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Abstract 

A significant amount of military and civilian research has been aimed at the sensor 

fusion technology area. However, there has been little research into the fusion between 

synthetic aperture radar (SAR) sensors and navigation sensors like the inertial navigation 

sensor (INS) and the global positioning system (GPS). SAR is used in civilian and 

military applications to image ground based targets in reconnaissance and fighter 

targeting missions. The SAR range and range rate measurements are generally obtained 

and processed independently from the aircraft navigation system. This thesis explores a 

potential integration technique to fuse information from the navigation sensors with the 

SAR target measurements. Using Kalman filtering techniques, an INS/GPS/SAR 

integrated system was simulated in a single Kalman filter to analyze the SAR target 

geolocation accuracy benefits. Three different GPS receiver models were used in the 

integrated system: stand-alone, differential, and carrier-phase differential (using floating 

ambiguity resolution). Each of these GPS models were integrated with a common 

INS/SAR combination to determine the target geolocation accuracy improvements due 

only to GPS receiver type. Thesis results show that SAR targeting can be enhanced, 

through tight integration of an INS/GPS navigation system, without increasing the SAR 

resolution. 

x 



AN INTEGRATED SYNTHETIC APERTURE RADAR/GLOBAL 

POSITIONING SYSTEM/INERTIAL NAVIGATION SYSTEM FOR 

IMAGERY GEOLOCATION IMPROVEMENT 

1. Introduction 

Sensor fusion is an emerging technology in today’s Air Force. From reconnaissance 

sensors to navigation sensors, tight sensor integration is showing improvement in aircraft 

avionics accuracy and targeting performance. Sensor fusion typically requires a Kalman 

Filter to combine the measurements from these sensors. To date, there has been very 

little research into the area of reconnaissance and navigation sensor fusion using Kalman 

Filter techniques. However, the Air Force Institute of Technology (AFIT) has provided a 

wealth of research and analysis regarding the benefits of Kalman Filtering as applied to 

navigation sensor fusion [1-3, 8, 11, 19-21, 23-25, 27-30]. This thesis extends previous 

AFIT research by combining synthetic aperture radar (SAR) measurements to an existing 

navigation Kalman Filter.  The results of this research shows significant potential 

improvements in the targeting accuracy of the SAR without modifying the actual radar. 

This work, along with Layne [32], presents some of the first research into the potential 

real world performance improvements attainable with a tightly integrated Inertial 

Navigation System (INS), Global Positioning System (GPS), and SAR. 
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1.1. Background 

There are four technology areas presented in this thesis: inertial navigation systems 

(INS), Global Positioning System (GPS), synthetic aperture radar (SAR), system 

integration, and Kalman filtering. A general overview of each of these topics is presented 

below. 

1.1.1. Inertial Navigation Systems 

Inertial navigation systems use the outputs of accelerometers and gyroscopes to 

provide an autonomous indication of aircraft position, velocity and attitude. Because the 

INS operates with respect to inertial space, it is theoretically not subject to errors 

associated with the earth’s rotation, aircraft dynamics, or other sensors onboard the 

aircraft. There are two major types of INS implementations: platform and strapdown. A 

platform INS contains an inertially stabilized platform that uses gimbals to maintain its 

stability.  A strapdown INS utilizes mathematical algorithms to determine a 

computational platform. In all INS implementations there are inherent instabilities in the 

vertical channel [13]. Usually, an altitude sensor, i.e. barometric or radar altimeter, is 

integrated with the INS to compensate for the instability.  However, there are errors 

inherent to the design and fabrication of both platform and strapdown INSs that induce a 

drift in the INS indicated position, velocity, and attitude. These errors, small at first, can 

become large and will continue to drift with time unless the INS is corrected. Without 

additional position and velocity updates from off-board integrated sensors, the INS will 

drift and produce poor velocity and position information. Integration of GPS with an INS 

can provide the position and velocity updates needed to correct the INS drift. 
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1.1.2. Global Positioning System 

The Global Positioning System is a constellation of 24 satellites that transmit 

electromagnetic signals to GPS receivers located on the user’s platform. The GPS 

receiver determines the range between each satellite within view of the receiver and the 

user. The range provided by the receiver is called “pseudorange” due to presence of 

several signal errors. Each of these errors, including clock, atmospheric, bias, and drift, 

will be described in future sections. There are four unknown parameters involved with 

GPS positioning: three-dimension position parameters (x, y, and z) and GPS time. 

Therefore, as long as there are at least four GPS satellite vehicles (SV) within view of the 

receiver, the pseudoranges provided from the SVs are used to determine the user’s 

position with respect to the earth. Figure 1 shows a typical GPS scenario. SV geometry 

plays an important part in GPS positioning. Poor SV geometry with respect to the 

receiver produces high geometric dilution of precision (GDOP) which can wreak havoc 

on GPS position solutions [12]. 

A GPS receiver’s position and velocity output can be very accurate, but the accuracy 

depends heavily on the type of receiver.  Civil single positioning service (SPS) receivers 

are subjected to selective availability (SA), an error injected into the GPS signal by the 

GPS Mission Control Segment. SA decreases the positioning accuracy of stand-alone 

receivers to within 100-meters RMS. Military receivers account for SA by using de-

encryption techniques, providing position accuracy within 10-meters root-mean-square 

(RMS). Differential GPS (DGPS) receivers can provide accuracy within 3-meters CEP 

[12]. 
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Four Unknowns: X, Y, Z, Coordinate of Receiver 
and GPS Provided Time 

X, Y, Z, TX, Y, Z, T 

SV1 

SV2 

SV3 

SV4 

Figure 1. GPS Scenario 

These receivers take advantage of differential correction signals that account for 

atmospheric errors, SA, and other errors. However, there must be a DGPS correction 

transmitter located within range of the DGPS receiver. Another type of receiver is a 

Carrier Phase Differential GPS (CPGPS) receiver. These receivers use the actual signal 

carrier frequency and phase to determine the position of the GPS receiver. CPGPS 

receivers have accuracies down in the 10-cm range and are considered the most accurate 

(i.e. generally more expensive) type of GPS receiver. All accuracies mentioned in this 

paragraph account for stationary positioning. Aircraft mounted GPS receivers are usually 

subjected to harsh, dynamic environments where sub-meter accuracy is hard to provide. 

1.1.3. Synthetic Aperture Radar 

One of the most widely used reconnaissance sensors is the synthetic aperture radar 

(SAR). The SAR produces high-resolution images of surface target areas and has the 
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ability to operate in all-weather conditions.  e through clouds,

unlike electro-optical sensors, it is a key sensor for reconnaissance imagery [9].  Because

radar imagery resolution is a function of the radar sensor’s aperture, a larger aperture

produces higher resolution imagery.  airborne platform to

synthesize a large aperture antenna from the true, smaller aperture antenna.  ypical SAR

sensors provide two modes of operation: search and spotlight.  In search mode, a SAR

will radiate a swath of land providing a large area (and usually lower resolution) image.

In spotlight mode, the SAR radiates a smaller area multiple times producing a higher

resolution image.  Figure 2 shows a typical SAR mission with both search and spotlight

mode.  zes typical radar techniques by measuring the time between the

transmission and reception of a SAR signal [11].  AR targets are typically designated

prior to a  connaissance mission; however, the SAR operator can image targets of

opportunity any time during the mission.

Ground Track

Search Mode

Spotlight Mode

Figure 2. Synthetic Aperture Radar Techniques

Since SAR can operat

A SAR uses the motion of the 

T

A SAR utili

S

re



1.1.4. System Integration and Kalman Filtering 

There have been numerous AFIT Master’s theses covering a broad range of INS/GPS 

integration topics [1-3, 8, 11, 19-21, 23-25, 27-30]. The integration of INS and GPS is 

normally accomplished using a Kalman Filter. In this case, the Kalman Filter estimates 

the drift errors in the INS position, velocity, and attitude measurements. The filter also 

estimates the errors in the GPS pseudorange measurements due to clock bias, clock drift, 

and atmospheric errors. With proper modeling, these errors can be estimated with very 

high accuracy. The more detailed the model, the more accurately the model represents 

the true, real world system. These complex models are called “truth models”. However, 

there is a significant trade off between a complex Kalman Filter model and the computer 

hardware necessary to implement it. Therefore, most truth models are reduced in 

complexity and simulated with lower resolution models called “filter models”. It is the 

Kalman Filter designer’s job to develop a filter model that represents the truth model 

adequately, thus simulating the true, real world system. 

1.1.5. Integration Methods 

There are different system integration methods in navigation systems. Two methods 

typically implemented are “tight” and “loose” integration. The loose integration method 

is a filter-aided-filter technique [23]. In this case, each sensor in the navigation system 

uses its own Kalman filter to process its measurements. The processed measurements are 

then combined through another Kalman filter to obtain the final integrated position 

solution. 
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Tight navigation system integration combines unprocessed measurements from the 

sensors through a single Kalman filter.  Figure 3 shows the difference between a tightly 

coupled sensor fusion system and a loosely coupled system. Tight integration provides 

the Kalman Filter with access to the raw measurement instead of pre-processed 

measurement information, provides the filter designer a means to develop the filter with 

one complete set of algorithms, and decreases the overall complexity of the system. 

Also, a tight integration scheme allows for continued operation when there are less than 

the four required satellite vehicles for GPS [9]. As previously mentioned, there are four 

unknown variables in GPS positioning. Therefore, without four available satellites the 

GPS position solution degrades quickly. In loosely integrated INS/GPS systems these 

poor position solutions are combined with drifting INS position solutions complicate the 

pilot’s situational awareness. Tight integration of the INS and GPS in this case removes 

the GPS’s own Kalman filter and outputs GPS pseudoranges straight into the navigation 

Kalman filter. Even though there are less than four satellites, the GPS receiver still 

processes the GPS space signals into pseudoranges which can be used by the navigation 

Kalman filter. The pseudoranges are then used as measurements to correct the INS drift 

errors. 

1.2. Current Research 

As previously stated, there has been a volume of work produced at AFIT regarding 

the benefits of INS/GPS integration. The work of Stacey and Negast produced a reduced 

order filter model simulation of an integrated INS and GPS [8, 24, 29]. Their work 
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Figure 3. Tight vs. Loose Integration 

reduced the 128-state integrated truth model down to a fully tuned 13-state filter model. 

Gray provided a performance analysis of this truth and filter model as it applies to aircraft 

precision landing [3]. Gray’s work also added a barometric and radar altimeter model 

and a GPS pseudolite model to the existing simulation software. Britton then followed 

Gray’s work by simulating the precision landing scenario with a differential GPS model 

[25]. Sokol implemented a filter-driving-filter simulation to test the performance of a 

loosely integrated INS/GPS [23]. 

Another set of AFIT students began simulating carrier-phase differential GPS 

(CPGPS) integration with the reduced order INS from Negast. Beginning with Hansen, 
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the initial CPGPS model was integrated into the Negast navigation reference system 

(NRS) [28]. Hansen also simulated the effects of cycle slips on CPGPS measurements. 

Mosle then investigated ways of implementing failure detection and recovery from 

CPGPS cycle slips using Chi-Squared techniques and likelihood ratios [30]. From this 

point, Bohenek finished up this line of research removing an unrealistic “perfect 

velocity” measurement from Mosle and Hansen’s research [20]. 

1.3. Problem Definition 

In order to perform targeting with SAR sensors, a high-resolution sensor is needed for 

targeting accuracy. Typically, it is very expensive to build high-resolution SAR 

reconnaissance sensors. It is even more expensive to modify existing sensors to achieve 

a higher resolution capability.  Therefore, increasing SAR targeting accuracy without 

modifying the SAR sensor would prove very valuable. This thesis presents a method for 

increasing SAR targeting accuracy by modifying the navigation Kalman filter onboard a 

typical SAR airborne platform. With an integrated GPS/INS navigation system, the 

aircraft position, velocity, and attitude is known with very high accuracy. Aircraft 

position accuracy, combined with SAR range and range rate measurements can then be 

integrated in the navigation filter to provide a better estimate of the actual target position. 

Additionally, radar errors will be estimated in the existing navigation filter to help further 

refine the target position. 

The work presented entails simulating the INS, GPS, and SAR onboard a U-2S 

Reconnaissance aircraft during a typical SAR targeting mission. There is an ongoing 

program in the U-2 Reconnaissance Mission Area Group to enhance the capability of the 
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SAR mission by providing GPS capability to the U-2 [26]. Therefore, this work will 

simulate the addition of GPS to the U-2’s navigation system. A new flight profile was 

created to simulate a typical U-2 reconnaissance mission. Three GPS implementations 

will be simulated: stand-alone, differential positioning, and carrier-phase differential 

positioning. Results presented herein will define the potential SAR targeting 

performance increase specific to the type of GPS receiver used onboard the U-2. In 

addition, every attempt was made to obtain similar aircraft position and velocity results 

from previous research [3, 8, 25, 27-30]. 

1.4. Scope 

There are many tasks associated with implementing this type of research: 

a) Review major research work. Theses regarding different INS/GPS integration 

techniques, DGPS/CPGPS simulation, and radar simulation. 

b) Determine flight dynamics characteristics of the U-2 to generate a proper flight profile 

for use in this research. Currently, the flight profile used in past theses was a KC-135 

flight [1-3, 8, 11, 19-21, 23-25, 27-30]. 

c) Research SAR reconnaissance mission techniques. It is important to generate SAR 

measurements that are typical of a U-2 SAR missions to simulate the scenario properly 

d) Remove all extraneous information and code from existing Fortran software. This 

includes: removal of “dead” states, i.e. transponder model states, unused subroutines, and 

references to unnecessary commands and routines. The end result of this step is to 

provide future Multimode Simulation of Optimal Filter Equation (MSOFE) users with 
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efficient well documented source code. Also, all previous code generated using UNIX-

based Fortran 77 will be upgraded to PC-based Fortran 90. 

e)  Combine the new SAR model with existing integrated INS/GPS simulation software. 

This includes both the truth model and filter model. Also, if the truth model can be 

reduced, analyze the potential reduced order filter model. 

f)  Tune the filter model to reproduce the INS/GPS/SAR error characteristics as closely as 

possible. While this filter is not intended to be flight worthy, this step proves the validity 

of the filter model’s ability to track the true errors of the integrated system. 

g) Generate up to a 50 test Monte Carlo analysis of all integrated system designs. 

h) Conduct a performance analysis of each integrated system: stand-alone, differential 

and carrier-phase differential GPS. Determine the aircraft position and velocity errors 

and their effects on SAR targeting errors. 

i) Provide results in a manner that a decision analysis may be undertaken to determine 

which type of GPS would perform adequately with regards to U-2 GPS upgrade 

specifications. The cost-to-performance issue regarding GPS type is not presented in this 

thesis. 

1.5. Assumptions 

Typical of any simulation, assumptions were made in this thesis to facilitate the 

development, design, and analysis of the GPS/INS/SAR models. 

a) The flight profile of the U-2 was a straight-and-level racetrack pattern, which is 

typical of U-2 mission standards. 
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b) Typical performance characteristics were used to define the accuracy of each GPS 

model used in this work. All GPS ephemeris data were provided through the Coast 

Guard from 21 May 1994 [3].  GPS measurements will be provided at 1-second intervals 

in accordance with previous research [1-3, 8, 11, 19-21, 23-25, 27-30]. 

c)  The Barometric altimeter stabilizes the INS vertical channel. 

d)  SAR measurements will be provided as range and range rate from the aircraft to the 

target. Typically, a SAR is programmed, pre-mission, to image specific areas for 

spotlight mode operation. Therefore, it is assumed that the target position is known and 

the SAR sensor will be pointed at the target location with some amount of error in the 

range and range rate information. 

e) The double-precision computer simulation using the Multi-mode Simulation for 

Optimal Filter Evaluation (MSOFE) provides accurate numerical precision for this 

simulation [6].  Real world results are provided through the full-order error-state truth 

model and adequately represent real world performance. 

f) The truth data (flight information), generated through PROFGEN, a flight profile 

generation software package, properly represents a U-2 aircraft reconnaissance mission. 

g)  Plotted outputs generated using the commercial package MATLAB [31] as a result of 

50 Monte Carlo simulations provide proper statistical analysis. 

h) Taylor series approximations truncated to first order are used to linearize all nonlinear 

equations in the navigation system. Perturbations about a nominal trajectory create the 

error-state equations [3]. 
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1.6. Literature Review 

This section outlines the current areas of research and development regarding 

INS/GPS integration and SAR targeting. 

1.6.1. Sensor Fusion 

Sensor fusion has become an extremely important topic in the defense industry.  The 

fusion of sensor data from multiple imagery systems can provide enhancements to stand 

alone systems for imagery analysts. Navigation sensor fusion, as previously mentioned, 

can enhance aircraft position and velocity accuracy by using multiple sensors that have 

varying complementary characteristics. For example, an INS has very good high 

frequency characteristics, but poor low frequency characteristics. GPS on the other hand 

has the opposite characteristics; GPS is subject to several high frequency error sources, 

including atmospheric and multipath noise. Thus, fusing the data from these two sensors 

in a single Kalman filter provides the user with extremely reliable and accurate position 

and velocity information. 

Observability considerations are also important to sensor fusion techniques. In some 

applications, the parameter that needs to be measured and estimated may be related to 

several different sensors. In this case, the more sensors provided, the better the estimate 

of the necessary parameter. Another consideration is the fusion technique. Proven fusion 

methods, like the Kalman filter, must be used to provide the best possible estimate of the 

parameter. Some areas that could take advantage of sensor fusion techniques include 

remote sensing, air and surface target tracking, and imagery analysis. 
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Layne developed an INS/GPS/SAR model which he used to simulate the targeting 

performance of the SAR in relative and absolute targeting modes [11, 32]. Using both 

SAR and monopulse radar measurements, Layne proved that optimal integration of SAR 

measurements into an INS/GPS Kalman filter provides a aircraft and targeting positions 

within 10-ft circular error probability (CEP). However, in most SAR reconnaissance 

missions, including the U-2, a monopulse radar is not available. 

1.6.2. Airborne Mapping 

An emerging sensor fusion area in the civilian arena is airborne mapping. There are 

multitudes of papers regarding the importance of very accurate GPS/INS integration 

techniques in large scale mapping [14, 16, 17]. Producing high-resolution ground maps 

is important in both the civilian and military sectors. Work in this area includes 

reconnaissance sensor and navigation system integration as well as integration with 

multiple reconnaissance sensors on one airborne platform. There are also important 

considerations regarding the ability to process information both real time and post 

mission. Most work in this area to date involves post processing accurate aircraft 

position with the mapping imagery. Real time processing of mapping information with 

accurate aircraft location would be critical in a military battlefield scenario. 

1.6.3. Multi- Sensor / Multi-Target Tracking 

The Air Force Research Laboratory (AFRL), Sensors Directorate is currently 

researching multi-target, multi-sensor tracking in the theater battlefield [17, 33, 34]. This 

research takes into consideration the performance of each sensor aircraft (reconnaissance, 
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fighter, bomber, etc.) navigation system and sensor suite. Statistical information based 

on the navigation system and sensor suite is also included in the multi-target, multi-

sensor scenario to determine the accuracy of each aircraft’s ability to track a ground 

based target. Inherent in this study is the need to determine the best collection and 

integration of onboard sensors, to derive the best possible estimate of the target 

geolocation (location on the earth). Current research does not include tight integration of 

the reconnaissance sensors with the navigation sensors onboard each aircraft. 

A critical area of multi-sensor systems includes differences in sensor resolution and 

measurement rates. In most cases, two different imagery sensors will have different 

resolutions and measurement rates. One technique currently being researched is wavelet 

data transformations [33, 34]. This technique gives a designer the capability to match 

measurement rates between sensors thus providing the ability to optimally fuse the 

information as it’s provided by each sensor. Wavelet compression and decompression 

techniques are very accurate and are currently being studied in multi-sensor arenas [34]. 

1.7. Methodology Overview 

The research presented here was started by studying the integrated GPS aided INS 

models developed from Bohenek [20], Negast [8], White [2], Gray [3], and Miller [1]. 

This also included a review of the Litton LN-93 Error Model [24]. A review of existing 

SAR models was performed to determine the relationships between SAR measurements 

and INS/GPS measurements and dynamics. Once the GPS/INS model was reviewed and 

duplicated, the SAR model was designed and implemented in the MSOFE simulation 
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software. MSOFE runs both a covariance analysis and Monte Carlo simulation of the 

integrated sensor models. 

Three different cases were simulated using MSOFE: integrated INS/GPS/SAR using 

stand-alone GPS, differential GPS, and carrier-phase differential GPS implementations. 

The performance of these three cases were than compared to determine the theoretical 

SAR targeting performance based on each type of GPS receiver. All data generated by 

MSOFE was manipulated into data files by a second program called MPLOT. The data 

files produced from MPLOT were than passed to MATLAB for tuning analysis and 

thesis presentation. 

1.8. Overview of Thesis 

Chapter 2 presents the theory used to develop the INS, GPS, and SAR mathematical 

models. Kalman filter theory is defined and presented using Maybeck as a guide [4]. 

The mathematical relationships defining the characteristics of INS, GPS, and SAR are 

also presented in this chapter. 

Chapter 3 describes the specific dynamics and measurement models for the INS, 

GPS, barometric and radar altimeters, and SAR. The error models presented here are 

based on the Litton LN-93 error models for a typical INS. The filter model and truth 

model for each sensor is presented as well as the final integrated Kalman filter model. 

Chapter 4 presents the results of each case simulated in this study.  Analysis of the 

targeting performance based on each GPS receiver type is the focus of this chapter. 

Chapter 5 summarizes the research effort and provides recommendation for future 

enhancements and research areas as an extension to this work. 
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1.9. Summary 

This chapter provided an overview of the plan of attack for determining the 

characteristic performance of an integrated INS/GPS/SAR navigation Kalman filter. 

Previous research into this subject was presented as well as current research into the 

fields of multi-sensor fusion and navigation system analysis. Chapter 2 will further 

develop the theory behind Kalman filter development and navigation reference frames. 
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2. Theory 

2.1. Overview 

This chapter provides a development of the extended Kalman filter (EKF) used to 

integrate the INS, GPS, and SAR sensors mentioned in Chapter 1. An EKF used is often 

used when integrating nonlinear, time-varying dynamic systems. A detailed discussion 

on the specific characteristics of each sensor is also presented in this chapter, with several 

figures graphically describing the sensor suites and their performance characteristics. 

2.2. Extended Kalman Filter 

The Kalman filter is an optimal recursive data processing algorithm [4,5]. The filter 

is optimal meaning all information available to the filter is processed and incorporated. 

The filter is recursive in that the filter does not require all of the previous data to be kept 

in storage and reprocessed every time a new measurement is available. The Kalman filter 

processes all available measurements of the variable of interest, regardless of their 

accuracy, based on knowledge of the system and measurement dynamics, the statistical 

description of the system noises, measurement errors, and model uncertainties [4].  In 

some cases, the models may be linear, but most system models are nonlinear in nature. 

For nonlinear system models, an extended Kalman filter (EKF) is implemented. The 

EKF linearizes the nonlinear system model allowing the designer to utilize the linear 

assumptions and equations in the following sections. During operation, an EKF is 

relinearized based on the most current optimal estimate of the variable of interest. In this 

way, the variable estimate is not subjected to a fixed nominal trajectory. 
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2.2.1. State and Measurement Model Equations 

Following the Kalman filter development in [2-5, 6-10, 19-21, 23], let a system 

model be defined as a state equation in the form shown in Equation (1), 

x( )  = f[x(t), t] + G(t)w(t) (1)t 

t twhere the state dynamics vector [ (  ), ] could be a linear or nonlinear function of the 

state vector x( ) and time t. The matrix G(t) is a noise distribution matrix assumed to bet 

tidentity for this system. The vector w( )  is considered a white Gaussian noise with a 

mean value and strength shown in Equations (2) and (3) respectively. 

E[w( )] = 0 (2)t 

(t)E[w w  T (t +τ )] = Q(t)δ(τ ) (3) 

Let the discrete time measurements, z( ) , be modeled as a function (linear orti 

nonlinear) of the state vector and time, [ (  i ),t ti ], and additive white noise: 

z( )  = h[x(ti ), ti ] + v(ti ) (4)ti 

The discrete time measurement noise vector, v( ) , is another zero-mean white noiseti 

process, assume independent of w( )  tit , and having covariance R( ) defined by: 

R(ti ) for ti = t jR 
[ (  i )v T (ti )] = STv 

0 for ti ≠ t j 
(5) 

2.2.2. State and Measurement Model Linearization 

As previously mentioned, Equations (1) and (4) can be nonlinear. Assuming they are 

nonlinear, the EKF filter equations must be linearized to produce a first order estimate of 

the state vector x( )t . The linearization technique used in [2-5, 6-10, 19-21, 23-25, 27-30] 
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involves perturbations about a nominal state trajectory.  The perturbation technique that 

follows will produce a linearization of Equations (1) and (4) for use in an EKF. 

Assume a nominal state trajectory, x n (t), exists satisfying the initial condition 

x n ( )  = x n0 
and the noise-free dynamics equationt0 

tx n ( )  = f[x n (t), t] (7) 

using the same f[ ,⋅ ⋅] as in Equation (1). The nominal measurements, noise-free, are also 

based on the nominal state trajectory defined by 

z( )  = h[x(ti ), ti ] + v(ti ) (8)ti 

using the same h[ ,⋅ ⋅] as given in Equation (4). 

To perturb the state from its assumed nominal trajectory, Equation (1) is subtracted 

from Equation (7) producing the perturbation state δx(t): 

x(t) ≡ [x( )  − x n ( )] = f x  t [δ� t t [ ( ), t] − f x  n (t), t] + G(t)w(t) (9) 

t t tA Taylor series expansion about x n ( ) on [ (  ), ] produces Equation (10): 

t tt t  [ t t  
∂x x xn ( )  

x[ ( ), ] = f x  n ( ), ] + ∂ [ ( ), ] [ (t) − x n (t)] + h. o. t. (10) 
= t 

where h.o.t. is defined as the higher order terms of ∂x(t)  with powers greater than one. 

Substituting a first order approximation of Equation (10) into Equation (9) forms the 

perturbation state equation: 

x(t) = F[t;x n ( )]δx(t) + G(t)w(t) (11)δ� t 

[twhere the matrix F ;x n (t)] is defined by the first order partial fraction term shown in 

t tEquation (10): ∂ [ ( ), ] δx( ) . Equation (11) thus becomes the linearizedt 
= t∂x x xn ( )  

dynamics equation used in the EKF. 
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This same procedure is performed for the discrete time measurement equations; 

subtracting Equations (4) and (8) produces the perturbation measurement δz(ti ) : 

δz(ti ) ≡ [ (ti ) − zn (ti )] = h x  [z [ (ti ), ti ] − h x  n (ti ), ti ] + v(ti ) (12) 

Another Taylor series expansion is performed, this time about zn (ti ) on [ (ti ), ti ], 

producing the linearized perturbed discrete time measurement equation used in the EKF: 

tiδz(ti ) = H[ ,  x n (ti )] + v(ti ) (13) 

tiwhere H[ ,  x n (ti )] is defined by: 

H[ ,  x n (ti )] =
∂ [ (  i ),ti 

t ti ] (14)
∂x x xn ( )= ti 

It is important to remember that the EKF is only a first order approximation due to the 

truncated Taylor Series represented above. However, the nonlinear dynamics and 

measurement models have now been linearized to produce perturbation or “error” state 

equations. This is important because now the filter designer can implement a linear 

Kalman filter to perform all state propagation and update equations. 

2.2.3. Extended Kalman Filter Equations 

This section addresses the EKF equations implemented in this research effort. Using 

Equation (11) as the error dynamics model and Equation (13) as the discrete time 

measurement error model, the EKF will produce the optimal estimate of the state error 

vector δx(t), represented as δ�x(t). Using the error state estimate, the whole state estimate 

can be calculated using: 

x( )  = xn ( )  +δx(t) (15)t t 
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Normally, if the true state trajectory differs from the nominal state trajectory, large 

errors could occur.  The EKF reduces this effect by relinearizing about the most recent 

state estimate as shown in Equation (15), as opposed to just the nominal state value (like 

the linearized Kalman filter). Using the most recent state estimate takes away the need 

for a nominal trajectory as long as the error model is accurate. Therefore, using the EKF 

method allows the designer to declare a new nominal trajectory at every estimate thus 

ensuring deviations from the nominal trajectory remains small. 

As previously mentioned, a Kalman filter is a recursive algorithm. There are two 

steps involved in this recursion: propagation and update. The state estimate, x t , and the( )  

covariance of that estimate, P( )t , are both propagated from the last time sample , ti-1, and 

updated at every time, ti . Sampled data EKF equations utilize the following notations: 

t ti -- value of a given variable at time t, conditioned on the measurements taken 

through time ti . 

ti 
−  -- value of a variable after propagation from ti-1 but prior to measurement update. 

+ti -- value of a variable after propagation from ti-1 and measurement update. 

The subscript i is used to describe the discrete time points when measurements are 

available. Using these time notations, the state estimates �x(t ti ) and covariance values 

P(t ti ) are propagated from ti  to ti+1 using the following differential equations: 

� ( )  = f[x( ), t] (16)x t ti t ti 

P(t ti ) = F[t;x( )]P(t ti ) + P(t ti )F
T [t;x( )] + G(t)Q(t)GT (t) (17)� t ti t ti 

where: 
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∂f x  t tF ;x( )] =
∂x 

), ] (18)[t t ti 

x = � ( t ti ) 

and the differential equation initial conditions are given by: 

+x(t t  ) = x( )  (19)� i i  ti 

P(t t  ) = P(ti 
+ ) (20)i i  

When discrete time measurements, z i , become available, the EKF update cycle is 

performed using the following equations: 

ti ti 
− ti 

− ti 
−K( )  = P(ti 

− )HT [ti ; x( )]{H[ti ; x( )]P(ti 
− )HT [ti ; x( )] + R(ti )}

−1 (21) 

+ − −x( )  = x( )  + K(ti ){z i − h[x( ), ti ]} (22)ti ti ti 

+ − −P( )  = P( )  − K(ti )H[ti ; � ( )]P(ti 
− ) (23)ti ti ti 

− −P( )  = P(t ti−1 ) and � ( )  = � (t ti−1 ) (24)ti ti 

+ +Notice that x ti ti( ) and P( ) from Equations (22) and (23) are used to start the next ti+1 

propagation/update cycle; x ti 
+( ) is also used for the calculation of Equation (18) rather 

than the nominal value x n ( ) .t 

These equations are implemented in the MSOFE filter evaluation package [6]. 

Numerical techniques are used to perform all integration and derivative options as 

described in [6].  Also, the U-D factorization method is used in MSOFE to reduce 

computation loads and increase numerical stability [5]. The reader is referred to [4, 5] for 

a complete derivation of each equation and topic presented in Section 2.2. 

2.2.4. Truth Model 

A truth model is defined as a true model of the variables of interest. The truth model 

is a result of extensive analysis of the system of interest and its associated error 
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characteristics thereof. Through this extensive analysis, an extremely accurate 

representation of the system can be obtained. There still exists some small amount of 

error in the model since nature itself cannot be modeled perfectly. However, a truth 

model should provide the highest fidelity model to represent the “real world”. The truth 

model for a typical dynamics/measurement system can be extremely vast. A good truth 

model could have over 100-states and 3rd or 4th order accuracy. For example, the Litton 

LN-93 Strapdown INS contains 93-states in its truth model. In addition, a GPS truth 

model can have up to 30-states. The benefits of a truth model are clear: in a simulation 

the truth model will define the true, “real world” dynamics and measurements of a 

system. However, due to online computing restrictions, these large state models become 

computationally burdensome.  Therefore, in most cases a reduced order Kalman filter 

model is used which “adequately” tracks the performance of the truth model. 

2.2.5. Filter Model 

When designing a Kalman filter for error state estimation, its important to keep the 

number of states to a manageable level. However, the best model to use would be the 

system truth model. Therefore, the filter designer must make a tradeoff between the 

number of states in the filter and the accuracy of the filter.  Another consideration is the 

amount of computer resources available. Typically, the filter designer must tailor his 

filter to operate under limited processing speed and memory allocation. A high-order 

filter design has the potential of taking too much processing time during the Kalman filter 

update cycle.  For example, if the computer is still calculating during the propagation 

cycle, the measurement update may be delayed, thus losing the information gained by the 
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measurements. While this concern is being alleviated by state-of-the-art digital 

computers, there is still a limit to the amount of states the filter model can use compared 

to the truth model. Generally, the computing power of the simulation tool or hardware 

implementation will determine how many states can be included in the Kalman filter 

design. 

The end result of the online Kalman filter design is a filter model that accurately 

tracks the system truth model but has a smaller, more manageable number of states. Two 

steps are important in designing a proper filter model: state order reduction and filter 

tuning. If done properly, these two steps should produce a filter model which adequately 

represents the system in the “real world” and can be implemented within the limited 

computer resources available to the designer. 

2.2.5.1. Order Reduction 

The first step in filter model design process is truth model order reduction. This step 

involves analyzing the less dominant states of the truth model and either absorbing them 

into existing states or eliminating them altogether. Starting with the truth model, a 

thorough engineer will begin deleting states that he/she deems unnecessary for the final, 

online filter implementation. Then, through trial and error, other states may be 

eliminated or rolled into existing states to further diminish the number of states left in the 

filter. One important facet of order reduction is to first determine which states must not 

be removed. For navigation filters, the position, velocity, and attitude error states are the 

most important states and cannot be removed. However, there has been a significant 

amount of research performed [4, 8] in the reduction of error states from an INS truth 
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model. Negast [8] showed that the LN-93 Strapdown INS truth model with 93-states 

could be reduced down to 10-states (with Barometric Altimeter included) and still 

maintain similar, but degraded performance compared to the full-order truth model. Any 

further reduction of states causes the filter’s performance to diverge from the truth model. 

As expected, the removal of states in any truth model must be accounted for in some 

matter. If the removal of the state does not affect the truth model in any way, it probably 

should not have been included in the first place. So, the filter designer must compensate 

for truth model state reduction using a technique called filter “tuning” [4]. 

2.2.5.2. Filter Tuning 

Filter tuning compensates for the elimination and absorption of states in the truth 

model. As previously mentioned, the filter designer desires the performance of a truth 

model using a reduced order model in the online filter. However, without adequate 

tuning, filter model performance may suffer compared to that of the truth model. 

Therefore, the filter designer must modify the various noise strengths associated with the 

filter model to account for the missing states from the truth model. 

Tuning a filter model involves adjusting the Q and R matrices of the filter model. 

The Q-matrix represents the dynamics driving noise and the R-matrix represents the 

measurement noise (as explained in Section 2.2). Using a filter analysis tool, such as 

MSOFE, allows the filter designer to tune the filter model to the truth model through trial 

and error. Since states are being removed from the truth model, they are accounted for in 

the reduced order filter model by increasing the noise values. 
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Increasing the dynamics noise strengths in the Q-matrix during tuning is important 

for several reasons [2, 4, 5, 8, 20]. First, because an EKF is used, the nonlinear aspects of 

the dynamics equations are only accurate to first order. Adding noise to linearized states 

helps the filter designer account for any loss of behavior caused by linearization. 

Another benefit of adding noise to the tuned states is to keep their associated Kalman 

filter gains from going to zero. As shown in Equation (22), as a state’s Kalman filter gain 

approaches zero, the incoming measurement will be ignored and new information will 

not be provided to the Kalman filter.  Adding dynamics driving noise ensures that the 

filter gain remains non-zero and new measurement information will be incorporated by 

the Kalman filter. 

Another benefit of Q-matrix tuning occurs when the eigenvalues of the filter 

covariance matrix, P, become negative. Numerical precision problems can causes this 

phenomenon to occur in some filters [4]. Increasing the noise in a state with a potential 

negative covariance can ensure that the state stays positive. 

There are also tuning benefits achieved by adjusting the R-matrix in reduced order 

filter models [2, 4, 5, 8, 20]. Like in the dynamics equations, the EKF also contains 

linearized measurement models. Increasing the measurement noise of linearized 

measurement equations can help reduce the impact of the loss of higher order terms. 

Also, when states are removed from the truth model, the filter measurement models may 

be affected. Adjusting the R-matrix noise strengths can help account for the missing 

states as in the dynamics model. 
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2.3. System Integration 

As mentioned in Section 1.1.5, there are several different techniques used to integrate 

different sensor suites. Figure 3 shows two such techniques used at AFIT, tight and loose 

integration. Tight integration is defined as the integration of multiple sensors through 

manipulation of unprocessed measurements. A single Kalman filter is often used during 

tight integration to process the dynamics and measurements of the sensors. Other filter 

types could be used, but the Kalman filter is the best choice for combining all information 

from the sensor suite optimally [4, 5]. 

Loose integration involves integrating pre-processed sensor information; this data 

can also be manipulated using a Kalman filter. In cases where existing sensors are to be 

integrated (e.g. an aircraft already has an INS or SAR and a GPS is to be integrated), 

loose integration techniques may be the only technique available. These cases tend to 

have more mathematical complexity due to the addition of Kalman filters (or other 

filters) for each sensor suite. In addition, because the data processed in the final 

integration filter has been pre-processed, information may be lost and data correlation 

could be prevalent (refer to the GPS degradation with less than four available satellites 

example from Section 1.1.5). 

There has been a vast array of work in the area of tight verse loose integration 

methods for integrating INS and GPS sensors [9, 23, 34]. Tight integration of an 

INS/GPS system involves processing the raw measurement data provided by the GPS 

receiver. Loose integration processes position and velocity information from the GPS’s 

filter to an integrated navigation filter. Sokol showed there are inherent instabilities in a 

loosely integrated INS/GPS system under highly dynamic situations [23]. Lewantowicz 
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also showed that a loosely integrated GPS/INS system doesn’t handle GPS information 

very well when situations are sub-optimal [9].  As can be seen in Figure 4, a loosely 

coupled GPS/INS system manipulates fully calculated GPS positions and velocities. 

When the GPS receiver does not have access to at least 4 SVs, the position and velocity 

calculations may become unstable. The second Kalman filter will still process these poor 

measurements which may lead to large errors [9].  However, a tightly integrated system, 

shown in Figure 5, processes the raw pseudorange measurements directly. Since 

pseudoranges are raw ranges between receiver and satellite, poor position solutions 

produced by the GPS receiver are not processed by the navigation filter. It is important 

to note that while loose integration has the potential for large errors in an integrated 

INS/GPS case, proper modeling can reduce this potential. In the Sokol case, a very poor 

INS model was the main culprit in leading to most of the errors [23]. Section 3.5 will 

describe the tight integration of a GPS and INS in much greater detail. 
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Figure 4. Loose INS/GPS Integration 
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Figure 5. Tight INS/GPS Integration 

2.4. Coordinate Frame Transformations 

There are many array of methods for representing position and velocity of an aircraft 

with respect to the earth. The Litton LN-93 documentation, for example, defines up to 

eight different reference frames to represent the INS error model [24]! It is extremely 

important as a system designer and modeler to be knowledgeable about coordinate 

reference frames and the transformations between them. One technique for representing 

coordinate frame transformation is the direction cosine matrix (DCM). The DCM is a 

computationally efficient method of transforming and rotating one reference frame to 

another based on a three-dimensional position. In general, a three-dimensional position is 

defined in reference frame “A”, rA . It is desired that the position be defined in another 

reference frame, “B”, rB . To rotate all three A-referenced positions to B-referenced 

positions, the following equation can be used: 

r B = C A r
B A  (26) 
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where C A 
B  is the DCM transformation matrix between reference frame “A” and reference 

frame “B”. A typical reference frame for navigation applications is the earth-centered-

earth-fixed (ECEF) frame.  This frame will be the base frame for representing the 

terrestrial navigation simulated in this thesis. Following the techniques of Britting [18] 

and Bagley [21], three coordinate transformation DCMs are developed: inertial-to-ECEF, 

ECEF-to-Navigation, and ECEF-to-Wander Azimuth. 

2.4.1. Inertial to ECEF 

The inertial reference frame is defined as an orthogonal reference frame with its 

origin at the center of the earth and three axis as follows: x- and y- axis in the earth’s 

equatorial plane and z-axis coincident with the earth’s spin axis angular velocity [18]. 

Figure 6 shows the inertial reference frame with axis xi , yi, and zi . The ECEF reference 

frame is also represented in Figure 6. 

. 

xi 

yi 

zi, ze 

ωωωωie 

ωωωωiet 

ye 

xe 

Figure 6. Inertial/ECEF Reference Frame Geometry 
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The ECEF frame has the same axes as the inertial frame, but it rotates with the earth after 

a specific time, t=0, by the earth’s rotational velocity, ωie, about the z-axis. Therefore, 

the relationship DCM between the inertial and ECEF frames is shown in Equation (27). 

Lcosω iet − sin ω iet 0 
Ci

e = Msinω iet cosω iet 0 
OPPP 

(27)MM0 0 1 

For example, the x-dimension position in inertial space, in terms of ECEF coordinates 

would be: 

x i = cosωiet(x
e ) − sinωiet(y

e ) (28) 

To transform back to ECEF from inertial coordinates, the matrix transpose of Equation 

(27) would be used. This is only true for transformations that utilize orthonormal 

reference frames [18]. 

2.4.2. ECEF to Navigation 

For airborne navigation purposes, it is generally useless for pilots to know their 

position relative to the earth’s center. Therefore, the navigation frame is used to define a 

position with respect to the earth’s surface (latitude, longitude, and altitude).  Figure 7 

describes the physical interpretation of the Navigation frame with respect to the earth. 

The navigation frame is defined as an orthogonal, right-handed coordinate system; its 

origin is at the location of the INS and its axes are aligned with North, East, and Down 

directions [21]. 
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Figure 7. ECEF/Navigation Frame Geometry 

2.4.3. Wander Azimuth Reference Frame 

The Litton LN-93 error model [24] uses a wander azimuth reference frame. The 

wander azimuth frame is a variation of the navigation frame presented in the last section. 

The wander azimuth frame, represented by an a superscript, coincides with the platform 

frame when the wander angle, α, equals 0°. The wander angle is a computed angle 

between a wander azimuth platform and north [21]. The purpose of the wander azimuth 

coordinate frame is to provide a proper INS navigation solution during flight over the 

polar regions of earth. These regions cause problems in a platform INS due to the 180° 

shifts in geographic latitude. 

The DCM to transform from the wander azimuth frame to the navigation frame is 
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Lcosα − sin α 0O 
nCa = Msinα cosα 0PPP 

(29)MM0 0 1 

where α is the wander angle. The DCM to transform from the wander azimuth frame to 

the ECEF frame is 

Lcos l cosα − sin L sin l sin α −(cos l sin α + sin Lsin l cosα ) sin l cos L 
Ce

a = M cos Lsinα cosLcosα sinL 
OPPP
(30)MM−(sin l cosα + cos l sin L sinα ) sin l sinα − cos l sin L cosα cos l cos L 

2.4.4. Other Reference Frames 

In addition to the four reference frames presented in the previous sections, there are 

two more frames specifically applicable to this thesis research, the body frame and error-

angle frame [21, 24]. The body frame, represented by a b superscript, is an orthogonal, 

right hand frame that describes an aircraft’s attitude in terms of roll, pitch, and yaw. 

Britting shows some excellent pictorial representations of this frame in terms of aircraft 

attitudes [18]. Assuming the origin of the body frame coincides with the origin of the 

navigation frame, the following DCM describes the transformation from wander azimuth 

to body frame: 

L cos P sin Y cos P cos Y sin P 
b MCa = sin R sin P sin Y + cos R cos Y sin R sin P cos Y − cos R sin Y sinRcosP 

OPPP 
(31)M

cos R sin P sin Y − sin R cos Y cos R sin P cos Y + sin R cos Y -cosRcosPM 
where R is aircraft roll, P is aircraft pitch, and Y is aircraft yaw. 

The error angle frame, represented by an ea superscript, is defined in [24] as the 

difference between the wander azimuth frame and another frame designated the 

“computer” frame. The computer frame is a Litton frame used to define the INS 
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δ

indicated position. Thus, the computer frame is subject to INS related drift errors and 

does not equal the “true” wander azimuth frame defined above. The error angle frame 

has the following parameters: 

Lθ x Ox - dimension angle between wander azimuth and computer frame
M P
My P y - dimension angle between wander azimuth and computer frame
δθ 
= 

δθ P z - dimension angle between wander azimuth and computer frameMzM PN Q error in altitude above referenced ellipsoidδh 

For the error state representations as defined in Section 2.2, another set of reference 

variables are used. This set, defined as the navigation error space is represented as 

follows: 

LδL O latitude error
MP
MP= 
longitude error
δl


MP wander azimuth angle error
δαMP
NQerror in altitude above referenced ellipsoid
δh 

The DCM used to transform from error angle coordinates to the navigation error space, 

represented by an ne superscript, is 

L − cosα sin α 0 0OMsinα sec L cosα sec L 0 0  neCea = M
− sinα tan L − cosα tan L 1 0  

PPPP 
(32)M
M
N 0 0 0 1Q


2.4.5. Reference Frame Perturbation 

When a transformation is computed between two orthogonal reference frame, if there 

are errors present in the variables within the DCM, the DCM itself could be subject to 

errors. These errors in DCM transformations can be analytically represented by a DCM 
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perturbation equation such as the errors in transforming body coordinates to the 

navigation frame: 

n n nCb = Cb +δCb (33) 

where the indicated DCM, Cb
n , is the sum of the true DCM and a small error (using small 

angle assumptions [18]). The DCM error term, δCb 
n , is a function of the aircraft body 

attitude errors (roll, pitch, and yaw errors) and is generally nonorthogonal. Britting 

highlights the importance of working with orthogonal reference frames due to the 

following characteristic: 

n n TC Cb ) = I (34)b ( 

meaning the transformation from body to navigation frame is equal to the transpose of the 

transformation from navigation to body frame [18]. Since the DCM perturbation 

technique could produce nonorthogonal matrices, the following orthogonalization 

equation may be used to orthogonalize the Cb
n term [11, 18]: 

{I 1 n b n n T n(Cb
n )o = +  2 [δCb Cn − Cb (δCb ) ]}Cb (35) 

Britting also shows that the bracketed term in Equation (35) is a skew symmetric matrix 

since it involves the difference between a matrix and its transpose. Therefore, Equation 

(35) can be written 

n(Cb
n )o = (I −Ψ)Cb (36) 

where ψ is a skew-symmetric matrix of aircraft attitude angles (including the attitude 

errors to be estimated by the Kalman filter): 

LM0 −Ψ Ψz y 

Ψ = Ψ 0 −Ψx 

OPPP (37)Ψ =  MzM−Ψ Ψ 0y x 
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2.5. Summary 

This chapter has presented the basic theory behind Kalman filtering techniques and 

coordinate reference frame transformations. Linearization and perturbation techniques 

were also described. These topics were used extensively throughout the simulation 

software. Chapter 3 will describe in detail the modeling and simulation software, the 

INS, GPS, and SAR models, and the integration technique used to combine the INS, 

GPS, and SAR into a single Kalman filter. 
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3. Modeling Methodology 

3.1. Overview 

This chapter provides a complete description of the system models, integration 

methods, and simulation techniques used in this research effort. An overall system 

description is presented followed by a detailed description of each sensor model. The 

truth and filter models for each sensor is developed and the final augmented dynamics 

and measurement model is defined. Finally, the simulation methodology will be 

presented along with a description of each software package used to perform this 

research. Following the description of the system and simulation techniques, Chapter 4 

will discuss the completed results based on the aforementioned goals. 

3.2. Overall System Description 

Figure 8 describes a top level view of the system integration technique used in this 

research. A USAF U-2 Reconnaissance aircraft is presented as the airborne platform in 

which the sensor integration is to be performed. The U-2 supports all three sensor suites: 

the GPS, INS and SAR reconnaissance sensor. The GPS and INS is tightly integrated in 

accordance with Section 2.3 and Figure 5, where the raw pseudorange information is 

available to the centralized navigation Kalman filter.  The GPS measurements are used to 

update the Kalman filter’s estimate of INS position, velocity, and attitude errors. These 

errors are then subtracted from the indicated position, velocity, and attitude provided 

from the INS forming an optimal estimate of the true aircraft position, velocity, and 

3-1




attitude. The simulation and modeling of a tightly integrated INS/GPS has been proven 

extensively through the works of [1-4, 8, 9, 21-24]. 

INS 
(with Baro*) 

GPS 

Radar 
Altimeter 

Extended 
Kalman 

Filter 

+ 
50Hz 
Output 

1Hz 
Output 

2Hz 
Output 

Best Estimate of 
INS, GPS, and 
SAR Errors 

Feed-forward Corrections 
(indirect method) + 

-
Corrected 
INS Output 

* Barometric Altimeter Incorporated into INS for Vertical 
Channel Aiding. 

SAR 

Output based 
on target 

+ 
-

Corrected 
Targeting 
Output+ 

Target Coordinates 
(provided) 

Figure 8. GPS/INS/SAR Integrated Block Diagram 

This research effort focuses on the addition of the SAR model to the existing 

INS/GPS tight integration. The following model development will allow for the addition 

of SAR range and range rate measurements into the existing navigation Kalman filter. 

The navigation filter will be augmented by several new error states including SAR errors 

and SAR targeting errors. The coupling of INS/GPS aircraft position errors and SAR 

targeting errors into a single Kalman filter will reduce the overall complexity of the 

system integration and take advantage of the tight integration benefits described in 

Section 2.3. It is expected from this research, that a highly accurate aircraft position and 

velocity estimate will produce better targeting accuracy without improving the 
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performance of the SAR sensor. The dynamics and measurement equations to be used in 

this integration will follow in subsequent paragraphs. 

The simulation will be typical of a U-2 SAR reconnaissance mission. During the U-2 

mission, the SAR collection deck is produced prior to aircraft launch. A collection deck 

provides the order of reconnaissance imagery collection performed during a U-2 SAR 

mission. The sensor is programmed to take images in both search and spotlight modes 

throughout the mission at pre-specified locations based on aircraft position. When the U-

2 arrives at the proper location, the sensor will image the area in accordance with its 

collection plan. For simulation purposes, several target areas will be provided along the 

flight trajectory simulation file. Therefore, the simulation software, MSOFE, will be 

programmed to receive SAR measurements, when they become available, as specified 

prior to running the simulation. The INS/GPS position and velocity estimates are 

provided at an extremely high rate with respect to the SAR measurements. This will 

provide the highly accurate aircraft position and velocity estimate needed for reducing the 

SAR targeting error. 

To simulate the effect a highly accurate aircraft position estimate has on SAR 

targeting errors, three different GPS implementations will be simulated: single, 

differential, and carrier phase. Each receiver provides measurements to the navigation 

filter which in turn provides an estimate of the aircraft position, velocity, and attitude as 

well as SAR targeting error. It is expected that a highly accurate GPS will provide a 

reduction in SAR targeting errors. This phenomenon will be analyzed by determining the 

covariance of the SAR targeting errors to determine how accurate the target position was 

estimated. SAR targeting results will be produced for each separate GPS simulation. 
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3.3. Inertial Navigation System Model 

The INS presented in this simulation is the LN-93 strapdown, wander azimuth INS. 

This model has been used in several simulation research projects and has proven to 

provide real world characteristics [1-3, 8, 20, 21, 23-25, 27-30].  The following section 

will outline the model used to represent this INS for the system integration research. 

Since the INS provides no actual measurements to the navigation Kalman filter, all states 

associated with the INS are modeled in the state dynamics matrix. The barometric and 

radar altimeters augment the INS to account for vertical channel instabilities and are 

presented in Section 3.4. The altimeters provide measurements of aircraft altitude which 

are accounted for in the navigation Kalman filter. 

Litton developed a 93-state error model describing the error characteristics of the LN-

93 INS [2, 8, 24]. These error states, represented by the vector δx , have been split into 6 

different categories: 

T T T Tδx = [δ 1 
Tδ T 

3 4 5x x  2 x x x x  6 ]T (38) 

where δx  is a 93x1 column vector with the following characteristics 

δx1 represents the most often used general error vector containing 13 position, 

velocity, and vertical channel errors. 

δx 2 consists of 16 gyro, accelerometer, and baro-altimeter exponentially time-

correlated errors, and “trend” states. These states are modeled as first order 

Markov processes in both the truth model and in the Kalman filter model. 
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δx 3 represents gyro bias errors. These 18 states are modeled as random constants in 

the truth model and are modeled as random walks (with small magnitude pseudo-

noises [4, 5]) in the Kalman filter. 

δx 4 is composed of the accelerometer bias error states. These 22 states are modeled 

in exactly the same manner as the gyro bias states. 

δx 5 depicts accelerometer and initial thermal transients. The 6 thermal transient 

states are first order Markov processes in the system and Kalman filter. 

δx 6 models the gyro compliance errors. These 18 error states are modeled as biases 

in the system model and as random walks in the Kalman filter. 

The INS truth model state space differential equation has the following form: 

δx δx wR1 ULF11 F12 F13 F14 F15 F16 R1 UR1 U|
|

δx 2 M F22 0 0 0 0 Pδx 2 w 20M P 
0|δx 3 | M 0 0 0 0 0 P|δx 3 | | 0S V= M S V+ S (39)
0 0 0 0 0 0 Pδx 4 0δx 4 M


δx 5 M 0 0 0 F55 0 Pδx 5 | | 0 |
0|δx | M 0 0 0 0 0 P|δxT 6 WN0 T 6 WT0 

using the full 93-state truth model. 

Negast provides a reduced order truth model, reducing the truth model order from 93 

to 39-states, using the tuning process defined in Sections 2.2.5.1and 2.2.5.2. This 

reduced order truth model is represented by the following state space differential 

equation: 

δx δx wR1 ULF( red )11 F(red )12 F( red )13 F(red )14 R1 UR1 U
||δx 2 | M0 F(red )22 0 0 P|δx 2 |+ 

|w 2S V= M S VS (40)
δx 3 M0 0 0 0 Pδx 3 0 

T M |δ | | 0 ||δx 4 W| N0 0 0 0 PTx 4 WT 
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The sub-matrices in Equation (40) are similar to those in Equation (39), however 

additional tuning was performed to create the reduced order model. Appendix B contains 

a complete list of the 93-state INS truth model, the 39-state INS truth model used in this 

research, and the tuning values used to compensate for the reduced order model [1-3, 24]. 

3.4. Barometric / Radar Altimeter Model 

The barometric and radar altimeters provide the only measurements from the 

integrated INS/Altimeter model [2]. The altimeters compensate for the INS’s inherent 

instability in the vertical channel. The altimeter output, AltBaro, is modeled as the sum of 

the true altitude ht, the total error in the barometric altimeter, δhB, and a random 

measurement noise v. In order to utilize the difference measurement described by 

Equation (13), the barometric altimeter measurement is differenced with an INS 

calculated altitude, AltINS. The INS calculated altitude is the sum of the true altitude and 

the INS error in vehicle altitude above the referenced ellipsoid, δh. The following 

difference measurement equation eliminates the unknown true altitude resulting in: 

δz = AltINS − AltBARO 

= [ht +δh] − [ht +δhB − v] (41) 
= δh −δhB + v 

The INS error in vehicle altitude above the reference ellipsoid, δh, and total barometric 

altimeter correlated error, δhB, are included in the 39-state error model for the INS, 

shown in Appendix B with barometric aiding. 

The differenced measurement equation of the radar altimeter is similar to the 

barometric altimeter. Errors in the radar altimeter measurement, AltRalt, are modeled as 
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white noise (no time correlated component as in the barometric altimeter).  Thus, the 

difference measurement for the radar altimeter is: 

δz AltINS − AltRalt =


= [ht +δh] − [ht − v] (42)

= δh + v


The radar altimeter measurement noise covariance, RRalt, is a function of altitude above 

ground level (AGL), is altitude dependent, and represented by the following relationship: 

.RRalt = {[0 01]2[AGL true ft]
2} + 0.25 ft 2 (43) 

It should be noted that the radar altimeter is modeled to provide altitude measurements 

after the aircraft drops below 3000-ft AGL.  However, the simulated flight trajectory for 

the U-2 in this research will never drop below the radar altimeter threshold. This model 

however is integral to the existing software code from previous theses [1-3, 8, 27-30]. 

Therefore, the description of the radar altimeter and its function is provided here in case a 

different flight profile is used (i.e. for an F-15E SAR integration simulation). 

3.5. Global Positioning System Model 

GPS receivers process signals from the GPS satellite constellation to produce a very 

accurate receiver position. The position is based on the pseudorange measurement from 

several satellites to the receiver. For this research, the GPS receiver has four channels, 

meaning the receiver can track up to four satellites. It is relatively simple to simulate 

more channels. However, in doing so, the Kalman filter model and truth model order is 

increased by four-states per channel.  For ease of computation and simulation speed, a 

four channel GPS receiver model provides an adequate representation of the performance 
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of the GPS portion of the INS/GPS/SAR integration. Three different GPS receiver 

implementations are modeled and will be developed in the following sections. The stand-

alone and Differential GPS simulation models follow the development of White and 

Negast [2, 8]. The Carrier Phase GPS model follows the development of Bohenek [20]. 

3.5.1. Stand-Alone GPS 

The stand-alone GPS receiver scenario is represented in Figure 9. The range between 

multiple SVs and the receiver is processed into a highly accurate receiver position. 

However, each SV is subject to many errors that affect the measurement.  Atmospheric 

errors, clock errors, satellite position errors, etc. all contribute to an error filled range 

measurement.  As shown in Figure 9, these errors increase or decrease the range distance 

between the receiver and transmitting satellite. Since the receiver clock can produce a 

large error in the range measurement, the range between the satellite and receiver is 

called a “pseudorange.” The following paragraphs will describe how each of these errors 

is modeled to simulate the GPS environment for the truth model. The filter models for 

stand-alone GPS dynamics and measurements will be developed in Sections 3.7.2 and 

3.7.3, respectively. 

3.5.1.1. Stand-Alone GPS Error Model Equations 

Negast developed a 30-state GPS truth model which has proven to be an effective 

model of GPS error sources [8].  Appendix B contains a tabular listing of each state used 

in the 30-state stand-alone GPS truth model. The first two states of the truth model 

represent the receiver clock bias, xUclkb 
, and clock bias drift errors, xUclkdr 

; the state 
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Figure 9.  Stand-Alone GPS Technique 

differential equation model is: 

RxUclkb UL0 1  RS V= M SxUclkb U 
(44)TxUclkdr WN0 0  TxUclkdr 

VW 

where the initial state estimate for each state is zero, with covariances: 

L.9 0x1014 ft 2 0 O
PUclkb ,Uclkdr 

( )  = Mt0 N 0 9.0x1010 ft 2 / sec2 QP (45) 

The huge covariances associated with the receiver clock bias and drift terms is typical of 

military airborne receivers. Until the clock error is determined, it is the dominant error 

source in the system. 
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The next 22 states in the GPS truth model are associated with each individual SV 

(of which there are four). The GPS receiver uses code and carrier tracking loops to lock 

onto a satellite transmitter. The tracking loops help match an internal GPS code 

generator to the GPS signal which in turn provides the pseudorange information and 

ephemeris data from each respective SV. The error in the code tracking loop is a typical 

error for GPS and is modeled as part of the GPS truth model. Code tracking loop error, 

δRcl, is modeled as a first order Markov process [2, 4, 8]. Atmospheric errors, per 

satellite, are included in the GPS truth model. The tropospheric error, δRtrop, and 

ionospheric error, δRion, are also modeled as first order Markov processes. The final two 

error sources are the specific SV clock error, δRSclk, and SV position error: δxSVj, δySVj, 

and δzSVj. All GPS error sources are modeled using the following state differential 

equations, initial covariances, and zero mean, white noise components: 

RR δδ � cl UL−1 0 0 0 0 0 0  RRcl URwcl U|M 1 PδR� trop M − 500 0 0 0 0 0PδRtrop wtrop0 
δR� ion M 0 − 1500 0 0 0 0PδRion |+ 

|wion0 1|δR� | M |δ0S Sclk V= M 0 0 0 0 0 0PSRSclk VS0 || (46) 
δxSVj M 0 0 0 0 0 0PδxSVj 00M Pδy�SVj M 0 0 0 0 0 0PδySVj 00|δ M 0 0 0 0 0 0  T|δzSVj W| T| 0 |TzSVj W| 0 

L0.25 ft 2 0 0 0 0 0 0MM0 1.0 ft 2 0 0 0 0 0
M0 0 1.0 ft 2 0 0 0 0Mt0PGPS ( )  = M

M 

0 0 0 25 ft 2 0 0 0 

OPPPPPPPPP 

(47)M0 0 0 0 25 ft 2 0 0MM0 0 0 0 0 25 ft 2 0 
0 0 0 0 0 0 25 ft 2N 
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LM0.5 0 0 0 0 0 0O 
0.004 0 0 0 0 0P0M PM 0 0.004 0 0 0 0P0M P20 ftE{w GPS (t)w GPS (t +τ )} = M 0 0 0 0 0 0P / sec ⋅δ(τ ) (48) 

0M 0 0 0 0 0 0PMM P0 0 0 0 0 0 0P 
0M 0 0 0 0 0 0P 

The 30-state truth model contains both user error states and four versions of Equation 

(46), one per SV. 

3.5.1.2.  Stand-Alone GPS Measurement Model 

As shown in Figure 9, the pseudorange provided by the stand-alone GPS receiver is 

the sum of the true range from satellite to receiver plus errors, including random 

measurement noise. Equation (49) shows the total calculation of the GPS filter 

pseudorange measurement: 

RGPS = Rt j 
+δRclj 

+δRtropj 
+δRionj 

+δRSclk j 
+δRUclk j 

− vj (49) 

where j = 1 through 4 for each SV. Since the true range, Rt, from SV to receiver can 

never be measured perfectly, a difference measurement (Equation (13)) is performed to 

eliminate this term. This difference measurement is formulated by calculating a “range” 

from the INS position and the ephemeris provided satellite position, and subtracting the 

INS range from the GPS pseudorange. The INS Range, RINS, can be calculated as 

follows: 

e e xU xSRU RU
|yU |
| − SV (50)
RINS = XU − XS = SV |yS 

|
|zU W|TzS 

|WT
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( ,  

where XU is the aircraft position as provided by the INS and XS is the SV position (in 

ECEF coordinates). RINS can also be represented by: 

RINS = x y y z zU S U S U S + − + − ( ( ) ( )2 2 x − ) 2 (51) 

Since the INS calculated range is a nonlinear function of the aircraft and satellite 

position, a truncated first order Taylor series is performed to linearize Equation (51) for 

use in the EKF for this research. Linearizing the INS range equation also reformats the 

INS range in terms of the error states needed in the perturbation models for the EKF, δx, 

δy, δz. Evaluating the Taylor expansion yields, 

S S ,RINS = Rt +
∂RINS X XU ) ⋅δXS +

∂RINS (X XU ) ⋅δXU (52)
∂XS (X XU )nom 

∂XU (XS ,XU )nomS , 

then substitute Equation (51) into Equation (52) and compute the partial derivative to 

produce the linearized INS calculated range: 

RINS = Rt − xS − xU ⋅δxU − yS − yU ⋅δyU − zS −zU ⋅δzURINS RINS RINS 
(53) 

xS − xU+	 RINS 
⋅δxS + yS − yU ⋅δyS + zS −zU ⋅δzSRINS RINS 

in terms of the perturbation aircraft position states, δxu,=δyu,=δzu. The truth model GPS 

pseudorange difference measurement is provided by subtracting Equation (53) from 

Equation (49): 

δzPRj 
= RINS j − RGPS j 

xS − xU= −  RINS 
⋅δxU − yS − yU ⋅δyU − zS −zU ⋅δzURINS RINS 

(54) 
xS − xU+ RINS 

⋅δxS + yS − yU ⋅δyS + zS −zU ⋅δzSRINS RINS 

−δRclj 
−δRtropj 

−δRionj 
−δRSclk j 

−δRUclk + v 
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3.5.2. Differential GPS 

Differential positioning GPS (DGPS) is slightly more complex than stand-alone 

GPS. Figure 10 describes the DGPS positioning technique using an accurate surveyed 

position for the location of the ground based receiver. This reference receiver processes 

the pseudorange data from all available satellites. The ground receiver usually contains 

highly accurate clocks which reduce the user clock errors previously discussed. Since the 

ground receiver’s position is precisely known and its own clock errors are extremely 

small, each SV’s position, clock, and atmospheric errors become observable in the 

pseudorange measurement [8].  This allows the ground receiver to estimate the errors 

associated with each SV very precisely. The estimates of the SV errors are called 

differential corrections and can be transmitted from the ground receiver to an airborne 

DGPS receiver. The airborne receiver will than use the differential corrections to remove 

the proper errors from its own pseudorange measurement. 

There are a few assumptions that are critical to modeling this DGPS technique. First, 

it is assumed that the airborne receiver has access to the same satellites as the ground 

based receiver. Second, it is also assumed for modeling purposes that the differential 

corrections are all timed correctly to correspond to the right airborne pseudorange 

measurement. Last, when processing DGPS measurements, it is assumed that the 

differential corrections have been applied to the raw pseudorange measurements from the 

airborne receiver [8].  During standoff reconnaissance missions, like those typically 

flown by the U-2, these assumptions can be properly invoked as the aircraft will likely fly 

near a differential transmitter. 
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Figure 10. Differential GPS Technique 

3.5.2.1. Differential GPS Error Model Equations 

The DGPS error model is fabricated almost exactly as the stand-alone GPS error 

model. As previously mentioned the first difference is the removal of the SV clock error 

through differential corrections. A second difference is the absorption of the receiver 

code loop error into the noise variance in the pseudorange measurement [8].  This leaves 

the user clock errors, atmospheric errors, and satellite position errors which comprise a 

22-state DGPS truth model. However, only the user clock errors retain the same 

characteristics as the stand-alone GPS model (Section 3.5.1.1, Equations (44) and (45)). 

Appendix B, contains a list of all 22 states of the DGPS truth model used in this research. 

The j-satellite specific atmospheric and position DGPS error models are slightly 

different than the stand-alone GPS model. All truth model DGPS error sources are 
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modeled using the following state differential equations, initial covariances, and zero 

mean, white noise components [8]: 

R� − 1 δR wtrop UδRtrop UL500 0 0 0 0  Rtrop UR 
M 1 PδδR� ion 
M0 − 1500 0 0 0PRion |+ 

|wion ||δx | = M0 0 0 0 0  |δxS SVj VM PS SVj VS0 (55) 
δy�SVj M0 0 0 0 0PδySVj 0 

TzSVj W| M0 0 0 0 0  |δ|δ TzSVj W| T| 0 | 
L. ft2 0 0 0 0MM0 1.0 ft 2 0 0 0 

t0PDGPS ( )  = M0 0 .35 ft2 0 0 

OPPPPPP 
(56)MM0 0 0 .35 ft 2 0M0 0 0 0 .35 ft2 

L0.001 0 0 0 0OM0 0.0004 0 0 0PM P 
ft2E{w DGPS (t)w DGPS (t +τ )} = M0 0 0 0 0P / sec ⋅δ(τ ) (57)M PM0 0 0 0 0PM0 0 0 0 0P 

The three equations above correlate back to a specific j-satellite. Coupled with the two 

user clock states, four sets of the equations above (for 4 SVs) provides a total of 22 

DGPS error states. These states are listed in Table 20. 

3.5.2.2. Differential GPS Measurement Model 

Like the stand-alone GPS pseudorange measurement, Equation (49), the DGPS 

pseudorange measurement equation is modeled as: 

RDGPS = Rt +δRtrop +δRion +δRUclk + v (58) 

where all differential corrections have been applied and v is zero-mean white gaussian 

measurement noise. In order to use the difference measurement technique previously 
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discussed, Equation (58) is subtracted from the INS calculated range to form the truth 

model DGPS difference measurement: 

δzPRj 
= RINS j − RDGPS j 

xS − xU= −  RINS 
⋅δxU − yS − yU ⋅δyU − zS − zU ⋅δzURINS RINS 

xS − xU+ RINS 
⋅δxS + yS − yU ⋅δyS + zS −zU ⋅δzS (59)RINS RINS 

−δRtropj 
−δRionj 

−δRUclk − v 

Differential GPS dynamics and measurement filter models will be discussed in 

Sections 3.7.2 and 3.7.3. Note that multipath error is not included in the DGPS 

measurement model. Multipath noise is generated when reflected GPS signals are 

processed in the GPS receiver. Normally, this noise is very small and can be assumed 

within the measurement noise. However, when differential corrections are applied, the 

multipath noise can become one of the most dominant error sources. Since the U-2 

receiver is at a considerable altitude, 65000-ft, it is assumed the multipath noise would 

primarily affect the differential reference receiver. In this research multipath is assumed 

to be covered within the receiver measurement noise, v. 

3.5.3. Carrier Phase Differential GPS 

The carrier phase GPS model presented here follows the development of Bohenek 

using floating ambiguity resolution [20]. Unlike single and differential GPS, the carrier 

phase GPS receiver does not process the GPS signal into a pseudorange. A carrier phase 

measurement is the result of subtracting the generated carrier signal of the receiver from 

the carrier signal transmitted by a specific GPS satellite [20]. The subtraction of these 
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signals produces a phase range, also known as the carrier phase observable. As described 

in [20], the carrier phase observable equation is: 

⋅ ( −Φ = − f dT dt) − c
f ⋅ (Rt − dion + dtrop ) (60) 

where 

f  = frequency of carrier signal

dT  =  transmission time offset from true GPS time

dt = user clock offset from true GPS time

Rt =  true range from receiver to satellite

dion = range equivalent of ionospheric delay

dtrop  = range equivalent of tropospheric delay


= speed of light 

The carrier phase measurement is the measurement of the phase shift between the 

satellite generated carrier signal and the receiver generated carrier signal. The phase shift 

represents a fraction of the total carrier frequency wavelength, so the total phase range 

measurement between receiver and satellite is 

t tΦtotal ( )  =Φ frac ( )  +Φint (t0 , t) + N(to ) (61) 

where Φ frac ( ) is the fraction of total wavelength, Φint ( ,  )  is the integer number oft t t0 

phase cycles from the initial reception time to the current time, and N(to), is the integer 

phase ambiguity term. N(to) is the difference between the true integer count at the initial 

time and the current integer count at to measured or calculated by the receiver [20]. 

Figure 11 describes the relationship between each facet of the carrier phase measurement. 

As shown in Figure 11, the total phase range is equal to the integer ambiguity, integer 

portion of phase range, and fractional portion of phase range. 

Assuming that the Φ term from Equation (60) is the measured phase observation, it 

can be represented as the sum of the fraction and integer phase observations (Φfrac and 
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Figure 11. Carrier Phase GPS Scenario [20] 

Φint). Therefore, the total phase range can be written as the sum of the measured phase 

observation and the integer ambiguity term, N(t). If the total phase range is subtracted 

from Equation (60), the measured phase range for the carrier phase observable is: 

tΦmeasured ( )  = −  f ⋅(dT − dt) − c
f ⋅ (Rt − dion + dtrop ) − N(t) (62) 

which is the measured phase range in carrier cycles [20]. To convert to feet (more 

desirable for a “range” definition), Equation (62) is multiplied by the carrier wavelength, 

λ, providing: 

t ( ( )  (63)Φ( )  = Rt + c dT − dt) + dion − dtrop +λN t 

When the signal between the carrier phase receiver and the satellite is lost it is called 

a cycle slip. During this loss, the receiver cannot count the integer phase cycles. As a 

result the receiver may lock onto the wrong integer phase cycle causing the receiver to 
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lose signal lock. Since this research is only interested in determining the effect of GPS 

on SAR targeting, cycle slips will not be simulated or investigated. However, future 

researchers should determine the effect of cycle slips on targeting accuracy. 

3.5.3.1. Carrier Phase Differential GPS Error Model Equations 

Carrier phase GPS (CPGPS) receivers are generally differential receivers as well. 

This means that the airborne CPGPS receiver has access to differential corrections that 

can eliminate several error sources (as previously defined). The error model equations 

for the CPGPS model are similar to the differential GPS model with the addition of the 

integer ambiguity error.  These new states, one for each of the four satellites, are added to 

the existing differential states (clock error, satellite position error, etc.) in the following 

manner: 

S
δ � M δRN1 

URU
| 

RRN1 
UL	0 0 0 0  R w1 

0 0 0 0P|δRN2 | |w2 (64)|	δ � VM 
δRN3 

0 0 0 0PδRN3 

V+ SR 
� 

N2 | = M S w3M |δ T4 ||δR� N4 W| 0 0 0 0PTRN4 W| |wT N 
with initial state covariance 

L ft 2 0 0 0 OM 
PδRN 

( )  = M0 13 ft2 0 0 
t0 M0 0 13 ft 2 0 

PPPP 
(65)

MN0 0 0 13 ft 2 Q 
The ambiguity states are modeled as random biases as long as there are no cycle slips. In 

addition, the 13-ft2 value for the initial state covariance is used under the assumption that 

initially, the CPGPS measurement is only as accurate as a typical differential GPS 

receiver and has access to code measurements. Appendix B, Table 21 contains a list of 
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the 4-states added to the differential GPS model to create the CPGPS model as well as all 

white noise values from Equation (64). 

3.5.3.2. Carrier Phase Differential GPS Measurement Model 

The measurement model for the CPGPS measurements is different than that of the 

differential GPS model. Since the CPGPS receiver must account for the integer 

ambiguity term, N(t), an additional error in the range measurement is produced, δRN . In 

order for the ambiguity term to become observable in the CPGPS measurement 

equations, the “double differencing” technique is applied. The double differencing 

performed in this work is between the airborne receiver and two separate satellites. This 

method subtracts a between-receiver single difference measurement with another 

between-receiver single difference measurement using the same receiver and two 

different satellites to produce the following equation: 

ion + ∇ ∆Rij ij∇∆ Rij = Rt
ij − ∇∆ Rij 

trop + ∇∆ RN + ∇ ∆vij (66) 

where i and j represent the two different satellites from which measurements are taken. 

Applying the double difference technique to the carrier phase range measurement 

equation still utilizes the difference measurement technique described with Equation (13). 

The carrier phase range measurement becomes: 

RCPGPS = Rt +δRUclk −δRion +δRtrop +δRN + v (67) 

where the δRN term represents the range equivalent of the cycle ambiguity term [28]. 

Equation (67) represents one of the single difference measurements previously described. 

The “between-satellites” single difference transforms Equation (67) into: 

ij 
ion + ∇ ∆Rij ij∇∆ RCPGPS = Rt

ij − ∇∆ Rij 
trop + ∇∆ RN + ∇ ∆vij (68) 
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The measurement noise term, vij, is now doubled (2 x E[v2]) under the assumption that 

the satellite measurements are independent of each other [28]. With four satellites, the i/j 

combinations are: 1 and 4, 2 and 4, and 3 and 4 using satellite 4 as the base satellite. The 

INS computed “between-satellites” range is: 

ij∇∆ RINS = ∇ Rt
ij − δ U − δ U − δ U + A∇ δXS

ij + B∇ δYS
ij + C∇ δZS

ij (69) 

where: A = LXS
i − XU − LXS

j − 
j 
XU 

RINS PM OPMi 
O 

RINS

Y YU − LYS
j −YUB = LS

i − 

RINS PMj 
OPMi 

O 
RINS

C = LZS
i − ZU − LZS

j − ZU 

RINS PMJ 
OPMi 

O 
RINS 

To form the truth model difference measurement for CPGPS range measurements, the 

INS calculated range, Equation (69), is subtracted from Equation (67) to produce: 

ijδzCPGPSDD 
= ∇ RI

ij
NS − ∇ RCPGPS 

⋅δ ⋅δ= −  A xU − B yU − C ⋅δzU 

+ ⋅δ ijA xS + B ⋅δyS
ij + C ⋅δzS

ij 
(70) 

− ∇ δRion − ∇ δR
ij ijij 
trop − ∇ RN − ∇ vij 

This method eliminates the user clock bias terms which dominate the SGPS and DGPS 

models. This will result in a 2-state decrease in the CPGPS truth and filter models. 

3.6. Synthetic Aperture Radar Model 

The Synthetic Aperture Radar (SAR) is one of the most common imaging sensors in 

the USAF. The primary function of a military SAR sensor is to generate high resolution 

radar images of ground terrain and ground targets [11]. The two basic measurements a 

SAR provides are range and range rate to a target. SAR range is defined as: 

cT r = 
2 

(71) 
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where T is the transmit time of the transmitted pulse (from transmit to receipt) and c is 

the speed of light. Range rate is defined as: 

r = 
cFd (72)
2F 

where Fd is the Doppler frequency shift and F is the frequency of the SAR. Using these 

two basic radar equations, the SAR error models can be developed for use in the 

integrated Kalman filter. 

Generally, a SAR contains a wide beam antenna which illuminates a large area on the 

ground. The SAR transmits a radar pulse and samples the magnitude and phase of the 

return signal. Since radar waves propagate at nearly a constant speed in the Earth’s 

atmosphere, the earliest samples correspond to the points on the ground nearest the 

aircraft. Likewise, the return from more distant points are represented by later samples. 

The data samples are stored in vectors referred to as range bins. These range bins are 

then processed (using a number of different techniques) into ground images using the 

magnitude and phase characteristics of each received pulse. Layne provides a description 

of SAR processing techniques in [11]. The reader is referred to [15] for a more detailed 

analytical description of SAR characteristics and processing. 

The term synthetic aperture is used because the aircraft utilizes the motion of the 

aircraft to synthesize the effect of a large aperture antenna from a physically small 

aperture antenna. Since aperture size is directly correlated with SAR resolution, the 

larger the aperture, the higher the SAR resolution. Therefore, a SAR capable of creating 

a large synthetic aperture can achieve significant resolution increases while maintaining a 

physical radar aperture that is much smaller. Abbot describes the relationship between 

resolution and aircraft speed in [15]. The resolution distance, ρa, capable from a SAR is 
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directly related to the slant range interval,=∆R, the radar signal speed, c, and the velocity 

of the aircraft, v, as shown: 

2∆R v 
ρ

= 
c 

(73) 
a 

For ground mapping, a small resolution distance provides high imagery resolution 

resulting in better ground targeting. 

As with the INS and GPS sensors, SAR measurements contain several errors. While 

Abbott describes SAR errors in detail in his book, there is a dearth of actual simulation 

models regarding SAR sensors [15]. Layne provides a first cut analytical SAR model in 

his research, which is repeated in this research with minor adjustments [11, 32]. The 

most prominent error in SAR measurements is due to aircraft velocity errors. Since SAR 

uses the velocity of the aircraft to create the synthetic aperture antenna, incorrect 

interpretation of the aircraft velocity vector can cause problems recording the doppler 

shift of the range measurement over time. Therefore, range rate measurements from a 

SAR must be a function of the aircraft velocity errors. 

3.6.1. SAR Error Model 

As with the INS, GPS, and altimeter models, a SAR error model is developed to 

determine the errors present in the SAR range and range rate measurements. These SAR 

error states are included in the extended Kalman filter along with the INS and GPS error 

states previously defined. The first three states to be included in the Kalman filter are the 

target position error states: δxt, δyt, δzt.  These states define the amount of SAR targeting 

error in each SAR range and range rate measurement. Using all the information in the 

Kalman filter, the bottom line performance of the integrated system is determined 
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through analysis of the target position error states. The relationship between the SAR 

measurements and these error states is discussed in the next section. 

The errors inherent in the SAR itself can cause problems with the range and range 

rate measurements. First, there are two range measurement errors modeled in this 

research: range clock error, δrCL, and radar wave propagation speed error, δC [11]. The 

range clock error is defined as the error in the SAR clock. The SAR clock is responsible 

for keeping track of the transmit and return time of a radar signal. Any errors associated 

with drifting clock rate or bias effects can cause a delay in the transmit or return time, 

thus creating a small error in the range measurement.  Radar wave propagation speed is 

needed to map the measured radar wave transmit time to a range measurement.  Any 

error in the radar wave propagation speed can have a “scale factor” type effect on the 

range and range rate measurement. These two errors are modeled as random biases with 

the following characteristics [11]: 

δr δrRCL UL0 0  RCL USδ � V= M STC W0 0  TδC VW (74) 

with initial covariance values of 

L.01 ft 0 
t0PSAR1

( )  = M0 10PPM 
OP (75) 

The SAR range rate measurement has similar characteristics as the range 

measurement. First, since the radar measures range rate through the Doppler frequency 

of return pulses, any frequency shifts in the pulses will cause bias errors. These 

frequency shift errors induced through the SAR system are defined as a Doppler shift 

error, δrD . The radar wave propagation speed error, δC, can also effect the range rate 

measurement.  The last error source is the frequency error, δF. As shown in Equation 
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(72), the SAR range rate is a direct function of the radar frequency. Therefore, errors in 

the frequency of the radar will directly impact the SAR range rate measurement. The 

range rate errors are modeled as random biases with the following characteristics [11]: 

δr δrRD UL0 0 0  RD U
S� 

| M|δC V= 0 0 0P|δC || (76)M S
T� | M T|δF W0 0 0  |δF 

with initial covariance values of 

L.001 se
ft
c 0 0Mt0PSAR2

( )  = M0 10PPM 0 
OPPP (77)M0 0 20PPM 

The total SAR truth model error state differential equation used in this research is 

shown in Equation (78) and includes all SAR errors as well as the SAR targeting errors: 

RCL UL0 0 0 0 0 0 0  RCL UR0 Uδr δr 
0 0 0 0 0 0 0PδrD 0δrD	
MM P 
0 0 0 0 0 0 0PδC w1 

|
|δC� MM PS | |w|δF VMS� | = 0 0 0 0 0 0 0  |δF V+ S2 (78) 

0 0 0 0 0 0 0Pδxt 0δxt	 MM0 0 0 0 0 0 0Pδytδy�t M|δ | M 
P
|δ | | 0 

|
|Tzt W0 0 0 0 0 0 0  Tzt WT0 

A nominal initial covariance of 100-ft per channel was provided to each of the SAR 

targeting error states. A complete listing of the SAR truth model, with white noise 

values, can be found in Appendix B, Table 22. 

3.6.2. SAR Measurement Model 

The SAR measurement model is also developed along the same lines as the INS and 

GPS models previously discussed. The SAR range and range rate measurements are 

integrated into the Kalman filter using the difference measurement technique of Equation 
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(13). An INS calculated range and range rate provides the second measurement type to 

be subtracted from the SAR measured range and range rate. The SAR range 

measurement is defined as the true range to the target plus range errors and measurement 

noise: 

rSAR = rtar +δrCL + rδC + vr (79) 

where rSAR defined as the range from SAR to target (r is defined as range from aircraft to 

target as opposed to R which was range from aircraft to GPS satellite).  The SAR range 

rate measurement is defined as the true range rate from the aircraft to the target plus 

range rate errors and measurement noise: 

rSAR = rtar +δrD + rδC + rδF + vr (80) 

where rSAR is the SAR range rate measurement, and v
�
 is the range rate measurement 

noise. Layne provides an excellent description of each facet of measurement noise for 

both range and range rate [11]. His work is replicated here. 

Assuming the target position has been pre-determined (as discussed in Section 3.2), 

the INS indicated range to the target is defined as: 

rINStar = x y y z zU tar U tar U tar + − + − ( ( ) ( )2 2 x − ) 2 (81) 

Since this equation is nonlinear, a Taylor series expansion is performed to generate a first 

order linear equation in terms of the aircraft and target position error states: 

xtar − xUrINSt 
= rtruetar 

− RINS 
⋅δxU − ytar − yU ⋅δyU − ztar −zU ⋅δzURINS RINS 

(82) 
+ xtar − xU 

RINS 
⋅δxt + ytar − yU ⋅δyt + ztar −zU ⋅δztRINS RINS 

The SAR range difference measurement is formed by subtracting Equation (82) from 

Equation (79): 
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δzSAR = rINS − rSARr 

xtar − xU ⋅δ ytar − yU ⋅δ ztar −zU ⋅δzU= −L 
RINStar PxU − L 

RINStar PyU − L 
RINStar PM O M O M O 

(83) 
+ L	xtar − xU ⋅δ ytar − yU ⋅δ ztar −zU ⋅δ

RINStar Pxtar + L 
RINStar Pytar + L 

RINStar PztarM O M O M O 
−δrCL − rδC − vr 

Equation (83) represents the truth model description of the range measurement used in 

the integrated Kalman filter. 

The range rate difference measurement is much more complex than the range 

difference measurement. Equation (81) describes the INS indicated range from the 

aircraft to the target. In order to provide an INS indicated range rate, a time derivative of 

Equation (81) is taken: 

rINStar 
= TINStar 

/ rINStar 
(84) 

where 

TINStar 
= [(xU − xtar )( �U ) (yU − ytar )(y�U ) (zU − ztar )( �U )] (85)+ + 

A Taylor series expansion of Equation (84), truncated to first order, produces the INS 

indicated range rate approximation in terms of the error state variables previously 

defined. The Taylor series expansion of (84) produces: 

rINSt 
= r

tar 
+
∂rINStar 

(X XU , � tar , XU ) ⋅δXtar∂Xt ( Xtar ,XU , �XU )nom 

∂rINStar 
(X XU , � + tar , XU ) ⋅δXU (86)
∂XU (Xtar ,XU , �XU )nom 

∂rINStar 
(X XU , � XU+ tar , XU ) ⋅δ � 
∂XU (Xtar ,XU , �XU )nom 
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where the expected δ �Xtar  term equals zero since the target is not moving (assumption). 

Substituting Equation (84) into Equation (86), and evaluating all partial derivatives 

produces the INS calculated range rate from aircraft to target:


−1 −3/2
rINStar 
= rtar + [(	rINStar 

)(xU ) − (rINStar 
)(TINStar 

)(xU − xtar )]δxU


−1 −3/2
+ [(rINStar 
)(y�U ) − (rINStar 

)(TINStar 
)(yU − ytar )]δyU


−1 −3/2
+ [(rINStar 
)(zU ) − (rINStar 

)(TINStar 
)(zU − ztar )]δzU


−1
+ [(rINStar 
)(xU − xtar )]δxU


−1
+ [(rINStar 
)(xU − xtar )]δy�U (87)


−1
+ [(rINStar 
)(xU − xtar )]δ�U


−1 −3/2
-[(r	INStar 
)( �U ) − (rINStar 

)(TINStar 
)(xU − xtar )]δxtar


−1 −3/2
-[(r	INStar 
)(y�U ) − (rINStar 

)(TINStar 
)(yU − ytar )]δytar


−1 −3/2
-[(rINStar 
)( �U ) − (rINStar 

)(TINStar 
)(zU − ztar )]δztar 

Using the difference measurement technique, Equation (87) is subtracted from 

Equation (80) producing the following truth model SAR range rate difference 

measurement used in the integrated Kalman filter: 

δzSAR� 
= �INStar 

− �SAR


−1 −3/2
= � + [(rINStar 
)( �U ) − (rINStar 

)(TINStar 
)(xU − xtar )]δxUtar


−1 −3/2
+ [(rINStar 
)(y�U ) − (rINStar 

)(TINStar 
)(yU − ytar )]δyU


−1 −3/2
+ [(rINStar 
)( �U ) − (rINStar 

)(TINStar 
)(zU − ztar )]δzU


−1
+ [(rINStar 
)(xU − xtar )]δ�U


−1
+ [(rINStar 
)(xU − xtar )]δy�U (88)


−1
+ [(rINStar 
)(xU − xtar )]δzU


−1 −3/2
-[(r	INStar 
)(xU ) − (rINStar 

)(TINStar 
)(xU − xtar )]δxtar


−1 −3/2
-[(r	INStar 
)(y�U ) − (rINStar 

)(TINStar 
)(yU − ytar )]δytar


−1 −3/2
-[(rINStar 
)(zU ) − (rINStar 

)(TINStar 
)(zU − ztar )]δztar 

-δrD − rδC − rδF − vr 
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Noise variance values for the SAR range and range rate measurements are found 

in Appendix B, Table 32. Note the inclusion of velocity errors in Equation (88), this 

correlates to the previous discussion that aircraft velocity errors contribute to much of the 

targeting error in the range rate measurement.  These values are provided by Layne, and 

represent a SAR radar sensor’s truth and filter model parameters with the parameters 

shown in Table 1 [11, 32]. 

Table 1.  SAR Performance Characteristics 
SAR Characteristic Filter Model Truth Model 

Range Resolution 15.0 5.0 
Azimuth Resolution 15.0 5.0 

Pulse Frequency 10.0E9 10.0E9 
Pulse Propagation Speed 984.0E6 984.0E6 

Range Time Delay 0.002 0.001 
Range Rate Time Delay 0.002 0.001 

Layne provides a complete relationship between these 6 parameters and the amount of 

measurement noise in the SAR range and range rate measurements in reference [11] and 

[32]. Using these values, the SAR measurement noises shown in Table 32 were 

calculated. The filter model SAR characteristics are arbitrarily higher to provide 

conservative estimates of all SAR error states. 

3.7. Integrated System Models 

Sections 3.3 through 3.6 defined the truth models for each specific sensor package 

used in this research. The next section will define the method in which these models will 

be augmented into a single Kalman filter form suitable for simulation in MSOFE. The 

reduction of each sensor’s truth model into an integrated filter model will also be 

discussed in the following paragraphs. 
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3.7.1. Integrated Truth Model 

Equation (89) describes the augmentation of each sensor truth model into a single 

Kalman filter dynamics equation: 

Lx INS OLFINS ( ) 0 0 Lx INS OLw INS
M
δΩN M M P=ΩM0 FGPS ( )  0 δx +ΩwGPS 

OPPP 
(89)
δx t M PM


GPS PM MGPS PM

SAR PM0 0 FSAR ( )QxSAR PM SAR
x t M w 

where δxINS and FINS are defined in Equation (40), δxGPS and FGPS are defined in 

Equations (44), (46), (55), and (64) (depending upon GPS type), and δxSAR and FSAR are 

defined in Equation (78). Table 2 describes the total amount of truth model states used in 

this research, depending upon GPS type. Case 1 refers to stand-alone GPS, Case 2 refers 

to differential GPS, and Case 3 refers to carrier phase differential GPS. 

Table 2.  Integrated Truth Model States 
Case 1 Case 2 Case 3 

INS 39 39 39 
GPS 30 22 24 
SAR 6 6 6 

Total States: 75 67 69 

Notice that the SAR model does not include the seven states referenced in Section 

3.6. During the actual simulation described in Chapter 4, the addition of the frequency 

error state, δF, caused large biases in each of the remaining six states. Therefore, as a 

final simulation result, the frequency error state was removed and compensated for by 

creating a white noise component in the radar wave propagation speed error, δC. Section 

4.4 will discuss the details regarding tuning compensation for the bias effects caused by 

the frequency error. 

Appendix B contains a complete list of each sensor’s truth model. Equation (89) is 

used as the truth model for the integrated Kalman filter dynamics model in the MSOFE 
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simulation software. The filter model, whose development follows, will be compared 

and tuned against this truth model to provide adequate performance in the presence of 

reduced state complexity. 

3.7.2. Integrated Filter Model 

The integrated filter model is represented in the same manner as the truth model 

shown in Equation (89). However, since the actual implementation of a Kalman filter 

truth model onboard an aircraft would take a tremendous amount of computational 

capability a filter model is used to represent the truth model using less states. The next 

few paragraphs will define the truth model state reduction for each sensor. The final 

result is a reduced order filter model that is more suited for online application of a 

Kalman filter onboard an aircraft. A breakdown of the filter dynamics model across each 

sensor is available in Appendix B.  Table 3 describes the number of states used in the 

integrated filter model for each GPS type. 

Table 3.  Integrated Filter Model States 
Case 1 Case 2 Case 3 

INS 11 11 11 
GPS 2 2 4 
SAR 5 5 5 

Total States: 18 18 20 

The original INS truth model contains 93 error states. In Section 3.3 the 93 states 

were reduced to 41. The filter model used in this research follows that of [1-4, 8, 9, 20-

24] by using the first 11 states. These 11-states comprise aircraft position error, velocity 

error, misalignment errors, and barometric altimeter errors. Any further reduction of 

states from the 11-state filter model creates instabilities in the Kalman filter [8]. 
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The stand-alone GPS truth model contains 30 error states. However, the most 

dominant states in the truth model are the user clock bias and drift states. These two 

states contribute an order of magnitude more error to the GPS pseudorange equation than 

the other error sources combined. Therefore, as mentioned in [8], the stand-alone GPS 

filter model can be reduced to just the user clock bias and drift states. The differential 

GPS filter model also contains only these two states. As explained in Section 3.5.3, the 

CPGPS model contains a carrier-phase ambiguity state (per satellite) that is not necessary 

in the SGPS and DGPS models. Previous research has shown that the a CPGPS filter 

model must include these states to remain stable across the entire flight profile [20, 28, 

30]. Therefore, the CPGPS filter contains an additional four states not included in the 

SGPS and DGPS models. However, with the double differencing technique applied to 

the CPGPS model, the user clock bias and clock bias drift states are removed. 

According to Maybeck [4], the filter may be unable to retain observability of the 

multiple random bias states in the SAR error model. Therefore, the 6-state truth model 

described in Section 3.7.1 is condensed into a 5-state filter model, one state for range 

bias, one state for range rate bias, and three states for SAR target position errors. This 

technique will preserve the observability of each state while the state reduction can be 

tuned through the techniques described in Section 2.2.5.2. Even with the state reduction 

mentioned, there are still additional random bias states remaining in the filter model. 

Further reduction of these states is necessary when developing a flight worthy Kalman 

filter for implementation and flight test. 
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3.7.3. Integrated System/Filter Measurement Model 

The measurement models used in this research extend to each sensor measurement 

input into the integrated Kalman filter. There are four types of measurement available to 

the filter: barometric altimeter, satellite pseudoranges, SAR range, and SAR range rate 

measurements. The baro and satellite measurements are available at 1Hz rates. The SAR 

measurements are available twice during a specific portion of the flight profile. This 

simulates the ability of a SAR to make a target range/range rate measurement, and then 

be retasked for a second set of measurements during the reconnaissance mission. Two 

measurements are typical for a reconnaissance mission; however for a fighter targeting 

mission, several hundred measurements at a very high rate may be desirable. One change 

occurs in between the GPS simulations, that of the double difference in the CPGPS 

measurement model. This model produces only 3 measurements (see Section 3.5.3) as 

opposed to the four pseudorange measurements in the SGPS and DGPS cases. 

3.8. Simulation Software 

Several software packages are used in this research. Each package is vital to the 

complete Kalman filter simulation. MSOFE provides the simulation code for evaluating 

a Kalman filter design against a truth model [6].  MPLOT produces complete data sets 

and Monte Carlo statistics of user-defined variables as generated by MSOFE [6]. 

PROFGEN compiles the flight profiles used in MSOFE to control the simulation [6]. 

Together, these three software programs comprise the “AVLAB Toolbox” which defines 

the flight profile, runs the Kalman filter simulation, and generates the complete data 

output [6].  MATLAB is then used to analyze, plot, and display all results [31]. 
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3.8.1. MSOFE 

As previously mentioned, MSOFE is a multimode simulation tool for designing 

systems that employ Kalman filtering techniques [6]. MSOFE has been used in several 

research projects at AFIT [1-3, 8, 11, 19-21, 23-25, 27-30]. There are two core software 

modules used in MSOFE: core code (CSOFE) and user code (USOFE). The CSOFE 

code contains 63 routines including: Kalman filter simulation, Runge-Kutta integration, 

measurement processing and updating, data collection, etc. The USOFE code contains a 

core of 14 routines which can be modified to suit the user. The main routines include: 

truth and filter dynamics structure, truth and filter measurement structure, data 

input/output formation, and system noise addition. The USOFE/CSOFE structure 

provides MSOFE with the ability to simulate different types of Kalman filter models 

while maintaining a core set of routines that are unchanged. In addition to its flexibility, 

MSOFE is coded in double-precision and maintains numerical precision by implementing 

the U-D factorization technique [5, 6]. 

Two main functions of MSOFE, beyond Kalman filter simulation, are covariance and 

Monte Carlo simulation. Monte Carlo simulation allows the user to generate multiple 

time histories of all truth and filter model states, with random sampling between runs. 

Monte Carlo simulations provide meaningful statistics of each state across the total 

amount of Monte Carlo runs. Covariance simulation provides time histories of the 

covariances of the truth and filter model states. When applied, the covariance simulation 

runs once (compared to multiple Monte Carlo runs) but only operates on linear systems. 

In addition, the Monte Carlo and covariance simulations provide statistics on the filter 

estimation errors. 
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MSOFE requires detailed input and include files which govern problem-specific 

variables needed for proper simulation. One such include file is the “sizes” file. This file 

controls the size of the filter and truth models, number of flight profile variables, and the 

amount of measurements to be processed. The input file controls the amount of Monte 

Carlo runs, the initial covariances of the truth and filter models, all adjustable noise and 

gain parameters, measurement properties, MSOFE control switches, and any other user 

defined variables. Proper use of the input file can save the MSOFE user time and effort 

by dropping the need to compile and link the USOFE/CSOFE code. For example, filter 

tuning variables, changed frequently, are located in the input file so when they are varied 

the USOFE code does not require recompilation. However, any changes in the USOFE 

code or include files requires compilation and linking. 

3.8.2. MPLOT 

MPLOT is another program in the “AVLAB Toolbox” compatible with MSOFE [6]. 

The user, through the USOFE code and MPLOT input file, determines which variables 

(filter and truth states, covariances, etc.) to analyze. After MSOFE has run, two files are 

created, “CTOM” and “DTOM”.  MPLOT processes these two files into user defined data 

files. MPLOT allows the user to generate single Monte Carlo run data or state variable 

statistics across multiple Monte Carlo runs. MPLOT can also generate flight profile 

information such as aircraft position, velocity, and attitude across the entire flight profile. 

MPLOT generated data files are ASCII files which can be used with several plotting 

packages like Microsoft Excel and MATLAB. 
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3.8.3. PROFGEN 

The final software package integrated with the “AVLAB Toolbox” is PROFGEN [6]. 

PROFGEN provides position, velocity, acceleration, attitude, and attitude rates for a 

simulated aircraft moving over the earth. Based on user-generated parameters, the 

PROFGEN flight profile is broken up into several different segments describing the 

following maneuvers [3, 6]: 

a)  vertical turns (pitch up or down)


b)  horizontal turns (yaw left or right)


c)  sinusoidal jink heading changes (oscillates left and right)


d)  straight and level flights (great circle or rhumb line path)


These maneuvers are applied to a simulated point mass aircraft and processed by 

PROFGEN into an output file called “fly_out”. MSOFE uses this file as the basis for all 

aircraft position, velocity, attitude, etc. truth data. Truth model and filter model error 

characteristics are generated by MSOFE with respect to the aircraft parameters provided 

by the “fly_out” file. Section 4.2 contains a description of the U-2 reconnaissance 

mission flight generated through PROFGEN for this research. 

PROFGEN uses standard reference systems and earth models for its calculations [3, 

6]. Position is provided in geographic latitude, longitude, and altitude (Section 2.4.4). 

Velocity is referenced in the local-navigation frame (Section 2.4.2). Accelerations are 

calculated as the velocity rate plus Coriolis effects and gravity. Attitude, roll, pitch, and 

yaw,  is represented in the body frame (Section 2.4.4). 
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3.8.4. GPSADD 

GPSADD is a small Fortran-90 program used to generate GPS satellite ECEF 

positions from actual ephemeris data provided by the National Geodetic Office. Gray 

was the first AFIT student to use true satellite ephemeris information in MSOFE 

simulations [3]. The ephemeris data provides satellite position information from a 

random day, 21 May 1994, and represents the best four satellites available with regard to 

GDOP and the “Tanker3” flight profile created by Gray. All attempts were made in this 

research to map the U-2 flight profile to the aircraft position generated in the “Tanker3” 

profile to facilitate use of the existing GPS true ephemeris data used by Gray. However, 

the satellite selection process used by Gray may lead to slightly different optimal satellite 

choices with regards to the U-2 flight profile. 

GPSADD appends the satellite ephemeris information to the PROFGEN “fly_out” 

file. GPSADD also transforms the ephemeris data into the ECEF coordinate system and 

changes the units from meters to feet. The satellite position is provided to MSOFE 

through the “TRJSYS” USOFE routine and is used extensively to provide the true range 

between the aircraft and the satellite for all GPS measurements. 

3.9. Summary 

This chapter discussed the specific models used to simulate the integrated 

INS/GPS/SAR navigation and targeting system. INS and truth and filter models are 

based on previous AFIT research and have been validated extensively [1-3, 8, 11, 19-21, 

23-25, 27-30]. Three different types of GPS models, SGPS, DGPS, and CPGPS, were 

presented and described in detail. All three are the result of previous AFIT research [1-
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3, 8, 11, 19-21, 23-25, 27-30]. The SAR model was adopted from Layne and modified


slightly to perform adequately during simulations [11, 32]. The modeling software was


also presented including: Kalman filter simulation, Monte Carlo statistic calculation,


flight profile generation, and real world GPS ephemeris data manipulation. Chapter 4 will


present the results of the INS/GPS/SAR integration study.
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4. Simulation Results 

4.1. Overview 

This chapter presents the results and analysis of the INS/GPS/SAR integration 

system simulated in MSOFE. The first section covers the newly generated U-2 Flight 

Profile created in PROFGEN which models a typical U-2 reconnaissance mission. The 

second section describes the three cases simulated in this research. The fourth section 

provides an analysis of the integrated INS/GPS/SAR system performance with respect to 

aircraft location and SAR targeting performance. Lastly, the results from each case are 

summarized into compact, easy to understand tables for easy comparison between cases. 

The results presented herein represent the best possible tuning within the time limits of 

this research. Although some plots may show filter computed results that are both 

conservative and non-conservative, the majority of the filter model states are tuned 

adequately. Recall, the purpose of this research is to analyze the potential rewards a 

tightly integrated INS/GPS/SAR model could create, not to design a flight-worthy 

Kalman filter for immediate flight test. 

4.2. U-2 Flight Profile 

Previous AFIT research with regards to INS/GPS integration concentrated mainly on 

validation of truth and filter models and precision aircraft approaches [3, 8, 25]. In both 

cases, the type of flight profile, except for the landing portion, was not critical to the actual 

research topic. Therefore, the “Tanker3” flight profile mentioned in Section 3.8.3 was 

sufficient to run numerous research simulations [1-3, 19, 25]. However, the focus of this 

research was to simulate a typical U-2 reconnaissance mission. A new flight profile was 
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necessary to accomplish this goal leading to the “U-2Flight” flight profile.  igure 12

describes the latitude, longitude, and altitude of the “U-2Flight” flight profile.  

in this figure, the aircraft flies in a “racetrack” pattern, at an altitude of 65000-ft, which is

typical of U-2 reconnaissance missions.  gure is the target location

with respect to the aircraft flight path.  get is located at –84.5° longitude, 40.2°

latitude on the surface of the earth.  ction 3.7.3 states that two SAR target measurements

are processed by the Kalman filter.  Figure 12 also shows the two measurement locations

along with a graphical description of the SAR range measurement.  endix F contains a

complete collection of plots covering the “U-2Flight” position, velocity, attitude, and

attitude rate charts across the entire flight profile.

39.9 40 40.1 40.2 40.3 40.4 40.5 40.6 40.7

-85.5

-85

-84.5

-84

-83.5

-83

-82.5

-82

-81.5

0

2

4

6

x 10
4

65000ft

Lat. (deg)

Target Location

Target Range

Long. (deg)

A
lt.

 (f
t)

Figure 12. U-2 Flight Profile and Targeting Scenario
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The U-2 flight profile is broken up into 10 sections of which 3 sections are repeated 

two times to generate the racetrack flight path lasting 3700 seconds. The sections of the 

flight are as follows: 

a) 500 second straight and level flight, 65000ft altitude, initial velocity of 200 knots 

b) 200 second 90 degree roll left with a gradual acceleration 

c) 400 second 90 degree roll left with a gradual acceleration 

d) 500 second straight and level flight, gradual deceleration 

e) repeat of b), 200 second turn in opposite direction 

f) repeat of c), 400 seconds turn in opposite direction 

g) repeat of d), 500 seconds 

h) repeat of b), 200 seconds 

i) repeat of c), 400 seconds 

j) repeat of d), 500 seconds 

While this flight profile is not a complete U-2 flight from take-off to landing, it 

suffices for initial targeting performance analysis, since the purpose of this research is to 

determine the accuracy of SAR targeting with respect to different types of GPS receivers. 

Therefore, only the first 1200 seconds of the flight profile are discussed in the analysis 

sections to follow. The first 1200 seconds of the flight profile cover 20 minutes of 

Kalman filter performance and includes both SAR measurements. 

4.3. Case Definition 

The following sections define the differences between each case investigated in this 

research. The cases are defined in accordance with the type of GPS simulated in each 

integrated INS/GPS/SAR system. The three GPS’s simulated are the stand-alone GPS, 

differential GPS, and carrier-phase GPS. In each case, the INS and SAR models 
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remained unchanged in order to perform a detailed comparison between the various 

integrated GPS receiver models. Appendix B contains Table 17, Table 18, and Table 22 

which represent the INS and SAR truth model states used in each case. The barometric-

altimeter provides altitude measurements to the integrated Kalman filter, while the SAR 

provides both range and range rate measurements. This is standard across each of the 

cases. The results presented in this chapter represent the output of a 50 Monte Carlo run 

MSOFE simulation. 

4.3.1. Case 1, Stand-Alone GPS 

The first INS/GPS/SAR integrated system simulated a stand-alone, four-channel 

SGPS receiver. The SGPS model entails a 30-state truth model and 2-state filter model 

as described in Section 3.5.1. Previous research with the SGPS model has shown aircraft 

position error of approximately 19ft RMS; this research was expected to provide similar 

accuracy [3, 8, 27, 29]. This model was integrated with the INS and SAR models using 

the method described in Section 3.7. Appendix B contains Table 19 and Table 23 which 

describe the 30-state SGPS model and the 18-state filter model, respectively, used in the 

integrated INS/GPS/SAR model for Case 1. 

4.3.2. Case 2, Differential GPS 

The next INS/GPS/SAR integrated system simulated a differential GPS receiver. The 

DGPS model entails a 22-state truth model and 2-state filter model as described in 

Section 3.5.2. This model is similar to the SGPS model with the reduction of 2-states per 

satellite vehicle representing the differential correction. Previous research with the 
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DGPS model has shown aircraft position error of approximately 5ft RMS; this research 

was expected to provide similar accuracy [1, 2, 25]. This model was also integrated with 

the INS and SAR models using the methods described in Section 3.7. Appendix B 

contains Table 20 and Table 23 which describe the 22-state DGPS model and the 18-state 

filter model, respectively, used in the integrated INS/GPS/SAR model for Case 2. 

4.3.3. Case 3, Carrier-Phase GPS 

The last INS/GPS/SAR integrated system simulated a carrier-phase differential GPS 

implementation. The CPGPS model entails a 26-state truth model and 6-state filter 

model as described in Section 3.5.3. This model parallels the DGPS model and includes 

four carrier-phase ambiguity errors, one for each satellite in the simulation. Previous 

research with the CPGPS model has shown aircraft position error of approximately 6-ft 

RMS; this research was expected to provide similar accuracy [20, 28, 30]. This model 

was also integrated with the INS and SAR models using the methods described in Section 

3.7. Appendix B contains Table 21 and Table 23 which describe the 4-state CPGPS 

ambiguity error and the 22-state filter model, respectively, used in the integrated 

INS/GPS/SAR model for Case 3. 

4.4. Simulation Results 

MSOFE simulation results are presented on a case-by-case basis. Starting with the 

SGPS, the aircraft location errors and target position accuracy of the integrated 

INS/GPS/SAR system are analyzed. The desired end result of this research is to 

determine the impacts and effects different GPS implementations can have on SAR 
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reconnaissance targeting.  Therefore, the correlation between aircraft location accuracy 

and target position accuracy are analyzed closely.  The results from each case are 

compared to determine the best results theoretically obtainable through this research. 

Appendix C through Appendix E provide a complete graphical representation of 

each filter model state per case. Each figure in the appendices contains five traces using 

the legend shown in Figure 13. 

Plot Legend: 

true error (mean error ±=σtrue) 

filter predicted error (0 ±=σfilter) 

mean error 

Figure 13. Plot Legend 

The mean error trace is defined by the following equation [3, 4]: 
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where Pe(ti) is the true error sample variance at time ti. The final pair of traces, filter 

predicted error, is the filter computed standard deviations displaced about zero because 

the filter believes that it is producing zero mean errors [3, 4]. 

4.4.1. Case 1 

The “U-2Flight” flight profile was used to provide truth data for simulation of the 

integrated INS/GPS/SAR system with the SGPS.  With respect to previous research using 

the SGPS model, the integrated system operated exactly as expected with only minor 

deviations. The target accuracy performance in this case will be used as a benchmark to 

determine how much better the DGPS and CPGPS models are at producing higher 

accuracy target geolocation. 

4.4.1.1. Aircraft Position/Velocity/Attitude Accuracy 

Overall SGPS results for aircraft errors are provided in Table 4. Figure 14 contains a 

plot of the aircraft latitude, longitude and altitude error estimates. The average position 

errors were: 8.00-ft for latitude, 6.17-ft for longitude, and 14.39-ft for altitude. The RMS 

value of aircraft position error was 17.59-ft, compared to the 19-ft average RMS error 

found in previous SGPS research [3, 8, 27, 29]. 

Table 4. SGPS Aircraft Errors 

Ave. Position (ft) 
Latitude Longitude Altitude 

8.00 6.17 14.39 

Ave. Velocity (ft/s) 
North East Down 
0.18 0.25 0.53 

Ave. Attitude (rad) 
North East Down 

2.27E-5 5.74E-4 1.62E-5 
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The removal of the CIRIS transponder model from the INS/GPS integration models 

used by several other research projects led to a slightly better RMS position error in this 

research [3, 8, 27, 29]. CIRIS is a reference system used by the USAF to test GPS 

system performance [3, 8, 27, 29]. The transponders provided position estimates that 

were not as accurate as the SAR model used here, creating a slightly less accurate total 

aircraft position solution. 
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Figure 14. SGPS Aircraft Position Error Estimates 

There was some initial concern regarding the impact of SAR model measurements 

on aircraft position and velocity errors. Equations (83) and (88) from Section 3.6.2 show 

that the range measurement is a function of aircraft position errors and the range rate 

measurement is a function of both aircraft position and velocity errors. Figure 14 shows 

that any concern was unwarranted. In fact, the second SAR measurements, at 1000 
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seconds, actually decreased the filter computed covariance in the latitude and altitude 

error estimates. However, the dominate error source with respect to those errors is the 

accuracy and type of GPS model, causing the filter computed covariances to propagate 

back to their previous levels within three time samples. On the velocity side, the SAR 

range rate measurement significantly affected the north and down velocity error 

estimates, Appendix C, Figure 25. The north velocity error estimate was decreased by 

21% after the SAR range rate measurement at 1000 seconds. The east and down velocity 

estimates were also affected, but not as drastically as the north velocity. In addition, 

there was a minor improvement in the filter computed covariance of the attitude angles, 

Appendix C, Figure 26. 

There was one minor anomaly with the SGPS integrated system. Figure 15 shows the 

SGPS user clock bias error. At approximately 800 seconds, there is a sharp increase in 

the amount of true covariance in the user clock bias. This effect also correlates to a 15% 

increase in the aircraft altitude error after 800 seconds (Figure 14). The mean true error 

of the user clock bias is also drifting in the negative direction after 375 seconds. This 

phenomenon is not seen in previous SGPS research at AFIT, nor in the DGPS or CPGPS 

results to follow [3, 8, 27, 29]. Typically, an increase in user clock bias error magnitude 

occurs when the receiver satellite constellation is changed [12]; however, there was not a 

constellation change during the first 2000 seconds of the flight profile. Furthermore, 

since the filter covariance does not reflect the same anomaly as the true error, the 

problem must be an anomaly in the SGPS truth model. Several steps were taken to fix 

this problem including running the filter without the SAR model, tuning the GPS filter 

measurement and process noise, and truth model state reduction. Each of these methods 
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Figure 15. SGPS User Clock Bias Error Estimate 

failed to correct both the true error drift and the increase in true covariance. This anomaly 

is under continuing investigation. 

4.4.1.2. Target Position Accuracy 

Target accuracy results for the SGPS case can be found in Table 5. Figure 16 

contains a plot of the SGPS integrated system target position accuracy. Using an initial 

position covariance of 100-ft per channel, the final target position accuracy after two 

measurements dropped from 17.43-ft RMS to 15.14-ft RMS. Figure 16 clearly shows 

how the SAR range and range rate measurements decrease the amount of error in each 

target position channel. The 2.30-ft drop after the second measurement relates to 

Table 5. 
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SGPS Targeting Errors 
X-Position Y-Position Z-Position 

Initial Error (ft) 9.74 11.25 9.09 
Final Error (ft) 8.30 10.82 6.57 

Percent Decrease 14.78% 3.80% 27.71% 
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Figure 16. SGPS Target Position Accuracy 

an increase in targeting accuracy of 13.22%. The Z-position channel was affected the 

most with a targeting accuracy increase of 27.71%. The other two channels were affected 

with accuracy increases of 14.78% for the X-position and only 3.80% for the Y-position. 

Without question a higher resolution SAR sensor should provide better target position 

accuracy. As these simulation results indicate, the addition of SAR measurements into an 

integrated navigation filter decreases the errors in aircraft position and velocity and target 

geolocation. The addition of the measurements into the integrated INS/GPS Kalman 

filter provided a 13.21% decrease in target geolocation error. However, without a 

another simulation using a different GPS model, it is impossible to determine if this 
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decrease is due to SAR accuracy or aircraft location accuracy. That is why the next two 

cases will use the same SAR model as the SGPS case.  This way, any new increase in 

target geolocation accuracy can be attributed to the more accurate GPS receiver 

simulation which is the only change across cases. 

4.4.2. Case 2 

The “U-2Flight” flight profile was again used to provide truth data for simulation of 

the integrated INS/GPS/SAR system, this time using a DGPS receiver simulation. With 

respect to previous research using the DGPS model, the integrated system operated 

slightly better than expected. SAR targeting performance in this case was very good with 

better results than those shown in Case 1. In addition, the DGPS user clock bias state 

estimation performs extremely well without the anomaly seen in the SGPS user clock 

bias state. 

4.4.2.1. Aircraft Position/Velocity/Attitude Accuracy 

Overall DGPS results for aircraft errors are provided in Table 6. Figure 17 contains a 

plot of the latitude, longitude, and altitude errors using the DGPS integrated system. The 

INS and SAR models remained the same from Case 1. Comparing Figure 17 to Figure 

16 (note change in y-axis scale) shows that the DGPS receiver has tightened up the 

aircraft location errors. In this case, the average position errors were: 1.91-ft for latitude, 

1.87-ft for longitude, and 4.24-ft for altitude. The total RMS aircraft position error was 

5.01-ft which duplicates results of previous research [25]. 
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Table 6. DGPS Aircraft Errors 

Ave. Position (ft) 
Latitude Longitude Altitude 

1.91 1.87 4.24 

Ave. Velocity (ft/s) 
North East Down 
0.13 0.12 0.13 

Ave. Attitude (rad) 
North East Down 

1.98E-5 3.86E-4 1.58E-5 

The SAR measurements at 500 and 1000 seconds do not affect the position and 

velocity states in this simulation as in Case 1. The aircraft latitude and altitude errors 

indicate less than a 1% decrease in filter computed covariance over three seconds. 

Velocity errors, Appendix D, Figure 32 are barely affected by the SAR range rate 

measurements at the 1000 second point. 
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Figure 17. DGPS Aircraft Position Error Estimates 
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4.4.2.2. Target Position Accuracy 

Target accuracy results for the DGPS case can be found in Table 7. Figure 18 

contains a plot of the DGPS integrated system target position accuracy. Using the same 

SAR model as Case 1, the DGPS target position accuracy decreases from a pre-

measurement RMS value of 16.30-ft to a post-measurement 12.92-ft level. The 3.38-ft 

decrease in error results in a 20.78% increase in RMS target geolocation accuracy. The 

X- and Z-position channels were affected the most with a targeting accuracy increase of 

20.57% and 36.5%, respectively.  The Y-position channel accuracy was increased by 

10.76%. 

Table 7. DGPS Targeting Errors 
X-Position Y-Position Z-Position 

Initial Error (ft) 9.44 10.00 8.75 
Final Error (ft) 7.50 8.92 5.56 

Percent Decrease 20.57% 10.76% 36.50% 

The DGPS integrated system provides very accurate aircraft position and velocity 

estimates. The SAR measurement difference equations, Equations (83) and (88), show a 

direct relationship between the measurements and aircraft location errors. If the aircraft 

location errors are known very accurately, the SAR measurements will produce a greater 

affect on the target position error states. This effect is shown in Figure 18 by the fact that 

the target geolocation accuracy is much better than that shown in the SGPS case, Figure 

16. Since the SAR model and its performance remained the same from Case 1 to Case 2, 

the resulting increase in targeting accuracy is attributable to the smaller aircraft position 

errors. 
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Figure 18. DGPS Target Position Accuracy 

4.4.3. Case 3 

The “U-2Flight” flight profile was last used to provide truth data for simulation of the 

integrated INS/GPS/SAR system, this time using the CPGPS receiver simulation. With 

respect to previous research using the CPGPS model, the integrated system also operated 

better than expected, like the DGPS model. SAR targeting performance in this case was 

very good with better results than those shown in Case 1 and Case 2. Much like the 

DGPS, the CPGPS user clock bias state performed as expected. The addition of the four 

integer ambiguity states performed as expected and represent the error caused by the 

unknown integer ambiguities in the CPGPS double difference measurements. 
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4.4.3.1. Aircraft Position/Velocity/Attitude Accuracy 

Overall CPGPS results for aircraft errors are provided in Table 8. Figure 19 contains 

a plot of the latitude, longitude, and altitude errors using the CPGPS integrated system. 

The INS and SAR models have remained the same from Cases 1 and 2. Comparing 

Figure 19 with Figure 17 and Figure 14 shows that the CPGPS receiver has tightened up 

the aircraft location errors beyond those of the SGPS and DGPS model. In this case, the 

average position errors were: 2.04-ft for latitude, 1.55-ft for longitude, and 2.02-ft for 

altitude. The total RMS aircraft position error was 3.26-ft which performs slightly better 

than previous research [20, 28, 30]. Since ground based differential CPGPS receivers can 

provide highly accurate position solutions, it was expected that the airborne CPGPS 

model in this research would perform much better than the SGPS model and slightly 

better than the DGPS model. 

Table 8. CPGPS Aircraft Errors 

Ave. Position (ft) 
Latitude Longitude Altitude 

2.04 1.55 2.02 

Ave. Velocity (ft/s) 
North East Down 
0.17 0.18 0.19 

Ave. Attitude (rad) 
North East Down 

1.34E-5 2.41E-4 1.16E-5 

The SAR measurements at 500 and 1000 seconds have a minimal impact on the 

position states in this simulation as in Case 1. The aircraft latitude and altitude errors, 

much like those in Case 2, show only the slightest effects, less than 1% decrease in filter 

computed covariance over three seconds. Velocity errors shown in Appendix E, Figure 

38 are only slightly affected by the SAR range rate measurements, but not nearly as much 

4-16




as the 17% accuracy increase seen in the SGPS model.  The CPGPS velocity plots 

closely match the performance of the DGPS velocity plots. 

The CPGPS model differs from the DGPS model with the addition of 4-integer 

ambiguity states in the filter and truth models. Appendix E, Figure 42 shows that the 

ambiguity state modeling is performed very well and that the tuning values provided by 

Bohenek and Hansen are applicable to this research [20, 28]. There is a slight bias in 

each ambiguity state that could potentially disappear with additional tuning attention. 

Even so, the addition of an integrated SAR model into the CPGPS/INS model did not 

affect the estimation or performance of the ambiguity states at all. 
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Figure 19. CPGPS Aircraft Position Error Estimates 
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4.4.3.2. Target Position Accuracy 

Target accuracy results for the CPGPS case can be found in Table 9. Figure 20 

contains a plot of the CPGPS integrated system target position accuracy. Using the same 

SAR model as Cases 1 and 2, the CPGPS target position accuracy decreases from a pre-

measurement RMS value of 18.81-ft to a post-measurement 11.29-ft level. The 7.52-ft 

decrease in error results in a 39.96% increase in RMS target geolocation accuracy. The 

X- and Z-position channels were affected the most with a targeting accuracy increase of 

61.74% and 60.27%, respectively.  The Y-position channel accuracy was increased by 

only 21.69%. 

Table 9.  CPGPS Targeting Errors 
X-Position Y-Position Z-Position 

Initial Error (ft) 5.37 12.58 12.92 
Final Error (ft) 2.05 9.85 5.13 

Percent Decrease 61.74% 21.69% 60.27% 
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Figure 20. CPGPS Target Position Accuracy 
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4.4.4. Cross-Case Comparison 

An important aspect of this research was to compare the performance of each 

integrated INS/GPS/SAR case.  As a result, the following tables detail the results 

achieved through this research. Comparison results are broken up into the following 

categories: percent improvement in target error after two SAR measurements, total 

aircraft position and velocity errors, percent improvement in target and aircraft location 

accuracy using the SGPS system as a baseline. 

As previously mentioned, the CPGPS provided the best aircraft and target position 

accuracy. Table 10 shows the results of the aircraft and target position error simulation. 

The SGPS integrated system provided a 13.20% improvement in target geolocation errors 

after processing two SAR measurements. The DGPS produced a 20.78% improvement in 

target geolocation accuracy while the CPGPS provided a 39.96% accuracy improvement. 

Both the DGPS and CPGPS provided excellent aircraft positions, with RMS errors of 5-ft 

or less. Using Table 10 as a guide, the DGPS provided the most improvement in target 

location accuracy while also providing a huge increase in aircraft position accuracy 

compared to the SGPS case. The CPGPS however had the smallest total final target error 

and aircraft error and therefore performed the best overall. 

Table 10. Error Analysis per GPS Type 
Errors (ft) GPS DGPS CPGPS 

Latitude Error 8.00 1.91 2.03 
S

Longitude Error 6.17 1.87 1.55 
Altitude Error 14.39 4.24 2.02 

Aircraft Position Error (RMS) 17.59 5.01 3.26 

Original Target Error (RMS) 17.44 16.30 18.81 
Final Target Error (RMS) 15.14 12.92 11.29 
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Table 11 displays the aircraft velocity errors for each integrated system. Each system 

operated very well, with only the SGPS down velocity error exceeding 0.3-ft/s. The 

DGPS showed the best RMS velocity accuracy in two channels. However the CPGPS, 

with a 0.31-ft/s RMS value is greater than the DGPS; virtually indistinguishable in a table 

but potentially noticeable in a typical 8 hour U-2 reconnaissance mission. Therefore, 

using the U-2 as a basis for this research, the CPGPS may be the preferred GPS receiver. 

The addition of velocity aiding through pseudorange rate measurements in the GPS 

receiver model should produce even better results than those in this research [5]. 

Table 11. Velocity Error Analysis per GPS Type 
Errors (ft/s) SGPS DGPS CPGPS 

North Velocity Error 0.18 0.13 0.17 
East Velocity Error 0.25 0.12 0.18 

Down Velocity Error 0.53 0.27 0.19 
Aircraft Velocity Error (RMS) 0.61 0.32 0.31 

Table 12 contains a comparison between each integrated system. The DGPS 

provided a 14.66% improvement over the SGPS with respect to post-SAR measurement 

target geolocation improvement. The CPGPS system provided a 25.43% improvement 

over the SGPS and 13.26% improvement over the DGPS. 

Table 12. Target Geolocation Improvement by GPS Type 
Method Target Error 

RMS (ft) 
Improvement 

over SGPS 
Improvement 

over DGPS 
SGPS 15.14 
DGPS 12.92 14.66% 

CPGPS 11.29 25.43% 13.26% 

Table 13 shows the same results with respect to aircraft location. However, in this 

table, the SGPS aircraft location performance is used as a baseline. The DGPS is 71.52% 
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more accurate than the SGPS; the CPGPS is 81.47% more accurate than the SGPS. 

These results show the CPGPS as 9.95% more accurate than the DGPS with respect to 

the SGPS. Table 12 and Table 13 show that the CPGPS performs the best in both 

targeting geolocation and aircraft position estimation. 

Table 13. Aircraft Location Improvement (SGPS Baseline) 
Method Aircraft Error 

RMS (ft) 
Improvement 

over SGPS 
Improvement 

over DGPS 
SGPS 17.59 
DGPS 5.01 71.52% 

CPGPS 3.26 81.47% 9.95% 

4.5. Summary 

This chapter presented the theoretical performance results of the GPS/INS/SAR 

integrated system simulation. The results were broken up into cases representing the 

three GPS receiver implementations: stand-alone, differential, and carrier-phase 

differential. Each case was modeled using the same INS and SAR models, with the GPS 

receiver model as the only change across cases. Therefore, SAR targeting improvements 

seen from case to case were a direct result of the more accurate GPS receiver. Appendix 

C through Appendix E contain the collection of figures indicating the performance of 

each filter model state estimate in the three cases. This chapter also defined the new 

“U-2Flight” flight profile created for these simulations. Appendix F contains a number 

of plots defining the entire flight profile. Figure 21 shows the bottom-line results of this 

research. The CPGPS simulation provided the most accurate aircraft and target 

geolocation estimates. The DGPS was not far behind and actually performed almost 

exactly like the CPGPS with respect to aircraft velocity errors. Both CPGPS and DGPS 
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models  performed better than the SGPS.  These results were expected when compared


with previous research using similar models [1-3, 8, 11, 19-21, 23-25, 27-30, 32].
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5. Conclusions 

5.1. Overview 

This thesis presents the theory, modeling methodology, and results of an integrated 

INS/GPS/SAR Kalman filter research study.  Previous research in this area reflected the 

performance of an integrated INS/GPS with respect to aircraft position error estimation. 

Other research included a first cut analysis of the integration of a SAR and other sensors 

into an integrated INS/GPS [11]. This work represents one of the first known 

integrations of only SAR range and range rate measurements into an INS/GPS integrated 

system to provide better accuracy in estimating ground target geolocation errors. 

Three different INS/GPS/SAR integrated system models were developed utilizing 

different GPS models: stand-alone, differential, and carrier-phase differential. The INS 

was stabilized with a Barometric and Radar altimeter; the SAR provided range and range 

rates to a known target on a simulated reconnaissance mission. This thesis also generated 

a new flight profile to represent the unique U-2 reconnaissance collection method. Each 

of the three integrated systems were implemented using Kalman filtering techniques. 

Once the models were fully developed, simulations were performed using MSOFE. 

5.2. Conclusions 

Each of the GPS receivers modeled in this research show increases in the targeting 

accuracy of the integrated SAR model.  The main focus of this research was to determine 

the effect that aircraft position accuracy has on SAR targeting accuracy. By simulating 

three different systems and keeping the same SAR model between them, the targeting 
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improvements can be attributed to the aircraft location accuracy. While the accuracy of 

the SAR measurements provides the greatest means for targeting improvement, the fusion 

of highly accurate GPS measurements provides even greater improvement beyond mere 

modification of the SAR alone. In SAR reconnaissance aircraft, the SAR measurements 

could be integrated into the navigation Kalman filter to receive this additional benefit. 

Previous research by Layne studying integrated SAR and navigation sensors 

produced very accurate SAR targeting results [11]. However, in Layne’s case, there were 

two additional measurements available, azimuth and elevation angles from aircraft to 

target. These measurements are not available on a U-2 aircraft and thus were not 

modeled. Even so, targeting performance in this research was increased significantly 

using only SAR range and range rate measurements. More importantly, the increase 

occurred without the benefit of increased SAR resolution. 

The GPS receiver models performed as expected throughout the research. The SGPS 

performed slightly better than expected with aircraft position accuracy near 17ft RMS. 

The DGPS and CPGPS models performed very well, with position accuracies of 5ft and 

3ft, respectively.  While CPGPS has the capability of providing fixed integer ambiguity 

resolution accuracy down to the centimeter level, the simulated CPGPS results were not 

in the centimeter range. However, this research produced better CPGPS accuracy than 

that seen in previous research [20, 28, 30]. 

As previously mentioned, there are multiple random bias states in the filter model 

(target location, range error, range rate error, etc.). This is a technical drawback to the 

integrated filter model. While this thesis focused on the true error representation of target 

errors, any future implementation of the SAR model created in this research must be 
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analyzed for further reduction of the random bias states. While the results presented 

herein were stable using all of the random bias states, this does not preclude the fact that 

problems may still exist within this model. It is important to note that eliminating the 

unobservable states from the filter model should not affect the overall performance of the 

system but should provide a more robust model of the integrated system. 

The flight profile used in this research was adequate to determine theoretical 

performance of the integrated INS/GPS/SAR system. The system did not show 

performance degradation specifically due to the type of flight profile. The positioning of 

the simulated target within the performance envelope of the SAR model was very 

important. Several simulation attempts failed because the target was outside of the range 

capabilities of the SAR model. 

Bottom line results in this thesis focused on the targeting benefits of integrating SAR 

measurements into the INS/GPS navigation Kalman filter.  This research has shown that 

there are performance benefits to be had with proper tight integration of the SAR sensor. 

Across each GPS receiver model, targeting results were improved, CPGPS by almost 

25%, solely through SAR Kalman filter integration. Operating in a stand-alone fashion 

(i.e. no integration with the INS/GPS) the SAR would not be able to achieve these 

benefits. 

5.3. Recommendations 

While the GPS and INS models in this thesis have been used extensively, the SAR 

model used in this research has only been used on two occasions. This thesis 

concentrated mainly on the theoretical performance of a tightly integrated navigation 
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Kalman filter. As such, the SAR model developed by Layne met the task [11,32]. Future 

research in this area can benefit greatly by advancing the analytical model of the SAR. 

The 5-state model is lacking many of the errors described by Harger’s text [13]. A 

student well versed in stochastic modeling and synthetic aperture radar could provide a 

wealth of future SAR integration studies. There are many civilian and military 

organizations that could benefit greatly from such a model. 

The following recommendations are provided to extend this research: 

1.	 Determine the effectiveness of the INS/GPS/SAR model in a real world jamming 

environment. Many students at AFIT have provided detailed multiple model adaptive 

estimation techniques to overcome EM jamming [1, 2, 4, 5, 10, 19]. These studies 

could easily be applied to the SAR targeting scenario. 

2.	 Fuse additional sensors into the INS/GPS/SAR Kalman filter. Layne provides a 

detailed monopulse radar model in his research [11]. While this study proved that the 

monopulse radar measurements were not needed for target improvement, this model 

could provide even better targeting accuracy. Also, the U-2 and other reconnaissance 

aircraft have many different sensors, including electro-optical and infrared, which 

could show similar performance increases when integrated into the navigation 

Kalman filter. 

3.	 Further refine the “U-2Flight” flight profile to simulate the actual flight 

characteristics of the U-2 and/or other reconnaissance aircraft. Unmanned Aerial 

Vehicles are of particular interest to civilian and military researchers. The “U-

2Flight” profile was created first and foremost to simulate the flight path of a U-2’s 
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racetrack collection technique. This leaves room for improvement in simulating the 

U-2 flight characteristics such as maximum speed, attitude rates, etc. 

4. The results provided in Appendix C through Appendix E show adequate tuning for 

almost every state in the Kalman filter model. However, there is room for 

improvement. Any Kalman filter designed for actual flight test must be tuned for 

optimal performance. 

5.	 The improvement in targeting accuracy after only two measurements is promising. 

While this research models the performance of a U-2 on a reconnaissance mission, it 

could easily be adapted to a fighter/attack scenario. The F-15E, for example, contains 

a SAR that the pilot can use for targeting ground targets before transitioning to high 

resolution forward looking infrared (FLIR). Future research could increase the 

number of SAR measurements processed by the Kalman filter to simulate an F-15E 

ground attack scenario. In addition, the sensor handoff between SAR and FLIR 

would also provide a worthwhile simulation study in itself. Integrating the two 

sensors into the navigation filter could provide better results end-to-end in an F-15E 

ground attack. 

6.	 New GPS data could provide more realistic data for use in Kalman filter simulations. 

The existence of high-fidelity GPS simulators and real world GPS data has the 

potential of limiting the odd effects sometimes witnessed (see Section 4.4.1.1) in the 

GPS user clock bias estimation. 

7.	 Future carrier-phase differential receiver modeling should analyze the effect of the 

cycle slip phenomenon. Previous research has been done on this topic, it need only 

be applied to the INS/GPS/SAR simulation [20, 28, 30]. In particular, a multipath 
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error model would be very beneficial to properly describe the effects of differentially 

corrected pseudoranges. Other differencing techniques may also provide added 

realism to the CPGPS models [35]. 

8.	 Loose integration techniques should be simulated. In general, it is much harder to 

retrofit an aircraft with a brand new, tightly integrated INS/GPS navigation system. 

Addition of GPS to the U-2 and other aircraft could be implemented in a “loose” 

fashion. Therefore, simulation of that technique could provide important results for 

comparison purposes. 
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Appendix A. Acronym List 

AFIT Air Force Institute of Technology

AFRL Air Force Research Laboratory

AIMS Airborne Information and Mapping System

CPGPS Carrier Phase Global Positioning System

CTOM Continuous-to-MPLOT

DTOM Discrete-to-MPLOT

DCM Direction Cosine Matrix

ECEF Earth-Centered, Earth-Fixed

EKF Extended Kalman Filter

EM Electro-magnetic

FDI Fault Detection and Isolation

FLIR Forward-Looking Infrared

SAR Synthetic Aperture Radar

GPS Global Positioning System

INS Inertial Navigation System

MSOFE Multi-mode Simulation of Optimal Filter Equations

MMAE Multiple Model Adaptive Estimator

M3AE Modified Multiple Model Adaptive Estimator

NRS Navigation Reference System

PLS Precision Landing System

PR Pseudorange

RMS Root-Mean-Square

SA Selective Availability

SV Satellite Vehicle
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Appendix B. Model State Definitions and System Matrices 

This appendix contains the tabular listing of all truth and filter model error states, the 

dynamics and noise submatrices from Section 3.3, and tuning parameters achieved during 

simulation. 

B.1. Truth Model Error States 

Table 14 through Table 16 contain a complete listing of the 93-state INS truth model. 

These states comprise a true representation of the errors in a Litton LN-93 strapdown INS 

[24]. From these 93-states, Negast reduced the order from 93-states to 39-states, 

including the 2 barometric altimeter states described in Section 3.4. Table 17 and Table 

18 contain a complete list of the reduced order 41-state model used to represent the INS 

in this research. 

Table 19 describes the 30-state stand-alone GPS model described in Section 3.5.1, 

two states for user equipment error and 28 states for each GPS satellite (7 each). Table 20 

describes the 22-state differential GPS model described in Section 3.5.2, two states for 

user equipment error and five states for each GPS satellite (total of 20). Table 21 

describes the 4-state carrier phase GPS model described in Section 3.5.3, four states for 

carrier phase ambiguity errors. 

Table 22 describes the 4-state SAR model described in Section 3.6. There are 2 states 

for range error and 3 states for range rate error (the radar wave propagation speed error 

affects both range and range rate) in this model. 
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B.2. Simulation Filter States 

The four filter models used in this simulation are listed in this section. Table 23 

contains the list of the 18 filter model states used during the stand-alone and differential 

GPS simulations. Table 24 contains the list of the 20 filter model states used during the 

carrier phase differential GPS simulation. Note that previous versions of these tables in 

other theses reference all filter model states back to the 93-state model instead of 

Negast’s reduced order model [1-3, 25]. 

B.3. Model Dynamics and Noise Matrices [2, 8] 

The LN-93 [24] error-state dynamics matrix, F, is a 93-by-93 array with many zeros. 

The non-zero portions of this array, as parsed out in Equation (40) of Section 3.3, are 

shown in Table 25 through Table 29. Note that only the reduced F-matrix is provided 

here from Negast [8]. For a complete listing of the 93-state dynamics matrix the reader is 

referred to [1-3, 8, 20-24]. The dynamics model for the three GPS models are contained 

in Chapter 3. 

The Litton LN-93 93-state model also includes a 93-by-93 process noise matrix, Q. 

As shown in Equation (40) again, the w1 and w2 are broken into Q11 and Q22 process 

noise submatrices. Table 30 and Table 31 describe the two Q-submatrices, respectively. 

Process noise matrices for the three GPS models are contained in Chapter 3. 

B.4. Tuning Values 

This section contains a listing of the tuning values used to tune the reduced order 

filter models to the truth models. Tuning requirements are defined in Section 2.2.5.2. 
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Table 33 contains the process noise tuning values used in all three integrated GPS filter 

models. Each term is a multiplier of the Q values presented in Table 30 and Table 31, as 

well as the GPS and SAR descriptions from Chapter 3. Table 32 contains the truth and 

filter measurement noises for each measurement type: baro-altimeter, SGPS, DGPS, 

CPGPS, SAR range, and SAR range rate. 
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Table 14. 93-State INS Truth Model, States 1-31 
State 

Number 
State 

Symbol 
State 

Definition 
δθx X-component of vector angle from true to computer frame 
δθy Y-component of vector angle from true to computer frame 
δθz Z-component of vector angle from true to computer frame 
φx X-component of vector angle from true to platform frame 
φy Y-component of vector angle from true to platform frame 
φz Z-component of vector angle from true to platform frame 
δVx X-component of error in computed velocity 
δVy Y-component of error in computed velocity 
δVz Z-component of error in computed velocity 
δh Error in vehicle altitude above reference ellipsoid 
δhL Error in lagged inertial altitude 
δS3 Error in vertical channel aiding state 
δS4 Error in vertical channel aiding state 
bxc 

X-component of gyro correlated drift rate 
byc 

Y-component of gyro correlated drift rate 
bzc 

Z-component of gyro correlated drift rate 

cx∇ X-component of accelerometer and velocity quantizer correlated noise 

cy∇ Y-component of accelerometer and velocity quantizer correlated noise 

cz∇ Z-component of accelerometer and velocity quantizer correlated noise 

δgx X-component of gravity vector errors 
δgy Y-component of gravity vector errors 
δgz Z-component of gravity vector errors 
δhB Total baro-altimeter correlated error 
bxt 

X-component of gyro trend 
byt 

Y-component of gyro trend 
bzt 

Z-component of gyro trend 
∇ xt 

X-component of accelerometer trend 
∇ yt 

Y-component of accelerometer trend 
∇ zt 

Z-component of accelerometer trend 
bx X-component of gyro drift rate repeatability 
by Y-component of gyro drift rate repeatability 
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Table 15. 93-State INS Truth Model, States 32-63

State 

Number 
State 

Symbol 
State 

Definition 
32 bz Z-component of gyro drift rate repeatability 
33 Sgx X-component of gyro scale factor error 
34 Sgy Y-component of gyro scale factor error 
35 Sgz Z-component of gyro scale factor error 
36 χ1 X gyro misalignment about Y-axis 
37 χ2 Y gyro misalignment about X-axis 
38 χ3 Z gyro misalignment about X-axis 
39 ν1 X gyro misalignment about Z-axis 
40 ν2 Y gyro misalignment about Z-axis 
41 ν3 Z gyro misalignment about Y-axis 
42 Dxxx X gyro scale factor nonlinearity 
43 Dyyy Y gyro scale factor nonlinearity 
44 Dzzz Z gyro scale factor nonlinearity 
45 SQbx 

X gyro scale factor asymmetry error 
46 SQby 

Y gyro scale factor asymmetry error 
47 SQbz 

Z gyro scale factor asymmetry error 
48 

xb∇ X-component of accelerometer bias repeatability 
49 

yb∇ Y-component of accelerometer bias repeatability 

50 
zb∇ Z-component of accelerometer bias repeatability 

51 SAx X-component of accelerometer and velocity quantizer scale factor 
52 SAy Y-component of accelerometer and velocity quantizer scale factor 
53 SAz Z-component of accelerometer and velocity quantizer scale factor 
54 SQAx X-component of accelerometer and velocity quantizer scale factor asymmetry 
55 SQAy Y-component of accelerometer and velocity quantizer scale factor asymmetry 
56 SQAz Z-component of accelerometer and velocity quantizer scale factor asymmetry 
57 fxx Coefficient of error proportional to square of measured acceleration 
58 fyy Coefficient of error proportional to square of measured acceleration 
59 fzz Coefficient of error proportional to square of measured acceleration 
60 fxy Coefficient of error proportional to square of measured acceleration 
61 fxz Coefficient of error proportional to square of measured acceleration 
62 fyx Coefficient of error proportional to square of measured acceleration 
63 fyz Coefficient of error proportional to square of measured acceleration 
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Table 16. 93-State INS Truth Model, States 64-93

State 

Number 
State 

Symbol 
State 

Definition 
64 fzz Coefficient of error proportional to square of measured 

acceleration 
65 fzy Coefficient of error proportional to square of measured 

acceleration 
66 µ1 X accelerometer misalignment about Z-axis 
67 µ2 Y accelerometer misalignment about Z-axis 
68 µ3 Z accelerometer misalignment about Y-axis 
69 σ3 Z accelerometer misalignment about Y-axis 
70 ∇ xq 

X-component of accelerometer bias thermal transient 
71 ∇ yq 

Y-component of accelerometer bias thermal transient 
72 ∇ zq 

Z-component of accelerometer bias thermal transient 
73 bxq 

X-component of initial gyro drift rate bias thermal transient 
74 byq 

Y-component of initial gyro drift rate bias thermal transient 
75 bzq 

Z-component of initial gyro drift rate bias thermal transient 
76 Fxyz X gyro compliance term 
77 Fxyy X gyro compliance term 
78 Fxyx X gyro compliance term 
79 Fxzy X gyro compliance term 
80 Fxzz X gyro compliance term 
81 Fxz X gyro compliance term 
82 Fyzx Y gyro compliance term 
83 Fyzz Y gyro compliance term 
84 Fyzy Y gyro compliance term 
85 Fyxz Y gyro compliance term 
86 Fyxx Y gyro compliance term 
87 Fyxy Y gyro compliance term 
88 Fzxy Z gyro compliance term 
89 Fzxx Z gyro compliance term 
90 Fzxz Z gyro compliance term 
91 Fzyx Z gyro compliance term 
92 Fzyy Z gyro compliance term 
93 Fzyz Z gyro compliance term 
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Table 17. 39-State Reduced Order INS Truth Model, States 1-20 
State 

Number 
State 

Symbol 
State 

Definition 
δθx X-component of vector angle from true to computer frame 
δθy Y-component of vector angle from true to computer frame 
δθz Z-component of vector angle from true to computer frame 
φx X-component of vector angle from true to platform frame 
φy Y-component of vector angle from true to platform frame 
φz Z-component of vector angle from true to platform frame 
δVx X-component of error in computed velocity 
δVy Y-component of error in computed velocity 
δVz Z-component of error in computed velocity 
δh Error in vehicle altitude above reference ellipsoid 
δhB Total baro-altimeter correlated error 
δhL Error in lagged inertial altitude 
δS3 Error in vertical channel aiding state 
δS4 Error in vertical channel aiding state 

cx∇ X-component of accelerometer and velocity quantizer correlated noise 

cy∇ Y-component of accelerometer and velocity quantizer correlated noise 

cz∇ Z-component of accelerometer and velocity quantizer correlated noise 

δgx X-component of gravity vector errors 
δgy Y-component of gravity vector errors 
δgz Z-component of gravity vector errors 
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Table 18. 39-State Reduced Order INS Truth Model, States 21-39

State 

Number 
State 

Symbol 
State 

Definition 
21 bx X-component of gyro drift rate repeatability 
22 by Y-component of gyro drift rate repeatability 
23 bz Z-component of gyro drift rate repeatability 
24 Sgx X-component of gyro scale factor error 
25 Sgy Y-component of gyro scale factor error 
26 Sgz Z-component of gyro scale factor error 
27 

xb∇ X-component of accelerometer bias repeatability 
28 

yb∇ Y-component of accelerometer bias repeatability 

29 
zb∇ Z-component of accelerometer bias repeatability 

30 SAx X-component of accelerometer and velocity quantizer scale factor 
31 SAy Y-component of accelerometer and velocity quantizer scale factor 
32 SAz Z-component of accelerometer and velocity quantizer scale factor 
33 SQAx X-component of accelerometer and velocity quantizer scale factor asymmetry 
34 SQAy Y-component of accelerometer and velocity quantizer scale factor asymmetry 
35 SQAz Z-component of accelerometer and velocity quantizer scale factor asymmetry 
36 µ1 X accelerometer misalignment about Z-axis 
37 µ2 Y accelerometer misalignment about Z-axis 
38 µ3 Z accelerometer misalignment about Y-axis 
39 σ3 Z accelerometer misalignment about X-axis 
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Table 19. 30-State Stand-Alone GPS Truth Model 
State 

Number 
State 

Symbol 
State 

Definition 

UclkRδ User clock bias 

UclkDδ User clock drift 
δRcl1 

SV 1 code loop error 

1tropRδ SV 1 tropospheric error 

1ionRδ SV 1 ionospheric error 

δRSclk1 
SV 1 clock error 

1svxδ SV 1 x-component of position error 

1svyδ SV 1 y-component of position error 

1svzδ SV 1 z-component of position error 
δRcl2 

SV 2 code loop error 

2tropRδ SV 2 tropospheric error 

2ionRδ SV 2 ionospheric error 

δRSclk2 
SV 2 clock error 

2svxδ SV 2 x-component of position error 

2svyδ SV 2 y-component of position error 

2svzδ SV 2 z-component of position error 

δRcl3 
SV 3 code loop error 

3tropRδ SV 3 tropospheric error 

3ionRδ SV 3 ionospheric error 

δRSclk3 
SV 3 clock error 

3svxδ SV 3 x-component of position error 

3svyδ SV 3 y-component of position error 

3svzδ SV 3 z-component of position error 

δRcl4 
SV 4 code loop error 

4utropRδ SV 4 tropospheric error 

4ionRδ SV 4 ionospheric error 

δRSclk4 
SV 4 clock error 

4svxδ SV 4 x-component of position error 

4svyδ SV 4 y-component of position error 

4svzδ SV 4 z-component of position error 
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Table 20. 22-State Differential GPS Truth Model 
State 

Number 
State 

Symbol 
State 

Definition 
1 

uUclkRδ User clock bias 
2 

uUclkDδ User clock drift 
3 

1tropRδ SV 1 tropospheric error 
4 

1ionRδ SV 1 ionospheric error 
5 

1svxδ SV 1 x-component of position error 
6 

1svyδ SV 1 y-component of position error 
7 

1svzδ SV 1 z-component of position error 
8 

2tropRδ SV 2 tropospheric error 
9 

2ionRδ SV 2 ionospheric error 
10 

2svxδ SV 2 x-component of position error 
11 

2svyδ SV 2 y-component of position error 
12 

2svzδ SV 2 z-component of position error 
13 

3tropRδ SV 3 tropospheric error 
14 

3ionRδ SV 3 ionospheric error 
15 

3svxδ SV 3 x-component of position error 
16 

3svyδ SV 3 y-component of position error 
17 

3svzδ SV 3 z-component of position error 
18 

4utropRδ SV 4 tropospheric error 
19 

4ionRδ SV 4 ionospheric error 

20 
4svxδ SV 4 x-component of position error 

21 
4svyδ SV 4 y-component of position error 

22 
4svzδ SV 4 z-component of position error 
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Table 21. 4-State Carrier Phase GPS Truth Model 
State 

Number 
State 

Symbol 
State 

Definition 
1 δRN1 SV 1 range equivalent cycle ambiguity term 
2 δRN 2 SV 2 range equivalent cycle ambiguity term 
3 δRN 3 SV 3 range equivalent cycle ambiguity term 
4 δRN 4 SV 4 range equivalent cycle ambiguity term 

Table 22. 6-State SAR Truth Model 
State 

Number 
State 

Symbol 
State 

Definition 
δrCL SAR clock error 
δrD Doppler shift error 
δC Radar wave propagation speed error 
δxt X-component of target error 
δyt Y-component of target error 
δzt Z-component of target error 
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State 
Number 

Table 23. Filter Model, Single/Differential GPS 
State 

Symbol 
State 

Definition 
δθx X-component of vector angle from true to computer frame 
δθy Y-component of vector angle from true to computer frame 
δθz Z-component of vector angle from true to computer frame 
φx X-component of vector angle from true to platform frame 
φy Y-component of vector angle from true to platform frame 
φz Z-component of vector angle from true to platform frame 
δVx X-component of error in computed velocity 
δVy Y-component of error in computed velocity 
δVz Z-component of error in computed velocity 
δh Error in vehicle altitude above reference ellipsoid 
δhB Total baro-altimeter correlated error 

uUclkRδ User clock bias 

uUclkDδ User clock drift 

δrSAR SAR range bias 
δrSAR SAR range rate bias 
δxt X-component of target error 
δyt Y-component of target error 
δzt Z-component of target error 
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Table 24. Filter Model, Carrier Phase GPS 
State 

Number 
State 

Symbol 
State 

Definition 
δθx X-component of vector angle from true to computer frame 
δθy Y-component of vector angle from true to computer frame 
δθz Z-component of vector angle from true to computer frame 
φx X-component of vector angle from true to platform frame 
φy Y-component of vector angle from true to platform frame 
φz Z-component of vector angle from true to platform frame 
δVx X-component of error in computed velocity 
δVy Y-component of error in computed velocity 
δVz Z-component of error in computed velocity 
δh Error in vehicle altitude above reference ellipsoid 
δhB Total baro-altimeter correlated error 
δRN1 SV 1 range equivalent cycle ambiguity term 
δRN 2 SV 2 range equivalent cycle ambiguity term 
δRN 3 SV 3 range equivalent cycle ambiguity term 
δRN 4 SV 4 range equivalent cycle ambiguity term 
δrSAR SAR range bias 
δrSAR SAR range rate bias 
δxt X-component of target error 
δyt Y-component of target error 
δzt Z-component of target error 
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Table 25. Elements of the Dynamics Submatrix F11 

Element Term Element Term 
(1,3) −ρ y (1,8) −CRY 

(2,3) ρ x (2,7) CRX 

(3,1) ρ y (3,2) −ρ x 

(4,2) −Ωz (4,3) Ωy 

(4,5) ωinz 
(4,6) −ωiny 

(4,8) −CRY (5,1) Ωz 

(5,3) −Ωx (5,4) −ωinz 

(5,6) ωinx 
(5,7) CRX 

(6,1) −Ωy (6,2) Ωx 

(6,4) ωiny 
(6,5) −ωinx 

(7,1) − 2 V Vy z zΩ (7,2) 2Vy Ω 

(7,3) 2Vz Ω (7,5) − Az 

(7,6) Ay (7,7) −V Cz RX 

(7,8) 2Ωz (7,9) − ρ y 2Ω 

(8,1) 2Vx Ω (8,2) − 2 V Vx z zΩ 

(8,3) 2Vz Ω (8,4) Az 

(8,6) − Ax (8,7) − 2Ωz 

(8,8) −V Cz RY (8,9) ρ x + 2Ω 
(9,1) 2Vx Ω (9,2) 2Vy Ω 

(9,3) − 2 V Vy x xΩ (9,4) − Ay 

(9,5) Ax (9,7) ρ y x RXV C+ 2Ω 

(9,8) − +ρ x y RYV C2Ω (9,10) 2g ao / 
(9,14) −k2 (9,12) -1 
(9,16) k2 (10,9) 1 
(10,14) −k1 (10,16) k1 1− 
(14,10) 1 (14,14) -1 
(15,14) k3 (15,16) −k3 

−2y Ω x

x

− y

y −2x Ω 

y

x

z z

−2y Ω 

y +
− x 

(16,10) k4 (16,14) −k4 

(16,16) k4 1− 

ρ x y  = Components of angular rate, navigation frame to ECEF frame , 

Ωx y z = Components of angular rate, ECEF to inertial frame , ,  

ωinx y z 
= Components of angular rate, navigation frame to inertial frame 

, ,  

Vx y z = Components of vehicle velocity vector in ECEF coordinates , ,  

Ax y z = Components of specific force in sensor frame , ,  

k1 2  3,4 =  Vertical channel gains a  = Equatorial radius of the earth (6378388m), ,  

CRX ,RY = Components of earth spheroid inverse radii of curvature 
go = Equatorial gravity (32.08744ft/sec2) 
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Table 26. Elements of the Dynamics Submatrix F12 

Element Term Element Term Element Term 
C11 C12 C13(7,17) (7,18) (7,19) 

(7,20) 1 (8,17) C21 (8,18) C22 
(8,19) C23 (8,21) 1 (9,17) C31 
(9,18) C32 (9,19) C33 (9,22) 1 
(9,11) k2 (10,11) k1 (15,11) -k3 
(16,11) k4/600 

Note: For the above element definitions, t0 = 0 

nC = Coordinate transformation matrix from body frame to navigation frame, Cb 

Table 27. Elements of the Dynamics Submatrix F13 

Element Term Element Term Element Term 
(4,23) C11 (4,24) C12 (4,25) C13 

(4,26) C inx11ω (4,27) C iny12ω (4,28) C inz13ω 

(5,23) C21 (5,24) C22 (5,25) C23 

(5,26) C inx21ω (5,27) C iny22ω (5,28) C inz23ω 

(6,23) C31 (6,24) C32 (6,25) C33 

(6,26) C inx31ω (6,27) C iny32ω (6,28) C inz33ω 
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Table 28. Elements of the Dynamics Submatrix F14 

Element Term Element Term Element Term 
(7,29) C11 (7,30) C12 (7,31) C13 

(7,32) C Ax 
B 

11 (7,33) C Ay 
B 

12 (7,34) C Az 
B 

13 
′ 

(7,35) C Ax 
B 

11 
(7,36) C Ay 

B 
12 

(7,37) C Az 
B 

13 
′ 

(7,38) C Ay 
B 

11 (7,39) −C Ax 
B 

12 (7,40) C Ay 
B 

13 

(7,41) C Ax 
B 

13 (8,29) C21 (8,30) C22 

(8,31) C23 (8,32) C Ax 
B 

21 (8,33) C Ay 
B 

22 

(8,34) C Az 
B 

23 
′ (8,35) C Ax 

B 
21 

(8,36) C Ay 
B 

22 

(8,37) C Az 
B 

23 
′ (8,38) C Ay 

B 
21 (8,39) −C Ax 

B 
22 

(8,40) C Ay 
B 

23 (8,41) C Ax 
B 

23 (9,29) C31 

(9,30) C32 (9,31) C33 (9,32) C Ax 
B 

31 

(9,33) C Ay 
B 

32 (9,34) C Az 
B 

33 
′ (9,35) C Ax 

B 
31 

(9,36) C Ay 
B 

32 
(9,37) C Az 

B 
33 

′ (9,38) C Ay 
B 

31 

(9,39) −C Ax 
B 

32 (9,40) C Ay 
B 

33 (9,41) C Ax 
B 

33 

BAx y z = Components of acceleration in the body frame , ,  

Az
B′ = Specific force component (includes gravity) 
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Table 29. Elements of the Dynamics Submatrix F22 

Element Term Element Term Element Term 
(17,17) − ∇β 

xc 
(18,18) − ∇β 

yc 
(19,19) − ∇β 

zc 

(20,20) −βδgx 
(21,21) −βδgy 

(22,22) −βδgz 

(11,11) −βδhc 

β bxc yc zc, ,  
= Gyro inverse correlation time constants (5 min) 

β∇ xc yc zc, ,  
= Accelerometer inverse correlation time constants (5 min) 

βδgx y z, ,  
= Gravity vector error inverse correlation time constants (V/20NM) 

βδhc 
=  Barometer inverse correlation time (10 min) 

Table 30. Non-Zero Elements of Process Noise Submatrix Q11 

Element Term Element Term 
(4,4) ση bx 

2 (5,5) ση by 

2

(6,6) ση bz 

2 (7,7) ση Ax 

2

(8,8) ση Ay 

2 (9,9) ση Az 

2

2 2

ση bx y  z 
= PSD value of gyro drift rate white noise (6.25e-10 deg

3 )sec, ,  

2 2

ση Ax y  z 
= PSD value of accelerometer white noise (1.037e-7 ft 

3 )sec, ,  
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Table 31. Non-Zero Elements of Process Noise Submatrix Q22 

Element Term Element Term 
(17,17) 2β σ 2 (18,18) 2β σ 2 

∇ ∇ ∇ ∇xc xc yc yc 

(19,19) 2 2β σ∇ zc zc 
(20,20) 2 2β σδ g x 

(21,21) 2 2β σδ g y 
(22,22) 2 2β σδ g z 

(11,11) 2 2β σδ h c 

∇ δgx 

δgy δgz 

δhc 

2 2

σ bxc yc zc 
= Variances of gyro drift correlated noise (3.086e-13 deg

2 )
, ,  sec 

2σ ∇ xc yc zc 
= Variances of accelerometer correlated noise (4.147e-9 ft 2

4 )
, ,  sec 

2σδgx y  z 
= Variances of gravity vector error component correlated noise (1.93e-6deg2)

, ,  

2σδhc 
= Variance of barometer correlated noise (10000 ft 2 ) 
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Table 32. Measurement Noise Strengths, Truth and Filter 
Measurement Truth Model Value Filter Model Value Units 

Baro-Altimeter 2500.0 3500.0 ft2 

SGPS 9.0 170.0 ft2 

ft2DGPS 9.0 15.0 
ft2CPGPS 2.6E-4 3.0E-4 
ft2SAR Range 1.0 2.0 

ft2/sec2SAR Range Rate 0.09 0.12 

Table 33. Tuning Values for Filter States, All GPS Models 
State SGPS DGPS CPGPS Units 
δθx 8.0E-14 5.0E-15 5.0E-15 (arc-sec)2/sec 

(arc-sec)2/secδθy 7.0E-13 4.0E-14 9.0E-14 
(arc-sec)2/secδθz 0.0 0.0 0.0 
(arc-sec)2/secφx 10.0 5.0 5.0 
(arc-sec)2/secφy 2.0 5.0 5.0 
(arc-sec)2/secφz 25.0 85.0 85.0 

ft2/sec3δVx 75.0 50.0 50.0 
ft2/sec3δVy 100.0 50.0 50.0 
ft2/sec3δVz 25000.0 50.0 50.0 
ft2/secδh 110.0 110.0 110.0 
ft2/secδhB 90.0 90.0 90.0 
ft2/sec 

uUclkRδ 75.0 100.0 100.0 
ft2/sec3 

uUclkDδ 5.0E-13 5.0E-13 5.0E-13 
ft2/secδRN1 N/A N/A 2.0E-8 
ft2/secδRN 2 N/A N/A 2.0E-8 
ft2/secδRN 3 N/A N/A 8.0E-5 
ft2/secδRN 4 N/A N/A 2.0E-8 
ft2/secδrSAR 0.0 0.0 0.0 
ft2/sec3δrSAR 0.0 0.0 0.0 
ft2/secδxt 0.0 0.0 0.0 
ft2/secδyt 0.0 0.0 0.0 
ft2/secδzt 0.0 0.0 0.0 
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Appendix C. Stand-Alone GPS Results 

The following figures describe the data generated from the SGPS simulation. Each 

state in the filter model is plotted. The following legend describes the traces in each 

figure of Appendix C: 

Plot Legend: 

true error (mean error ±=σtrue) 

filter predicted error (0 ±=σfilter) 

mean error 
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Figure 22. SGPS Latitude and Longitude Errors 
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Figure 23. SGPS Altitude and Barometric Altimeter Bias Errors 
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Figure 24. SGPS User Clock Bias and Clock Bias Drift Errors 
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Figure 25. SGPS North, East, and Down Velocity Errors 
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Figure 26. SGPS North, East, and Down Attitude Errors 
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Figure 27. SGPS SAR X, Y, and Z-Target Position Errors 
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Appendix D. Differential GPS Results 

The following figures describe the data generated from the DGPS simulation. Each 

state in the filter model is plotted. The following legend describes the traces in each 

figure of Appendix D: 

Plot Legend: 

true error (mean error ±=σtrue) 

filter predicted error (0 ±=σfilter) 

mean error 
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Figure 29. DGPS Latitude and Longitude Errors 
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Figure 33. DGPS North, East, and Down Attitude Errors 

D-6




-20 

-10 

0 

10 

20 

-20 

-10 

0 

10 

20 

-20 

-10 

0 

10 

20 

D
G

P
S

 Z
-P

os
iti

on
 T

ar
ge

t E
rr

or
 (f

t) 
D

G
P

S
 Y

-P
os

iti
on

 T
ar

ge
t E

rr
or

 (f
t) 

D
G

P
S

 X
-P

os
iti

on
 T

ar
ge

t E
rr

or
 (f

t) 

100 200 300 400 500 600 700 800 900 1000 1100 

100 200 300 400 500 600 700 800 900 1000 1100 

100 200 300 400 500 600 700 800 900 1000 1100 

Time (sec) 
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Appendix E. Carrier Phase GPS Results 

The following figures describe the data generated from the CPGPS simulation. Each 

state in the filter model is plotted. The following legend describes the traces in each 

figure of Appendix E: 

Plot Legend: 

true error (mean error ±=σtrue) 

filter predicted error (0 ±=σfilter) 

mean error 
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Figure 41. CPGPS SAR Range and Range Rate Bias Errors 
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Appendix F. Flight Profile Plots 
The following plots describe the position, velocity, attitude, and attitude rates of the 

“U-2Flight” flight profile generated through PROFGEN. Refer to section 4.2 for a 

detailed description of the flight profile 
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Figure 46. U-2 Flight Profile Roll, Pitch, and Yaw Angles 
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