, float PSFC, float DecelarationG, int Blades, float BladeRadius, float BladeChord,
float BladeCl, float BladeCDO, float TipVelocity, float FuselageArea, float FuselageCdo)
:Aircraft (ID, CapabilityName, CommitAlt, FuelUsage, NavErrorData, NonAerodynamic,
MAXSpeed, MINSpeed, MAXG, EmptyWeight, FuelWeight, RTBFuelBingoLimit,
AirRefuelBingoLimit, MaxFuelReceivingRate, LookAheadInterval, MultiplicationFactor,
TerrainSamples, FeedbackControlGain, MAXClimbAngle, MINTurnRadius, MINAltitude,
MAXAltitude, MAXDiveRate)
{

HelicopterfPower = Power;

Helicopter PSFC = PSFC;

Helicopter DecelarationG = DecelarationG;

Helicopter Blades = Blades;

Helicopter BladeRadius = BladeRadius;

Helicopter BladeChord = BladeChord;

Helicopter BladeCl = BladeCl;

Helicopter BladeCDO = BladeCDO;

Helicopter TipVelocity = TipVelocity;

Helicopter FuselageArea = FuselageArea;

Helicopter FuselageCd0 = FuselageCdo;

Helicopter_ extent->insert (this);

}

// constructor used for EADSIM

Helicopter: :Helicopter (const char* ID, int NonAerodynamic, int MAXSpeed, int MINSpeed,
float MAXG, int EmptyWeight, int FuelWeight, int RTBFuelBingoLimit, int
AirRefuelBingoLimit, int MaxFuelReceivingRate, float LookAheadInterval, float
MultiplicationFactor, int TerrainSamples, int FeedbackControlGain, int MAXClimbAngle,
float Power, float PSFC, float DecelarationG, int Blades, float BladeRadius, float
BladeChord, float BladeCl, float BladeCDO, float TipVelocity, float FuselageArea, float
FuselageCdo)

:Aircraft (ID, NonAerodynamic, MAXSpeed, MINSpeed, MAXG, EmptyWeight, FuelWeight,
RTBFuelBingoLimit, AirRefuelBingoLimit, MaxFuelReceivingRate, LookAheadInterval,
MultiplicationFactor, TerrainSamples, FeedbackControlGain, MAXClimbAngle)

HelicopterfPower = Power;

Helicopter PSFC = PSFC;

Helicopter DecelarationG = DecelarationG;
Helicopter Blades = Blades;

Helicopter BladeRadius = BladeRadius;
Helicopter BladeChord = BladeChord;
Helicopter BladeCl = BladeCl;
Helicopter BladeCDO = BladeCDO;
Helicopter TipVelocity = TipVelocity;
Helicopter FuselageArea = FuselageArea;
Helicopter FuselageCd0 = FuselageCdoO;
Helicopter extent->insert (this);

}

// constructor used for SUPRESSOR

Helicopter: :Helicopter (const char* ID, const char* CapabilityName, const char* CommitAlt,
const char* FuelUsage, const char* NavErrorData, float MAXSpeed, float MINSpeed, float
MAXG, float MAXClimbAngle, float MINTurnRadius, float MINAltitude, float MAXAltitude,
float MAXDiveRate)

150

:Aircraft (ID, CapabilityName, CommitAlt, FuelUsage, NavErrorData, MAXSpeed, MINSpeed,
MAXG, MAXClimbAngle, MINTurnRadius, MINAltitude, MAXAltitude, MAXDiveRate)

{
}

Helicopter: :~Helicopter ()

{
}

void Helicopter::Helicopter Show(ostream& os)

{

Helicopter_ extent->insert (this);

Helicopter_ extent->remove (this) ;

Aircraft::Aircraft Show(os) ;

0s << "=== Power: " << Helicopter Power << endl;
0s << "=== PSFC: " << Helicopter PSFC << endl;
08 << DecelarationG: " << Helicopter DecelarationG << endl;
0s << Blades: " << Helicopter Blades << endl;
0s << BladeRadius: " << Helicopter BladeRadius << endl;
08 << BladeChord: " << Helicopter BladeChord << endl;
08 << BladeCl: " << Helicopter BladeCl << endl;
0s << BladeCDO: " << Helicopter BladeCDO << endl;
os << TipVelocity: " << Helicopter TipVelocity << endl;
os << FuselageArea: " << Helicopter FuselageArea << endl;
os << TipVelocity: " << Helicopter TipVelocity << endl;
os << FuselageCdO: " << Helicopter FuselageCd0 << endl;

}

void Missile::Set Missile FlightSection (FlightSection* FlighSection)

{

Missile FlightSections.insert (FlighSection) ;

}

Missile::Missile(const char* ID, float InitialVelocity, float LaunchRailLenght, float
LaunchElevationAngle, float MAXDivertVelocity, float MaxDivertLateralAcceleration)
:Airframe (ID)
{

Missile InitialVelocity = InitialVelocity;

Missile LaunchRailLenght = LaunchRailLenght;

Missile LaunchElevationAngle = LaunchElevationAngle;

Missile MAXDivertVelocity = MAXDivertVelocity;

Missile MaxDivertLateralAcceleration = MaxDivertLateralAcceleration;

Missile extent->insert (this);

}

Missile::~Missile ()

{
}

// Show method
void Missile::Missile Show(ostream& os)

{

Missile extent->remove (this) ;

Airframe::Airframe_Show(os) ;

os << InitialVelocity: " << Missile InitialVelocity << endl;

os << LaunchRailLenght: " << Missile LaunchRailLenght << endl;

os << LaunchElevationAngle: " << Missile LaunchElevationAngle << endl;

os << MAXDivertVelocity: " << Missile MAXDivertVelocity << endl;

os << "=== MaxDivertLateralAcceleration: " << Missile MaxDivertLateralAcceleration
<< endl;

}

151

Appendix D. Data conversion programs code

Data conversion programs also called User’s View translation programs. The program
structure has two types of data conversion as described below.

e The first is the data conversion from the User’s View to the global database.

This conversion is applied when the movement of data from the intermediate database to
the global database is necessary.

e The second is the data conversion from the Global Database to the User’s View.

This conversion is used to generate the specific User’s View that will be translated later
to the source database in order to run the related scenario generator program.

This Appendix shows the code of the User’s View translation program for Suppressor.

152

-- Maindcsup.cc

-- Implementation of the Data Conversor for Suppressor

-- Capt Emilia Colonese

___ */

#include <iostream.h>

#include <fstream.h>

#include <ostore/ostore.hhs>

#include <ostore/coll.hhs>

#include <string.h>

#include <stdlib.h>

#include "Airframe.hh"

#include "FlightSection.hh"

#include "Mover.hh"

#include "SUP_Mover.hh"

#include "SUP_ CapabilityMover.hh"

#define MAX CHAR 200 // max input characters
os_Set<Airplane*> *Airplane extent = 0;
os_Set<Helicopter*> *Helicopter extent = 0;
os_Set<Missile*> *Missile extent = 0;
os_Set<FlightSection*> *FlightSection extent = 0;
os_Set<MoverAirplane*> *MoverAirplane extent = 0;
os_Set<MoverHelicopter*> *MoverHelicopter extent = 0;
os_Set<SUP_MoverAirplane*> *SUP MoverAirplane extent = 0;
os_Set<SUP_MoverHelicopter*> *SUP MoverHelicopter extent = 0;
os_Set<SUP_CapabilityMover*> *SUP CapabilityMover extent = 0;

os_typespec *Airplane type = Airplane::get_os_typespec() ;

os_typespec
os_typespec
os_typespec
os_typespec

Airplane extent type = os_Set<Airplane>::get os_typespec() ;

*Helicopter type = Heli
*Helicopter extent_ type

copter::get_os_typespec() ;
= os_Set<Helicopter*>::get_os_typespec() ;

*Missile type = Missile::get os_typespec() ;

os_typespec *Missile extent type = os_Set<Missile*>::get os_ typespec();

os_typespec *FlightSection_type = FlightSection::get_os_typespec() ;

os_typespec *FlightSection_extent type = os_Set<FlightSection*>::get_os_typespec() ;
os_typespec *MoverAirplane type = MoverAirplane::get os_ typespec();

os_typespec *MoverAirplane extent type = os_Set<MoverAirplane*s>::get os_typespec() ;
os_typespec *MoverHelicopter type = MoverHelicopter::get_ os_typespec() ;

os_typespec *MoverHelicopter extent type =
os_Set<MoverHelicopter*s>::get os_ typespec() ;

os_typespec *SUP_ MoverAirplane type = SUP_MoverAirplane::get os_typespec() ;

os_typespec *SUP_MoverAirplane extent type =
os_Set<SUP_MoverAirplane*>::get os_typespec() ;

os_typespec *SUP_MoverHelicopter type = SUP_MoverHelicopter::get os_ typespec() ;

os_typespec *SUP_MoverHelicopter extent type
os_Set<SUP_MoverHelicopter*s>::get os typespec();

os_typespec *SUP_CapabilityMover type = SUP_CapabilityMover::get os_typespec() ;

os_typespec *SUP_CapabilityMover extent type
os_Set<SUP_CapabilityMover*s>::get os typespec();
os_database *dbl, *db2;

void InitializelDB1 (os_database* dbl)

{

cout << endl << "Creating new classes root for semantic dictionary...";

// Create Airplane Root
Airplane extent = &os_Set<Airplane*s:
dbl->create root ("Airplane_ extent root")

->set_value (Airplane extent, Airplane extent type) ;

cout << ".";

// Create Helicopter Root

Helicopter extent = &os_Set<Helicopter*s::create(dbl) ;

153

:create (dbl) ;

dbl->create_root ("Helicopter extent root")

->set_value (Helicopter extent, Helicopter extent type);

cout << ".";

// Create Missile Root
Missile extent = &os_Set<Missile*>::create (dbl) ;
dbl->create root ("Missile extent root")

->set_value (Missile extent, Missile_ extent type);

cout << ".";

// Create FlightSection Root
FlightSection extent = &os_Set<FlightSection*>::create(dbl) ;
dbl->create_root ("FlightSection extent root")

->set_value (FlightSection extent, FlightSection extent type);

}

cout << ".";

void Initialize2DB1 (os_database* dbl)

{

// Create MoverAirplane Root
MoverAirplane extent = &os_Set<MoverAirplane*s::create (dbl) ;
dbl->create root ("MoverAirplane extent root")

->set_value (MoverAirplane extent, MoverAirplane extent type);

cout << ".";

// Create MoverHelicopter Root
MoverHelicopter extent = &os_Set<MoverHelicopter*s::create(dbl) ;
dbl->create_root ("MoverHelicopter extent_ root")

->set_value (MoverHelicopter extent, MoverHelicopter_ extent type);

}

cout << ".";

void InitializeDB2 (os_database* db2)

{

cout << "Creating exported database for SUPRESSOR...";

// Create SUP_MoverAirplane Root
SUP_MoverAirplane extent = &os_Set<SUP MoverAirplane*s>::create (db2) ;
db2->create_root ("SUP_MoverAirplane extent root")

->set_value (SUP_MoverAirplane extent, SUP_MoverAirplane extent type);

->set value (SUP_MoverHelicopter extent, SUP MoverHelicopter extent type);

->set_value (SUP_CapabilityMover extent, SUP_CapabilityMover extent_ type);

}

cout << ".";

// Create SUP_MoverHelicopter Root

SUP_MoverHelicopter extent = &os_Set<SUP_MoverHelicopter*s::create (db2) ;

db2->create root ("SUP_MoverHelicopter extent root")
cout << ".";

// Create SUP_CapabilityMover Root

SUP_CapabilityMover extent = &os_Set<SUP_CapabilityMover*s::create (db2) ;

db2->create root ("SUP_CapabilityMover extent root")

cout << ".";

void PopulateDB2 (os_database* db2)

{

cout << endl << "Populating the exported database with data examples...

SUP_MoverAirplane* SUP_aAux;
SUP_MoverHelicopter* SUP_hAux;
SUP_CapabilityMover* SUP_cAux;

SUP_cAux = new(db2, SUP_CapabilityMover type) SUP_CapabilityMover (
"Capability-F14",
"DIMENSION1l MT 500.0",
"DIMENSION2 LB 60.3",
"1.5 2.5 3.54.55.56.57.58.5",
1000.1,

154

200.4,
100.5,
30.4,
356.9,
34.8,
98.2,
50.8) ;
cout << endl << "Capability-F14 INSERTED..";

SUP_aAux = new(db2, SUP_MoverAirplane type) SUP MoverAirplane(l, "F-14", SUP_cAux) ;
cout << endl << "F-14 INSERTED..";

SUP_cAux = new(db2, SUP_CapabilityMover type) SUP_CapabilityMover (
"Capability-SUPERPUMA",
"DIMENSION1 MT 100.0",
"DIMENSION2 LB 30.3",
"1.5 2.5 3.5 4.55.56.5 7.5 8.5",
500.0,
60.0,
80.0,
900.0,
6.9,
56.8,
8.0,
50.8) ;
cout << endl << "Capability-SUPERPUMA INSERTED..";

SUP_hAux = new(db2, SUP_MoverHelicopter_ type) SUP_MoverHelicopter (2, "SUPERPUMA",
SUP_cAux) ;

cout << endl << "SUPERPUMA INSERTED..";

}

int main()

{

OS_ESTABLISH_ FAULT_HANDLER

OS_BEGIN TXN(txl, 0, os_transaction::update)
// Initialize the runtime

cout << endl << "Initializing os ..." << endl;

objectstore::initialize() ;
os_collection::initialize() ;

// Open the database named "dictionary.db".
os_database *dbl = os_database::open("sdictionary.db", 0, 0666);
os_database_root* dictionary root = dbl->find root ("Airplane extent root");

if (!dictionary root)
cout << "First Initialization of dbl ..." << endl;
InitializelDB1 (dbl) ;
cout << "Done." << endl;

os_database root* dictionary root2 = dbl->find root ("MoverAirplane extent root");

if (!dictionary root2)

{
cout << "Second Initialization of dbl ..." << endl;
Initialize2DB1 (dbl) ;
cout << "Done." << endl;

}

// Close database
dbl->close() ;
0S_END_TXN (tx1)
0S_END_FAULT HANDLER

155

OS_ESTABLISH FAULT_ HANDLER
OS_BEGIN TXN(tx2, 0, os_transaction::update)
// Initialize the runtime

// Open the database named "SUPexported.db". If one does not exist, create and open
one.

os_database *db2 = os_database: :open ("supexported.db", 0, 0666) ;

os_database_root* SUP_root = db2
->find root ("SUP_MoverAirplane extent root");

if (!SUP_root)

{

cout << endl << "Initializing db2 ..." << endl;
InitializeDB2 (db2) ;
cout << "Done." << endl;

}

else
cout << "SUP_root found in db2 = " << &db2 << endl;

// Close database
db2->close() ;

0S_END_TXN (tx2)
0S_END FAULT HANDLER

char next_action = ' '; // input from user
char na([31]; // used by user action
cout << "\nThis program convert data from the exported SUPPRESOR schema to integrate
into the Global Schema" << endl <<
"or convert from Global Schema to the exported SUPPRESOR schema to generate
the user's view" << endl << endl;

// Convert Class SUP_MoverAirplane

OS_ESTABLISH FAULT HANDLER
OS_BEGIN TXN(tx3, 0, os_transaction::update)

os_database *db2 = os_database::open ("supexported.db", 0, 0666);
os_database *dbl = os_database::open("sdictionary.db", 0, 0666);

char choice_conversor = ' ';

cout << "Enter with the type of conversion. " << endl
<< " Exported Schema to Global Schema (E) " << endl
<< " Global Schema to Exported Schema - View Generation (G) " << endl
<< " Quit (Q) " << endl
<< " o==> ",

cin >> choice conversor;

cout << "choice ==> " << choice conversor << endl << endl;

// find root

os_database root* SUP_root = db2->find root ("SUP_MoverAirplane extent root");
if (!SUP_root)

{ cout << "sup root not found" << endl;
return 0;}

else
{
if (choice conversor == 'E')
{
PopulateDB2 (db2) ;
cout << "Done." << endl;
1

156

Airplane extent = (os_Set<Airplane*>*) (dbl
->find root ("Airplane extent root")
->get_value (Airplane_extent type)) ;

if (!Airplane extent)
{ cout << "Airplane root not found." << endl;
return 0 ; }

MoverAirplane extent = (os_Set<MoverAirplane*>*) (dbl
->find root ("MoverAirplane extent root")
->get_value (MoverAirplane extent_ type)) ;

if (!MoverAirplane extent)
{ cout << "MoverAirplane root not found." << endl;
return 0; }

MoverHelicopter extent = (os_Set<MoverHelicopter*s*) (dbl
->find root ("MoverHelicopter extent root")
->get_value (MoverHelicopter extent type));

if (!MoverHelicopter extent)
{ cout << "MoverHelicopter root not found." << endl;
return 0; }

SUP_MoverAirplane_extent = (os_Set<SUP_MoverAirplane*>*) (db2
->find root ("SUP_MoverAirplane extent root™")
->get _value (SUP_MoverAirplane extent type)) ;

if (!SUP_MoverAirplane_ extent)
{ cout << "SUP MoverAirplane root not found." << endl;
return 0; }

Helicopter extent = (os_Set<Helicopter*s>*) (dbl
->find root ("Helicopter extent root")
->get _value (os_Set<Helicopter*>::get os_ typespec()));
if (!Helicopter_extent)
{ cout << "Helicopter root not found." << endl;
return 0 ; }

SUP_MoverHelicopter extent = (os_Set<SUP MoverHelicopter*>*) (db2
->find root ("SUP_MoverHelicopter extent root")
->get value (os_Set<SUP MoverHelicopter*s::get os_ typespec()));
if (!SUP_MoverHelicopter extent)
{ cout << "SUP MoverHelicopter root not found." << endl;
return 0; }

Missile extent = (os_Set<Missile*>*) (dbl->find root ("Missile extent root")
->get _value (os_Set<Missile*>::get os typespec()));
if (!Missile_extent)
{ cout << "Missile root not found." << endl;
return 0 ;

FlightSection extent = (os_Set<FlightSection*>*) (dbl
->find root ("FlightSection extent root")
->get value (os_Set<FlightSection*>::get os typespec()));
if (!FlightSection_ extent)
{ cout << "Airframe root not found." << endl;
return 0; }

SUP_CapabilityMover extent = (os_Set<SUP_CapabilityMover*>*) (db2
->find root ("SUP_CapabilityMover extent root")
->get_value (os_Set<SUP_CapabilityMover*s>::get_os_typespec()));
if (!SUP_CapabilityMover extent)
{ cout << "SUP CapabilityMover root not found." << endl;
return 0; }

switch(choice conversor) {

case 'E': {

157

// Exported Schema to Global Schema

SUP_MoverAirplane* SUP_aAux;
SUP_MoverHelicopter* SUP_hAux;
SUP_CapabilityMover* SUP_cAux;
Airplane* aAux;

Helicopter* hAux;
MoverAirplane* maAux;
MoverHelicopter* mhAux;

os_Cursor<SUP_MoverAirplane*> c (*SUP_MoverAirplane extent) ;

for (SUP_aAux = c.first(); SUP_aAux; SUP_aAux = c.next())
{
SUP_cAux = SUP_aAux->SUP_Get MoverAirplane CapabilityAirplane();
aAux = new(dbl, Airplane::get_os_typespec()) Airplane (
SUP_aAux->SUP_Get_ MoverAirplane Name (),
SUP_cAux->SUP_Get CapabilityMover Name(),
SUP_cAux->SUP_Get CapabilityMover CommitAlt (),
SUP_cAux->SUP_Get_ CapabilityMover FuelUsage(),
SUP_cAux->SUP_Get_CapabilityMover NavErrorData(),
SUP_cAux->SUP_Get CapabilityMover MAXSpeed(),
SUP_cAux->SUP_Get CapabilityMover MINSpeed(),
SUP_cAux->SUP_Get CapabilityMover MAXAcceleration(),
SUP_cAux->SUP_Get_ CapabilityMover MAXClimbRate (),
SUP_cAux->SUP_Get_CapabilityMover MINTurnRadius (),
SUP_cAux->SUP_Get CapabilityMover MINAltitude(),
SUP_cAux->SUP_Get CapabilityMover MAXAltitude(),
SUP_cAux->SUP_Get_CapabilityMover MAXDiveRate()) ;
cout << "Airplane instance created " << endl;

maAux = new(dbl, MoverAirplane type) MoverAirplane (SUP_aAux
->SUP_Get_ MoverAirplane SystemID(),
aAux) ;

cout << "SUP_CapabilityMover data for an SUP_MoverAirplane instance transfered
" << endl;

}

cout << endl << "SUP_MoverAirplane data transfered " << endl;

os_Cursor<SUP_MoverHelicopter*> d(*SUP_MoverHelicopter extent) ;

for (SUP_hAux = d.first(); SUP_hAux; SUP_hAux = d.next())

{

SUP_cAux = SUP_hAux->SUP_Get MoverHelicopter CapabilityHelicopter();
hAux = new(dbl, Helicopter::get os_typespec()) Helicopter(
SUP_hAux->SUP_Get MoverHelicopter Name(),
SUP_cAux->SUP_Get CapabilityMover Name (),
SUP_cAux->SUP_Get CapabilityMover CommitAlt (),
SUP_cAux->SUP_Get_CapabilityMover FuelUsage(),
SUP_cAux->SUP_Get_ CapabilityMover NavErrorDataf(),
SUP_cAux->SUP_Get CapabilityMover MAXSpeed(),
SUP_cAux->SUP_Get CapabilityMover MINSpeed(),
SUP_cAux->SUP_Get_CapabilityMover MAXAcceleration(),
SUP_cAux->SUP_Get_ CapabilityMover MAXClimbRate(),
SUP_cAux->SUP_Get CapabilityMover MINTurnRadius(),
SUP_cAux->SUP_Get CapabilityMover MINAltitude(),
SUP_cAux->SUP_Get_ CapabilityMover MAXAltitude(),
SUP_cAux->SUP_Get_CapabilityMover MAXDiveRate()) ;
mhAux = new(dbl, MoverHelicopter::get os_ typespec()) MoverHelicopter (SUP_hAux
->SUP_Get MoverHelicopter SystemID(), hAux);

cout << "SUP_ CapabilityMover data for an SUP MoverHelicopter instance
transfered " << endl;

}

cout << "SUP_MoverHelicopter data transfered " << endl;

break;

}

158

case 'G': {
// Global Schema to Exported Schema

Airplane* aAux;

Helicopter* hAux;
MoverAirplane* maAux;
MoverHelicopter* mhAux;
SUP_MoverAirplane* SUP_aAux;
SUP_MoverHelicopter* SUP_hAux;
SUP_CapabilityMover* SUP_cAux;

os_Cursor<MoverAirplane*> c(*MoverAirplane_ extent) ;
for (maAux = c.first(); maAux; maAux = c.next())
{
aAux = maAux->Get MoverAirplane CapabilityAirplane() ;
SUP_cAux = new(db2, SUP_CapabilityMover::get os_typespec())
SUP_CapabilityMover (aAux->Get Airplane CapabilityName(),
aAux->Get Airplane CommitAlt (),
aAux->Get_Airplane_ FuelUsage(),
aAux->Get Airplane NavErrorDataf(),
aAux->Get Airplane MAXG(),
aAux->Get Airplane MINAltitude()
aAux->Get Airplane MAXAltitude()
aAux->Get_Airplane MINTurnRadius
aAux->Get Airplane MINSpeed(),
aAux->Get Airplane MAXSpeed(),
aAux->Get Airplane MAXDiveRate(),
aAux->Get_ Airplane MAXClimbAngle()) ;

i

oM

cout << endl << "Airplane and MoverAirplane data transfered to
SUP_CapabilityMover" << endl;

SUP_aAux = new (db2, SUP_MoverAirplane::get os_typespec())
SUP_MoverAirplane (maAux
->Get_MoverAirplane SystemID(),

maAux->Get MoverAirplane Name(),

SUP_cAux) ;
cout << endl << "Airplane and MoverAirplane data transfered to SUP MoverAirplane"
<< endl;

os_Cursor<MoverHelicopter*> d(*MoverHelicopter extent) ;
for (mhAux = d.first(); mhAux; mhAux = d.next())
{
hAux = mhAux
->Get_MoverHelicopter_ CapabilityHelicopter () ;
SUP_cAux = new(db2, SUP_CapabilityMover::get os_typespec())
SUP_CapabilityMover (hAux->Get Helicopter CapabilityName(),
hAux->Get Helicopter CommitAlt (),
hAux->Get Helicopter FuelUsage(),
hAux->Get_Helicopter NavErrorData(),
hAux->Get Helicopter MAXG(),
hAux->Get Helicopter MINAltitude (
hAux->Get_ Helicopter MAXAltitude (
hAux->Get Helicopter MINTurnRadiu
hAux->Get Helicopter MINSpeed(),
hAux->Get Helicopter MAXSpeed(),
hAux->Get_ Helicopter MAXDiveRate(),
hAux->Get_ Helicopter MAXClimbAngle()) ;

)
)
s(),

cout << endl << "Helicopter and MoverHelicopter data transfered to
SUP_CapabilityMover" << endl;

SUP_hAux = new(db2, SUP_ MoverHelicopter::get os typespec())
SUP_MoverHelicopter (mhAux->Get MoverHelicopter SystemID(),

mhAux->Get MoverHelicopter Name(),

159

SUP_cAux) ;

}

cout << endl << "Helicopter and MoverHelicopter data transfered to
SUP_MoverHelicopter" << endl;

break;

}

case 'Q': break;

}

dbl->close() ;
db2->close() ;
OS_END_TXN (tx3)
OS_END_FAULT HANDLER

160

Appendix E. Data Verification program code

161

-- Maingd.cc
-- Implementation of the Global Data Access

-- Capt Emilia Colonese

#include <iostream.h>
#include <fstream.h>
#include <ostore/ostore.hhs>
#include <ostore/coll.hhs>
#include <string.h>
#include <stdlib.h>
#include "Airframe.hh"
#include "FlightSection.hh"
#include "Mover.hh"

os_Set<Aircraft*> *Aircraft extent = 0;
os_Set<Airplane*> *Airplane extent = 0;
os_Set<Helicopter*> *Helicopter extent = 0;

os_Set<Missile*> *Missile extent = 0;
os_Set<FlightSection*> *FlightSection extent = 0;
os_Set<MoverAirplane*> *MoverAirplane extent = 0;
os_Set<MoverHelicopter*> *MoverHelicopter extent = 0;

os_typespec *MoverAirplane type = MoverAirplane::get os typespec();

os_typespec *MoverAirplane extent type = os_Set<MoverAirplane*s>::get os_ typespec();
os_typespec *MoverHelicopter type = MoverHelicopter::get_ os_ typespec();

os_typespec *MoverHelicopter extent type = os_Set<MoverHelicopter*s>::get os_ typespec();

os_typespec *Airplane_ type = Airplane::get_os_typespec() ;

os_typespec *Airplane_ extent type = os_Set<Airplane*s::get_os_typespec() ;
os_typespec *Helicopter type = Helicopter::get os_ typespec();

os_typespec *Helicopter extent type = os Set<Helicopter*s>::get os typespec();
os_typespec *Missile type = Missile::get_os_ typespec();

os_typespec *Missile extent type = os_Set<Missile*>::get_os_typespec();

os_typespec *FlightSection type = FlightSection::get os typespec();

os_typespec *FlightSection extent type = os_Set<FlightSection*>::get os typespec();

os_database *db;

int main()

{

OS_ESTABLISH FAULT HANDLER
OS_BEGIN TXN(txl, 0, os_transaction::update)

// Initialize the runtime

cout << endl << "Initializing os ..." << endl;
objectstore::initialize() ;
os_collection::initialize();

os_database *db = os_database::open("sdictionary.db", 0, 0666);
ofstream OutputFile;

char auxname [51] ;
cout << "Class Name?" << endl << "==> ";
cin.getline (auxname, 50);

cout << endl << "Printing data for class ==> " << auxname;
if (strlen (auxname)==0)

cout << "Class name invalid! " << endl;

return 0;

}

// these classes are not concrete, threfore are not part of the implemented classes
/* if (strcmp (auxname, "Airframe")==0)

162

OutputFile.open ("Airframedat.txt") ;

OutputFile << endl << "Data for Class Airframe " << endl;
Airframe extent = (os_Set<Airframe*>*) (db
->find root ("Airframe_ extent root")->get value (Airplane_extent type));

if (!Airframe extent)

{ cout << "Airframe root not found." << endl;
return 0;

}

os_Cursor<Airframe*> a(*Airframe extent) ;
Airframe* alAux;

if (a.first())
{ for (aBux = a.first(); ahAux; alAux =

= a.next())
{ aAux->Airframe Show (OutputFile) ;
OutputFile << endl;
1
else
cout << "no Airframe data stored!" << endl;
if (strcmp (auxname, "Aircraft")==0)

OutputFile.open ("Aircraftdat.txt");

OutputFile << endl << "Data for Class Aircraft: " << endl;
Alrcraft extent = (os_Set<Aircraft*s>*) (db

->find root ("Aircraft extent root")
->get_value (Airplane_extent type)) ;

if (!Aircraft extent)

{ cout << "Aircraft root not found." << endl;
return 0;

}

os_Cursor<Aircraft*> b(*Aircraft_ extent);
Aircraft* bAux;

if (b.first())
{ for (bRAux = b.first(); bAux; bAux = b.next())

{ bAux->Aircraft_ Show (OutputFile) ;
OutputFile << endl;
1
1

else

cout << "no Aircraft data stored!" << endl;

*/

if (strcmp(auxname, "Airplane")==0)
{
OutputFile.open ("Airplanedat.txt") ;

OutputFile << endl << "Data for Class Airplane: " << endl;

Airplane extent = (os_Set<Airplane*>*) (db
->find root ("Airplane extent root™")
->get_value (Airplane extent_ type));

if (!Airplane extent)

{ cout << "Airplane root not found." << endl;
return 0;

}

os_Cursor<Airplane*> c(*Airplane extent) ;
Airplane* cAux;

163

if (c.first())
{ for (cAux = c.first(); cAux; cAux = c.next())

{ cAux->Airplane Show (OutputFile) ;
OutputFile << endl;
}
}

else
cout << "no Airplane data stored!" << endl;

}

if (strcmp (auxname, "Helicopter")==0)

{

OutputFile.open ("Helicopterdat.txt") ;
OutputFile << endl << "Data for Class Helicopter: " << endl;

Helicopter extent = (os_Set<Helicopter*s>*) (db
->find root ("Helicopter extent root")
->get _value (os_Set<Helicopter*>::get os_ typespec()));

if (!Helicopter_extent)

{ cout << "Helicopter root not found." << endl;

return 0 ; }

os_Cursor<Helicopter*> d(*Helicopter extent);
Helicopter* dAux;

if (d.first())

{ for (daux = d.first(); dAux; dAux = d.next())
{ dAux->Helicopter Show (OutputFile) ;

OutputFile << endl;

}

}

else
cout << "no Helicopter data stored!" << endl;

}

if (strcmp (auxname, "MoverAirplane")==0)

{

OutputFile.open ("MoverAirplanedat.txt") ;
OutputFile << endl << "Data for Class MoverAirplane: " << endl;

MoverAirplane extent = (os_Set<MoverAirplane*>*) (db
->find root ("MoverAirplane extent root")
->get_value (os_Set<MoverAirplane*>::get_os_typespec())) ;

if (!MoverAirplane_ extent)

{ cout << "MoverAirplane root not found." << endl;

return 0; }

os_Cursor<MoverAirplane*> g(*MoverAirplane extent) ;
MoverAirplane* gAux;

if (g.first())

for (gAux = g.first(); gAux; gAux = g.next())

{

gAux->MoverAirplane Show (OutputFile) ;

Airplane* hAux;

hAux = gAux
->Get_MoverAirplane CapabilityAirplane();

if (hAux)

{

OutputFile << endl << "CapabilityAirplane Data for this MoverAirplane:

" << endl;
hAux->Airplane_Show (OutputFile) ;

OutputFile << endl;

}

else

164

cout << "no Airplane data stored for this MoverAirplane!" << endl <<
endl;
else
cout << "no MoverAirplane data stored!" << endl;

}

if (strcmp(auxname, "MoverHelicopter")==0)
OutputFile.open ("MoverHelicopterdat.txt") ;
OutputFile << endl << "Data for Class MoverHelicopter: " << endl;

MoverHelicopter extent = (os_Set<MoverHelicopter*>*) (db
->find_ root ("MoverHelicopter extent root")
->get_value (os_Set<MoverHelicopter*s>::get os_typespec()));
if (!MoverHelicopter extent)
{ cout << "MoverHelicopter root not found." << endl;
return 0; }

os_Cursor<MoverHelicopter*> i (*MoverHelicopter extent);
MoverHelicopter* iAux;

if (i.first())
{

for (iAux = i.first(); iAux; iAux = i.next())

{

iAux->MoverHelicopter Show (OutputFile) ;

Helicopter* jAux;
JjAux = 1Aux
->Get_MoverHelicopter CapabilityHelicopter();

if (jAux)

{
OutputFile << endl << "CapabilityHelicopter Data for this

MoverHelicopter: " << endl;
jAux->Helicopter Show(OutputFile) ;
OutputFile << endl;

}

else
cout << "no Helicopter data stored for this MoverHelicopter!" << endl
<< endl;
else
cout << "no MoverHelicopter data stored!" << endl;

}

if (strcmp(auxname, "Missile")==0)
{
OutputFile.open ("Missiledat.txt") ;
OutputFile << endl << "Data for Class Missile: " << endl;

Missile extent = (os_Set<Missile*>*) (db
->find root ("Missile extent root")
->get _value (os_Set<Missile*>::get os typespec()));
if (!Missile extent)
{ cout << "Missile root not found." << endl;
return 0; }

os_Cursor<Missile*> e(*Missile extent);
Missile* eAux;

if (e.first())

{

for (eAux = e.first(); eAux; eAux = e.next())

{

165

eAux->Missile_ Show (OutputFile) ;

os_Cursor<FlightSection*> f (eAux
->Get_Missile FlightSections());

FlightSection* fAux;

if (f.first())
"FlightSection Data for this Missile: " << endl;

fAux = f.next())

{

OutputFile << endl <<
for (fAux = f.first(); fAux;
{ fAux->FlightSection Show (OutputFile) ;

OutputFile << endl;
}

}

else
cout << "no FlightSections data stored for this Missile!" << endl <<

endl;
1
}
else
cout <<

"no Missile data stored!" << endl;

cout << " ...Done " << endl;

db->close () ;
OutputFile.close() ;

0OS_END_TXN (tx1)
0S_END FAULT HANDLER

166

Vita

Captain Emilia de Menezes Colonese was born on 6 July 1964 in Rio de Janeiro,
Brazil. In 1983 she joined the Brazilian Air Force and began work as a computer
programmer. She received the Bachelor of Computer Systems degree in 1984 from the
Faculdade de Adminstragao da Guanabara (FAG) in Rio de Janeiro. She then continued
her work for the Air Force as a computer systems analyst. In 1991 she received a degree
in Business Administration from FAG. In June 1997 she was assigned to the Air Force
Institute of Technology at Wright-Patterson AFB, Ohio to pursue a Master of Science

degree in Computer Systems with an emphasis in Database Systems.

Permanent address: Rua Souza Lima, 422 apto 502
Copacabana, Rio de Janeiro — Brazil
CEP 22081

167

	Title
	Disclaimer
	Table of Contents
	Acknowledgments
	Abstract
	I. Introduction
	II. Literature Review
	III. Methodology for integrating databases
	IV. Implementation of the Prototype
	V. Validation of the Methodology
	VI. Conclusion
	VII. References
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Vita

