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Abstract

We propose a dual channel matched filtering system that addresses two key challenges

in the practical implementation of a single channel matched filtering system: secondary

data support and computational cost. We derive an exact expression of the dual chan-

nel normalized signal-to-interference plus noise ratio (SINR) in terms of random variables

with known distributions and approximate expressions of the mean and variance of the

normalized SINR. Using these approximate expressions, we demonstrated that the dual

channel system requires half the secondary data to achieve nearly the same SINR perfor-

mance as an equivalent single channel system. With the dual channel system, two reduced

dimension weight vectors are used in place of the larger single channel weight vector, offer-

ing the potential reduction in computational cost. The key to the dual channel system is

the efficient block diagonalization of the interference plus noise correlation matrix with a

fixed transformation. The dual channel system is a viable replacement for a single channel

system in applications involving real, wide-sense stationary random processes. We inves-

tigate the application of this dual channel concept to the problem domain of space-time

adaptive processing (STAP), referring to the system as Block STAP. We provide evidence

that the family of STAP correlation matrices cannot be simultaneously block diagonalized

with a fixed transformation and thus, the implementation of the Block STAP processor

will be suboptimal. We propose a transformation selection criterion for minimizing the loss

in SINR performance of a suboptimal Block STAP processor. Finally, we introduce the

SINR metric and a new eigen-based, reduced-rank direct form STAP processor based on

the SINR metric. The SINR metric is used to identify the eigenvectors of the correlation

matrix that have the greatest impact on SINR performance of a direct form processor.

If the rank reduction transformation is constructed from r eigenvectors of the correlation

matrix, then the r eigenvectors with the largest SINR are the optimal set of eigenvectors in

terms of minimizing the loss in SINR performance of an eigen-based, reduced-rank direct

form processor.

xi



DUAL CHANNEL MATCHED FILTERING

AND

SPACE-TIME ADAPTIVE PROCESSING

I. Introduction

1.1 Airborne Radar Surveillance

Effective airborne radar surveillance of the airspace above a battlefield is critical for

both offensive and defensive operations. Without effective surveillance, friendly forces are

blind to the number, position, and intention of enemy aircraft. Airborne radar surveillance

provides an all weather detection (and location) capability against hostile aircraft with a

greater radar horizon and less terrain masking effects than ground-based radar systems.

Thus, an airborne radar system has the potential to detect hostile aircraft at longer ranges

in comparison to a ground-based radar system. The earlier (long range) detection of hostile

aircraft provides additional time to plan, coordinate, and allocate resources to effectively

engage or avoid enemy forces. The detection of airborne targets represents a difficult

problem, especially when the targets are slow, low-flying aircraft with small radar cross

sections. The difficulty is further compounded when the enemy forces use electronic coun-

termeasures (jamming) against the radar system. The source of the difficulty in detecting

airborne targets is the presence of unwanted signals in the radar receiver.

The problem of detecting a target is essentially a power problem. In general, the

power of the signal reflected by the target must exceed the power of the unwanted signals

in the radar receiver for detection to occur. The unwanted signals can be divided into

two categories: receiver noise and interference. Ever present and constant for a given

radar system, receiver noise is generated by the radar components and ultimately, limits

the detection performance of the radar system (i.e., the power of the receiver noise is the

minimum power that target signal must exceed for detection). In contrast, interference

signals vary in the number, type, and power level depending on the operating environment.
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Interference signals are further divided into two categories: ground clutter and jamming.

The signals reflected by the ground are referred to as ground clutter and enter the radar

receiver through the mainlobe and sidelobes of the radar antenna. Mainlobe clutter has

a relatively narrow bandwidth and is centered at a Doppler frequency determined by the

velocity vector of the radar platform and pointing angle of the antenna. The mainlobe

clutter also has a narrow angular spread as determined by the antenna beamwidth. The

power level of mainlobe clutter is, in general, high because of the high gain of the antenna

mainlobe and the large area of the ground illuminated by the mainlobe. Sidelobe clutter, in

contrast, has a wide angular extent and hence, has a bandwidth that fills the entire Doppler

processing bandwidth of the radar, since the antenna has sidelobes in all directions. The

power level of sidelobe clutter is typically less than mainlobe clutter because of the reduced

gain of the antenna sidelobes. However, the power level of the sidelobe clutter, in many

cases, is relatively high in comparison to the target return power level. Jamming can

also be divided into two categories: deception and noise. The goal of deception jamming

to obscure the true target or overload the radar processor or radar operator with false

targets. Deception jamming is typically employed to defeat the tracking capabilities of a

radar system. A noise jammer transmits a signal that resembles the receiver noise with

the goal of raising the receiver noise floor to prevent the detection of the target. Because

noise jamming is typically employed against surveillance radars which are the focus of

this research, we will not consider deception jamming. In general, noise jamming is a

high power signal with a bandwidth that covers the bandwidth of the radar receiver and

has a narrow angular extent. The objective of the radar engineer is to design the radar

components and signal processing algorithms to eliminate the interference signals so that

the target signal only competes with the receiver noise. The possibility of eliminating or

minimizing the effects of the interference signals is severely limited in a conventional radar

system, which we define as a radar system with a single element antenna and that uses

Doppler processing.

The types of interference signals that must be eliminated will depend on the operating

environment and the position and velocity of the target relative to the radar platform.

Mainlobe clutter is a primary concern in look-down scenarios (i.e., the target’s altitude

1-2



is less than the altitude of the radar platform). If the target has sufficient altitude, then

the mainlobe clutter and target return will be well separated in time and range gating

can be used to isolate the target return from the mainlobe clutter. At lower altitudes, the

target return and mainlobe clutter will be nearly time coincident and hence, range gating

cannot be used to isolate the target return from the mainlobe clutter (i.e., both signals

fall within the same range gate). When the target return and mainlobe fall within the

same range gate, Doppler processing can potentially be used to isolate the target return

and mainlobe clutter. Because the ground and target are moving relative to the radar

platform, the mainlobe clutter and target return signals will each experience a Doppler

shift. A series of fixed filters, referred to as Doppler filters, are used to divide the Doppler

processing bandwidth into several bands with a detection decision made in each band.

When the difference between the relative velocity of the target and ground is large, the

target return and mainlobe clutter will fall into different Doppler filters that are well

separated, effectively isolating the two signals. If the target and ground have the same

relative velocity, Doppler processing cannot isolate the two signals. Further, when the

target and ground have nearly the same relative velocity, the mainlobe clutter can leak

into the target Doppler filter through the filter’s sidelobe and obscure the target. Although

Doppler processing provides a means for eliminating or minimizing mainlobe clutter, it is

not as effective against sidelobe clutter and noise jamming. The bandwidth of the sidelobe

clutter and noise jamming is typically equal to or greater than the Doppler processing

bandwidth and thus, Doppler filtering will not isolate the target return from the sidelobe

clutter and noise jamming. A common approach used by radar engineers to counter the

effects of sidelobe clutter and noise jamming is to trade mainlobe antenna gain for lower

sidelobe levels which effectively reduces the power levels of the sidelobe clutter and noise

jamming entering the radar receiver through the antenna sidelobes. However, reducing the

mainlobe gain also reduces the target return power which could adversely effect detection.

Additionally, maintaining the low sidelobe levels on an installed antenna is problematic.

The presence of mainlobe clutter leakage and inability of Doppler processing to eliminate

sidelobe clutter and noise jamming have a severe impact on the detection performance of

a conventional radar system.
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As noted earlier, the clutter and noise jamming signals also have an angular depen-

dence which provides another domain for isolating the target signal from the interference

signals. Shown in Fig. 1.1 is a pictorial view of the interference environment, highlighting

the angular and Doppler dependencies of the interference signals. Recall that the Doppler

shift of a particular patch of the ground is dependent on its relative velocity which is,

in turn, dependent on the angle between the ground patch and the velocity vector of the

radar platform. Thus, the clutter is concentrated on a line running across the angle-Doppler

plane. The noise jamming is concentrated at a particular angle, but fills the entire Doppler

processing bandwidth. The angular dependence of the interference signals cannot be ex-

ploited in a radar system that uses a single element antenna since the angle information

is not available and the antenna pattern is fixed. In a radar system with a multi-element

antenna, the angular dependence of the interference signals can be exploited since the

angle information is encoded in the phase difference between the signals received in each

antenna element. The advent of high-speed digital signal processors and multi-element

(array) antennas has provided the radar engineer with the opportunity to develop new

signal processing algorithms that more effectively eliminate the interference signals by ex-

ploiting both the Doppler and angular dependencies. These new algorithms are essentially

a simultaneous combination of adaptive array (spatial) and adaptive Doppler (temporal)

processing and are referred to as space-time adaptive processing.

1.2 Space-Time Adaptive Processing

Conceptually, space-time adaptive processing (STAP) is a two-dimensional (spatial

and temporal) filtering operation. To eliminate the interference signals while enhanc-

ing the target signal, the filter has nulls in the direction of the interference signals and

gain in the direction of the target signal. Under the assumption that the interference

and noise are Gaussian signals, Brennan and Reed [6] have shown that maximizing the

signal-to-interference plus noise ratio (SINR) is equivalent to maximizing the probability

of detection. Further, Brooks and Reed [7] have shown that the maximum SINR filter,

likelihood ratio processor, and minimum variance linear signal estimator (Wiener filter)

only differ by a constant under the same Gaussian assumption. Thus, the objective is to

1-4
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Figure 1.1 Pictorial view of the interference environment seen by an airborne surveillance
radar.

construct a filter with nulls in the direction of the interference and gain in the direction

of the target that maximizes the SINR. Because the radar system operates in a wide va-

riety of interference environments, the filter must adapt to the interference environment

to achieve the objective of maximizing the SINR. As discussed next, the maximum SINR

(optimum) filter is constructed from the interference plus noise correlation matrix, which

contains both the spatial and temporal information needed to cancel the interference, and

a steering vector that defines the direction (target signal) of interest.

The airborne surveillance radar under consideration has a uniform linear array of N

equally spaced antenna elements where the output from each antenna element is sampled

after in-phase and quadrature down conversion to baseband. Since the primary function of

the radar system is surveillance, the dwell time in any particular direction is finite which

limits the number of samples available for each coherent processing interval (CPI). For

a given range gate (range of interest) and CPI, the radar system processes M samples

(pulses) from each of the antenna elements. Initially, the samples are stored in a M × N

1-5



data matrix X which has the following form:

X =




x1,1 x1,2 · · · x1,N

x2,1 x2,2 · · · x2,N

...
...

. . .
...

xM,1 xM,2 · · · xM,N



, (1.1)

where xm,n represents the complex sample from the mth pulse in the nth antenna element.

The data matrix is then reorganized into a MN × 1 data vector x such that the first N

samples are the N antenna samples from the first pulse, the next N samples are from the

second pulse, and so forth until the last N samples are from the M th pulse. That is,

xT =
[
x1,1 · · · x1,N x2,1 · · · x2,N · · · xM,1 · · · xM,N

]
, (1.2)

where {·}T denotes transpose. The data vector x represents the received signal which may

or may not contain a target. When a target is present, the received signal is given by

x = αs + n, (1.3)

where αs is the target return signal, with the complex gain α defining the amplitude and

initial phase of the target signal and the complex steering vector s defining the angle

and Doppler directions to the target, and n is the interference plus noise signal vector.

Obviously, in the absence of a target, the received signal is given by

x = n. (1.4)

To detect the presence or absence of a target, the received signal is passed through a filter

and then, the filter’s output is compared to a given threshold value. The output of the

filter defined by the weight vector w is given by

y = wHx, (1.5)
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where {·}H denotes complex conjugate transpose. If the magnitude of the filter output

exceeds the threshold, then a target detection is declared. As noted earlier, the filter should

maximize the SINR to maximize the probability of detection.

Assuming the interference and noise signals are zero-mean random processes, the

SINR at the output of the filter with a target present is defined as [34]

SINR =
|E {y}|2
V {y} =

|α|2|wHs|2
wHRw

, (1.6)

where E {·} and V {·} denote the expected value and variance operations, respectively and

R denotes the interference plus noise correlation matrix which is defined as

R = E
{
nnH

}
. (1.7)

The optimum filter (weight vector) in terms of maximizing the output SINR is given by [34]

wopt = R−1s. (1.8)

Note that the maximum SINR filter is also known as a matched filter. Substituting the

optimum weight vector defined by Eqn. (1.8) into Eqn. (1.6) yields a maximum SINR of

SINRmax = |α|2sHR−1s. (1.9)

Note that we will often incorporate the parameter α into the steering vector to simplify

the discussion or presentation. The computation of the weight vector via Eqn. (1.8) is

referred to as the direct matrix inversion (DMI) method. Two problems are immediately

apparent with the DMI method. First, the computation of the optimum weight requires

the inversion of the interference plus noise correlation matrix (or equivalently, finding the

solution to the system of linear equations Rw = s) which is computationally expensive,

especially when the dimension of R is large. If the radar system has N antenna elements

and M samples per CPI, then the computation of the optimum weight vector requires

on the order of (MN)3 operations. Radar detection is a real-time application and the
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computational cost of computing a new weight vector for each range gate and look-direction

may become prohibitive as the product MN becomes large. Second, the DMI method

requires knowledge of the true interference plus noise correlation matrix. Because the

radar system operates in a variety of environments which are not known a priori, the

true interference plus noise correlation matrix is not known a priori. To circumvent this

problem, an estimate of the interference plus noise correlation matrix is often used in place

of the true correlation matrix which introduces additional challenges.

When an estimate of the interference plus noise correlation matrix is used in place

of the true correlation matrix, the weight vector is computed as

ŵopt = R̂−1s, (1.10)

where R̂ denotes the estimated correlation matrix. The computation of the weight vector

via Eqn. (1.10) is referred to as the sample matrix inversion (SMI) method. Note that like

the DMI method, the SMI method is also a computationally demanding task. Unlike the

DMI method, the SMI method produces a random weight vector and hence, the output

SINR is a random variable. Since output SINR from the SMI method is random, the SINR

performance must be expressed in statistical terms. The average SINR performance of the

SMI method is less than the DMI (optimal) SINR performance. The expected loss in SINR

performance will depend on the quality of the estimated interference plus noise correlation

matrix. Typically, the correlation matrix is estimated from a set of signal vectors, referred

to as secondary data vectors, which only contain the interference plus noise signal. These

secondary data vectors are obtained from range gates that surround the range gate of

interest. To assess the performance of the SMI method and determine the secondary data

requirements, Reed et. al. [34] defined two statistics: the SINR conditioned on ŵopt (or the

conditioned SINR) and the normalized SINR. The SINR conditioned on ŵopt is defined as

SINR|ŵopt =
|ŵH

opts|2

E
{
|ŵH

optn|2
} , (1.11)
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where the expectation is taken with respect to n. The normalized SINR is defined as

ρsmi =
SINR|ŵopt

SINRmax
(1.12)

which provides an indication of the SINR performance loss of the SMI method relative to

the DMI method. When the maximum likelihood estimate of R is used and the secondary

data vectors are independent and identically distributed (i.i.d.) observations of a zero-

mean, MN -variate complex normal distribution with a correlation matrix of R, Reed et.

al [34] have shown that ρsmi is a beta random variable with parameters K + 2 −MN and

MN − 1, where K denotes the number of secondary data vectors used to estimate the

correlation matrix, N is the number of antenna elements, and M is the number of samples

in a CPI. The expected value of ρsmi represents the expected loss in SINR performance of

the SMI method relative to the DMI method and is given as

E {ρsmi} =
K + 2 −MN

K + 1
. (1.13)

A common rule of thumb is that 2MN secondary data vectors are required to achieve

acceptable performance, which assumes that an average SINR loss of 3 dB (i.e., ρsmi = 0.5)

is acceptable. This rule of thumb is derived by setting Eqn. (1.13) equal to 0.5 and solving

for K which yields K = 2MN − 3. Also observe that if we fixed MN and let K approach

infinity, the expected SINR loss is 0 dB (i.e., no loss in SINR performance). Boroson [5]

further considered the issue of secondary data requirements, suggesting that the number

of secondary data vectors should be increased to 3MN or 4MN to reduce the probability

of having an SINR less than 0.5. Thus, in general, the number of secondary data vector

required for acceptable SINR performance is proportional to the product MN . As the

product MN becomes large, the requirement for MN secondary data vectors may become

prohibitive. The MN secondary data vectors are drawn from MN different range gates.

The requirement for a large number of range gates places additional demands on the radar

system in terms of increased bandwidth and/or power which may not be available or

possible [41]. Additionally, the secondary data should be homogeneous (similar) with the

interference plus noise in the range gate of interest. It does not seem reasonable to expect
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the interference plus noise from all MN range gates to resemble the interference plus noise

in the range gate of interest, especially for large MN . Thus, adequate secondary data

support is a key issue with the SMI method along with the high computational cost.

Summarizing, the DMI method produces the optimum filter (weight vector) for max-

imizing the SINR, but is computationally demanding and requires a priori knowledge of

the true interference plus noise correlation matrix. By using an estimated interference

plus noise correlation matrix, the SMI method exchanges the problem of knowing the true

correlation matrix with the problem of adequate secondary data support. Like the DMI

method, the SMI method is computationally demanding. Thus, two of the main research

objectives of the STAP community are reducing the computational cost and the secondary

data requirements.

1.3 Previous Research

For STAP, the computational cost and the secondary data requirements are propor-

tional to the dimension of the weight vector (i.e., the productMN). Thus, a natural choice

for reducing the computational cost and secondary data requirements is to reduce the di-

mension of the weight vector (filter). AMN×1 weight vector is said to have MN degrees of

freedom (DOF) and in general, MN DOF are not needed to effectively suppress the inter-

ference. Reduced-dimension STAP methods attempt to exploit this fact while maintaining

optimal or near optimal performance. The underlying concept of reduced-dimension STAP

methods is the use of a transformation to reduce the dimension of the received signals.

Shown in Fig. 1.2 is a block diagram for implementing reduced-dimension STAP. Suppose

we want to reduce the dimension from MN to r, then V is a MN×r matrix, referred to as

the reduction transformation, that is directly applied to the MN×1 data vector yielding a

r×1 data vector. The r×1 weight vector w is then applied to the reduced-dimension data

vector. The structure shown in Fig. 1.2 is referred to as the reduced-dimension direct form

processor. Later, in Section 1.3.2, we discuss another implementation structure known as

the generalized sidelobe canceler. The research literature available on reduced-dimension

STAP is extensive, revealing a wide range of proposed methods. Regardless of the imple-

mentation structure, the various reduced-dimension STAP methods can roughly be divided
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Figure 1.2 Block diagram of a reduced-dimension (rank) direct form processor.

into two categories based on the type of reduction transformation: non-data adaptive and

data adaptive.

1.3.1 Non-Data Adaptive Transformations. With non-data adaptive transfor-

mation methods, a predetermined transformation is used to preprocess the data vector,

yielding a reduced-dimension data vector. The adaptive (spatial and temporal) processing

is then accomplished using the reduced-dimension data vector. One advantage of using

a predetermined transformation is in the area of computational cost. Since the transfor-

mation is known, one can usually select or design a transformation that has an efficient

implementation. However, using a predetermined transformation is also a disadvantage.

The preprocessing done by the transformation essentially limits the number of DOF avail-

able in either the spatial or temporal domains. Because the radar system operates in a

wide variety of interference environments, the number of DOF needed for a particular

(spatial or temporal) domain are not known a priori. Thus, the potential exists that the

predetermined transformation may reduce the available DOF below the level necessary to

suppress the interference. Ward [41] provides an extensive review of non-data adaptive,

reduced-dimension STAP methods based on the direct form processor. To highlight the

concept of non-data adaptive transformation methods, we provide a quick review of two

methods presented in Ward’s report: element-space pre-Doppler STAP and beamspace

pre-Doppler STAP.

In element-space pre-Doppler STAP, the CPI data is partitioned in the temporal

(pulse) domain into Z overlapping sub-CPIs with K pulses in each sub-CPI. For the pth
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sub-CPI, the reduction (preprocessing) transformation is given by

Jp ⊗ IN , (1.14)

where

Jp =




0p×K

IK

0(M−K−p)×K


 (1.15)

is a M × K selection matrix and ⊗ denotes the Kronecker product. The notation Im

denotes a m ×m identity matrix and 0m×n denotes a m × n matrix of zeros. Each sub-

CPI data vector consist of K pulse returns from all N antenna elements. A KN × 1

weight vector is computed using the SMI method and applied to the KN×1 sub-CPI data

vector. After the adaptive sub-CPI processing, the resulting Z outputs are processed in a

conventional Doppler filter bank to extract the target Doppler. Note that the weight vector

is computed using a KN ×KN interference plus noise correlation matrix and a KN × 1

steering vector, reducing the overall dimensionality from MN to KN . The computational

cost is reduced roughly from (MN)3 to Z(KN)3 and the secondary data requirements from

2MN to 2KN . However, because the CPI data vector is partitioned only in the temporal

domain, element-space pre-Doppler STAP has a reduced number of temporal DOF and a

full complement of spatial DOF. Thus, element-space pre-Doppler STAP can effectively

handle noise jamming, but its capability to handle clutter is reduced.

In beamspace pre-Doppler STAP, the outputs for the antenna elements are combined

to form Ks subapertures, effectively reducing the number of antenna elements from N to

Ks and the dimension of the weight vector from MN to MKs. When all the temporal

samples are used, the reduction transformation is given by

IM ⊗ G, (1.16)

where G is the N ×Ks(spatial) beamforming matrix. By replacing the identity matrix in

Eqn. (1.16) with the matrix in Eqn. (1.15), one can combine element-space pre-Doppler
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STAP with beamspace pre-Doppler STAP, leading to a greater reduction in the dimension

of the weight vector and available DOF. A wide variety of options are available for select-

ing the beamforming matrix G including non-overlapping and overlapping subapertures.

With some a priori knowledge of the interference (e.g., angle to each jammer), one can

more intelligently select the beamforming matrix to minimize any loss in performance (See

Ward’s report for a complete discussion). Assuming the use of Eqn. (1.16), a MKs × 1

weight vector is computed using the SMI method and applied to the MKs ×1 data vector.

The computational cost is reduced roughly from (MN)3 to (MKs)3 and the secondary

data requirements from 2MN to 2MKs. The effective reduction in the number of an-

tenna elements reduces the spatial DOF available and thus, the capability of beamspace

pre-Doppler STAP to handle noise jamming is less than element-space pre-Doppler STAP.

1.3.2 Data Adaptive Transformations. The problems with non-data adaptive

transformation methods suggest that one could achieve better performance if the transfor-

mation is adapted to the interference environment. Data adaptive transformation methods

decompose the interference plus noise correlation matrix to gain insight into the structure

of the interference environment and then, use this insight to select the best transforma-

tion. Although the use of this insight will, in general, yield a better transformation than

non-data adaptive methods, one must be concerned with the additional computational cost

introduced by the decomposition. Further, since the transformation is not known a priori

and is based on the interference environment, the possibility of efficiently implementing the

transformation is low. Thus, one of the main concerns with data adaptive transformation

methods is computational cost (i.e., ensuring that the computational cost are less than

the full dimension SMI method). Additionally, one must also consider the secondary data

support needed for a useful decomposition of the interference plus noise correlation matrix.

As noted earlier, the number of DOF needed for a particular interference environment is, in

general, less than the dimension of the weight vector. Through the decomposition process,

data adaptive transformation methods attempt to determine the number of DOF needed

and then, allocate the DOF to suppress the interference with the proper transformation.
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We can gain insight into the required number and allocation of the DOF by examining the

structure of the interference plus noise correlation matrix.

Eigenspace analysis plays a central role in decomposing the interference plus noise

correlation matrix and understanding its structure. The interference plus noise correlation

matrix is a positive definite, Hermitian matrix and thus, has a set of MN orthonor-

mal eigenvectors and all the eigenvalues are positive and real [23:104]. The eigenvectors

of the interference plus noise correlation matrix form an orthonormal basis of the MN -

dimensional vector space over the field of complex numbers. Under the assumption that

the interference and receiver noise are uncorrelated, the interference plus noise correla-

tion matrix is simply the sum of the interference correlation matrix and the receiver noise

correlation matrix. The receiver noise is typically modeled as spatially and temporally

uncorrelated noise and hence, its correlation matrix is the identity matrix times a scalar

equal to the variance (power) of the receiver noise. The interference correlation matrix is

a positive semidefinite, Hermitian matrix and thus, has a set of MN orthonormal eigen-

vectors and all the eigenvalues are non-negative and real [23:104]. In fact, the eigenvectors

of the interference correlation matrix are the eigenvectors of the interference plus noise

correlation matrix, since the receiver noise correlation is the identity matrix times a scalar.

Typically, the interference correlation matrix is a low rank matrix [41:83]. Let r denote

the rank of the interference correlation matrix, then the interference correlation matrix

has r non-zero (large) eigenvalues and MN − r zero (small) eigenvalues. Based on the

eigenvalues, the vector space is decomposed into two orthogonal subspaces. One subspace

is referred to as the interference subspace and is spanned by the eigenvectors (principal

components) associated with the largest eigenvalues (principal values). The other subspace

is spanned by the remaining eigenvectors of the interference correlation matrix and is re-

ferred to as the noise subspace. The optimum weight vector lies in a subspace spanned by

the steering vector (desired signal) and interference subspace eigenvectors [41:83-88]. If the

span of the reduction transformation contains the signal plus interference subspace, then

reduced-dimension processing provides the same performance as full dimension processing.

Thus, the proper identification of the two subspaces plays a critical role in determining

the reduction transformation with the rank of the interference subspace determining the
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number of DOF needed and defining the space that the transformation must span. If

the interference environment is complex and an estimate of the interference plus noise

correlation matrix is used, then identifying the two subspaces becomes a difficult task.

Various eigenspace-based STAP methods have been proposed. In a direct application

of the fact that the optimum weight vector lies in the signal plus interference subspace,

Chang and Yeh [9] suggest selecting the principal components of the estimated signal plus

interference plus noise correlation matrix with the number of principal components selected

based on an estimate of the number of interference sources. Note by including the range

gate of interest, the estimated correlation matrix is the sum of the signal, interference, and

receiver noise correlation matrices and the previous discussion on the interference subspace

is modified to include the signal (steering) vector. Thus, the vector space is decomposed

into the direct sum of the signal plus interference subspace and the noise subspace. In con-

trast, the principal component inverse (PCI) method proposed by Kirsteins and Tufts [25],

the orthogonal projection (OP) method proposed by Subbaram and Abend [37], and the

two eigencancelers (minimum power and minimum norm) proposed by Haimovich [18] force

the weight vector to lie in the noise subspace. Since the noise subspace is orthogonal to

the interference subspace, the weight vector is orthogonal to the interference and thus,

will cancel the interference. With the PCI, OP, and minimum norm eigencancelers meth-

ods, the projection into the noise subspace is constructed from the principal components

(interference subspace). Note that although the above principal component methods do

not explicitly use a reduction transformation, one could introduce an appropriate trans-

formation to model these methods. For example, one could model the OP method with

the reduced-dimension direct form processor shown in Fig. 1.2 by letting the columns of V

equal the eigenvectors of the noise subspace. The above principal component methods can

exhibit a sharp decrease in SINR performance if the number of principal components is un-

derestimated since the selected principal components will not span the entire interference

subspace [14].

Recently, Goldstein and Reed [11–14] have proposed a reduced-dimension (rank)

generalized sidelobe canceler (GSC) which provides a graceful degradation in performance

as the rank of the transformation is reduced below the rank of the interference subspace.
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The basic structure of the reduced-dimension GSC is shown in Fig. 1.3. The upper branch

forces the GSC to have a response in the spatial and Doppler directions defined by the

steering vector s. The lower branch provides an estimate of the noise in the upper branch

and the final processing step of subtracting the lower branch from the upper branch reduces

the output noise level. The MN − 1 ×MN matrix B, referred to as the blocking matrix,

in the lower branch, annihilates the steering vector (i.e., Bs = 0) and has full rank. The

blocking matrix prevents the cancellation of signals received in the spatial and Doppler

directions defined by the steering vector. The MN − 1 × r matrix V is the reduction

transformation and the weight vector wgsc is an unconstrained Wiener filter. Without the

rank reduction transformation matrix V, the weight vector for the Wiener filter is given

as [14]

wgsc = R−1
b rbd (1.17)

where rbd = BRs and Rb = BRBH . One can show that the full dimension GSC and

full dimension DMI direct form processor have the same SINR performance [14]. The

unique aspect of the method proposed by Goldstein and Reed is the introduction of the

output SINR as a cost function into the process of selecting the reduction transformation.

With the Goldstein and Reed method, the columns of the reduction transformation are

selected based on a cross-spectral metric (CSM) as opposed to selecting the eigenvectors

associated with the principal values (largest eigenvalues). The CSM is used to identify the

eigenvectors which have the greatest impact on the output SINR. The eigenvectors with

the greatest impact become the columns of the reduction transformation. The concept

of using the output SINR as a cost function for selecting the reduction transformation is

not limited to the GSC. One can derive a metric similar to the CSM for the direct form

processor to identify the best (i.e., minimize any loss in SINR performance) eigenvectors

for constructing the reduction transformation [4] (See Chapter V).

1.3.3 Transformation Summary. To counter the high computational cost and

secondary data requirements of full dimension STAP, which are primarily driven by the

dimension of the weight vector, researchers have proposed a wide variety of reduced-
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Figure 1.3 Block diagram of a reduced-dimension (rank) general sidelobe canceler.

dimension STAP methods. In general, these reduced-dimension STAP methods either

explicitly or implicitly use a transformation to reduce the dimension of the data vector,

leading to a reduction in the dimension of the interference plus noise correlation matrix

and the weight vector. If the reduction transformation spans the signal plus interference

subspace, the reduced-dimension STAP processor can achieve the same SINR performance

as the full-dimension STAP processor. With non-data adaptive transformation meth-

ods, a predetermined transformation is used to preprocess the full dimension data vector,

yielding a reduced dimension data vector. A non-data adaptive transformation provides

the opportunity to design a transformation with an efficient implementation, but limits

flexibility in terms of allocating the available DOF to counter the various interference en-

vironments confronted by the radar system. With data adaptive transformation methods,

the transformation is adapted to the interference environment based on a decomposition

of the interference plus noise correlation matrix. A data adaptive transformation offers

the flexibility to allocate the available DOF, but does not provide the opportunity to de-

sign a transformation with an efficient implementation. The data adaptive transformation

methods also incur the additional computational costs associated with the decomposition

process.
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1.4 Block Diagonalizing the Correlation Matrix

In this dissertation, we introduce and investigate a new STAP method based on

the block diagonalization of the interference plus noise correlation matrix, that we refer

to as Block STAP. Although presented from a radar perspective, the Block STAP con-

cept can be applied to any application requiring a maximum SINR (matched) filter. For

general applications, we refer to this proposed method as dual channel matched filtering.

By block diagonalizing (two blocks on the diagonal) the interference plus noise correla-

tion matrix, the optimum weight vector can be partitioned into two reduced-dimension

weight vectors, where each is the solution to a system of linear equations of reduced di-

mension and can be computed independently of the other. The computation of the two

reduced-dimension weight vectors is computationally less demanding than computing the

full dimension weight vector directly. The implementation of the Block STAP processor

also has a natural structure for parallel implementation, offering the potential for further

computational savings. Each of the reduced-dimension weight vectors is computed with

a reduced-dimension interference plus noise correlation matrix, leading to a reduction in

secondary data requirements. Thus, the Block STAP method addresses two of the main

research objectives, computational cost and secondary data requirements, of the STAP

community while providing full dimension SINR performance. This research only con-

siders the case where the block diagonalization of the interference plus noise correlation

matrix yields two blocks on the diagonal. One could envision a more elaborate system with

recursive block diagonalization yielding K blocks, allowing the optimum weight vector to

be partitioned into K reduced-dimension weight vectors and for a greater reduction in the

computational cost and secondary data requirements. Thus, one could view this research

as the initial step in developing a divide and conquer STAP algorithm.

1.4.1 Block STAP Concept. The development of the Block STAP concept is

relative straightforward. Suppose S is a family of correlation matrices that represent the

interference plus noise environments of interest and that the unitary matrix V simultane-
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ously block diagonalizes S. That is,

VHRV =


Q1 0

0 Q2


 for all R ∈ S, (1.18)

where Q1 and Q2 are square matrices. Now, consider a direct form processor with a

preprocessor defined by V. Note that the introduction of V does not reduce the dimension

of received signal vectors or change the output SINR. The optimum weight vector of this

direct form process is given by [19]

wopt =
(
VHRV

)−1
VHs where R ∈ S. (1.19)

If we partition V such that V = [V1 V2], then Eqn. (1.19) can be written as

wopt =


VH

1 RV1 VH
1 RV2

VH
2 RV1 VH

2 RV2



−1 
VH

1 s

VH
2 s


 =


VH

1 RV1 0

0 VH
2 RV2



−1 
VH

1 s

VH
2 s


 ,

=


(VH

1 RV1

)−1 0

0
(
VH

2 RV2

)−1




VH

1 s

VH
2 s


 =


(VH

1 RV1

)−1 VH
1 s(

VH
2 RV2

)−1 VH
2 s


 ,

=


w1

w2


 , (1.20)

where we have used the fact V block diagonalizes every member of S. Thus, we can com-

pute the optimum weight vector by computing the two reduced-dimension weight vectors

w1 and w2. Finally, let VHx be transformed data vector from the range gate of interest,

then the filter output is given as

y = wH
optV

Hx

=
[
wH

1 wH
2

]VH
1 x

VH
2 x




= wH
1 VH

1 x + wH
2 VH

2 x. (1.21)

1-19



VH
1

VH
2

wH
1

wH
2

Σ
MN

2

MN
2

MN

Figure 1.4 Block diagram of the Block STAP processor.

An examination of Eqn. (1.21) leads naturally to the Block STAP processor shown in

Fig. 1.4. When the true interference plus noise correlation matrix is unknown, the weight

vectors are computed with the SMI method using estimates of the reduced-dimension

correlation matrices VH
1 RV1 and VH

2 RV2.

1.4.2 Research Objectives. This research differs from previous STAP research in

several aspects. First, the partitioning of the optimum weight vector into two reduced-

dimension weight vectors and the implementation structure shown in Fig. 1.4 are based

on mathematical principles that preserve optimal SINR performance. In general, with

non-data adaptive transformation methods, one expects a loss in SINR performance and

designs the transformation to minimize the loss. Typically, the design of non-data adap-

tive transformations is based on heuristics developed from a detailed understanding of how

preprocessing in either the spatial or temporal domains degrades performance. Second, in

contrast to data adaptive transformation methods, the Block STAP method does not re-

quire the decomposition of the interference plus noise correlation matrix or the proper

identification of subspace to achieve optimal performance. Third, we prove that the SMI

Block STAP processor has reduced secondary data requirements in comparison to the direct

form SMI processor when SINR performance is measured relative to the optimal processor.

Ward [41:81] states that SMI reduced-dimension processors may actually out perform a

full dimension SMI processor when the secondary data support is limited because they will

incur much less estimation loss, but this statement is not supported with any analytical

1-20



discussion or references. The original contributors of the CSM GSC [11–14] and OP [37]

methods do not provide any analytical discussion on the secondary data requirements of

these two data adaptive transformation methods. Lastly, we do not restrict our investiga-

tion to the ideal condition that the family of correlation matrices is simultaneously block

diagonalizable. We establish a criterion for selecting a transformation to reduce the loss

in SINR performance when the family is not simultaneously block diagonalizable.

The key objective of this research is to lay a solid foundation for the Block STAP

method to support future research on this method and general STAP issues. To this end,

we prove that the secondary data requirements of the Block STAP processor are reduced

by approximately 50% in comparison to the direct form processor. We define a family of

correlation matrices that is representative of interference plus noise environments typically

encountered by airborne surveillance radar systems and investigate its potential for simul-

taneous block diagonalization. The results of our investigation support the conjecture that

the family cannot be simultaneously block diagonalized. Thus, we turn our attention to

the problem of selecting a non-block diagonalizing transformation that minimizes the loss

in performance. Through a detailed analysis of the Block STAP efficiency relative to the

optimal processor, we develop a mathematical criterion for selecting such a transformation.

We also present an analog metric to the cross spectral metric for the direct form processor.

1.5 Organization

This dissertation is organized as follows. In Chapter II, the reduced secondary data

requirements of the Block STAP processor are proven using a Taylor series expansion of

an exact expression for the Block STAP normalized SINR. The focus of Chapter III is on

the issue of simultaneously block diagonalizing a family of correlation matrices. We define

a family of correlation matrices that is representative of airborne STAP interference plus

noise environments, review the mathematical requirements for block diagonalizing a matrix

and family of matrices, and then, using existing theorems, provide evidence to support the

conjecture that the defined family is not simultaneously block diagonalizable. In Chap-

ter IV, we develop a criterion for selecting a transformation that reduces the loss in SINR

performance when the family of correlation matrices is not simultaneously block diagonal-
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izable. In Chapter V, we propose the SINR metric and a reduced-dimension STAP method

based on this metric which are direct form processor analogs to the cross spectral met-

ric (CSM) and reduced-dimension CSM generalized sidelobe canceler. In Chapter VI, we

summarize the results and contributions of this dissertation and present recommendations

for future research areas.
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II. Dual Channel Secondary Data Requirements

2.1 Introduction

As discussed earlier, the optimum weight vector can be computed as two indepen-

dent, reduced-dimension weight vectors if the correlation matrix is in a block diagonal form.

Thus, when the true correlation matrix R is known and the unitary matrix V = [V1 V2]

block diagonalizes R, the dual channel system shown in Fig. 2.1(a) is equivalent to the

single channel system shown in Fig. 2.1(b) in terms of SINR performance. However, since

the true correlation matrix is unknown in practical applications, this equivalence is point-

less if the dual channel system cannot deliver the same or nearly the same performance as

the single channel system when estimated correlation matrices are used. In this chapter,

we demonstrate that the dual channel system can achieve nearly the same performance as

the single channel system with only half the secondary data support. Note that the devel-

opment in this chapter is general and applies to any maximum SINR filtering application.

Thus, we use the term dual channel system in place of Block STAP system to avoid the

implication that the development in this chapter is restricted to STAP applications. When

necessary to avoid confusion, we preface the type of system with SMI to indicate that the

weight vector is computed with an estimated correlation matrix.

Reed et. al. [34] analyzed the random SINR performance of the SMI single channel

system by defining the conditioned SINR and normalized SINR statistics and then, showed

that the normalized SINR, denoted by ρsmi, was distributed as a beta random variable. As

a result, the average SINR performance loss of the SMI single channel system relative to the

optimum system as a function of secondary data support can easily be determined from the

expected value of ρsmi. By setting the expected value of ρsmi equal to 0.5 (an average loss

of 3 dB), we get the common rule of thumb that 2N secondary data vectors are needed to

achieve acceptable performance, where N denotes the dimension of the weight vector. Our

objective in this chapter is to perform a similar analysis for the SMI dual channel system.

The results of the analysis depend on whether the interference plus noise is a complex or

real random process. We present the results for both cases, but our presentation centers

on the complex case.
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w1 = (VH
1 RV1)−1VH

1 s

w2 = (VH
2 RV2)−1VH

2 sV1

V2

x wH
1 VH

1 x + wH
2 VH

2 xΣ

(a) Dual Channel System.

w = R−1sx wHx

(b) Single Channel System.

Figure 2.1 The dual and single channel systems are equivalent in terms of SINR per-
formance if the matrix V = [V1 V2] block diagonalizes the true correlation
matrix R.

Our analysis begins in Section 2.3 with a derivation of an exact expression for the

dual channel normalized SINR, denoted by ρdual, in terms of random variables with known

distributions. After establishing the exact expression for ρdual, we derive approximate

expressions for the mean and variance of ρdual using a Taylor series expansion of the exact

expression. Then, in Section 2.4, we use these approximations to demonstrate the reduced

secondary data requirements of the SMI dual channel system relative to the SMI single

channel system. Next, we discuss several practical aspects of replacing a single channel

system with a dual channel system in Section 2.5, which is followed by a simulation example

in Section 2.6. Finally, we summarize the chapter in Section 2.7.

2.2 Notation and Previous Results

Before beginning the analysis, we first comment on the notation and highlight previ-

ous results used in the analysis. A complex p-variate normal distribution with mean vector

µ and covariance matrix Σ will be denoted as Ñp (µ,Σ) and as Np (µ,Σ) for the real case.
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The symbols B (α, β), χ2
m, and γ (α, β) will denote a beta random variable with param-

eters α and β, a chi-square random variable with m degrees of freedom, and a gamma

random variable with parameters α and β, respectively. The symbol =d will denote that

two random variables have the same distributions and ∼ will denote ‘is distributed as.’ Let

{wi}K
i=1 be a set of independent and identically distributed (i.i.d.) N × 1 random vectors

with wi ∼ NN (0,Σ) and let the N ×K matrix W = [w1 w2 · · · wK ]. Then, the N ×N

matrix Σ̂ = WWT has a Wishart distribution with K degrees of freedom which will be

denoted by WN (K,Σ) [24]. When each wi ∼ ÑN (0,Σ), then Σ̂ = WWH has a complex

Wishart distribution with K degrees of freedom which will be denoted by W̃N (K,Σ) [24].

Using Theorem 1 of Khatri and Rao [24], we can derive the following two results. Let

R̂ ∼WN (K,R) and s be a N × 1 vector, then

ξ =
(
sT R̂−1s

)−1 ∼W1

(
K −N + 1,

(
sTR−1s

)−1
)

(2.1)

ρ =
(
sT R−1s

)−1(sT R̂−1RR̂−1s
)−1(sT R̂−1s

)2 ∼ B

(
K −N + 2

2
,
N − 1

2

)
, (2.2)

where ξ and ρ are independently distributed. Let R̂ ∼ W̃N (K,R) and s be a N×1 vector,

then

ξ̃ =
(
sHR̂−1s

)−1 ∼ W̃1

(
K −N + 1,

(
sHR−1s

)−1
)

(2.3)

ρ̃ =
(
sHR−1s

)−1(sHR̂−1RR̂−1s
)−1(sHR̂−1s

)2 ∼ B (K −N + 2,N − 1) , (2.4)

where ξ̃ and ρ̃ are independently distributed. Note that Eqn. (2.4) is the same result

derived by Reed et. al [34]. With regard to ξ and ξ̃, one can show that [31:96]

ξ sTR−1s =
sTR−1s

sT R̂−1s
∼ χ2

K−N+1 (2.5)

and

ξ̃ sHR−1s =
sHR−1s

sHR̂−1s
∼ γ (K −N + 1, 1) . (2.6)

We are now ready to begin the analysis.
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2.3 Dual Channel Normalized SINR

The first step in deriving an expression for ρdual in terms of random variables with

known distributions is to derive an expression for the dual channel conditioned SINR

in terms of random variables with known distributions. Let ni and si denote the N ×

1 interference plus noise vectors and desired signal vectors for each channel (i = 1, 2),

respectively, and let Ri = E
{
ninH

i

}
denote the true correlation matrices of the interference

plus noise vectors. Further, assume that n1 and n2 are uncorrelated (i.e., E
{
n1nH

2

}
=

0 = E
{
n2nH

1

}
). Let Xi denote the N × K secondary data matrix for each channel,

where the columns of Xi are i.i.d. ÑN (0,Ri). Note to keep the analysis general, we

do not explicitly consider the unitary matrix V, since we have assumed that V block

diagonalizes the correlation matrix and the interference plus noise vector is a zero-mean,

normal random vector. The matrix V is implicit in the definition of ni, si and Ri (i.e.,

ni = VH
i n, si = VH

i s, and Ri = VH
i RVi, where n and s are the full dimension 2N × 1

interference plus noise vector and desired signal vector, respectively, and R = E
{
nnH

}
is

the 2N×2N interference plus noise correlation matrix). The maximum likelihood estimates

of the interference plus noise correlation matrices are [34]

R̂1 =
1
K

X1XH
1 (2.7)

R̂2 =
1
K

X2XH
2 . (2.8)

We can drop the 1/K term in the subsequent analysis, since it appears both in the

numerator and denominator of the conditioned SINR. Thus, R̂1 ∼ W̃N (K,R1) and

R̂2 ∼ W̃N (K,R2) after dropping the 1/K term and note that R̂1 and R̂2 are inde-

pendently distributed [31:92]. Similarly, R̂1 ∼ WN (K,R1) and R̂2 ∼ WN (K,R2) and

are independently distributed for the real case. When the true correlation matrices are

unknown, the weight vectors are computed using the SMI method and are given by

ŵ1 = R̂−1
1 s1 (2.9)

ŵ2 = R̂−1
2 s2. (2.10)
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The output of the dual channel system given the input vector xT = [xT
1 xT

2 ] is y =

ŵH
1 x1 + ŵH

2 x2 and thus, we can write the dual channel conditioned SINR as

SINRdual|ŵ1, ŵ2 =
|ŵH

1 s1 + ŵH
2 s2|2

E
{
|ŵH

1 n1 + ŵH
2 n2|2

} =

(
sH
1 R̂−1

1 s1 + sH
2 R̂−1

2 s2

)2
sH
1 R̂−1

1 R1R̂−1
1 s1 + sH

2 R̂−1
2 R2R̂−1

2 s2

.

(2.11)

Note that dual channel conditioned SINR for the real case is the same as Eqn. (2.11) with

the complex conjugate transpose replaced by transpose. Observe that we can write the

denominator of Eqn. (2.11) as

[
sH
1 sH

2

]R̂−1
1 0

0 R̂−1
2




R1 0

0 R2




R̂−1

1 0

0 R̂−1
2




s1

s2


 (2.12)

and the numerator as


[sH

1 sH
2

]R̂−1
1 0

0 R̂−1
2




s1

s2






2

. (2.13)

Notice that the off-diagonal blocks of the matrices involving the estimated correlation

matrices are zero matrices. This represents one of the major differences between the single

and dual channel derivations. In a single channel system, only a single correlation matrix

is estimated. Although the off-diagonal blocks of the true correlation matrix are zero

matrices if n1 and n2 are uncorrelated, it does not guarantee that the off-diagonal blocks

of the estimated correlation matrix will be zero.

Notice the similarity between the terms in Eqn. (2.11) and the earlier results pre-

sented in Eqns. (2.1)-(2.6). To write the dual channel conditioned SINR in terms of random

variables with known distribution, we will arrange the terms of Eqn. (2.11) in the numer-

ator to a form similar to Eqn. (2.6) and the terms in the denominator to a form similar to

Eqn. (2.4). Each term in the numerator has the form sH
i R̂−1

i si and can be rewritten as

sH
i R̂−1

i si =
1(

sH
i R̂−1

i si

)−1 =
sH
i R−1

i si

sH
i R−1

i si

(
sH
i R̂−1

i si

)−1 =
αi

ui
, (2.14)
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where

αi = sH
i R−1

i si (2.15)

ui =
sH
i R−1

i si

sH
i R̂−1

i si

∼



γ (K −N + 1, 1) Complex Case

χ2
K−N+1 Real Case

(2.16)

with the last result following from Eqns. (2.6) and (2.5). Each term in the denominator

has the form sH
i R̂−1

i RiR̂−1
i si and can be rewritten as

sH
i R̂−1

i RiR̂−1
i si =

1(
sH
i R̂−1

i RiR̂−1
i si

)−1 =

(
sH
i R−1

i si

)−1(sH
i R̂−1

i si

)2(
sH
i R−1

i si

)−1(sH
i R̂−1

i RiR̂−1
i si

)−1(sH
i R̂−1

i si

)2
= sH

i R−1
i si

(
1(

sH
i R−1

i si

)−1(sH
i R̂−1

i RiR̂−1
i si

)−1(sH
i R̂−1

i si

)2
)(

1

sH
i R−1

i si

(
sH
i R̂−1

i si

)−1

)2

=
αi

qiu
2
i

, (2.17)

where

qi =
(
sH
i R−1

i si

)−1(sH
i R̂−1

i RiR̂−1
i si

)−1(sH
i R̂−1

i si

)2

∼



B (K −N + 2,N − 1) Complex Case

B
(

K−N+2
2 , N−1

2

)
Real Case

(2.18)

with the last result following from Eqns. (2.4) and (2.2). Recall that ui and qi are inde-

pendent for a fixed i and that R̂1 and R̂2 are independent and hence, u1, u2, q1 and q2

are independent. Finally, using these results, we can write the dual channel conditioned

SINR in terms of random variables with known distributions as

SINRdual|ŵ1, ŵ2 =d

(
α1

u1
+
α2

u2

)2

α1

q1u2
1

+
α2

q2u2
2

. (2.19)

With the dual channel conditional SINR established, we can achieve our initial objec-

tive of expressing the dual channel normalized SINR as a function of random variables with
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known distributions by dividing Eqn. (2.19) by the maximum SINR. Under the assumption

that n1 and n2 are uncorrelated, the maximum SINR is

SINRmax = sHR−1s =
[
sH
1 sH

2

]R−1
1 0

0 R−1
2




s1

s2


 = sH

1 R−1
1 s1 + sH

2 R−1
2 s2

= α1 + α2. (2.20)

Thus, the dual channel normalized SINR in terms of random variables with known distri-

butions is

ρdual =d
1

α1 + α2

[
(α1u2 + α2u1)

2

α1q2u2
2 + α2q1u2

1

]
q1q2, (2.21)

which we can rewrite as

ρdual =d

[
(ku2 + (1 − k)u1)

2

kq2u2
2 + (1 − k)q1u2

1

]
q1q2 = h (u1, u2, q1, q2) , (2.22)

by letting k = α1/(α1+α2). Note that 0 < k < 1, since R1 and R2 are positive definite and

thus, α1 and α2 are greater than zero. Ideally, we would like to develop an expression for

the probability density function (pdf) of ρdual to fully characterize its behavior. Although

we can express ρdual as a function of random variables with known pdfs, developing the

pdf of ρdual represents a formidable task, as does developing closed-form expressions for

the mean and variance. Thus, we resorted to a Taylor series expansion of h (u1, u2, q1, q2)

to derive approximate expressions for the mean and variance.

Let g(x1, x2) be a function of the continuous random variables x1 and x2. Pa-

poulis [32:156–157] provides the following approximation for the expected value of g(x1, x2):

µg ≈ g(x1, x2) +
1
2

[
σ2

1

∂2g(x1, x2)
∂x2

1

+ 2ξσ1σ2
∂2g(x1, x2)
∂x1∂x2

+ σ2
2

∂2g(x1, x2)
∂x2

2

]
, (2.23)

where g(x1, x2) and the partial derivatives are evaluated at the point (µ1, µ2), µ1 and

µ2 denote the mean of x1 and x2, σ2
1 and σ2

2 denote the variance of x1 and x2, ξ is the

correlation coefficient of x1 and x2, and g(x1, x2) is assumed to be sufficiently smooth
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about the point (µ1, µ2). Equation (2.23) is derived using the Taylor series of g(x1, x2)

about the point (µ1, µ2) and substituting up to the second order terms into the standard

formula of the expected value. The approximation for the variance of g(x1, x2) is given

by [32:156-157]

σ2
g ≈

(
∂g(x1, x2)

∂x1

)2

σ2
1 + 2

(
∂g(x1, x2)

∂x1

)(
∂g(x1, x2)

∂x2

)
ξσ1σ2 +

(
∂g(x1, x2)

∂x2

)2

σ2
1 ,

(2.24)

where the partial derivatives are evaluated at the point (µ1, µ2). The extension of these

approximations for an arbitrary n is straight forward as follows. Let g(x1, . . . , xn) be a func-

tion of the continuous random variables x1, . . . , xn. The expected value of g(x1, . . . , xn),

denoted as µg, is

µg =
∫ ∞

−∞
· · ·
∫ ∞

−∞
g(x1, . . . , xn)f(x1, . . . , xn)dx1 . . . dxn, (2.25)

and the variance, denoted as σ2
g , is

σ2
g =

∫ ∞

−∞
· · ·
∫ ∞

−∞
(g(x1, . . . , xn) − µg)

2 f(x1, . . . , xn)dx1 . . . dxn, (2.26)

where f(x1, . . . , xn) is the joint pdf of x1, . . . , xn. Given that the partial derivatives of

order three exist, the Taylor polynomial of g(x1, . . . , xn) of degree two about the point

p = (µ1, . . . , µn) is [10:154]

g(x1, . . . , xn) +
n∑
i

(xi − µi)
∂g(x1, . . . , xn)

∂xi
+

1
2

n∑
i

n∑
j

(xi − µi)(xj − µj)
∂2g(x1, . . . , xn)

∂xi∂xj
,

(2.27)

where g(x1, . . . , xn) and the partial derivatives are evaluated at point p. Now, observe that

if p = (µ1, . . . , µn) where µi is the mean of xi, then

E {g(µ1, . . . , µn)} = g(µ1, . . . , µn) (2.28)
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E

{
n∑
i

(xi − µi)
∂g

∂xi

∣∣∣∣
p

}
=

n∑
i

∂g

∂xi

∣∣∣∣
p

(E {xi} − µi) = 0 (2.29)

and

E

{
(xi − µi)(xj − µj)

∂2g

∂xi∂xj

∣∣∣∣
p

}
=

∂2g

∂xi∂xj

∣∣∣∣
p

E {(xi − µi)(xj − µj)} (2.30)

=



σ2

xi

∂2g
∂x2

i

∣∣∣
p

if i = j,

ξijσxiσxj

∂2g
∂xi∂xj

∣∣∣
p

if i 6= j,
(2.31)

where ∂g
∂xi

∣∣∣
p
, ∂2g

∂x2
i

∣∣∣
p
, and ∂2g

∂xi∂xj

∣∣∣
p

denote the partial derivatives of g(x1, . . . , xn) evaluated at

point p. Thus, substituting Eqn. (2.27) into Eqn. (2.25) yields the following approximation

for the mean of g(x1, . . . , xn):

µg ≈ g(µ1, . . . , µn) +
1
2

n∑
i

σ2
xi

∂2g

∂x2
i

∣∣∣∣
p

+
1
2

n∑
i

n∑
j

i6=j

ξijσxiσxj

∂2g

∂xi∂xj

∣∣∣∣
p

, (2.32)

where µi is the mean of xi. Similarly, by substituting Eqn. (2.27) for g(x1, . . . , xn) and

Eqn. (2.32) for µg into Eqn. (2.26) and discarding any moments greater than 2, one can

show that the variance of g(x1, . . . , xn) is approximated by

σ2
g ≈

n∑
i

σ2
xi

(
∂g

∂xi

∣∣∣∣
p

)2

+
1
2

n∑
i

n∑
j

i6=j

ξijσxiσxj

(
∂g

∂xi

∣∣∣∣
p

)(
∂g

∂xj

∣∣∣∣
p

)
. (2.33)

Using Eqn. (2.32) and (2.33), we can now derive approximate expressions for the

mean and variance of the dual channel normalized SINR ρdual. Recall that u1 and u2 are

i.i.d. and that q1 and q2 are i.i.d. Thus, the mean (µu) and variance (σ2
u) of ui and the

mean (µq) and variance (σ2
q ) of qi for i = 1, 2 are [22]

µu =



K −N + 1 Complex Case

K −N + 1 Real Case
(2.34)
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σ2
u =



K −N + 1 Complex Case

2(K −N + 1) Real Case
(2.35)

µq =




K−N+2
K+1 Complex Case

K−N+2
K+1 Real Case

(2.36)

σ2
q =




(K−N+2)(N−1)
(K+2)(K+1)2

Complex Case

2(K−N+2)(N−1)
(K+3)(K+1)2

Real Case.
(2.37)

Further, observe that all the partial derivatives of h(u1, u2, q1, q2) exist at point p, if p does

not cause the denominator of Eqn. (2.22) to equal zero, since h(u1, u2, q1, q2) is a rational

function. Thus, the Taylor series of h(u1, u2, q1, q2) about the point p = (µu, µu, µq, µq)

will exist if µu and µq do not equal zero. Note that µu and µq are greater than zero if

K > N . Using the independence of u1, u2, q1, and q2 (i.e., the correlation coefficients (ξij)

in Eqn. (2.32) and (2.33) are zero) and with p = (µu, µu, µq, µq), the approximation for the

mean E {ρdual} and variance V {ρdual} are

E {ρdual} ≈ h(µu, µu, µqµq) +
1
2

[
σ2

u

[
∂2h

∂u2
1

∣∣∣∣
p

+
∂2h

∂u2
2

∣∣∣∣
p

]
+ σ2

q

[
∂2h

∂q21

∣∣∣∣
p

+
∂2h

∂q22

∣∣∣∣
p

]]
, (2.38)

V {ρdual} ≈ σ2
u


( ∂h

∂u1

∣∣∣∣
p

)2

+

(
∂h

∂u2

∣∣∣∣
p

)2

+ σ2

q


( ∂h

∂q1

∣∣∣∣
p

)2

+

(
∂h

∂q2

∣∣∣∣
p

)2

 . (2.39)

Performing the partial derivatives in Eqn. (2.38) and (2.39) and evaluating at the point p

yields

E {ρdual} ≈ µq − 2
µqσ

2
u

µ2
u

k(1 − k) − 2
σ2

q

µq
k(1 − k), (2.40)

V {ρdual} ≈
(
1 − 2k + 2k2

)
σ2

q . (2.41)

Substituting Eqns. (2.34)-(2.37) into Eqns. (2.40) and (2.41) yields

E {ρdual} ≈




K−N+2
K+1 − 2k(1−k)

K+1

[
K−N+2
K−N+1 + N−1

K+2

]
Complex Case

K−N+2
K+1 − 4k(1−k)

K+1

[
K−N+2
K−N+1 + N−1

K+3

]
Real Case

(2.42)
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V {ρdual} ≈



(
1 − 2k + 2k2

) (K−N+2)(N−1)
(K+2)(K+1)2 Complex Case(

1 − 2k + 2k2
) 2(K−N+2)(N−1)

(K+3)(K+1)2
Real Case,

(2.43)

where K is the number of secondary data vectors used to estimate the interference plus

noise correlation matrices, N is the dimension of the weight vectors ŵ1 and ŵ2, and

k = α1/(α1 + α2), which indicates the relative SINR between the two channels. Observe

that the approximations are quadratic functions of k and are a maximum at k = 0, 1

and minimum at k = 0.5. Thus, an increase in the mean (less SINR loss) comes at the

expense of an increase in the variance. This trade-off between the mean and variance

will undoubtedly have implications in the probability of detection performance of the dual

channel system.

An examination of Eqn. (2.42) reveals that the approximation for the mean has char-

acteristics that match with one’s intuition: asymptotically correct, an increasing function

of K, and provides an exact answer when k = 0 or k = 1. As K approaches infinity, the

estimated interference plus noise correlation matrix approaches the true interference plus

noise correlation matrix, implying that 1) the mean of the conditioned SINR approaches

the maximum SINR or equivalently, the mean of normalized SINR approaches one and 2)

the mean of normalized SINR is an increasing function of K. In the limit as K goes to

infinity, the approximation of the mean for ρdual given in Eqn. (2.42) is one, indicating that

the asymptotic properties of the approximation are correct. An examination of Eqn. (2.42)

reveals that the approximation is an increasing function of K when K > N and N and k

are held constant. Next, observe that if k = 0 (or k = 1) the approximation reduces to µq

and h(u1, u2, q1, q2) = q2 (or q1). The mean of q1 or q2 is µq and thus, the approximation

provides an exact answer when k = 0 or k = 1. Similar observations hold for the approxi-

mate expression for the variance (i.e., variance approaches zero as K approaches infinity,

decreasing function of K, and exact when k = 0 or 1).

To further verify the validity of the approximations given in Eqns. (2.40) and (2.41),

we conducted a series of Monte Carlo simulations with K = 2N for N between 20 and

500 in steps of 20 and for 20 values of k uniformly distributed on the interval 0 ≤ k ≤ 1.

For each N and k, 10,000 samples of ρdual were used to compute a sample mean (i.e.,
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E {ρdual}), an approximate 99.5% confidence interval for the sample mean, and a sample

variance. The confidence intervals are termed approximate, because the sample standard

deviation was used in place of the population (known) standard deviation [32:248]. We

present only the results for the complex case, but the results from the real case have the

same behavior as the complex case. Figure 2.2 shows the sample mean of ρdual for N = 20,

260, and 500 as k varied between 0 and 1 along with the approximate 99.5% confidence

intervals which are indicated by the error bars. Also plotted in Fig. 2.2 is the approximate

mean of ρdual from Eqn. (2.42). An examination of Fig. 2.2 shows excellent agreement

between the sample mean and the mean approximation, except when N = 20 and near

k = 0.5. This problem area can be eliminated by including another term in the Taylor

series expansion. Plotted in Fig. 2.3 is the sample variance overlaid with the approximate

variance from Eqn. (2.43) for the same cases as Fig. 2.2. Again, with exception of N = 20

and near k = 0.5, there is excellent agreement between the sample variance and variance

approximation. This problem area can be eliminated by keeping all the moments (i.e., do

not discard moments greater than 2).

2.4 Reduced Secondary Data Requirements

In this section, we address our earlier claim that the SMI dual channel system requires

half the secondary data as the equivalent SMI single channel system to achieve nearly the

same normalized SINR performance. We only discuss the complex case, but one can

easily show that the results also hold for the real case. This claim is examined under the

assumption that the input interference plus noise signals are uncorrelated. That is, if n1

and n2 denote the input interference plus noise signal vectors in their respective channels,

then E
{
n1nH

2

}
= 0 = E

{
n2nH

1

}
. Let n1 and n2 be N × 1 vectors, then the equivalent

single channel system must process a 2N × 1 input signal vector. Thus, the single channel

system requires a 2N × 1 weight vector and approximately 4N (K ≈ 4N) secondary data

vectors are required to achieve an average normalized SINR of 0.5 (i.e., an average SINR

loss of 3 dB). With K = 4N , the variance of the single channel normalized SINR is

V {ρsmi} =
(4N − 2N + 2)(2N − 1)

(4N + 2)(4N + 1)2
≈ 1

16N
, (2.44)
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(b) N = 260
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(c) N = 500

Figure 2.2 Sample mean of ρdual (i.e., E {ρdual}) based on 10,000 samples for each N
and k overlaid with the approximate E {ρdual} computed using Eqn. (2.42)
and K = 2N . The error bars are approximate 99.5% confidence intervals.
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Figure 2.3 Sample Variance of ρdual (i.e., V {ρdual}) based on 10,000 samples for each N
and k overlaid with the approximate V {ρdual} computed using Eqn. (2.43)
and K = 2N .
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for large N. Thus, to support our claim, we must show that the dual channel system

has an average normalized SINR of approximately 0.5 (E {ρdual} ≈ 0.5) with a variance

approximately equal to Eqn. (2.44), when K = 2N .

With the single channel system, we could set the expression for the mean of the

normalized SINR equal to 0.5 and solve directly for the number of secondary data vectors

needed in terms of the dimension of the weight vector. We can not apply this same

approach to Eqn. (2.42), because of its form. Instead, we set K = 2N and k = 0.5, since

Eqn. (2.42) is quadratic function of k with a minimum at k = 0.5, and then, show that

Eqn. (2.42) is greater than or equal to 0.5 for all N ≥ 1. Substituting k = 0.5 and K = 2N

in Eqn. (2.42) yields

E {ρdual} ≈ 4N + 5
8N + 4

. (2.45)

Let N ≥ 1, then Eqn. (2.45) is greater than or equal to 0.5 if

4N + 5 ≥ 0.5(8N + 4) = 4N + 2, (2.46)

which is true for all N ≥ 1. Thus, the approximate E {ρdual} ≥ 0.5 if K ≥ 2N . The

approximate variance (Eqn. (2.43)) of the dual channel normalized SINR with k = 0.5 and

K = 2N is

V {ρdual} ≈ 1
2

(2N −N + 2)(N − 1)
(2N + 2)(2N + 1)2

≈ 1
16N

, (2.47)

for large N . These results support our claim that the dual channel system requires half the

secondary data vectors as the single channel system to achieve nearly the same normalized

SINR performance.

2.5 Practical Aspects

We must address two issues before we can take advantage of the reduced secondary

data requirements of the dual channel system to replace a single channel system. First, we

must decorrelate the two halves of the interference plus noise vector to meet the hypothesis
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of the previous development. That is, we need to find a transformation that block diago-

nalizes the correlation matrices of interest. Secondly, we need to control the computational

cost of the dual channel system. Although the computational cost of computing the weight

vectors is less with the dual channel system, one must be concerned with the additional

computational cost associated with the transformation (decorrelation preprocessing). The

additional matrix-vector multiple introduced by the preprocessing coupled with the fact

that every secondary data vector must be preprocessed will significantly reduce any com-

putational savings achieved by reducing the dimension of the weight vector. Clearly, the

transformation needs to have an efficient implementation. In general, we can construct

a block diagonalizing transformation for any particular correlation matrix from its eigen-

vectors, but this requires a computationally expensive eigendecomposition and will not,

in general, yield an efficient transformation matrix. Thus, we seek a fixed (environment

independent) block diagonalizing transformation with an efficient implementation. The

possibility of finding such a transformation will depend on the class of correlation matrices

of interest.

One class of matrices that can be block diagonalized by a fixed and efficient transfor-

mation is the class of centrosymmetric matrices. A N ×N matrix C is a centrosymmetric

matrix if [16]

[c]N+1−m,N+1−n = [c]m,n for m,n = 1, · · · ,N (2.48)

where [c]m,n denotes the element of C in the mth row and nth column. Depending on

whether N is even (N = 2M) or odd (N = 2M + 1), we can write a centrosymmetric

matrix C in one of the following forms [16]:

C =


 A BJ

JB JAJ




even

or C =




A Jx BJ

zT J β zT

JB x JAJ




odd

, (2.49)
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where A, B, and J are M ×M matrices, x and z are M × 1 vectors, β is a scalar, and J

is the anti-diagonal (reverse diagonal) matrix, i.e.,

J =




0 0 · · · 1
...

... . . .
...

0 1 · · · 0

1 0 · · · 0



. (2.50)

One can easily verify that even (N = 2M) and odd (N = 2M + 1) centrosymmetric

matrices are block diagonalized by the unitary (orthonormal) matrices [8]

1√
2


I J

J −I




even

and
1√
2



I 0 J

0 1 0

J 0 −I




odd

, (2.51)

where I and J are M×M matrices and I is the identity matrix. Clearly, the transformation

matrices defined in Eqn. (2.51) can be implemented efficiently, requiring only the simple

operations of addressing and addition. Observe that real, symmetric Toeplitz matrices

and real, symmetric Toeplitz-block-Toeplitz matrices are subclasses of centrosymmetric

matrices. Recall that the correlation matrix of a real, stationary random process is a

real, symmetric Toeplitz matrix [38:150]. Thus, we can replace a single channel system

with a dual channel system, reducing the secondary data requirements and easing the

computational cost, in any maximum SINR filtering application involving real, stationary

random processes.

In applications where the random process does not yield a centrosymmetric corre-

lation matrix, the problem of block diagonalizing a family of correlation matrices with a

fixed, efficient transformation becomes difficult. First, one must answer the question of

whether or not a fixed transformation exists for the correlation matrices of interest. Basi-

cally, to block diagonalize a family of correlation matrices, we must find two independent

subspaces that span the N -dimensional vector space (i.e., the vector space is the direct

sum of two subspaces) and the subspaces must be invariant to every member of the fam-
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ily. For example, in the case of centrosymmetric matrices, the vector space is the direct

sum of the symmetric (i.e., x = Jx) subspace and the skewed symmetric (i.e., x = −Jx)

subspaces. Mathematical machinery is available for examining the existence issue and is

discussed in the next chapter where we address the problem of block diagonalizing STAP

correlation matrices. Secondly, assuming that one can find two invariant subspaces, we

are still left with the problem of controlling computational cost. That is, can we select

basis vectors that span the two subspaces such that the resulting transformation will have

an efficient implementation? The answer to this question appears to be an open problem.

In the absence of two invariant subspaces, we can attack the problem in an approximate

sense. For example, the correlation matrix of a complex, stationary random process is a

Hermitian, Toeplitz matrix which is not a subclass of centrosymmetric matrices. How-

ever, we can approximately decorrelate (block diagonalize the correlation matrix) a real

or complex stationary random process using a filter bank consisting of a high-pass filter

and a low-pass filter [33:165]. The use of a filter bank to decorrelate the signal is a central

concept in subband image compression and subband adaptive filters where efficiency is

also a key issue. The decorrelation properties of a filter bank will depend on the transition

regions and stopband attenuation of the filters and the characteristics of the interference

plus noise. The price paid for only approximately decorrelating the interference plus noise

is a loss in performance which cannot be regained by increased secondary data support,

since the dual channel system is no longer equivalent to the optimal system even when the

correlation matrix is known.

2.6 Simulation Example

In this section, we present the results of a simulation example to demonstrate the

reduced secondary data requirements of the dual channel system. The signal of interest is

s(n) = cos(2π0.13n)(u(n) − u(n− 31)) + cos(2π0.31n)(u(n − 32) − u(n− 63)) (2.52)

for n = 0, 1, ..., 63, where u(n) is the unit step function. The interference plus noise

environment consists of three uncorrelated interference sources and receiver noise. The
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signal from each of the interference sources has the form:

ti(n) =
√

10 cos(2πfin+ φi), (2.53)

where φi is a random variable uniformly distributed over the interval [0, 2π] and {f1 =

0.051, f2 = 0.23, f3 = 0.41}. The correlation matrix of each interference source is a real,

symmetric Toeplitz (centrosymmetric) matrix Ti with elements given by

E {ti(m)ti(n)} = [Ti]m,n = 5cos(2πfi|m− n|). (2.54)

The receiver noise is modeled as white noise with a variance of one and is assumed to be

uncorrelated with the interference. Thus, the interference plus noise correlation matrix is

simply the sum of the identity matrix (receiver noise) and three real, symmetric Toeplitz

matrices and hence, is a real, symmetric Toeplitz matrix. The dual channel transformations

are given by

V1 =
1√
2


I

J


 and V2 =

1√
2


 J

−I


 , (2.55)

in accordance with Eqn. (2.51). The dual channel system only used 64 secondary data

vectors to compute the two 32 × 1 weight vectors. In contrast, the single channel system

used 128 secondary data vectors to compute the 64× 1 weight vector. Thus, the expected

loss in SINR performance was 3 dB for both systems simulated (i.e., E {ρsmi} ≈ 0.5 ≈

E {ρdual}). The simulation results are summarized in Table 2.1 and are based on 20000

runs for each system. The predicted values in Table 2.1 for the single channel system

were computed from a beta distribution with parameters 33 and 31.5 from Eqns. (2.42)

and (2.43) for the dual channel systems with K = 64, N = 32, and k = 0.4934. Note the

good agreement between the predicted and simulation values in Table 2.1, further verifying

the utility of the approximations given in Eqns. (2.42) and (2.43). Figure 2.4 shows the

normalized SINR cumulative probability distribution curves for each of the systems. The

results in Table 2.1 and Fig. 2.4 show that the dual channel system has nearly the same

performance as the single channel system with half the secondary data support.
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Predicted Simulated
System Mean Variance Mean Variance
Single Channel 0.5116 0.0038 0.5110 0.0038
Dual Channel 0.5001 0.0037 0.5030 0.0043

Table 2.1 Predicted and simulated normalized SINR performance for the single chan-
nel and dual channel systems in a centrosymmetric interference plus noise
environment.
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Figure 2.4 Cumulative probability distribution of the normalized SINR for the single
channel and dual channel systems in a centrosymmetric interference plus
noise environment.
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2.7 Summary

In this chapter, we analyzed the SINR performance of a dual channel system assum-

ing that the interference plus noise in one channel was uncorrelated with interference plus

noise in the other channel. We derived approximations for mean and variance of the dual

channel normalized SINR from an exact expression of the normalized SINR as functions

of random variables with known distributions. Using the approximations, we showed that

a dual channel system delivers nearly the same normalized SINR performance as a sin-

gle channel system designed to process both inputs with half the secondary data. These

results suggest the possibility of replacing a single channel system with a dual channel

system using smaller weight vectors, leading to the reduction in the secondary data sup-

port and potentially, a reduction in the computational cost. A key element in replacing

a single channel system with a dual channel system is the decorrelation preprocessing,

which basically requires the introduction of a transformation that block diagonalizes the

correlation matrix. This requirement for preprocessing introduces a new challenge: find-

ing a fixed transformation that block diagonalizes the family of correlation matrices of

interest and that has an efficient implementation. Depending on the family of correlation

matrices, such a transformation may or may not exist. A family of matrices that can be

efficiently block diagonalized with a fixed transformation is the family of centrosymmetric

matrices which includes the family of real, symmetric Toeplitz matrices. The correlation

matrix of a real, stationary random process is a real, symmetric Toeplitz matrix. Thus,

in maximum SINR filtering applications involving real, stationary random processes, we

can replace a single channel system with a dual channel system to reduce the secondary

data requirements by approximately 50% and ease the computational cost. Unfortunately,

STAP correlation matrices are not centrosymmetric matrices and thus, we are faced with

the difficult problem of determining if a fixed block diagonalizing transformation exists

for STAP correlation matrices. The block diagonalization of STAP correlation matrices is

addressed in the next chapter.
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III. Block Diagonalizing STAP Correlation Matrices

3.1 Introduction

The key concept of the Block STAP method (dual channel system) is block diago-

nalizing the interference plus noise correlation matrix. Because a radar system operates

in a wide variety of interference environments, the true correlation matrix is not known.

However, the configuration of the radar system and the particular types of interference

encountered give the correlation matrix, to some degree, a known structure. From this

known structure, we can define a family of matrices in which the true correlation matrix

is a member. Thus, our objective is to block diagonalize every member of a known fam-

ily of correlation matrices with some transformation. To avoid the computational cost of

searching for a new transformation every time the interference environment changes, the

same transformation should block diagonalize every member of the family. Further, the

transformation needs to have an efficient implementation to minimize the computational

cost associated with transforming (preprocessing) the signal vectors. As noted earlier, this

requirement for a fixed, efficient transformation introduces two new challenges: determin-

ing whether or not a fixed transformation exists for a particular family and determining if

the transformation has an efficient implementation given that it exists.

The focus of this chapter is on the problem of determining if a fixed, block diag-

onalizing transformation exists for the family of STAP correlation matrices. Recall that

the discrete Karhunen-Loève transform (DKLT) is constructed from the eigenvectors of

the correlation matrix and is the unique unitary transformation that diagonalizes a cor-

relation matrix [38:176]. One might conjecture the nonexistence of a fixed, block diago-

nalizing transformation for STAP correlation matrices is a foregone conclusion, based on

the uniqueness of the DKLT. However, the uniqueness of the DKLT does not imply that

a family of correlation matrices cannot be simultaneously block diagonalized or diagonal-

ized by a fixed transformation. The conditions for simultaneously block diagonalizing a

family of matrices are less restrictive than the conditions for simultaneously diagonalizing

a family of matrices. Thus, the fact that a family of matrices cannot be simultaneously

diagonalized does not imply that the family cannot be simultaneously block diagonalized.
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In this chapter, we review the mathematical machinery available to address the problem

of simultaneously diagonalizing and block diagonalizing a family of matrices and then, we

apply this machinery to a family of STAP correlation matrices. We demonstrate that the

defined family of STAP correlation matrices cannot be simultaneously diagonalized and

provide evidence to support the conjecture that the family cannot be simultaneously block

diagonalized.

The rest of this chapter is organized as follows. In Section 3.2, we define a family of

STAP correlation matrices that is representative of the interference plus noise environment

typically encountered by an airborne surveillance radar. We review the uniqueness of the

DKLT and the conditions for simultaneously diagonalizing a family of correlation matrices

and demonstrate that the defined family of STAP correlation matrices is not simultane-

ously diagonalizable in Section 3.3. We review what block diagonalizing a matrix means

in terms of vector spaces and subspaces in Section 3.4. In Section 3.5, we discuss the

available theorems on simultaneously block diagonalizing a family of matrices and apply

these theorems to the defined family of STAP correlation matrices. We provide evidence

to support the conjecture that the defined family cannot be simultaneously block diago-

nalized. In Section 3.6, we depart from the defined family of STAP correlation matrices

and focus on the clutter correlation matrix. We show that the clutter correlation matrix

is a centrosymmetric matrix under certain assumptions and discuss some of the potential

uses of this result. Finally, we summarize the chapter in Section 3.7.

3.2 STAP Correlation Matrices

In this section, we define the family of STAP correlation matrices considered in this

research. The family is representative of the interference plus noise environment typically

encountered by a airborne surveillance radar, but we have used certain assumptions to

limit the complexity of the family. We restricted the complexity to bound the scope of the

research to the basic concepts. However, the family has sufficient complexity to stress the

ability of a STAP system to remove both spatially and temporally correlated signals. The

unwanted signals considered are receiver noise, barrage noise jamming, and ground clutter.

The inclusion of ground clutter ensures the presence of an unwanted signal that is both
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spatially and temporally correlated. The barrage noise jamming and ground clutter are

referred to as interference and the receiver noise is referred to as noise. We assume that the

receiver noise, barrage noise jamming, and ground clutter are zero-mean random processes

and are uncorrelated with each other. Thus, the interference plus noise correlation matrix

can be written as the sum of three correlation matrices. That is,

R = RR + RJ + RC, (3.1)

where R, RR, RJ, and RC are the interference plus noise, receiver noise, barrage noise

jamming, and ground clutter correlation matrices, respectively. Recall that the radar sys-

tem under consideration has a uniform linear array of N equally spaced antenna elements

and processes M samples (pulses) in a coherent processing interval (CPI). We assume that

the spacing between the antenna elements is half a wavelength and that the sampling in-

terval in the temporal domain is the pulse repetition interval which is held constant over

the CPI. Using the signal models defined by Ward [41], we now present the structure of

the receiver noise, barrage noise jamming, and ground clutter correlation matrices.

The receiver noise is modeled as both spatially and temporally uncorrelated noise

(white noise). Thus, the correlation matrix of the receiver noise is

RR = σ2IMN , (3.2)

where σ2 is the variance (power) of the receiver noise and IMN is a MN ×MN identity

matrix. Observe that RR is positive definite and Hermitian. Further, note that RR can

be partitioned into a M ×M block Toeplitz matrix where each diagonal block is a N ×N

identity matrix scaled by σ2 and each off-diagonal block is a N ×N zero matrix. Since the

zero matrix and the identity matrix are Toeplitz matrices, RR is a Toeplitz-block-Toeplitz

matrix.

The interference due to barrage noise jamming consists of one or more uncorrelated

jamming sources (jammers). Thus, the jamming correlation matrix can be written as the
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sum of the correlation matrices due to the individual jammers. That is,

RJ =
NJ∑
k=1

RJ(k), (3.3)

where RJ(k) is the correlation matrix of the kth jammer and NJ is the total number of

jammers. The signal from each jammer is modeled as a spatially correlated, temporally

uncorrelated signal, yielding the following correlation matrix for the kth jammer:

RJ(k) = σ2ζkIM ⊗ a(υk)aH(υk), (3.4)

where ⊗ denotes the Kronecker product, ζk is the jamming to noise ratio (JNR) of the kth

jammer, IM is a M ×M identity matrix, and a(υk) is the N × 1 spatial steering vector to

the kth jammer. The N × 1 spatial steering vector is defined as

a(υ) =
[
1 ej2πυ · · · ej(N−1)2πυ

]T
, (3.5)

where the parameter υ is the spatial frequency (also referred to as the normalized angle) to

the source. Now, observe that IM and a(υk)aH(υk) are Toeplitz matrices and the Kronecker

product of these two matrices yields a M ×M block Toeplitz matrix, where each diagonal

block is a N × N Toeplitz matrix given by a(υk)aH(υk) and each off-diagonal block is

a N × N zero matrix. Thus, RJ(k) is a Toeplitz-block-Toeplitz matrix, and since RJ is

the sum of similarly configured Toeplitz-block-Toeplitz matrices, RJ is a Toeplitz-block-

Toeplitz matrix. Also observe that RJ is positive semidefinite and Hermitian. Finally, note

that the development of Eqn. (3.4) assumes that the bandwidth of the jamming signal is

greater than or equal to the bandwidth of the radar receiver and that the propagation time

across the array is much less than the inverse of jamming bandwidth.

The interference due to ground clutter is modeled as a series of uncorrelated point

scatters, referred to as clutter patches, that surround the radar and are located in the

range gate of interest. The radar is assumed to be operating in an unambiguous range

scenario (i.e., no second time around clutter) and that the axis of the array is perfectly

aligned with the platform’s velocity vector. Although the amplitude of the signal from
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each clutter patch is random, the amplitude is assumed to be a constant over the CPI

(i.e., no intrinsic clutter motion). Under these assumptions, the correlation matrix of the

clutter is given by

RC =
NC∑
m=1

σ2ξmb(ωm)bH(ωm) ⊗ a(υm)aH(υm), (3.6)

where NC is the number of clutter patches, ξk is the clutter to noise ratio (CNR) of the

mth clutter patch, a(υm) is the N × 1 spatial steering to the mth clutter patch, and b(ωm)

is the M ×1 Doppler steering vector of the mth clutter patch. The M ×1 Doppler steering

vector is defined as

b(υ) =
[
1 ej2πω · · · ej(M−1)2πω

]T
, (3.7)

where the parameter ω is the normalized Doppler shift. Note that

ωm =
2vaTr

d
υm = βυm, (3.8)

where va is the velocity of the platform, Tr is the pulse repetition interval, d is the spacing

between antenna elements, and

β =
2vaTr

d
. (3.9)

Now, observe that each clutter patch correlation matrix in Eqn. (3.6) is the Kronecker

product of two Toeplitz matrices: b(ωm)bH(ωm) and a(υm)aH(υm). Thus, each clutter

patch correlation matrix can be partitioned as a M × M block Toeplitz matrix where

each block is a N × N Toeplitz matrix. That is, each clutter patch correlation matrix

is a Toeplitz-block-Toeplitz matrix and therefore, RC is a Toeplitz-block-Toeplitz matrix.

Also observe that RC is positive semidefinite and Hermitian.

With the correlation matrices of the receiver noise, barrage noise jamming, and

ground clutter defined, we can now define the family of interference plus noise (STAP)

correlation matrices considered in this research. First, observe that all three correlation
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matrices are Hermitian and Toeplitz-block-Toeplitz matrices. Second, observe that the sum

of a positive definite matrix and a positive semidefinite matrix is positive definite. Thus,

the interference plus noise correlation matrices constructed from these three correlation

matrices are Hermitian, positive definite, and Toeplitz-block-Toeplitz matrices. The family

of correlation of interference plus noise correlation matrices considered in this research is

defined as:

Definition 1 (Family of STAP Correlation Matrices). Assume the radar system un-

der consideration has a linear array of N equally spaced elements and that M samples

(pulses) are collected in a coherent processing interval, where N ≥ 2 and M ≥ 2. Let S

denote the family of interference plus noise (STAP) correlation matrices and R denote an

arbitrary interference plus noise correlation matrix. Then, R ∈ S, if R is a Hermitian,

positive definite, and Toeplitz-block-Toeplitz matrix of the following form:

R = σ2IMN

+
NJ∑
p=1

σ2ζpIM ⊗ a(υp)aH(υp)

+
NC∑
q=1

σ2ξqb(ωq)bH(ωq) ⊗ a(υq)aH(υq),

(3.10)

where

a(υ) =
[
1 ej2πυ · · · ej(N−1)2πυ

]T
(3.11)

b(ω) =
[
1 ej2πω · · · ej(M−1)2πω

]T
(3.12)

ωq =
2vaTr

d
υq, (3.13)

Im is a m×m identity matrix, σ2 is the receiver noise power, ζp is the jamming to noise

ratio of the pth jammer, υp is the normalized angle to the pth jammer, ξq is the clutter to

noise ratio of the qth clutter patch, υq is the normalized angle to the qth clutter patch, va is

the velocity of the platform, Tr is the pulse repetition interval, and d is the spacing between

antenna elements.
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In defining the family S, we used the assumptions listed below:

• The antenna is a linear array of equally spaced antenna elements.

• The sampling interval for the output signals from each antenna element is a constant

for the coherent processing interval and equal to the pulse repetition interval.

• The receiver noise is both spatially and temporally uncorrelated and zero-mean.

• The jamming sources (jammers) are uncorrelated with each other.

• The jamming signal from any particular jammer is spatially correlated, temporally

uncorrelated, zero-mean, has a bandwidth greater than or equal to the bandwidth of

the radar receiver, and the propagation time across the array is much less than the

inverse of the bandwidth of the jamming signal.

• The radar operates in an unambiguous range scenario (i.e., no second time around

clutter).

• The clutter can be modeled as a series of uncorrelated point scatters, referred to as

clutter patches, that surround the radar.

• The amplitude of each clutter patch is a zero-mean random variable with the am-

plitude held constant of the coherent processing interval (i.e., no intrinsic clutter

motion).

• The axis of the antenna array is perfectly aligned with the platform’s velocity vector

(i.e., no velocity misalignment).

In general, without these assumptions, the family of interference plus noise correla-

tion matrices would encompass nearly all Hermitian, positive definite matrices. Some of the

assumptions (e.g., a linear array of equally spaced elements) represent a priori knowledge

about the radar system that give the interference plus noise correlation matrices structure

and bound the family S to a subset of the family of Hermitian, positive definite matrices.

While other assumptions (e.g., no intrinsic clutter motion) represent simplifications de-

signed to further bound the family (problem domain) and focus the research on analyzing

the basic concepts of Block STAP. Although the family S is not the most general family,
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because of these assumptions, the family S is sufficiently representative of typical interfer-

ence plus noise signal environments encountered by airborne surveillance radars. As such,

the members of S represent interference plus noise environments that will stress the ability

of the Block STAP method to effectively remove unwanted signals that are both spatially

and temporally correlated.

Observe that the receiver noise and barrage noise jamming correlation matrices have

a block diagonal structure. Thus, if the interference environment does not include clutter,

then we can use the identity matrix as the Block STAP transformation. That is, we would

basically split the CPI into two temporal sub-CPIs and compute a weight vector for each

sub-CPI using half the secondary data as a single channel system. However, the prob-

lem of block diagonalizing the interference plus noise correlation matrix becomes difficult

when clutter is present, since its correlation matrix is not a block diagonal matrix. We

cannot restrict the problem to block diagonalizing the clutter correlation matrix, because

a transformation that block diagonalizes the clutter correlation matrix may destroy the

block diagonal form of the jamming correlation. Notice that if we require the transforma-

tion to be unitary, then we can ignore the receiver noise correlation matrix. However, this

unitary requirement is overly restrictive, since we can use any non-singular matrix to block

diagonalize the correlation matrix and achieve the optimum performance when the corre-

lation matrix is known. We examine the problem of simultaneously block diagonalizing

the family S in the remaining parts of this chapter.

3.3 DKLT and Simultaneous Diagonalization

We can certainly obtain our objective of simultaneously block diagonalizing the fam-

ily S if we can simultaneously diagonalize the family. Earlier, we noted that the uniqueness

of the discrete Karhunen-Loève transform (DKLT) does not imply that a family of corre-

lation matrices cannot be diagonalized. For completeness, we review the uniqueness of the

DKLT in Section 3.3.1. The conditions for diagonalizing a family of matrices are given

and applied to the family S in Section 3.3.2, where we show that the family S cannot be

diagonalized.
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3.3.1 Uniqueness of the DKLT. The following discussion on the uniqueness of the

DKLT is based on a presentation given by Therrien [38:174–177]. Let x = [x1 x2 · · · xn]T

be a zero-mean random vector, then the n× n correlation matrix of x is

Rx = E
{
xxH

}
=




E {x1x
∗
1} E {x1x

∗
2} · · · E {x1x

∗
n}

E {x2x
∗
1} E {x2x

∗
2} · · · E {x2x

∗
n}

...
...

. . .
...

E {xnx
∗
1} E {xnx

∗
2} · · · E {xnx

∗
n}



. (3.14)

The random vector x is the weighted sum of n basis vectors for the n-dimensional complex

vector space, denoted as C
n. Let ei denote a n × 1 vector with a one in the ith position

and zero in all other positions. The set {ei}n
i=1 is a basis for C

n and is referred to as

the the standard ordered basis. In the standard ordered basis, the elements of x are the

coefficients or coordinates for the basis vectors. That is,

x = x1e1 + x2e2 + · · · + xnen. (3.15)

Each of the elements (coefficients) of x is a random variable and the elements of Rx

represent the correlation between the coefficients. Ideally, one would select a basis for

representing x such that the correlation matrix is in a convenient form for reducing the

computational cost of computing the optimum weight vector. If the basis is selected such

that the coefficients are uncorrelated, then the correlation matrix is a diagonal matrix. A

diagonal matrix is desirable since inverting a diagonal matrix only requires the inversion

of n scalars. The transformation of x from one basis to another basis requires a change of

basis matrix (transformation). Assume {ϕi}n
i=1 is a set of n orthonormal column vectors

(and hence, a basis for C
n) and x is defined with respect to the standard ordered basis,

then the change of basis matrix is

Φ =
[
ϕ1 ϕ2 · · · ϕn

]
(3.16)
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and the vector of coefficients of x in the basis {ϕi}n
i=1 is

κ =




κ1

κ2

...

κn




=




ϕH
1 x

ϕH
2 x
...

ϕH
n x




= ΦHx, (3.17)

where κi = ϕH
i x. Observe that Φ is a unitary matrix since {ϕi}n

i=1 is an orthonormal set.

The objective is to select {ϕi}n
i=1 or equivalent, the change of basis matrix Φ such that

the resulting correlation matrix is a diagonal matrix. That is,

E
{
κpκ

∗
q

}
= E

{
ϕH

p xxHϕq

}
= ϕH

p Rxϕq =



ς2p p = q,

0 p 6= q.

(3.18)

The DKLT is the unique transformation that achieves the conditions of Eqn. (3.18)

and has the property that the columns of the change of basis matrix are the eigenvectors

of Rx (i.e., Rxϕi = λiϕi, where λi is the corresponding eigenvalue). To examine the

uniqueness of the DKLT, assume {ϕi}n
i=1 is an orthonormal set which is not necessarily

the set of DKLT vectors. From the diagonal matrix objective, we have

ϕH
p uq =



ς2p p = q,

0 p 6= q,

(3.19)

where uq = Rxϕq. Assume uq is a non-zero vector in C n which is not necessarily an

eigenvector of Rx, then uq must be a linear combination of {ϕi}n
i=1. That is,

uq = c1ϕ1 + c2ϕ2 + · · · + cnϕn, (3.20)

where not all of the ci’s are zeros. However, from Eqn. (3.19), we know that uq is orthogonal

to ϕi for i 6= q and thus, ci = 0 for i 6= q. Therefore, we must have uq = cqϕq and hence,

uq must be an eigenvector of Rx and cq is the corresponding eigenvalue. Thus, the DKLT

is the unique unitary transformation that diagonalizes a correlation matrix.
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3.3.2 Diagonalizing the Family S. The uniqueness of the DKLT does not imply

that the family of correlation matrices cannot be simultaneously diagonalized with a single

unitary transformation. Recall that the members of the family S are Hermitian matrices.

Horn and Johnson [23:172] give the following theorem which provides the necessary and

sufficient conditions for the simultaneous diagonalization of a family of Hermitian matrices:

Theorem 1 (Horn and Johnson). Let F be a given family of Hermitian matrices. There

exists a unitary transform matrix U such that UAUH is diagonal for all A ∈ F if and

only if AB = BA of all A,B ∈ F .

Thus, for a family of Hermitian matrices to be simultaneously unitarily similar to a

diagonal matrix, the family must be a commuting family. The if and only if structure of

Theorem 1 is convenient for showing that the family S is not simultaneously diagonalizable

with a unitary transformation – we simply need to provide one example where two matrices

from S do not commute. Consider two correlation matrices, R1 and R2, drawn from S,

where the interference plus noise signal consists of receiver noise, one dominate clutter

patch (i.e., NC = 1), and no jammers (i.e., NJ = 0). That is,

Ri = I + cicH
i , (3.21a)

where

ci = b(ωi) ⊗ a(υi), (3.21b)

b(ωi) =
[
1 ej2πωi ej(2)2πωi · · · ej(M−1)2πωi

]T
, (3.21c)

a(υi) =
[
1 ej2πυi ej(2)2πυi · · · ej(N−1)2πυi

]T
, (3.21d)

and ωi = βυi. Note that, without loss of generality, we have assumed that the receiver

noise power and the clutter power are equal to one. Let [R]p,q denote the element in the

pth row and qth column of the matrix R and [c]p denote the pth element of c. Now, notice

that [cpcH
q ]0,0 = 1 for p, q = 1, 2 since [cp]0 = 1. We will show that R1 and R2 do not
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commute, in general. If R1 and R2 commute, then the following must hold:

R1R2 = R2R1

(I + c1cH
1 )(I + c2cH

2 ) = (I + c2cH
2 )(I + c1cH

1 )

c1cH
1 c2cH

2 = c2cH
2 c1cH

1 . (3.22)

Thus, to show that R1 and R2 do not commute, we only need show that the clutter

correlation matrices, c1cH
1 and c2cH

2 , do not commute. First, observe that cH
1 c2 and cH

2 c1

are scalars and we can rewrite Eqn. (3.22) as

(cH
1 c2)c1cH

2 = (cH
2 c1)c2cH

1 . (3.23)

For Eqn. (3.23) to hold, all the elements of the matrix on the left hand side must equal

the corresponding elements of the matrix of the right hand side. Since [c1cH
2 ]0,0 = 1 =

[c2cH
1 ]0,0, Eqn. (3.23) cannot hold if cH

1 c2 does not equal cH
2 c1. Next, notice that cH

1 c2 =

(cH
2 c1)∗ which implies that cH

1 c2 will equal cH
2 c1 only if cH

1 c2 is real. Thus, R1 and R2

can commute only if cH
1 c2 is real. The inner product of c1 and c2 is

cH
1 c2 =

(
bH(ω1) ⊗ aH(υ1)

)(
b(ω2) ⊗ a(υ2)

)
=
(
bH(ω1)b(ω2)

)
⊗
(
aH(υ1)a(υ2)

)
=
(
bH(ω1)b(ω2)

)(
aH(υ1)a(υ2)

)
= e−jπ(υ1−υ2)(N−1)e−jπ(ω1−ω2)(M−1) sin(π(υ1 − υ2)N)

sin(π(υ1 − υ2))
sin(π(ω1 − ω2)M)
sin(π(ω1 − ω2))

. (3.24)

An examination of Eqn. (3.24) reveals that cH
1 c2 is real only if

(υ1 − υ2)(N − 1) + (ω1 − ω2)(M − 1) = k, (3.25)

where k is an integer. By inspection, Eqn. (3.25) is not true for all values of υ1 and υ2

(recall that ωi = βυi, where β is a real constant). Therefore, in general, R1 and R2 do

not commute and we can conclude that the family S is not simultaneously diagonalizable

by a single unitary transformation.
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Theorem 1 only addresses the case of simultaneous diagonalization by a unitary

transformation and not the more general case of a non-singular transformation. Horn and

Johnson [23:239] provide the following theorem for the non-singular transformation case:

Theorem 2 (Horn and Johnson). Let A1,A2, . . . ,Ak ∈Mn (Mn denotes the space of

all complex matrices of size n×n) be given Hermitian matrices with A1 non-singular. There

exists a non-singular matrix T ∈ Mn such that THAiT is diagonal for all i = 1, 2, . . . , k

if and only if (a) A−1
1 Ai is similar to a real diagonal matrix for all i = 1, 2, . . . , k, and (b)

{A−1
1 Ai : i = 2, . . . , k} is a commuting family.

Assume that the family S can be simultaneously diagonalized by some non-singular

transformation, then every subset of S is diagonalizable with the same non-singular trans-

formation and Theorem 2 must hold. Thus, if we can find a subset of S such that either con-

dition (a) or (b) of Theorem 2 does not hold, then we can conclude that the family S is not

simultaneously diagonalizable by a non-singular transformation. Let S3 = {R1,R2,R3}

be a subset of S, where R1 = I and R2 and R3 are defined as in Eqn. (3.21). The matrix

R1 represents the receiver noise only case (i.e., no clutter and no jamming). The set S3

satisfies condition (a) of Theorem 2 which is easily verified as follows. Since R1 is the

identity matrix, condition (a) is simply that each matrix in S3 is similar to a real diagonal

matrix. Each of the matrices in S3 is Hermitian and thus, is unitarily similar to a real

diagonal matrix [23:171]. The set S3, however, does not satisfy condition (b) of Theorem 2.

Since R1 is the identity matrix, condition (b) is simply that {Ri : i = 2, 3} is a commuting

family (i.e., R2 and R3 commute). Now, notice that the matrices R2 and R3 are defined

by Eqn. (3.21) and as previously demonstrated, any pair of matrices of this form do not

commute, in general. Therefore, the set S3 cannot be simultaneously diagonalized by a

non-singular transformation which implies that S cannot be simultaneously diagonalized

by a non-singular transformation.

The fact that the family S cannot be simultaneously diagonalized by non-singular

(unitary or otherwise) transformation does not imply that S cannot be simultaneously

block diagonalized. The simultaneous block diagonalization of family of matrices is less

restrictive as will be discussed in the next sections.
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3.4 Invariant Subspaces

To provide a better understanding of the conditions for simultaneously block diago-

nalizing a family of matrices, we review what block diagonalizing a matrix means in terms

of vector spaces and subspaces in this section. Each R in S is a matrix representation of

a linear operator R that maps a vector from the MN -dimensional vector space over the

complex numbers, denoted by C
MN , to another vector in C

MN . The matrix represen-

tation R of R is defined with respect to some ordered basis for C
MN . In the absence of

any a priori knowledge about the basis, we will assume the basis is the standard ordered

basis for C
MN (i.e., {ei}MN

i=1 , where ei is a vector with a 1 in the ith element and zero

everywhere else). Given R and the basis used to define R, the matrix representation of R

in another ordered basis is [21:92]

R̃ = P−1RP, (3.26)

where the columns of P are the new basis vectors written in terms of the old basis vectors

and P is referred to as the change of basis matrix. Now, note that a matrix A is said to be

similar to a matrix B if A = U−1BU and the transformation U−1BU is referred to as a

similarity transformation [23:44]. Thus, the change of basis operation given in Eqn. (3.26)

is a similarity transformation. If R was originally defined with respect to the standard

ordered basis, then the columns of P are simply the new basis vectors. Further, if the basis

vectors form an orthonormal set, then the change of basis matrix is unitary (i.e., PHP = I

implying PH = P−1) and we can rewrite Eqn. (3.26) as

R̃ = PHRP (3.27)

and R is said to be unitarily similar to R̃ through the unitary similarity transformation

PHRP.
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Recall that our objective is to select a non-singular transformation matrix V such

that for every R in S we have

VHRV =


D1 0

0 D2


 , (3.28)

where D1 and D2 are MN/2 ×MN/2 matrices. If V is restricted to unitary, then the

block diagonalization of R is a similarity transformation since VHRV = V−1RV and as

such, involves changing the basis for representing the linear operator R as a matrix. The

existence of a block diagonalizing change of basis matrix implies that special subspaces of

C
MN exist, which we discuss next. The case where V is any non-singular matrix will be

addressed later.

A subspace is a subset of vectors from a vector space that also forms a vector space.

That is, let Z denote a vector space over the complex numbers and let X denote a subset

of Z. Then X is a subspace if cx1 + x2 ∈ X for all x1, x2 ∈ X, where c is an arbitrary

complex number [21:35]. Let W1, . . . ,Wk be subspaces of the vector space Z, then the

subspaces are said to be independent if

w1 + w2 + · · · + wk = 0, for wi ∈Wi, (3.29)

implies that each wi is the zero vector [21:209]. For the case of two subspaces, W1 and W2

are independent if the intersection of W1 and W2 is the zero vector. We now narrow our

attention to finite-dimensional vector spaces (i.e., a basis for the vector space has a finite

number of vectors). The dimension of a finite-dimensional vector space is the number of

vectors in a basis for the vector space. The dimension of a finite-dimensional vector space

will be denoted as dim(·). Let W = W1 + · · · + Wk, where W1, . . . ,Wk are independent

subspaces of the vector space Z and let Bi denote the set of basis vectors for Wi. Then,

the set {B1, . . . ,Bk} is a basis for the subspace W and the dimension of W is [21:209]

dim(W ) = dim(W1) + · · · + dim(Wk). (3.30)
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Now, notice that if the dim(W ) = dim(Z), then set {B1, . . . ,Bk} is a basis for Z and Z is

said to be the direct sum of W1, . . . ,Wk which is denoted as [21:210]

Z = W1 ⊕ · · · ⊕Wk. (3.31)

When Z is the direct sum of the subspaces W1, . . . ,Wk, we can write any vector in Z as

the sum of vectors from each of the subspaces. That is, let y ∈ Z and Z = W1 ⊕ · · · ⊕Wk,

then

y = w1 + w2 + · · · + wk, (3.32)

where wi ∈ Wi. Thus, the construction of Z as the direct sum of independent subspaces

allows us to decompose any vector into several independent components. As we discuss

next, this decomposition of the vector space is essential in block diagonalizing a linear

operator.

Let Z be a n-dimensional vector space over the complex numbers and let U and W

be subspaces of Z such that Z = U ⊕W . Let Bu = {γ1, . . . , γk} and Bu = {γk+1, . . . , γn}

be ordered basis for the subspaces U and W , respectively, where k = n/2. Hence, the

set B = {Bu,Bw} = {γ1, . . . , γk, γk+1, . . . , γn} is an ordered basis of Z. Let R be a linear

operator on Z. Now, observe that Rγp ∈ Z and thus, the vector Rγp must be a linear

combination of the basis vectors in B. That is,

Rγp = c1pγ1 + c2pγ2 + · · · + cnpγn, (3.33)

where the cpq’s are complex numbers and are referred to as the coefficients or coordinates

of Rγp with repsect to the basis B. If γp ∈ U and Rγp ∈ U for 1 ≤ p ≤ k, then the subspace

U is said to be invariant under R or R-invariant [21:199]. If the subspace U is R-invariant

and γp ∈ U , then Eqn. (3.33) reduces to

Rγp = c1pγ1 + c2pγ2 + · · · + ckpγk. (3.34)
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Thus, when γp ∈ U and U is R-invariant, we only need half the basis vectors of Z to write

Rγp. The invariance of U under R induces a linear operator Ru on the subspace U (i.e.,

Rx = Rux if x ∈ U) [21:199]. If the subspace W is R-invariant, then a linear operator Rw

is induced on the subspace W (i.e., Rx = Rwx if x ∈ W ). Recall that since Z = U ⊕W ,

any vector x ∈ Z can be written as x = w + u, where w ∈ W and u ∈ U . Using the

invariance of U and W under R, we can write

Rx = R(u+w) = Ruu+Rww. (3.35)

Thus, the combination of the direct sum property and the invariance of the subspaces

decompose the linear operator R into Ru and Rw. The decomposition of R leads to a

block diagonal matrix representation of R with respect to the basis B = {Bu,Bw}.

The following is based on a discussion presented by Hoffman and Kunze [21:200]. Let

R be the matrix representation of the linear operator R with respect to B and [R]pq denote

the element of R in the pth row and qth column. In general, Rγp is a linear combination

of the basis vectors in B as given in Eqn. (3.33). If we let the coordinates of Rγp be the

pth column of R, then

Rγp =
n∑

q=1

[R]qpγq. (3.36)

Now, notice that if the subspace U is R-invariant and p ≤ k, then γp ∈ U and hence,

Rγp ∈ U . Thus, Rγp is a linear combination of the basis vectors in Bu (and not B) and we

can rewrite Eqn. (3.36) as

Rγp =
k∑

q=1

[R]qpγq, (3.37)

which implies the [R]qp = 0 for k + 1 ≤ q ≤ n and 1 ≤ p ≤ k. Similarly, if p ≥ k + 1, then

γp ∈W and Rγp ∈W . Thus, we can write Eqn. (3.36) as

Rγp =
n∑

q=k+1

[R]qpγq, (3.38)
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which implies the [R]qp = 0 for 1 ≤ q ≤ k and k+ 1 ≤ p ≤ n. Combining these results, we

have

[R]qp =




0 if k + 1 ≤ q ≤ n and 1 ≤ p ≤ k;

0 if 1 ≤ q ≤ k and k + 1 ≤ p ≤ n;

cqp otherwise,

(3.39)

where cqp is a complex number. An examination of Eqn. (3.39) reveals that the matrix

representation R of R with respect to the basis B is a block diagonal matrix of the form

R =


Du 0

0 Dw


 , (3.40)

where Du and Dw are n/2×n/2 matrices and are the matrix representations of the induced

linear operators Ru and Ru, respectively. In general, if Z = W1 ⊕ · · · ⊕Wm and all the

subspace W1, . . . ,Wm are R-invariant, then

R =




D1 0 · · · 0

0 D2 · · · 0
...

...
. . .

...

0 0 · · · Dm



, (3.41)

where the dimension of the square matrix Di is equal to dim(Wi) [29:371]. Therefore,

if we want to diagonalize a linear operator R on a n-dimensional vector space, then n

R-invariant, independent subspaces must exist. This is in sharp contrast to the block

diagonalization of R with blocks of size n/2 × n/2, which only requires two R-invariant,

independent subspaces.

Summarizing, each R in S is a matrix representation of a linear operator R on the

vector space C
MN with respect to some ordered basis for C

MN . The basis is assumed to

be the standard ordered basis of C
MN . If C

MN is the direct sum of R-invariant subspaces,

then the matrix representation of R with respect to the ordered bases for the R-invariant

subspaces will be a block diagonal matrix. When V is restricted to unitary, the block
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diagonalization of R is a unitary similarity transformation involving a unitary change of

basis matrix. Thus, to simultaneously block diagonalize S as in Eqn. (3.28) where V is

unitary, the vector space C
MN must be the direct sum of two subspaces which are invariant

to every R in S. Further, the union of the basis vectors for the two invariant, independent

subspaces must be an orthonormal set. The possibility of these conditions occurring is

discussed in the next section.

3.5 Simultaneous Block Diagonalization of the Family S

The concept of transforming a set or family of matrices into a particular form (e.g.,

diagonal and triangular) is a well researched topic in mathematics and continues to be

a topic of interest [28]. Watters [42] appears to be one of the first to address the issue

of simultaneously block diagonalizing a set of matrices using a similarity transformation.

Watters [42] focused on the special case of block diagonalizing a family with a unitary

similarity transformation where the blocks on the diagonal are of size 2×2 and possibly one

block of size 1× 1. Barker et. al. [3] and Shapiro [36] (Laffey [28] provides a survey paper)

examined the general case using theorems that pre-date the work of Watters, suggesting

that Watters may not have been the first. Regardless of who was first, the end result is a set

of theorems for examining the existence of a similarity transformation that simultaneously

block diagonalizes a family of matrices. Recall that the block diagonalization of R ∈ S

with the transformation VHRV is a similarity transformation if V is unitary. Thus, we

can use the results of Watters, Barker et. al., Shapiro, and Laffey to examine the existence

of a unitary V that block diagonalizes the family S. If V is simply non-singular (i.e.,

not unitary), then the transformation VHRV is not a similarity transformation and the

results from the above cited papers do not apply. When V is simply non-singular, the

transformation VHRV is referred to a ∗congruent (star congruent) transformation, where a

matrix A is said to be ∗congruent to matrix B if A = UHBU for some non-singular matrix

U [23:220]. In contrast to the similarity transformation, a ∗congruent transformation

does not, in general, represent a change of basis and as a result, statements about the

relationships between the vector space, subspace, and linear operators do not exist. What

can be said about the ∗congruent transformation is that it is an equivalence relation and it
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preserves the inertia of Hermitian matrices (i.e., the ordered triple of the number of positive,

negative, and zero eigenvalues) [23:221]. Although research does exists for ∗congruent

diagonalization, research on the ∗congruent block diagonalization of a family of matrices

does not appear to exist. As such, this section will focus on the block diagonalization of

S through a similarity transformation. In particular, we start in Section 3.5.1 with a few

observations about block diagonal matrices and then, we present a discussion on the basic

concept used by Watters [42], Barker et. al. [3], Shapiro [36], and Laffey [27] [28]. Finally,

in Sections 3.5.2 and 3.5.3, we state the results from these papers and apply the results

to the family S. Although we are able to show that a unitary V does not exist in several

cases where M and N are small, we cannot provide a conclusive proof for the general case.

3.5.1 Observations and Basic Concepts. Let BD(k1, . . . , kn) denote a block

diagonal matrix with n square blocks (matrices) on the diagonal of sizes k1, . . . , kn. Now,

observe that the sum and product of two BD(k1, . . . , kn) matrices are BD(k1, . . . , kn)

matrices which is easily verified as follows. Let X and Y be BD(k1, . . . , kn) matrices:

X =




D1 0 · · · 0

0 D2 · · · 0
...

...
. . .

...

0 0 · · · Dn




and Y =




E1 0 · · · 0

0 E2 · · · 0
...

...
. . .

...

0 0 · · · En



,

where Di and Ei are ki × ki matrices, and observe that

X + Y =




D1 0 · · · 0

0 D2 · · · 0
...

...
. . .

...

0 0 · · · Dn




+




E1 0 · · · 0

0 E2 · · · 0
...

...
. . .

...

0 0 · · · En




=




D1 + E1 0 · · · 0

0 D2 + E2 · · · 0
...

...
. . .

...

0 0 · · · Dn + En



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and

XY =




D1 0 · · · 0

0 D2 · · · 0
...

...
. . .

...

0 0 · · · Dn







E1 0 · · · 0

0 E2 · · · 0
...

...
. . .

...

0 0 · · · En




=




D1E1 0 · · · 0

0 D2E2 · · · 0
...

...
. . .

...

0 0 · · · DnEn



.

Using the associative property of matrix addition and multiplication, one can extended

these results to the case of an arbitrary number of BD(k1, . . . , kn) matrices. Next, observe

that if X is a BD(k1, . . . , kn) matrix as defined above and p(·) denotes a polynomial, then

p(X) =




p(D1) 0 · · · 0

0 p(D2) · · · 0
...

...
. . .

...

0 0 · · · p(Dn)



.

Further, if p(X) = 0, then p(Di) = 0 for all i = 1, . . . , n. Additionally, observe that if

X is an arbitrary matrix and U is a non-singular matrix, then p(U−1XU) = U−1p(X)U.

Finally, recall that an algebra is a vector space over a field with an additional operation

called vector multiplication which produces another vector in the algebra and is associa-

tive, distributive with respect to vector addition, and associative with respect to scalar

multiplication [21:117]. Let T be a set of complex matrices that is simultaneously block

diagonalizable with a similarity transformation involving the non-singular matrix U. That

is, if X ∈ T , then U−1XU is a BD(k1, . . . , kn) matrix. One can verify that the algebra

generated by T , using the standard definitions for matrix addition and multiplication, is

block diagonalizable by U as follows. Let AT denote the algebra generated by T and notice

that the elements in AT are generated from the following basic forms:

cXp, (3.42)

Xp + Xq, (3.43)
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XpXq, (3.44)

where c is in the field and Xp and Xq are in T . Now, notice that Dp = U−1XpU and

Dq = U−1XqU, where Dp and Dq are BD(k1, . . . , kn) matrices. Next, observe that

U−1(cXp)U = cU−1XpU = cDp, (3.45)

U−1(Xp + Xq)U = U−1XpU + U−1XqU = Dp + Dq, (3.46)

U−1(XpXq)U = U−1(UDpU−1)(UDqU−1)U = DpDq, (3.47)

and as previously noted, the sum and product of block diagonal matrices of the same form

are also block diagonal matrices of the same form. Thus, the algebra generated by T is

block diagonalizable if T is block diagonalizable. Conversely, since T is a subset of AT ,

if AT is block diagonalizable, then T is block diagonalizable. Using the algebra generated

by the set, instead of the set directly, allows one to take full advantage of the vast research

available on algebras.

The notion of polynomial identities is the central concept in the works of Watters,

Barker et. al., Shapiro, and Laffey. Basically, if the algebra generated by a family (set) of

matrices is block diagonalizable, then the algebra must satisfy a polynomial identity. Let

Mn(F ) denote the full matrix algebra of n×n matrices over the field F (e.g., real numbers

or complex numbers), then a polynomial identity is defined as [28]

Definition 2. A non-zero polynomial p(x1, . . . , xm) in the non-commuting indeterminants

(variables) x1, . . . , xn is called a polynomial identity (PI) for Mn(F ) if

p(A1, . . . ,Am) = 0

for all elements A1, . . . ,Am ∈ Mn(F ).

An example of a polynomial identity for M2(C) is p2(x1, x2, x3) = (x1x2−x2x1)2x3−

x3(x1x2 −x2x1)2. That is, if we select three arbitrary 2× 2 complex matrices, say X1, X2,
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and X3, and substitute Xi for xi into p2(x1, x2, x3), then

p2(X1,X2,X3) = (X1X2 − X2X1)2X3 − X3(X1X2 − X2X1)2 = 0. (3.48)

Note that if a polynomial is a polynomial identity for Mn(F ), then we will refer to the

polynomial as a polynomial identity of degree n. Additionally, note that if a polynomial

is a polynomial identity for Mn(F ), then the polynomial is also a polynomial identity for

Mk(F ) where k < n [42].

Now, using the property that a polynomial identity for Mn(C) is zero for every

element in Mn(C), we can examine the implications on the block diagonalization of an

algebra. Let T be a set of n× n matrices that are simultaneously block diagonalizable to

BD(n/2, n/2) matrices with a similarity transformation involving the non-singular matrix

U. Additionally, let AT denote the algebra generated by T . Thus, for any element Ti in

AT , we can write

U−1TiU = Di =


Ei 0

0 Fi


 , (3.49)

where Ei and Fi are n/2 × n/2 matrices. Also notice that Ti = UDiU−1. Next, let

p(T1, . . . ,Tm) be a polynomial, where T1, . . . ,Tm are arbitrary matrices in AT , and

observe that

p(T1, . . . ,Tm) = Up(D1, . . . ,Dm)U−1 = U


p(E1, . . . ,Em) 0

0 p(F1, . . . ,Fm)


U−1.

(3.50)

If the polynomial p(x1, . . . , xm) is a polynomial identity for Mn/2(C), then p(E1, . . . ,Em) =

0 and p(F1, . . . ,Fm) = 0 which implies p(T1, . . . ,Tm) = 0. That is, the algebra AT must

satisfy a polynomial identity for Mn/2(C). Thus, for a family of matrices to be simulta-

neously block diagonalizable with a similarity transformation, the algebra generated by

the family must satisfy a polynomial identity for the dimension of the largest block. Al-
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though the above discussion highlights the basic concept, it does not reflect the complex

mathematics used in deriving the results presented next.

3.5.2 Quasi-Diagonalization. Watters [42] investigated the conditions for a fam-

ily of normal matrices (recall that Hermitian implies normal) to be simultaneously uni-

tarily similar to quasi-diagonal matrices, where a quasi-diagonal matrix is defined as a

block diagonal matrix with blocks of size 2 × 2 and possibly one block of size 1 × 1 (i.e.,

BD(2, 2, . . . , 2, δ) where δ is either 1 or 2). Watters [42] proves the following theorem:

Theorem 3 (Watters). Let T be a family of Hermitian matrices in Mn(C). The algebra

AT is of unitary type (2, 2, . . . , δ), where δ = 1 or 2, depending on the parity of n (i.e.,

AT is simultaneously unitarily similar to BD(2, 2, . . . , 2, δ) matrices), if and only if

(AP − PA)2Q − Q(AP− PA)2 = 0

for all A ∈ AT , P and Q ∈ T .

Theorem 3 provides the necessary and sufficient conditions for a family of Hermitian

matrices to be simultaneously quasi-diagonalizable with a unitary similarity transforma-

tion. Essentially, Theorem 3 states that the algebra generated by a family of Hermitian

matrices must satisfy the polynomial identity p(x1, x2, x3) = (x1x2−x2x1)2x3−x3(x1x2 −

x2x1)2 to be simultaneously unitary quasi-diagonalizable. Showing that an algebra satisfies

a polynomial identity is a formidable task. However, the true value of Theorem 3 may lie in

proving a family of Hermitian matrices is not simultaneously unitarily quasi-diagonalizable,

since one only needs to provide a single counter-example. Next, we apply Theorem 3 to

the previously defined family S to conclude that S is not, in general, quasi-diagonalizable.

Consider the following three matrices in S and hence, in AS :

R1 = I + c1cH
1 = I + C1,

R2 = I + c2cH
2 = I + C2,

R3 = I + c3cH
3 = I + C3,
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where Ci = cicH
i and represents the clutter correlation matrix from a single dominant

scatter (See Eqn. (3.21) for details). To prove S is not simultaneously unitarily quasi-

diagonalizable, we must show that

(R1R2 − R2R1)2R3 6= R3(R1R2 − R2R1)2. (3.51)

We can simplify this condition by first observing that

(R1R2 − R2R1)2R3 = ((I + C1)(I + C2) − (I + C2)(I + C1))
2 R3

= (I + C1 + C2 + C1C2 − (I + C1 + C2 + C2C1))
2 R3

= (C1C2 − C2C1)2(I + C3)

= (C1C2 − C2C1)2 + (C1C2 − C2C1)2C3 (3.52)

R3(R1R2 − R2R1)2 = (C1C2 − C2C1)2 + C3(C1C2 − C2C1)2. (3.53)

Then, since Eqns. (3.52) and (3.53) share the common term (C1C2 − C2C1)2, we only

need to show that

(C1C2 − C2C1)2C3 6= C3(C1C2 − C2C1)2. (3.54)

Proceeding, we expand (C1C2 − C2C1)2 yielding

(C1C2 − C2C1)2 = C1C2C1C2 − C1C2C2C1 − C2C1C1C2 + C2C1C2C1. (3.55)

and then, expand each of the components on the right-hand side of Eqn. (3.55) to yield

C1C2C1C2 = c1cH
1 c2cH

2 c1cH
1 c2cH

2 , (3.56)

C1C2C2C1 = c1cH
1 c2cH

2 c2cH
2 c1cH

1 , (3.57)

C2C1C1C2 = c2cH
2 c1cH

1 c1cH
1 c2cH

2 , (3.58)

C2C1C2C1 = c2cH
2 c1cH

1 c2cH
2 c1cH

1 . (3.59)

3-25



Now, notice that cH
mcn is a scalar which will be denoted as kmn, where

kmn = cH
mcn

=



e−jπ(υm−υn)(N−1)e−jπ(ωm−ωn)(M−1) sin(π(υm−υn)N)

sin(π(υm−υn))
sin(π(ωm−ωn)M)
sin(π(ωm−ωn)) if m 6= n,

MN if m = n.

(3.60)

Further, notice that knm = k∗mn. Using this observation and the fact that cH
mcn is scalar,

we can rewrite Eqns. (3.56)-(3.59) as

C1C2C1C2 = k12|k12|2c1cH
2 , (3.61)

C1C2C2C1 = MN |k12|2c1cH
1 , (3.62)

C2C1C1C2 = MN |k12|2c2cH
2 , (3.63)

C2C1C2C1 = k∗12|k12|2c2cH
1 , (3.64)

and substituting Eqns. (3.61)-(3.64) into Eqn. (3.55) yields

(C1C2 − C2C1)2 = |k12|2(k12c1cH
2 −MNc1cH

1 −MNc2cH
2 + k∗12c2cH

1 ). (3.65)

Thus,

(C1C2 − C2C1)2C3

= |k12|2(k12c1cH
2 c3cH

3 −MNc1cH
1 c3cH

3 −MNc2cH
2 c3cH

3 + k∗12c2cH
1 c3cH

3 )

= |k12|2(k12k23c1cH
3 −MNk13c1cH

3 −MNk23c2cH
3 + k∗12k13c2cH

3 ), (3.66)

C3(C1C2 − C2C1)2

= |k12|2(k12c3cH
3 c1cH

2 −MNc3cH
3 c1cH

1 −MNc3cH
3 c2cH

2 + k∗12c3cH
3 c2cH

1 )

= |k12|2(k12k
∗
13c3cH

2 −MNk∗13c3cH
1 −MNk∗23c3cH

2 + k∗12k
∗
23c3cH

1 ). (3.67)

Proving that Eqn. (3.66) does not equal Eqn. (3.67) is a difficult problem. However, we

can gain further insight by examining the first element in the first column of the matrices
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in these equations. First, observe that the first element of the column vector ci is 1 for

i = 1, 2, 3 which implies that the first element of the first column of the matrix cmcH
n is 1

for m,n = 1, 2, 3. That is, [cmcH
n ]00 = 1 and thus,

[(C1C2 − C2C1)2C3]00 = |k12|2(k12k23 −MNk13 −MNk23 + k∗12k13) (3.68)

[C3(C1C2 − C2C1)2]00 = |k12|2(k12k
∗
13 −MNk∗13 −MNk∗22 + k∗13k

∗
23). (3.69)

Now, observe that [(C1C2 − C2C1)2C3]00 = [C3(C1C2 − C2C1)2]∗00, and thus, in gen-

eral, [(C1C2 − C2C1)2C3]00 does not equal [C3(C1C2 − C2C1)2]00 unless [(C1C2 −

C2C1)2C3]00 is real. Although at this time we cannot provide a rigorous proof that

[(C1C2 − C2C1)2C3]00 is not real for all values of υi for i = 1, 2, 3, M , N , and β

(recall that ωi = βυi), it is not difficult to find values for these parameters such that

[(C1C2 − C2C1)2C3]00 is not real. Hence, since [(C1C2 − C2C1)2C3]00 does not equal

[C3(C1C2 −C2C1)2]00 in general, then

(C1C2 −C2C1)2C3 6= C3(C1C2 − C2C1)2 (3.70)

which implies that

(R1R2 − R2R1)2R3 6= R3(R1R2 − R2R1)2 (3.71)

and we conclude the S is not simultaneously unitarily similar to quasi-diagonal matrices.

Note that Laffey [27] also investigated the issue of quasi-diagonalization, but restricted the

family to a pair of Hermitian matrices. Essentially, the main result of Watters requires

a family to satisfy a near-infinite number of conditions to be simultaneously block diago-

nalizable. In contrast, Laffey [27] provides several theorems with a finite set of conditions

for a pair of Hermitian matrices to be simultaneously quasi-diagonalizable. Although we

could use Laffey’s theorems to prove that the family S is not quasi-diagonalizable, these

theorems do not lead to simpler expressions than those developed using Watters’ theorem.
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3.5.3 General Case. Barker et. al. [3] and Shapiro [36] investigated the general

case (i.e., block size not restricted to 2×2) of block diagonalizing a family of matrices with

a similarity transformation. Both Barker et. al. and Shapiro provide theorems or corollaries

linking the dimension of the largest block on the diagonal of a block diagonalizable family

to a polynomial identity. Recall that our objective is the block diagonalization of R ∈ S

with the transformation VHRV, where V is non-singular. If V is unitary, then the trans-

formation VHRV is a unitary similarity transformation since VHRV = V−1RV. Thus,

we are concerned with the simultaneous block diagonalization of S with a unitary similar-

ity transformation. However, the unitary distinction is not required, since Barker et. al.,

Shapiro, and Laffey [27] all note that if a family is block diagonalizable with a similarity

transformation, then the family is block diagonalizable by a unitary similarity transforma-

tion. Before presenting the main results of Barker et. al. and Shapiro, we use the following

two observations to establish two properties of the algebra AS generated by the family S:

1. Let T be a set of normal matrices and AT denote algebra generated by T , then

AT = AH
T [36],

2. If AT is an algebra of complex matrices with AT = AH
T , then AT is semi-simple [27].

Recall that the members of S are Hermitian and that Hermitian implies normal. Thus,

the algebra AS generated by S is semi-simple and AS = AH
S .

Barker et. al. [3] present the following special case of the Wedderburn-Artin theorem

which serves as the foundation for their main result:

Theorem 4 (Barker). Let A 6= {0} be a finite dimensional algebra over C. If A is

semi-simple, then A is algebra isomorphic to Mp1 ⊕ · · · ⊕ Mpn.

Thus, any finite dimensional semi-simple algebra can be decomposed into full matrix

algebras of size pi × pi for i = 1, . . . , n which suggests the potential for block diagonalizing

a semi-simple algebra of matrices. In fact, based on Theorem 4, Barker et. al. derive the

following theorem on the block diagonalization of a semi-simple algebra:

Theorem 5 (Barker). Let A be a semi-simple subalgebra of L(V ), where V is a finite

dimensional inner product space over C. Then V has a basis U , and there are integers
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p1, k1, . . . , pn, kn, r such that for each A ∈ A we have

[
A
]
U = diag(B1, . . . , Bn, 0r),

where Bi ∈ M(ki)
pi for i = 1, . . . , n, and such that

dim(V ) = r +
n∑

i=1

piki.

Furthermore, if A is a ∗-subalgebra of L(V ), then the basis U can be chosen to be orthonor-

mal.

In Theorem 5, L(V ) denotes the algebra of linear transformations on V , [A]U de-

notes the matrix representation of the linear operator A with respect to the basis U ,

diag(B1, . . . , Bn, 0r) denotes a block diagonal matrix with blocks of B1, . . . , Bn, 0r where

0r is a zero matrix of size r × r, M(k)
p denotes the algebra of pk × pk matrices of the form

diag(B, . . . , B) where B ∈ Mp and there are k blocks, and a subalgebra is a ∗-subalgebra

if and only if A ∈ A implies AH ∈ A (i.e., A = AH). For discussion purposes, assume

the dimension of the inner product space V is q, then matrix representation of the algebra

L(V ) is the full matrix algebra of q × q complex matrices (denote by Mq(C)) which is not

simultaneously block diagonalizable [28]. Let T denote a set of q× q normal matrices, and

let AT denote the algebra generated by T . Since T is a set of normal matrices, AT is

semi-simple. Thus, from Theorem 5, if AT is a subalgebra of L(V ), then AT is simulta-

neously block diagonalizable by a similarity transformation. Satisfying the hypothesis of

Theorem 5 represents one of the key challenges in using the theorem. One must first show

that AT is semi-simple and then, show that AT 6= Mq(C) which, according to Laffey [28],

is a difficult problem. Even if the hypothesis of Theorem 5 is satisfied, the theorem merely

states that the algebra can be block diagonalized, but does not specify the basis, the num-

ber of blocks, or the size of the blocks. Thus, one is left with the problem of determining the

basis, the number of blocks, and the size of the blocks. However, Barker et. al. do provide

the following corollary linking the size of the largest block to a polynomial identity:
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Corollary 1 (Barker). Let A be a semi-simple subalgebra of L(V ) which satisfies a poly-

nomial identity which is also satisfied by Mp but not by Mp+1. Then there is a basis U for

V such that for each A ∈ A, [A]U = diag(B1, . . . , Bn), where each Bi is a pi × pi matrix

and pi ≤ p. Furthermore, if A is a ∗-subalgebra, then U can be chosen orthonormal.

Shapiro [36] proves the following theorem which also links the size of the largest block

to a polynomial:

Theorem 6 (Shapiro). Let Ω be a non-empty set of complex n×n matrices, and let A be

the algebra generated by Ω over C. Assume A = AH . Let P (x1, . . . , xr) be a polynomial in

the non-commutative variables x1, . . . , xr with coefficients in an algebraically closed field

F . Suppose the equation P (x1, . . . , xr) = 0 is satisfied by every r-tuple of k × k matrices

over F , but there exists an r-tuple of (k + 1) × (k + 1) matrices over F which does not

satisfy the equation. Then the following are equivalent:

1. There is a unitary matrix U such that for all A ∈ A, the matrix UAUH is block

diagonal with blocks of sizes n1, . . . , nt and max{n1, . . . , nt} ≤ k.

2. P (A1, . . . , Ar) = 0 for all A1, . . . , Ar ∈ A.

Shapiro notes that polynomials that satisfy the hypothesis of Theorem 6 do exist

and gives the standard polynomial as one such polynomial. The standard polynomial is

defined as [36]

Definition 3. The standard polynomial in m variables is

Sm(x1, . . . , xm) =
∑

σ

±xσ(1)xσ(2) · · · xσ(m),

where the sum is over all permutations σ of the integers 1, . . . ,m, and the coefficient of

the term xσ(1)xσ(2) · · · xσ(m) is +1 if σ is an even permutation and −1 if σ is an odd

permutation.

Shapiro refers to the equation Sm(x1, . . . , xm) = 0 as the standard identity. Shapiro

cites results of Amitsur and Levitzi and of Levitzi to conclude that the standard identity

S2m(x1, . . . , x2m) = 0 is the polynomial identity of minimal degree for Mm(F ) which sat-

isfies the hypothesis of Theorem 6. Note that Laffey [27] refers to the standard polynomial
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defined above as the standard identity of degree m and reaches a similar conclusion as

Shapiro. Thus, from Theorem 6, if a family of n × n normal matrices is simultaneously

similar to block diagonal matrices with the largest block of size k × k, then the algebra

generated by the family must satisfy the standard identity of degree 2k. Conversely, if the

algebra generated by a family of n × n normal matrices satisfies the standard identity of

degree 2k, then the algebra is simultaneously similar to block diagonal matrices, where the

size of the largest block is less than or equal to k.

We now apply the results of Barker et. al. and Shapiro to examine the existence

of a unitary V that simultaneously block diagonalizes the family S through a similarity

transformation. Ideally, we would use Theorem 3 to prove or disprove the existence of V.

However, at this time, we can only establish that the algebra AS generated by the family

S is semi-simple and not that AS is a subalgebra of the algebra of MMN (C). As noted

earlier, that in addition to being semi-simple, the algebra AS is equal to AH
S . Thus, the

hypothesis of Theorem 6 is satisfied and can be used to examine the existence of V. Recall

that of our objective is to simultaneously block diagonalize every member of S such that

the resulting block diagonal matrices have two blocks of size MN/2 ×MN/2. Therefore,

by Theorem 6, if we assume a V exists that block diagonalizes S as desired, then the

algebra AS must satisfy the standard identity of degree MN . That is, AS must satisfy

SMN (R1, . . . ,RMN ) =
∑

σ

(sgnσ)Rσ(1) · · ·Rσ(MN) = 0, for all R1, . . . ,RMN ∈ AS ,

(3.72)

where (sgn σ) is +1 if σ is an even permutation and −1 is odd permutation. Obviously,

proving that Eqn. (3.72) holds is an extremely difficult problem. However, if we can provide

a single counter-example, then the assumption is contradicted and we can conclude that

V does not exist. Our intuition lead us to believe that V does not exist and thus, we

attempt to provide a counter example.

Consider the following set of matrices in S:

Ri = I + cicH
i = I + Ci, for i = 1, . . . ,MN, (3.73)
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where Ci = cicH
i and represents the clutter correlation matrix from a single dominant

scatter (See Eqn. (3.21) for details). Now, observe that if V is unitary, then

VHRiV = VH(I + Ci)V = I + VHCiV. (3.74)

Thus, we only need to show that the set {C1, . . . ,CMN} does not satisfy the standard

identity of degree MN . That is,

SMN(C1,C2, . . . ,CMN ) =
∑

σ

(sgnσ)Cσ(1)Cσ(2) · · ·Cσ(MN) 6= 0. (3.75)

Observe that a single term of the summation is given by

Cσ(1)Cσ(2) · · ·Cσ(MN) = cσ(1)c
H
σ(1)cσ(2)c

H
σ(2) · · · cσ(MN)c

H
σ(MN) (3.76)

=

[
MN−1∏

k=1

cH
σ(k)cσ(k−1)

]
cσ(1)c

H
σ(MN). (3.77)

Recall that

cH
mcn = e−jπ(υm−υn)(N−1)e−jπ(ωm−ωn)(M−1) sin(π(υm − υn)N)

sin(π(υm − υn))
sin(π(ωm − ωn)M)
sin(π(ωm − ωn))

(3.78)

and thus,

[
MN−1∏

k=1

cH
σ(k)cσ(k−1)

]
=

[
MN−1∏

k=1

e−jπ(υσ(k)−υσ(k−1))(N−1)

]
·
[

MN−1∏
k=1

e−jπ(ωσ(k)−ωσ(k−1))(M−1)

]

·
[

MN−1∏
k=1

sin(π(υσ(k) − υσ(k−1))N)
sin(π(υσ(k) − υσ(k−1)))

]
·
[

MN−1∏
k=1

sin(π(ωσ(k) − ωσ(k−1))M)
sin(π(ωσ(k) − ωσ(k−1)))

]
(3.79)
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which reduces to

[
MN−1∏

k=1

cH
σ(k)cσ(k−1)

]
= e−jπ(υσ(1)−υσ(MN))(N−1)

[
MN−1∏

k=1

sin(π(υσ(k) − υσ(k−1))N)
sin(π(υσ(k) − υσ(k−1)))

]

· e−jπ(ωσ(1)−ωσ(MN))(M−1)

[
MN−1∏

k=1

sin(π(ωσ(k) − ωσ(k−1))M)
sin(π(ωσ(k) − ωσ(k−1)))

]
. (3.80)

To show that Eqn. (3.75) does not hold, it is sufficient to show that the first element of

the first column of the summation is not zero. Recall that [cmcH
n ]00 = 1. Thus, we only

need to show that

∑
σ

(sgnσ)

[
MN−1∏

k=1

cH
σ(k)cσ(k−1)

]
6= 0, (3.81)

and by substituting Eqn (3.80), we can rewrite this condition as

∑
σ

(sgn σ)e−jπ(υσ(1)−υσ(MN))(N−1)

[
MN−1∏

k=1

sin(π(υσ(k) − υσ(k−1))N)
sin(π(υσ(k) − υσ(k−1)))

]

· e−jπ(ωσ(1)−ωσ(MN))(M−1)

[
MN−1∏

k=1

sin(π(ωσ(k) − ωσ(k−1))M)
sin(π(ωσ(k) − ωσ(k−1)))

]
6= 0. (3.82)

At this time, we cannot prove Eqn. (3.82) holds in general. However, we can provide

numerical results for several cases when M and N are small in which Eqn. (3.82) does

not hold. Although the numerical results support our intuition that V does not exist,

numerical results are not a proof for the general case. Additionally, observe that the

summation in Eqn. (3.82) is over MN ! terms where each term involves two products of

(MN − 1) terms and thus, the numerical evaluation of the summation is computationally

intensive (approximately on the order of (MN)2(MN !)) and of limited value. Because of

the computational burden, we only evaluated the summation for small values of M and N .

We present the results from three cases: Case 1 (M = 2,N = 2), Case 2 (M = 2,N = 3),

and Case 3 (M = 2,N = 4). Recall that ωi = βυi and notice that the numerical evaluation

of the summation requires MN values of υi. The values of υi for i = 1, . . . ,MN were

randomly selected from a uniform distribution on the interval (0, 1). For each case, we
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Case 1 Case 2 Case 3
υ1 0.8214 0.4103 0.9501
υ2 0.4447 0.8936 0.2311
υ3 0.6154 0.0579 0.6068
υ4 0.7919 0.3529 0.4860
υ5 0.8132 0.8913
υ6 0.0099 0.7621
υ7 0.4565
υ8 0.0185

Table 3.1 Spatial frequencies used in the numerical evaluation of the standard identity
of degree MN (See Eqn. (3.82)).

present the results for one instantiation of υi for i = 1, . . . ,MN and 10 values of β

uniformly distributed on the interval (0.5, 5.0). The values of υi for the instantiation

presented here are listed in Table 3.1. The magnitude of the summation for the three cases

as function of β are plotted in Fig. 3.1. An examination of Fig. 3.1 clearly reveals that the

summation in Eqn. (3.82) is not zero from the parameters selected which implies that the

family S cannot be simultaneously block diagonalized with blocks of size MN/2 ×MN/2

when M = 2 and N = 2, 3, 4. Based on these limited numerical results, we conjecture that

the family S cannot, in general, be simultaneously block diagonalized with blocks of size

MN/2×MN/2 through a similarity transformation. That is, we conjecture that a unitary

V does not exist.

3.6 Centrosymmetric Clutter

In the previous section, we provided evidence to support the conjecture that the

family of STAP correlation matrices S cannot be simultaneously diagonalized by non-

singular transformation. In this section, we show that the clutter correlation matrix is

a centrosymmetric matrix if we introduce additional assumptions and thus, we can block

diagonalize a family of clutter correlation matrices under these assumptions. We will show

this centrosymmetric property for two different sets of assumptions. In Section 3.6.1,

we add the assumptions that number of clutter patches is infinite and that each clutter

patch has the same power level to the previous assumptions used in defining the family

S. In Section 3.6.2, we add the assumption that the power level is symmetric about the

3-34



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

1

2

3

4

5

6

7

8

9

10

M
ag

n
it

u
d
e

of
S
u
m

β

(a) Case 1: M = 2 and N = 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

100

200

300

400

500

600

700

800

900

M
ag

n
it

u
d
e

of
S
u
m

β

(b) Case 2: M = 2 and N = 3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.5

1

1.5

2

2.5
x 10

4

M
ag

n
it

u
d
e

of
S
u
m

β

(c) Case 3: M = 2 and N = 4

Figure 3.1 Numerical evaluation of the standard identity of degree MN (first element of
the first column only, see Eqn. (3.82)) as a function of β with the parameters
listed in Table 3.1.
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radar platform to the previous assumptions used in defining the family S. Although these

assumptions are not realistic, the centrosymmetric property could be potentially useful for

approximate or data adaptive methods as briefly discussed in Section 3.6.3.

3.6.1 Infinite Number of Clutter Patches and Constant Power. Recall from

Section 3.2 that the clutter was modeled as a series of point scatters, referred to as clutter

patches, that surround the radar and are located in the range gate of interest. Further,

in development of the family S, we assumed that the clutter patches were uncorrelated,

the radar was operating in an unambiguous range scenario (i.e., no second time around

clutter) and there was no intrinsic clutter motion or velocity misalignment. Under these

assumptions, the clutter correlation matrix is given by

R =
Nc−1∑
m=0

ξmC(υm), (3.83)

where Nc is the number of clutter patches and ξm, C(υm), and υm are the power, correla-

tion matrix, and spatial frequency of the mth clutter patch, respectively (Note the slight

notation change from Eqn. (3.6) and the assumption that the receiver noise variance σ2 is

one). The correlation matrix of the mth clutter patch is given by

C(υm) = b(ωm)bH(ωm) ⊗ a(υm)aH(υm) = B(ωm) ⊗ A(υm), (3.84)

where

B(ωm) = b(ωm)bH(ωm) (3.85)

A(υm) = a(υm)aH(υm) (3.86)

b(ωm) =
[
1 ej2πωm . . . ej2π(M−1)ωm

]T
(3.87)

a(υm) =
[
1 ej2πυm . . . ej2π(N−1)υm

]T
(3.88)

ωm = βυm. (3.89)
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Using the properties of the Kronecker product, we can express Eqn. (3.84) as

C(υm) =




A(υm) e−j2πβυmA(υm) · · · e−j2π(M−1)βυmA(υm)

ej2πβυmA(υm) A(υm) · · · e−j2π(M−2)βυmA(υm)
...

...
. . .

...

ej2π(M−1)βυmA(υm) ej2π(M−2)βυmA(υm) · · · A(υm)



,

(3.90)

where

A(υm) =




1 e−j2πυm · · · e−j2π(N−1)υm

ej2πυm 1 · · · e−j2π(N−2)υm

...
...

. . .
...

ej2π(N−1)υm ej2π(N−2)υm · · · 1



. (3.91)

An examination of Eqn. (3.90) reveals that C(υm) is an M × M block matrix where

each block is a N × N matrix. Note that R will also have this block structure. The

blocks of Eqn. (3.90) will serve as the basic building blocks for examining the sum given

in Eqn. (3.83). Before examining the sum, we need to discuss the clutter patch power

parameter ξm.

The power of the mth clutter patch is

ξm =
PtGt(φm, θm)g(φm, θm)λoσm

(4π)3R4
, (3.92)

where Pt is the peak power of the transmitter, Gt(φm, θm) is the transmit antenna gain,

g(φm, θm) is the received element gain, λo is the wavelength of the transmitted signal, σm

is the radar cross section (RCS) of the mth clutter patch, R is the range to the clutter,

and φm and θm are the azimuth and elevation angles to the mth clutter patch. The RCS

of the mth clutter patch is

σm = σo(φm, θm)R∆φ∆R secψ, (3.93)

3-37



where σo(φm, θm) is the area reflectivity of the ground, ∆R is the range covered by a

single range gate, ψ is the grazing angle, and ∆φ = 2π/Nc. The parameter ∆φ defines

the azimuth extent of the clutter patches and is the only parameter directly effected by

increasing or decreasing the number of the clutter patches. Observe that the power of mth

clutter patch is inversely proportional to Nc and thus, we can write clutter patch power as

ξm =
κm

Nc
, (3.94)

where

κm =
PtGt(φm, θm)g(φm, θm)λoσo(φm, θm)2πR∆R secψ

(4π)3R4
. (3.95)

In examining the clutter correlation matrix as the number of clutter patches ap-

proaches infinity, we assume that the transmit gain, receiver element gain, and area reflec-

tivity of the ground are constant for all angles. Under these assumptions, the parameter

κm is a constant κ for all m. Thus, we can write the equation for the clutter correlation

matrix for fixed Nc as

R =
κ

Nc

Nc−1∑
m=0

C(υm) (3.96)

and for the case when Nc approaches infinity as

R∞ = lim
Nc→∞

κ

Nc

Nc−1∑
m=0

C(υm). (3.97)

Without loss of generality, the parameter κ is assumed to be one. For a given β, the clutter

patch correlation matrices are only a function of the spatial frequency υm which is defined

as

υm =
d

λo
sinφm, (3.98)
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assuming a constant elevation angle of zero. Recall that φm is the azimuth angle to the

mth clutter patch and the clutter patches are assumed to be uniformly distributed around

the radar. Therefore, we define φm as

φm =
2π
Nc
m for m = 0, 1, . . . ,Nc − 1. (3.99)

Assuming d = λo/2, we can write the spatial frequency υm as

υm =
1
2

sin
(

2π
Nc
m

)
. (3.100)

We now proceed by first expressing the blocks in R as a summation of the individual N×N

blocks of the clutter patch correlation matrices and then, by examining the individual

elements in each block. Let C(υm)p,q denote the N ×N matrix (block) in the pth row and

qth column of C(υm) and [C(υm)p,q]k,n denote the element in the kth row and nth column

of C(υm)p,q, where 0 ≤ p, q ≤ M − 1 and 0 ≤ k, n ≤ N − 1. The block in the pth row and

qth column of R is given as

Rp,q =
1
Nc

Nc−1∑
m=0

C(υm)p,q. (3.101)

From Eqns. (3.90) and (3.91), we can write C(υm)p,q as

C(υm)p,q = ej2π(p−q)βυm




1 e−j2πυm · · · e−j2π(N−1)υm

ej2πυm 1 · · · e−j2π(N−2)υm

...
...

. . .
...

ej2π(N−1)υm ej2π(N−2)υm · · · 1




(3.102)

and an arbitrary element of C(υm)p,q as

[C(υm)p,q]k,n = ej2π(p−q)βυm ej2π(k−n)υm

= ej2π[(p−q)β+(k−n)]υm

= ej2πzυm (3.103)
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where we have defined z = (p − q)β + (k − n) to ease notation. From Eqns. (3.101)

and (3.103), we can write an arbitrary element of Rp,q as

[Rp,q]k,n =
1
Nc

Nc−1∑
m=0

ej2πzυm. (3.104)

Substituting Eqn. (3.100) into Eqn.(3.104) yields

[Rp,q]k,n =
1
Nc

Nc−1∑
m=0

e
jπz sin

(
2π
Nc

m
)

=
1
Nc

Nc−1∑
m=0

ejπz sin φm. (3.105)

Now, we analyze the summation in Eqn. (3.105) using Bessel functions. The moment

generating function of the Bessel function is [1:361]

e(x/2)(t−1/t) =
∞∑

l=−∞
Jl(x)tl t 6= 0, (3.106)

where Jl(x) is the Bessel function of order l. Substituting t = ejφm and x = πz into

Eqn. (3.106) yields

ejπz sinφm =
∞∑

l=−∞
Jl(πz)ejφml. (3.107)

Thus, by substituting Eqn. (3.107) into Eqn. (3.105), we can write [Rp,q]k,n as

[Rp,q]k,n =
1

Nc − 1

Nc−1∑
m=0

∞∑
l=−∞

Jl(πz)ejφml (3.108)

Observe that the only non-zeros terms in Eqn. (3.108) occur when l is a multiple of Nc,

since for a fixed l 6= Nck (k is an integer) we have

Jl(πz)
Nc

Nc−1∑
m=0

ej
2π
Nc

lm = 0.
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Further, observe that ejφml = 1 when l = Nck and the summation for a fixed l = Nck

yields NcJl(πz). Thus, we can rewrite Eqn. (3.108) as

[Rp,q]k,n =
∞∑

l=−∞
JNcl(πz)

=



J0(πz) + 2

∑∞
l=1 J2Ncl(πz) if Nc is odd;

J0(πz) + 2
∑∞

l=1 JNcl(πz) if Nc is even,
(3.109)

where we have used the fact that J−n(x) = (−1)nJ(x) when n is an integer. For a fixed

x, notice that Jn(x) approaches zero as n approaches infinity [1]. Thus, as Nc approaches

infinity, we would expect [Rp,q]k,n to approach J0(πz). In fact, as Nc approaches infinity,

the summation in Eqn. (3.105) becomes a definite integral which equals J0(πz) [20:221].

That is,

[R∞
p,q]k,n = lim

Nc→∞

1
Nc − 1

Nc−1∑
m=0

ejπz sin φm =
1
2π

∫ 2π

0
ejπz sinφdφ = J0(πz). (3.110)

Now, substituting back in z = (p− q)β + (k − n) into Eqn. (3.110) yields

[R∞
p,q]k,n = J0([(p − q)β + (k − n)]π) (3.111)

Note that Ward [41:28] gives a similar result without derivation or further comment. Equa-

tion (3.111) reveals that each block of R∞ is a real Toeplitz matrix, since each element

only depends on the difference between k and n when p and q are fixed and J0(x) is real

for all real x. Note that, in general, R∞
0,0 is the only block which is a symmetric Toeplitz

matrix. Using the results from Eqn. (3.111), we can write R∞
p,q as

R∞
p,q =




J0(k1βπ) J0([k1β − 1]π) · · · J0([k1β − (N − 1)]π)

J0([k1β + 1]π) J0(k1βπ) · · · J0([k1β − (N − 2)]π)
...

...
. . .

...

J0([k1β + (N − 1)]π) J0([k1β + (N − 2)]π) · · · J0(k1βπ)




(3.112)
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where k1 = p− q. A further examination of Eqn. (3.111) along with the fact that J0(x) =

J0(−x) reveals that

R∞
q,p = R∞

p,q
T , (3.113)

which easily follows since

[R∞
p,q

T ]k,n = [R∞
p,q]n,k

= J0([(p− q)β + (n− k)]π)

and

[R∞
q,p]k,n = J0([(q − p)β + (k − n)]π)

= J0(−[(p− q)β + (n− k)]π)

= J0([(p − q)β + (n− k)]π).

Using Eqn. (3.113), we can write R∞ as

R∞ =




R∞
0,0 R∞

0,1 · · · R∞
0,M−1

R∞
0,1

T R∞
0,0 · · · R∞

0,M−2
...

...
. . .

...

R∞
0,M−1

T R∞
0,M−2

T · · · R∞
0,0



. (3.114)

Thus, R∞ is a real symmetric, Toeplitz-block-Toeplitz matrix. Next, we will show that

R∞ is also centrosymmetric.

Recall from Chapter II that a n× n matrix Q is centrosymmetric if

[Q]p,q = [Q]n−1−p,n−1−q for p, q = 0, · · · , n− 1, (3.115)

or equivalently, Q = JQJ, where J is the anti-diagonal (reverse diagonal) matrix [2]. Thus,

to prove that R∞ is centrosymmetric, we must show that R∞ = JR∞J. We start by pre-
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and post-multiplying R∞ by J which yields

JR∞J =




JR∞
0,0J JR∞

0,1
TJ · · · JR∞

0,M−1
TJ

JR∞
0,1J JR∞

0,0J · · · JR∞
0,M−2

TJ
...

...
. . .

...

JR∞
0,M−1J JR∞

0,M−2J · · · JR∞
0,0J



. (3.116)

Thus, we only need to show that R∞
0,p = JR∞

0,p
TJ to prove that R∞ is centrosymmetric,

since J2 = I. It is easily shown for any Toeplitz matrix Q that Q = JQTJ by noting that

an equivalent condition is JQ = QTJ and examining the elements of the resulting matrices.

Since R∞
p,q is a real Toeplitz matrix, we have R∞

0,p = JR∞
0,p

TJ. Therefore, R∞ is a real

symmetric, centrosymmetric (Toeplitz-block-Toeplitz) matrix. As noted earlier, we can

easily block diagonalize any centrosymmetric matrix with a fixed, efficient transformation

(See Chapter II, Section 2.5).

3.6.2 Finite Number of Clutter Patches and Symmetric Power. In this section,

we ease the assumption that the transmit gain, receiver element gain, and area reflectivity

of the ground are constant for all angles (i.e., each clutter patch has the same power level)

and we examine the clutter correlation matrix when the number of the clutter patches is

fixed and even. The development for the odd case is similar. We now assume that the

transmit gain, receiver element gain, and area reflectivity of the ground are symmetric

about the zero angle in the azimuth plane. That is,

Gt(φ, θ) = Gt(−φ, θ) φ 6= 0, π

g(φ, θ) = g(−φ, θ) φ 6= 0, π

σo(φ, θ) = σo(−φ, θ)

Under these assumptions, the clutter patch power is no longer constant for all m. Thus,

we must write the clutter correlation matrix as

R =
1
Nc

Nc−1∑
m=0

κmC(υm). (3.117)
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Folding the clutter patch power κm back into Eqns. (3.101) and (3.105) yields

Rp,q =
1
Nc

Nc−1∑
m=0

κmC(υm)p,q (3.118)

and

[Rp,q]k,n =
1
Nc

Nc−1∑
m=0

κme
jπz sin φm, (3.119)

where, as before, z = (p − q)β + (k − n) and φm = 2πm/Nc. Now, observe that when

Nc is even, φm = −φNc−m for all m /∈ {0,Nc/2}. In conjunction with the above sym-

metric assumptions, this observation implies that κm = κNc−m. Additionally, recall that

sin(−x) = − sin(x). Using these observations, we can rewrite Eqn. (3.119) as

[Rp,q]k,n =
1
Nc


κ0 − κNc/2 + 2

(Nc/2)−1∑
m=1

κm cos
(
πz sin(φm)

)

=
1
Nc


κ0 − κNc/2 + 2

(Nc/2)−1∑
m=1

κm cos
(
π[(p− q)β + (k − n)] sin(φm)

) , (3.120)

where we have used the fact that ejπz sin φ0 = 1 and ejπz sinφNc/2 = −1. An examination of

Eqn. (3.120) reveals that Rp,q is a real Toeplitz matrix and that Rq,p = RT
p,q. Using these

results, we can write the clutter correlation matrix as

R =




R0,0 R0,1 · · · R0,M−1

RT
0,1 R0,0 · · · R0,M−2

...
...

. . .
...

RT
0,M−1 RT

0,M−2 · · · R0,0



. (3.121)

An examination of Eqn. (3.121) reveals that R is a real symmetric, Toeplitz-block-Toeplitz

matrix. In the previous section, we only used the fact that R∞ is a symmetric matrix with

real Toeplitz blocks to prove its centrosymmetric property (i.e., the individual elements

were not considered). Since R is a symmetric matrix with real Toeplitz blocks, we can

conclude that R is a real symmetric centrosymmetric (Toeplitz-block-Toeplitz) matrix.
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Recall that we defined the family S assuming that the amplitude for each clutter

patch was random, but constant for the CPI (i.e., no intrinsic clutter motion). We can

ease this assumption some what and retain the centrosymmetric property of the clutter

correlation matrix under the symmetric power assumption. A clutter patch is said to have

intrinsic clutter motion when the individual scatters in a clutter patch move (e.g., wind

blown trees). When a clutter patch has intrinsic clutter motion, the amplitude of the

clutter patch fluctuates during the CPI. Ward [41:39–49] models the temporal fluctuations

as a wide-sense stationary random process which has a real, symmetric Toeplitz correlation

matrix. Let Γ(υm) denote M×M correlation matrix of the fluctuations for the mth clutter

patch. Following Ward, the individual elements of Γ(υm) are given as

[Γ(υm)]p,q = ξmγm(p− q) = ξm exp

{
−
(

4πσvTr√
2λo

)2

(p− q)2
}
, (3.122)

where σv is the velocity standard deviation of the scatters in the clutter patch. With the

intrinsic clutter motion, the clutter correlation matrix given in Eqn. (3.83) is rewritten

as [41:47]

R =
Nc−1∑
m=0

(Γ(υm) � B(ωm)) ⊗ A(υm), (3.123)

where � denotes the Hadamard matrix product. Now, if we assume that all the clutter

patches have the same intrinsic clutter motion, then we can rewrite Eqn. (3.118) for the

individual blocks of R as

Rp,q =
γ(p − q)
Nc

Nc−1∑
m=0

κmC(υm)p,q (3.124)

and the block equation (Eqn. (3.121)) for R as

R =




R0,0 γ(1)R0,1 · · · γ(M − 1)R0,M−1

γ(1)RT
0,1 R0,0 · · · γ(M − 2)R0,M−2

...
...

. . .
...

γ(M − 1)RT
0,M−1 γ(M − 2)RT

0,M−2 · · · R0,0



. (3.125)
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An examination of Eqn. (3.125) reveals that R is a real symmetric Toeplitz-block-Toeplitz

matrix and thus, is also a centrosymmetric matrix.

3.6.3 Potential Uses. Assuming the conjecture that the family S cannot be

simultaneously block diagonalized with a fixed transformation is true, then we can attack

the problem of replacing a single channel system with a dual channel system in two ways.

One, we can retain the concept of having a fixed transformation to save computational

cost and select the transformation to minimize the loss in SINR performance. Two, we

could abandon the fixed transformation concept and move to a more computationally

expensive data adaptive transformation method. We believe that the centrosymmetric

results presented in the previous two sections could be useful in the above two approaches

and other applications. We briefly discuss some the potential uses of the centrosymmetric

results in this section. These potential uses represent future areas of research.

The assumptions used in Section 3.6.1 and 3.6.2 force the clutter environment to a

symmetric structure that results in a centrosymmetric clutter correlation matrix. In gen-

eral, the clutter environment will not have a symmetric structure, but one could divide

the clutter into symmetric and anti-symmetric parts. If the symmetric clutter dominates

the the anti-symmetric clutter, then a transformation that block diagonalizes a centrosym-

metric matrix could be a good choice for reducing the loss in SINR performance with the

additional benefit of having an efficient implementation. We experiment with this concept

in the next chapter.

Recall that the block diagonalization of a matrix requires two independent subspaces

that are invariant to the matrix. In the case of centrosymmetric clutter, the two subspaces

are the symmetric subspace and the skewed symmetric subspaces. If the clutter has an anti-

symmetric part, then these two subspaces are no longer invariant to the clutter correlation

matrix and thus, we must find two new invariant subspaces. The symmetric and skewed

symmetric subspaces may represent good initial guesses in a data adaptive search for the

new invariant subspaces. One could envision an approach similar in concept to computing

the eigenvectors with rank one updates, where we start with the symmetric and skewed

symmetric subspaces and computed new subspaces as data becomes available.
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One final area of potential use involves the clutter correlation matrix form Sec-

tion 3.6.1, referred to as the constant clutter correlation matrix, where we assumed an

infinite number of clutter patches and that every clutter patch had the same power level.

Under these assumptions, the clutter correlation matrix is parameterized by only two pa-

rameters: β and the clutter to noise ratio (CNR). Without these assumptions, the clutter

correlation matrix is parameterized by approximately 2Nc parameters, where Nc is the

number of clutter patches. Since the constant clutter correlation matrix is parameterized

by β and the CNR, one could use it in modeling and simulation applications requiring

the quick generation of interference environments, but not requiring high fidelity. With

the proper selection of the CNR, this constant clutter correlation matrix could represent

a worst-case clutter scenario. The constant clutter correlation matrix could be beneficial

in worst-case optimization applications, because there are only two parameters associated

with the clutter instead of approximately 2Nc.

3.7 Summary

In this chapter, we examined one of the main issues with the Block STAP method

(dual channel system) - the block diagonalization of a family of STAP correlation matrices

with a fixed transformation. We first defined a family of STAP correlation matrices,

denoted by S, that is representative of the interference environments typically encountered

by an airborne surveillance radar and has sufficient complexity to stress the ability of STAP

algorithms to remove both spatially and temporally correlated signals. Then, we addressed

the problems of simultaneously diagonalizing and block diagonalizing the family S with a

fixed transformation.

The simultaneous diagonalization of a family of matrices essentially requires the fam-

ily to be a commuting family. We demonstrated that the family S is not a commuting

family and hence, cannot be simultaneously diagonalized by a fixed transformation. The

fact that a family cannot be simultaneously diagonalized does not imply that the fam-

ily cannot be simultaneously block diagonalized by a fixed transformation. We reviewed

the conditions for block diagonalizing a matrix in terms of vector spaces and subspaces,

noting that the simultaneous block diagonalization of a family requires two independent
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subspaces that are invariant to every matrix in the family. A transformation (change of

basis matrix) constructed from the basis vectors for the two subspaces will block diago-

nalize the family through a similarity transformation. A review of the literature provided

theorems for determining if a family of matrices can be block diagonalized or equivalently,

if a block diagonalizing transformation exists. Basically, a family of matrices must satisfy

a polynomial identity of the appropriate degree to be simultaneously block diagonalizable.

Unfortunately, showing that a family satisfies a polynomial identity is extremely difficult,

requiring the satisfaction of a near infinite number of conditions. For small M and N , we

demonstrated with numerical examples that the family S did not satisfy the appropriate

polynomial identity. Thus, we conjecture that the family of STAP correlation matrices

cannot be simultaneously block diagonalized with a fixed transformation.

In Section 3.6, we departed from the family S and only considered the clutter cor-

relation matrix under two additional sets of assumptions. Basically, these additional as-

sumptions force the clutter environment to have symmetry in the azimuth angle plane.

Under these assumptions, we derived the new result that the clutter correlation matrix

is a centrosymmetric matrix. Thus, when these assumptions hold, the clutter correlation

matrix can be easily block diagonalized with a efficient, fixed transformation. This cen-

trosymmetric result provides additional insight into the characteristics of the clutter and

has potential uses in selecting a suboptimal transformation for the block STAP processor

that minimizes or reduces the SINR loss. Further, under the assumptions that all the

clutter patches have the same power level and the number of clutter patches is infinite, the

clutter correlation matrix is not only a centrosymmetric matrix, but is also parameterized

by two parameters: the clutter to noise ratio and β. This simple two parameter charac-

terization of the clutter correlation matrix has potential uses in modeling and simulation

and optimization applications.

We proceeded with our research under the assumption that the conjecture that STAP

correlation matrices cannot be simultaneously block diagonalized is true and with the

objective using a fixed non-block diagonalizing transformation that reduces the loss in

SINR performance. We examine the problem of selecting such a transformation in the

next chapter.
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IV. Transformation Selection

4.1 Introduction

In the previous chapter, we provided evidence to support the conjecture that a block

diagonalizing transformation V does not exist for the family of interference plus noise

correlation matrices S. Assuming this conjecture is true, then the Block STAP processor

(dual system channel) is not equivalent to the optimal process and will experience a loss

in SINR performance. We can proceed with the development of a suboptimal Block STAP

processor (dual channel system) in one of two ways. One, we could retain the concept

of having a fixed transformation to save computational cost and select a non-block diag-

onalizing transformation that minimizes or reduces the loss in SINR performance. Two,

we could abandon the fixed transformation concept and move to a more computationally

expensive data adaptive transformation method which could potentially offer better SINR

performance. In either case, we need a criterion for selecting the transformation that min-

imizes or reduces the loss in SINR performance. We examine the problem of how to select

such a transformation in this chapter.

We start in Section 4.2 with a top-level analysis of the SINR performance of a Block

STAP processor where the transformation V equals the identity matrix. Observe that with

a non-block diagonalizing transformation, the potential exists for the Block STAP proces-

sor to have SINR performance worse than one of the channels, since one of the channels

could act as a noise source for the other channel. The identity matrix configured Block

STAP processor has the desirable property of providing SINR performance greater than

or equal to either channel of the Block STAP processor and thus, will serve as our baseline

system. Basically, this identity matrix configured Block STAP processor assumes that the

off-diagonal blocks of the correlation are zero matrices which is not true, in general. In

Section 4.3, we examine the notion of approximately block diagonalizing the correlation

matrix in the sense of reducing the norm of the off-diagonal blocks. One might heuristi-

cally reason that a Block STAP processor based on a transformation that approximately

block diagonalizes the correlation matrix (i.e., reducing the magnitude of the elements in

off-diagonal blocks) would perform better than the identity matrix configuration, since the
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identity matrix configuration simply assumes that off-diagonal blocks are zero. We demon-

strate through a simulation example that reducing the l2-norm of the off-diagonal blocks

is not a sufficient criterion for improving the SINR performance of the baseline system.

One might also hypothesize that similar weight vectors provide similar performance. We

examine this hypothesis in Section 4.4, where we discuss the transformation selection prob-

lem from the perspective of a perturbation problem, leading to the notion of minimizing

the difference between the optimum weight vector and the equivalent full-dimension Block

STAP weight vector. The development of a selection criterion based on minimizing the

difference between weight vectors does not directly consider the issue of SINR performance.

Thus, in Section 4.5, we develop a transformation selection criterion through an in-depth

analysis of the SINR efficiency (loss) of the Block STAP processor relative to the optimum

STAP processor and discuss the utility of this criterion. In Section 4.6, we summarize the

chapter.

4.2 Identity Transformation

One approach to implementing a suboptimal Block STAP processor would be to

simply assume that the off-diagonal blocks of the correlation matrices are zero, i.e., assume

the correlation matrices have a block diagonal form. Under this block diagonal assumption,

a natural choice for the transformation V is the identity matrix. With V = IMN , the

rank reduction transformations V1 and V2 simply perform a selection process (which is

essentially computationally free) that segments the signal vectors into two temporal periods

(sub-CPIs): one associated with the antenna element samples from the first M/2 pulses

and another associated with the remaining M/2 pulses. With V = IMN , the Block STAP

processing equates to summing the outputs from two sub-CPI optimum weight vectors.

In this configuration, the cross-correlation information between the sub-CPIs, which is

contained in the off-diagonal blocks, is not used in computing the weight vectors leading

to a reduction in SINR performance. As noted earlier, the potential exists for the Block

STAP processor to have SINR performance worse than one or both of the channels when

a non-block diagonalizing transformation is used. In this section, we show that the SINR
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performance of the Block STAP process with V = IMN is equal to or greater than the

SINR performance of either channel of the Block STAP processor.

Recall that the SINR of the Block STAP process is given by

SINRblk =
Psblk

Pnblk
=

(
sHVQ̃−1VHs

)2
sHVQ̃−1R̃Q̃−1VHs

, (4.1)

where s is the steering vector (desired signal),

R̃ =


VH

1 RV1 VH
1 RV2

VH
2 RV1 VH

2 RV2


 =


 Ã B̃

B̃H C̃


 , (4.2)

Q̃ =


VH

1 RV1 0

0 VH
2 RV2


 =


Ã 0

0 C̃


 , (4.3)

and R is the interference plus noise correlation matrix which is partitioned as


 A B

BH C


 . (4.4)

Note that the blocks in the above equations are square matrices. Now, notice that since

s = b(ω) ⊗ a(υ) and b(ω) = [1 ej2πω · · · ej2π(M−1)ω]T , we can write the partitioned

steering vector as

s =


s1

s2


 =


 s1

ejθs1


 , (4.5)

where θ = 2πωM/2. The transformed steering vector z = VHs is given as

z =


z1

z2


 =


VH

1 s

VH
2 s


 . (4.6)

4-3



Using the above observations, we can write the output signal power of the Block STAP

processor as

Psblk =
(
zH
1 Ã−1z1 + zH

2 C̃−1z2

)2
, (4.7)

and the average output interference plus noise power as

Pnblk = zH
1 Ã−1z1 + zH

2 C̃−1z2 + zH
1 Ã−1B̃HC̃−1z2 + zH

2 C̃−1B̃Ã−1z1

= zH
1 Ã−1z1 + zH

2 C̃−1z2 + 2Re{zH
1 Ã−1B̃C̃−1z2}, (4.8)

where Re{x} denotes the real part of the complex scalar x. Each channel of the Block

STAP processor acts as a reduced rank STAP processor and thus, the upper channel output

SINR is [19]

SINR1 = zH
1 Ã−1z1 (4.9)

and the lower channel output SINR is

SINR2 = zH
2 C̃−1z2. (4.10)

Our objective is to show that

SINRblk ≥ SINR1 and SINRblk ≥ SINR2 if V = IMN . (4.11)

First, observe that

Re{zH
1 Ã−1B̃C̃−1z2} ≤ |zH

1 Ã−1B̃C̃−1z2 |, (4.12)

and since R (R̃) is positive definite, that [23:473]

2|zH
1 Ã−1B̃C̃−1z2| ≤ zH

1 Ã−1z1 + zH
2 C̃−1z2. (4.13)
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Thus, we can place an upper bound on Pnblk as

Pnblk = zH
1 Ã−1z1 + zH

2 C̃−1z2 + 2Re{zH
1 Ã−1B̃C̃−1z2}

≤ zH
1 Ã−1z1 + zH

2 C̃−1z2 + 2|zH
1 Ã−1B̃C̃−1z2|

≤ 2
(
zH
1 Ã−1z1 + zH

2 C̃−1z2

)
, (4.14)

which, in turn, places a lower bound on SINRblk of

SINRblk ≥ 1
2
(
zH
1 Ã−1z1 + zH

2 C̃−1z2

)
. (4.15)

When V = IMN , observe that R̃ = R and z = s (z1 = s1 and z2 = ejθs1). Thus, we can

rewrite the bound in Eqn. (4.15) as

SINRblk ≥ 1
2
(
sH
1 A−1s1 + sH

1 C−1s1

)
, (4.16)

and the upper and lower channel SINRs as

SINR1 = sH
1 A−1s1 (4.17)

SINR2 = sH
1 C−1s1. (4.18)

Finally, since the members of the family of interference plus noise correlation matrices S

have a Toeplitz-block-Toeplitz structure, we know that A = C which reduces Eqn. (4.16)

to

SINRblk ≥ sH
1 A−1s1 = SINR1 = SINR2. (4.19)

Therefore, the SINR performance of Block SINR processor is greater than or equal to the

SINR performance of either channel when V = IMN , i.e., Eqn. (4.11) holds. As shown

below, Eqn. (4.11) also holds when V is a unitary block diagonal matrix since the unitary

block diagonal matrix configuration is identical to the identity matrix configuration. From

Eqn. (4.15), we cannot conclusively state that Eqn. (4.11) does or does not hold for an

arbitrary unitary transformation. However, through computer simulations, we have found
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some configurations of interference plus noise correlation matrices, unitary transformations,

and steering vectors where the Block STAP SINR performance is below one or both of the

channels. That is, the potential exist for the Block STAP processor to perform worse

than a single channel reduced rank STAP processor based on either V1 or V2 if the

transformation V is not properly selected. The SINR performance of the identity matrix

configured Block STAP processor will serve as the baseline since its performance meets

or exceeds the performance of either channel. In the next three sections, we examine the

problem of developing a criterion for properly selecting the transformation V to minimize

the loss in the SINR performance.

Before moving onto the next section, we first establish our claim that a unitary block

diagonal matrix configuration and the identity matrix configuration are equivalent. As a

result, we can eliminate unitary block diagonal matrices from the list of potential transfor-

mation candidates for improving SINR performance of the baseline system. Observe that

R̃ = R, Q̃ = Q, and VHs = s when V = IMN and thus, we can rewrite Eqn. (4.1) as

SINRblk =

(
sHQ−1s

)2
sHQ−1RQ−1s

if V = IMN , (4.20)

where

Q =


A 0

0 C


 . (4.21)

To prove our claim, we must show that the SINR of the unitary block diagonal matrix

configuration is equal to Eqn. (4.20). Let V be a unitary block diagonal matrix, i.e.,

V =


U1 0

0 U2


 , (4.22)

where U1 and U2 are unitary matrices. Now, observe that

Q̃ =


VH

1 RV1 0

0 VH
2 RV2


 =


UH

1 AU1 0

0 UH
2 CU2


 = VHQV, (4.23)
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since

V1 =


U1

0


 and V2 =


 0

U2


 .

Recalling that R̃ = VHRV and substituting Eqn. (4.23) into Eqn. (4.1) yields

SINRblk =

(
sHVVHQ−1VVHs

)2
sHVVHQ−1VVHRVVHQ−1VVHs

, (4.24)

which reduces to

SINRblk =

(
sHQ−1s

)2
sHQ−1RQ−1s

(4.25)

since VVH = I. Thus, our claim is proven.

4.3 Approximate Block Diagonalization

As noted earlier, the identity matrix configured Block STAP processor does not use

the cross-correlation information contained in the off-diagonal blocks since these blocks

are assumed to be zero. In general, the off-diagonal blocks of the correlation matrix are

not zero. Heuristically, one might reason that selecting a transformation V that drives the

off-diagonal blocks towards zero would improve the SINR performance of the Block STAP

processor. This suggests the concept of approximately block diagonalizing the correlation

matrix in the sense of reducing the total magnitude of the elements in the off-diagonal

blocks. That is, instead of simply assuming that the off-diagonal blocks are zero matrices,

we select a transformation to make the off-diagonal blocks look more like zero matrices in

a l2-norm sense. The l2-norm (also called the Frobenius norm) of a n × n matrix X will

be denote by ‖X‖2 and is defined as [23:291]

‖X‖2 =


 n∑

p,q=1

|[X]p,q|2



1/2

, (4.26)
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where [X]p,q denotes the elements of X. To isolate the off-diagonal blocks of the trans-

formed correlation matrix R̃, we define an error matrix E as

E = R̃ − Q̃ =


 0 B̃

B̃H 0


 =


 0 VH

1 RV2

VH
2 RV1 0


 . (4.27)

Following this heuristic line of reasoning, we would select the transformation V to reduce

‖E‖2 and as a result, reduce the loss in SINR performance. Certainly, if we reduce ‖E‖2

to zero, then R̃ would be a block diagonal matrix and we would have no loss in SINR

performance. However, as we show next, by way of a simulation example, reducing the

l2-norm of the error matrix E does not necessarily improve the overall SINR performance.

The simulated interference plus noise environment consisted of receiver noise, clut-

ter, and three barrage noise jammers with the relevant simulation parameters listed in

Table 4.1. The selected transform V was an 80 point discrete Fourier transform (DFT)

matrix with V1 and V2 equal to first and last 40 columns of V, respectively. The DFT

matrix configuration reduced the off-diagonal norm (‖E‖2) from 3.67 × 106 to 2.53 × 106.

Figure 4.1 shows the SINR performance (loss) of the identity matrix and DFT matrix

configured Block STAP processors relative to the optimum processor over the entire angle-

Doppler plane. Figure 4.1 clearly shows that the DFT matrix configuration has significantly

worse SINR performance even though the l2-norm of the off-diagonal blocks was reduced.

The in-depth reasons for this decreased performance are discussed in Section 4.5.2. On a

general level, the problem with the notion of approximately block diagonalizing the corre-

lation matrix lies in the fact that the inverse of the correlation matrix is used to compute

the weight vectors. The inverse of a 2 × 2 block matrix is not simply the inverse of the

blocks. Each block of the inverted matrix is a function of the four blocks in the 2×2 block

matrix. Thus, approximately block diagonalizing the correlation matrix by reducing the

off-diagonal norm does not necessarily imply that the inverted correlation matrix will have

a desirable block diagonal form. In the next section, we examine another heuristic ap-

proach for developing a criterion for selecting the transformation V which is based on the

hypothesis that similar weight vectors should provided similar performance. This heuristic
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Parameters Values
Normalized Jammer Angles 0.25, 0.433, -0.15
Jammer to Noise Ratio (dB) 40, 30, 30
Clutter to Noise Ratio (dB) 55
Clutter Beta 1.3
Pulses per CPI 10
Number of Antenna Elements 8

Table 4.1 Simulation parameters.
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(a) Identity matrix configuration
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(b) DFT matrix configuration

Figure 4.1 SINR performance of the identity matrix and DFT matrix configurations
relative to the optimum processor.

approach considers the inverse of the correlation matrix and can be discussed from the

perspective of a perturbation problem.

4.4 Similar Weight Vectors

Under the hypothesis that similar weight vectors provide similar performance (sim-

ilarity hypothesis), one would reason that the transformation V should be selected to

reduce the difference between the optimum weight vector and the Block STAP weight vec-

tors. The dual channel processing of the Block STAP method can be expressed in terms

of an equivalent full dimensional weight vector as

wblk = Q̃−1z, (4.28)
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with the optimum weight vector given by

wopt = R̃−1z, (4.29)

where R̃ and Q̃ are defined in Eqns. (4.2) and (4.3) and z = VHs is the transformed steer-

ing vector. To examine the validity of the similarity hypothesis, we need some measure of

the similarity between the optimum weight vector and the equivalent full dimension Block

STAP weight vector. The l2-norm of the difference between two vectors is a common cri-

terion for measuring the similarity between two vectors and is convenient mathematically.

Thus, we define an error vector e between the optimum and Block STAP weight vectors

as e = wopt − wblk. We can bound the l2-norm of e as

‖e‖2 = ‖R̃−1z − Q̃−1z‖2 ≤ ‖R̃−1 − Q̃−1‖2‖z‖2. (4.30)

Assuming the similarity hypothesis is true, then we would select the transformation V to

reduce ‖R̃−1−Q̃−1‖2. Note that reducing the norm of the matrix E, defined in Eqn. (4.27),

does not necessarily imply a reduction in ‖R̃−1 − Q̃−1‖2. From the previous simulation

example, we find that ‖R̃−1 − Q̃−1‖2 equals 2.47 for the identity matrix configuration and

5.07 for the DFT matrix configuration. Thus, in general, the weight vector of the DFT

matrix configuration is less similar to the optimum weight vector than the identity matrix

configuration, providing some rationale for its decreased SINR performance assuming the

similarity hypothesis is true. Before discussing the validity of the similarity hypothesis

further, we will review some additional results available on the error vector. The error

analysis between wopt and wblk can be viewed as a perturbation problem, which is a well

researched problem in matrix analysis.

Suppose we reverse the roles of wopt and wblk. Then, Q̃ represents the unperturbed

system and R̃ represents the perturbed system since R̃ = Q̃+E. The weight vectors wblk

and wopt are the solutions to the unperturbed and perturbed systems, respectively. Horn
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and Johnson [23:337] provide the following bound for the norm between wblk and wopt:

‖wblk − wopt‖
‖wblk‖

≤ ‖Q̃−1E‖
1 − ‖Q̃−1E‖

if ‖Q̃−1E‖ < 1. (4.31)

Note that Eqn.(4.31) was derived under the condition that ρ(Q̃−1E) < 1, where ρ(Q̃−1E)

denotes the spectral radius of Q̃−1E (i.e., ρ(X) = max{|λi|: λi are the eigenvalues of X})

[23:296]. Also note that ‖Q̃−1E‖ < 1 implies ρ(Q̃−1E) < 1, but the reverse is not

true [23:297]. Finally, note that in Eqns. (4.31) the matrix and vector norms must be

compatible (i.e., ‖Ux‖ ≤ ‖U‖ ‖x‖) [23:293]. Now, if we assume that ‖E‖ < 1/‖Q̃−1‖,

then the bound in Eqn. (4.31) can be rewritten as [23:337]

‖wblk −wopt‖
‖wblk‖

≤ κ(Q̃)
1 − κ(Q̃)(‖E‖/‖Q̃‖)

‖E‖
‖Q̃‖

if ‖Q̃−1‖ ‖E‖ < 1, (4.32)

where

κ(Q̃) =



‖Q̃−1‖ ‖Q̃‖ if Q̃ is nonsingular

∞ if Q̃ is singular.
(4.33)

With regard to the similarity between wblk and wopt, we observe from Eqn. (4.32) that the

earlier notation of reducing the l2-norm of the off-diagonal blocks (‖E‖2) is not without

merit if ‖Q̃−1‖‖E‖ < 1. The right-hand side of Eqns. (4.31) represents upper bound

for ‖Q̃−1 − R̃−1‖ relative to Q̃−1 when ‖Q̃−1E‖ < 1. These results suggest that the

transformation V should be selected to reduce the norm of Q̃−1E to minimize the difference

between wopt and wblk and hence, minimize the loss in SINR performance if the similarity

hypothesis is true. However, we will demonstrate that the similarity hypothesis does not

hold, in general, with a simulation example.

In this simulation example, we use the same interference plus noise environment as the

simulation example in Section 4.3, but we change the transformation matrix V. Instead

of a DFT matrix, we used a transformation that block diagonalizes a centrosymmetric
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matrix, i.e.,

V1 =
1√
2


I

J


 and V2 =

1√
2


 J

−I


 . (4.34)

Figure 4.2 shows the SINR performance (loss) of the identity and centrosymmetric ma-

trix configured Block STAP processors relative to the optimum processor over the entire

angle-Doppler plane. Figure 4.2 shows that the identity matrix configuration has signifi-

cantly better performance than the centrosymmetric matrix configuration. The difference

in SINR performance is discussed in Section 4.5.2 (Note, for the centrosymmetric matrix

configuration that ‖E‖2 = 3.60 × 105 and ‖R̃−1 − Q̃−1‖2 = 2.51). To demonstrate that

the similarity hypothesis does not hold, we simply need show that the SINR of the iden-

tity matrix configuration is greater than the centrosymmetric matrix configuration even

through the l2-norm of the identity matrix configuration error vector e is greater than the

centrosymmetric matrix configuration. Let the SINRid(υ, ω) and SINRc(υ, ω) denote the

SINR of the identity matrix and centrosymmetric matrix configurations, respectively, and

let eid(υ, ω) and ec(υ, ω) denote the l2-norm of the error vector for the respective systems.

Note the SINR and error norm are functions of υ and ω since they depend on the pointing

direction (normalized angle υ and normalized Doppler ω) of the steering vector. Now,

define an indicator function χ(x) such that

χ(x) =




1 if x > 0

0 otherwise.
(4.35)

The similarity hypothesis does not hold if the function

f(υ, ω) = χ(SINRid(υ, ω) − SINRc(υ, ω))χ(eid(υ, ω) − ec(υ, ω)) (4.36)

is not zero for all υ and ω. Figure 4.3(a) shows a plot of the function f(υ, ω) and clearly,

shows that the similarity hypothesis does not hold. Figures 4.3(b) and 4.3(c) show the

difference between the SINR and the norm of the error vector for the two configuration
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(a) Identity matrix configuration
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(b) Centrosymmetric matrix configuration

Figure 4.2 SINR performance of the identity matrix and centrosymmetric matrix con-
figurations relative to the optimum processor.

in the region where f(υ, ω) is one, respectively. The differences shown in Figs. 4.3(b) and

4.3(c) are non-trivial (i.e., cannot be attributed round-off error).

Although the hypothesis that similar weight vectors should provide similar perfor-

mance is not true in a l2-norm sense, the notion of reducing the norm of e with regard to

the condition in Eqn. (4.31) does influence the worst-case SINR performance of the Block

STAP processor as discussed in the next section. In the next section, we explicitly consider

the issue of SINR performance in developing a criterion for selecting the transformation

V.

4.5 Block STAP SINR Efficiency

In the previous two sections, we discussed the problem of selecting the transfor-

mation V from primarily a heuristic perspective without directly considering the SINR

performance of the Block STAP processor. In this section, we directly consider SINR

performance by defining and analyzing the SINR efficiency of the Block STAP processor

relative to the optimum processor. Recall that the output SINR of the optimum process is

SINRmax = sHR−1s = zHR̃−1z, (4.37)
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Figure 4.3 Plots showing the regions of the angle-Doppler plane where the SINR and
‖e‖2 of the identity matrix configuration simultaneously exceed those of the
centrosymmetric matrix configuration.

4-14



where z = VHs, R̃ = VHRV, and V is a unitary matrix. We define the SINR efficiency

(loss) of the Block STAP processor relative to the optimum STAP process as

ε =
SINRblk

SINRmax
=

(
zHQ̃−1z

)2
zHQ̃−1R̃Q̃−1z

1
zHR̃−1z

. (4.38)

Observe that the efficiency ε lies between 0 and 1 and that larger values of ε indicate a

Block STAP processor with better SINR performance. The SINR efficiency in Eqn. (4.38)

can also be viewed as the loss in SINR performance of the Block STAP processor relative to

the optimum STAP processor in the sense that SINRblk = εSINRmax, i.e., the SINR loss is

zero when ε = 1. In the next section, we analyze Eqn. (4.38) and develop a lower bound for

the efficiency ε. From this bound, we can define a criterion for selecting the transformation

V for improving the worst-case SINR performance of the Block STAP processor. Because

the bound is not sharp in the sense that the actual SINR performance of the Block STAP

processor may not approach the bound, we have to temper the criterion as discussed in

Section 4.5.2.

4.5.1 Efficiency Analysis. Our basic approach is to introduce a transformation

so that we can rewrite Eqn. (4.38) in a form where we can apply existing results to bound

the efficiency. We start with the following known result. Suppose X is positive definite

and Hermitian and Y is Hermitian, then there exists a non-singular matrix U such that

UXUH = I and UYUH = Λ, where Λ is a diagonal matrix of the real eigenvalues of

X−1Y [23:250]. Recall that R̃ and Q̃ are positive definite and Hermitian and thus, there

exists a nonsingular matrix T such that

THQ̃T = I (4.39)

THR̃T = D, (4.40)

where D is a diagonal matrix of the real eigenvalues of Q̃−1R̃. Since Q̃−1R̃ is the product

of two positive definite and Hermitian matrices, all of the eigenvalues of Q̃−1R̃ are not

only real, but also greater than zero [23:465]. Now, observe from Eqns. (4.39) and (4.40)
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that

Q̃ = T−HIT−1 = T−HT−1 (4.41)

R̃ = T−HDT−1 (4.42)

which implies that

Q̃−1 = TTH (4.43)

R̃−1 = TD−1TH . (4.44)

Using the above equations, we can write SINRblk as

SINRblk =

(
zHTTHz

)2
zHTTHT−HDT−1TTHz

=

(
zHTTHz

)2
zHTDTHz

(4.45)

and SINRmax as

SINRmax = zHTD−1THz. (4.46)

Substituting Eqns. (4.45) and (4.46) into Eqn. (4.38) yields

ε =

(
zHTTHz

)2
zHTDTHz

1
zHTD−1THz

(4.47)

and by letting x = THz, we have

ε =

(
xHx

)2(
xHDx

)(
xHD−1x

) . (4.48)

Thus, the SINR efficiency of the Block STAP processor relative to the optimum processor

is depended on the eigenvalues of Q̃−1R̃ which are the elements of D. Using Kantorovich’s
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inequality, we can bound the SINR efficiency as [23:444]

ε =

(
xHx

)2(
xHDx

)(
xHD−1x

) ≥ 4λminλmax(
λmin + λmax)2

. (4.49)

where λmin and λmax are the minimum and maximum eigenvalues of Q̃−1R̃, respectively.

We can simplify this bound by examining the behavior of the eigenvalues of Q̃−1R̃.

We first observe that the product Q̃−1R̃ can be written as

Q̃−1R̃ =


Ã−1 0

0 C̃−1




 Ã B̃

B̃H C̃


 =


 I Ã−1B̃

C̃−1B̃H I


 = I +


 0 Ã−1B̃

C̃−1B̃H 0




= I + G. (4.50)

One can show that G is similar to a Hermitian matrix and hence, is diagonalizable with

real eigenvalues. Let {λi}MN
i=1 and {σi}MN

i=1 be the eigenvalues of Q̃−1R̃ and G, respectively.

As noted earlier, all of the eigenvalues of Q̃−1R̃ are real and greater than zero, i.e., λi > 0

for all i. Now, since Q̃−1R̃ is the sum of an identity matrix and a diagonalizable matrix,

we observe that λi = 1 + σi and when combined with the fact that λi > 0 for all i, it

implies

σi > −1 for all i. (4.51)

We can also place an upper bound on {σi}MN
i=1 as follows. Let yT = [yT

1 yT
2 ] and σy form

an eigenpair for G, i.e., Gy = σyy. Then, observe that

Gy =


 0 Ã−1B̃

C̃−1B̃H 0




y1

y2


 =


 Ã−1B̃y2

C̃−1B̃Hy1


 = σyy =


σyy1

σyy2


 (4.52)

which implies that

Ã−1B̃y2 = σyy1 (4.53)

C̃−1B̃Hy1 = σyy2. (4.54)
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Solving Eqn. (4.53) for y1 and substituting into Eqn. (4.54) yields

C̃−1B̃HÃ−1B̃y2 = σ2
yy2. (4.55)

Thus, the nonzero eigenvalues of G occur in positive-negative pairs. Next, we show that

the spectral radius of G is less than or equal to one (i.e., ρ(G) ≤ 1). Since R̃ is positive

definite, we know that [23:473]

ρ(B̃HÃ−1B̃C̃−1) ≤ 1. (4.56)

Recall that the eigenvalues of the matrix UH are the complex conjugate of the eigenvalues

of U and thus, ρ(U) = ρ(UH). Now, notice that C̃−1B̃HÃ−1B̃ = (B̃HÃ−1B̃C̃−1)H and

hence,

ρ(C̃−1B̃HÃ−1B̃) ≤ 1 (4.57)

which implies that

ρ(G) ≤ 1. (4.58)

Combining the results of Eqns. (4.51) and (4.58) and the observation that the eigenvalues

of G occur in positive-negative pairs, we can bound the eigenvalues of G as

−1 < σi < 1 for all i, (4.59)

which implies that ρ(G) < 1. Using this result, we can bound the eigenvalues of Q̃−1R̃ as

0 < λi < 2 for all i. (4.60)
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Using the observation that eigenvalues of G occur in positive-negative pairs and recalling

that ρ(G) = max{|σi|}, we can write the largest and smallest eigenvalues of Q̃−1R̃ as

λmax = 1 + ρ(G) (4.61)

λmin = 1 − ρ(G) (4.62)

Substituting Eqns. (4.61) and (4.62) into Eqn. (4.49) yields

ε ≥ 4 (1 − ρ(G)) (1 + ρ(G))
(1 − ρ(G) + 1 + ρ(G))2

= 1 − ρ(G)2. (4.63)

Recall the SINR efficiency of the Block STAP processor is defined relative to the optimum

STAP processor and thus, larger values of ε indicate better performance with maximum

efficiency (no SINR loss) occurring when ε = 1. From Eqn. (4.63), we observe that ε

approaches one as ρ(G) approaches zero. Thus, we could define a transformation selection

criterion based on the spectral radius of G as follows: to maximize the lower bound of the

Block STAP SINR efficiency relative to the optimum SINR, the transformation V should

be selected to minimize the spectral radius of G. However, a transformation selection

criterion based strictly on the spectral radius of G has limited utility.

The problem with using Eqn. (4.63) to a establish a transformation selection criterion

lies with Kantorovich’s inequality which was used to set the bound in Eqn. (4.63). Referring

to Eqn. (4.49), Kantorovich’s inequality assumes the vector x can be any vector in the

vector space and only achieves the bound with equality if x = c(ϕmax±ϕmin), where ϕmax

and ϕmin are the eigenvectors associated with the maximum and minimum eigenvalues,

respectively, and c is an arbitrary constant [17]. Essentially , the bound in Eqn. (4.63)

represents a worst-case analysis which only occurs if x = c(ϕmax ±ϕmin). If x never takes

on this somewhat unique form, then the SINR efficiency will never reach the bound and

may not even approach the bound as x varies. From Eqn. (4.49), observe that D is a

diagonal matrix and thus, the standard ordered basis vectors ({ei}MN
i=1 ) are eigenvectors

of D. Suppose the diagonal elements of D are ordered from largest to smallest, then

x must equal c(e1 ± eMN ) to achieve the bound in Eqn. (4.49). The possibility of x

having form [c 0 · · · 0 ± c]T appears to be extremely small (most likely, impossible)
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given that x = THVHs. Thus, the bound in Eqn. (4.63) is not useful for comparing the

SINR performance of two suboptimal Block STAP processors. For example, consider the

identity and DFT matrix configurations from the simulation example in Section 4.3. From

Eqn. (4.63), the lower bound on the SINR efficiency for the identity matrix configuration

is 3.05 × 10−6 versus 7.16 × 10−6 for the DFT matrix configuration, suggesting that the

former configuration will have the worst performance. However, the opposite occurs - the

lowest efficiency from the simulation is 5.76×10−2 for the identity matrix configuration and

3.86×10−4 for the DFT matrix configuration. In the next section, we discuss modifications

to the spectral radius criterion to provide a better indication of actual performance.

Before we move into the next section, we address our earlier statement that reducing

the norm of the error vector e = wblk −wopt has an influence on worst-case SINR perfor-

mance. Observe from Eqn. (4.31) that the norm of e is minimized by minimizing ‖Q̃−1E‖,

assuming that ‖Q̃−1E‖ < 1. Now, observe that

Q̃−1E =


Ã−1 0

0 C̃−1




 0 B̃

B̃H 0


 =


 0 Ã−1B̃

C̃−1B̃H 0


 = G (4.64)

and recall that ρ(G) ≤ ‖G‖. Thus, the notion of reducing the norm of e by reducing

‖Q̃−1E‖ (= ‖G‖) is consistent with reducing ρ(G) to improve the worst-case SINR per-

formance of the Block STAP processor given by Eqn. (4.63).

4.5.2 Criterion Discussion. In the previous section, we noted that a transfor-

mation selection criterion based solely on the spectral radius of G was not particularly

useful, because the bound in Eqn. (4.63) represented worst-case SINR performance which

would, in general, not occur. In this section, we discuss modifications to the spectral ra-

dius criterion to improve its utility. First, observe that since D is a diagonal matrix of the

eigenvalues of Q̃−1R̃, we can rewrite the Block STAP SINR efficiency given in Eqn. (4.48)
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as

ε =


MN∑

p=1

|xp|2



2


MN∑

p=1

|xp|2
λp




MN∑

q=1

λq|xq|2



=


MN∑

p=1

|xp|2



2

MN∑
p=1

MN∑
q=1

|xp|2|xq|2
λq

λp

, (4.65)

where {λp}MN
p=1 are the eigenvalues of Q̃−1R̃ and recall that 0 < λp < 2 for all p. Now,

observe that the efficiency depends on the ratio λq/λp and the elements of x. If the

transformation V block diagonalizes the correlation matrix R, then Q̃−1R̃ = I and λq/λp =

1 for all p, q which yields an efficiency of one. If V does not block diagonalize R, then

λq/λp 6= 1 when p 6= q and the efficiency will be less than one. In general, the efficiency

will be low when the ratio λq/λp is large and |xp|2|xq|2 is not small, for at least one set of p

and q. The ratio λq/λp is large only if λp is small since 0 < λq < 2 for all q. The efficiency

also depends on the component of x in the direction of the eigenvectors associated with

small eigenvalues. Suppose λp is a small eigenvalue, then the efficiency will be low if xp

(i.e., pth element of x) is not small. Conversely, if xp is small, then the small eigenvalue

λp will not have a significant impact on the efficiency. Obviously, not all the components

of x can be small and thus, if a large number of the eigenvalues of Q̃−1R̃ are small, then

the efficiency will be poor over a large portion of the angle-Doppler plane. Therefore, to

keep the efficiency high, we want to minimize the number of eigenvalues of Q̃−1R̃ that are

small.

Recall that λp = 1 + σp, where {σp}MN
p=1 are the eigenvalues of the matrix G, and

−1 < σp < 1 for all p. Also recall that eigenvalues of G occur in positive-negative pairs

and hence, we can write σp = −σMN+1−p. Thus, at most, half the eigenvalues of Q̃−1R̃

will be small. Now, observe that if ρ(G) ≈ 1, then at least one of the eigenvalues of G is

close to one which implies that at least one of the eigenvalues of Q̃−1R̃ is small. When

the spectral radius of G is close to one, we essentially only have information about two

eigenvalues of G and of Q̃−1R̃. That is, when ρ(G) ≈ 1, it is possible that several of the

eigenvalues of G are close to one and in which case, several of the eigenvalues of Q̃−1R̃ are

small, leading to poor efficiency. On the other hand, if ρ(G) ≈ 0, then we know that all

4-21



the eigenvalues of G are small and thus, all the eigenvalues of Q̃−1R̃ are approximately

one, leading to high efficiency. Now, suppose that the MN ×MN matrix G has a rank of

r < MN , then MN−r eigenvalues of G are zero and MN−r eigenvalues of Q̃−1R̃ are one.

Thus, one way to ensure that Q̃−1R̃ only has a few small eigenvalues is to keep the rank of

G low. The rank of G is determined by the rank of B̃ = VH
1 RV2, since Ã−1 and C̃−1 are

full rank and square matrices. This suggests we should select the transformation V such

that B̃ has low rank (ideally, zero which implies that ρ(G) = 0 and V block diagonalizes

R). However, restricting our attention to the rank of G ignores the fact that some of

the non-zero eigenvalues of G could be approximately one and in which case, some of the

eigenvalues of Q̃−1R̃ would be small. When x has components in the directions of these

small eigenvalues, the efficiency will be low. Clearly, our transformation selection criterion

must consider both the spectral radius and rank of G. Before proposing a transformation

selection criterion, we present simulation examples to demonstrate the concepts discussed

above.

Earlier, we compared the SINR efficiency of the identity, DFT, and centrosymmetric

matrix configurations in an interference plus noise environment consisting of receiver noise,

clutter, and three barrage noise jammers (See Table 4.1 and Figs. 4.1 and 4.2). We noted

that the identity matrix configuration had significantly better performance than the other

two configurations (See Table 4.2 for the average efficiency over the angle-Doppler plane

for the three configurations). The spectral radius of G was approximately one of all

three configurations yielding a lower bound for the efficiency of approximately zero (See

Table 4.2). Thus, the lower bound (or equivalently, ρ(G)) is not useful for comparing the

performance of these three configurations. As noted previously, we need to consider the

rank of G in addition to the spectral radius of G to get a more complete picture of SINR

performance. Plotted in Fig. 4.4 are the eigenvalues of G in ascending order for all three

configurations. Referring to Fig. 4.4, we observe that the ordering of the configurations

according to rank is the identity matrix configuration, then the centrosymmetric matrix

configuration, and finally, the DFT matrix configuration. An examination of Table 4.2

reveals the same ordering among configurations in terms of the highest average efficiency

(lowest average SINR loss). Basically, the identity matrix configuration performs the best
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Parameter Identity DFT Centrosymmetric
Average Efficiency 0.69 0.04 0.11
Average SINR Loss (dB) 1.6 13.6 9.8
Lower Bound of ε 3.05 × 10−6 7.16 × 10−6 5.56 × 10−5

Minimum ε 5.76 × 10−2 3.86 × 10−4 1.04 × 10−4

Maximum ε 0.96 0.89 0.95
‖E‖2 3.67 × 106 2.53 × 106 3.61 × 105

‖R̃−1 − Q̃−1‖2 2.47 5.07 2.51
Average of |σp| 0.2275 0.7995 0.6733

Table 4.2 Summary of simulation results for the identity, DFT, and centrosymmetric
matrix configurations, where the interference plus noise environment consisted
of receiver noise, clutter, and three barrage noise jammers.

because the possibility of x having a component associated with a small eigenvalue of

Q̃−1R̃ is less since there are fewer small eigenvalues.

Recall that G has r non-zero eigenvalues, where r is the rank of G, and these non-

zero eigenvalues of G could result in small eigenvalues of Q̃−1R̃. We can gain insight into

the rank of G and the rank ordering of the configurations by examining the transformed

interference plus noise correlation matrix. Recall that the interference plus noise correlation

matrix is the sum of the receiver noise, barrage noise jamming, and clutter correlation

matrices. Also recall that the receiver noise correlation matrix is a scaled identity matrix

and the jamming correlation matrix has a block diagonal form. Note that we do not

have to consider the receiver noise correlation matrix since the transformations are unitary

matrices. The approximate rank of the clutter correlation matrix is 19 based on Brennan’s

rule [41:29] and the rank of the jamming correlation matrix is 30 (note that the rank is

invariant to a unitary transformation). As noted earlier, the rank of G depends on the

rank of B̃ = VH
1 RV2 which is the off-diagonal block of the transformed interference plus

noise correlation matrix. For the identity matrix configuration, we have B̃ = B which is

just the off-diagonal block of the clutter correlation matrix since the receiver noise and

jamming correlation matrices are block diagonal matrices before and after transformation.

Thus, the rank of B̃ is less than 19 which implies that the rank of G is less than 38. The

clutter has constant power for all clutter patches and hence, its a centrosymmetric matrix.

For the centrosymmetric matrix configuration, the transformed clutter correlation matrix
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Figure 4.4 Eigenvalues of G sorted in ascending order for the identity, DFT, and cen-
trosymmetric configurations, where the interference plus noise environment
consisted of receiver noise, clutter, and three barrage noise jammers.

has a block diagonal form, but the transformation destroys the block diagonal form of the

jamming correlation matrix. Thus, B̃ is only a function of the jamming correlation matrix

which has a rank of 30 and therefore, the rank of G is less than 60. For DFT matrix

configuration, the block diagonal form of the jamming correlation matrix is destroyed and

thus, B̃ becomes a function of both the clutter and jamming. This mixing of the clutter

and jamming by the DFT transformation accounts for the rank of G being higher than

the other two configurations. Clearly, the transformation should not increase the rank of

G unless it also significantly reduces the spectral radius of G.

In this simulation example, the interference plus noise environment consists of clutter

and receiver noise and we only consider the identity and centrosymmetric matrix configu-

rations (note that the DFT matrix configuration increased the rank without a reduction in

the spectral radius). The clutter is divided into two parts: symmetric and anti-symmetric.

Recall that the clutter from the previous simulation example was constructed with all

the clutter patches having the same power level, giving it a symmetric structure and a

4-24



centrosymmetric correlation matrix. Thus, the symmetric part is the same clutter from

previous simulation example. The anti-symmetric part consisted of 11 clutter patches uni-

formly distributed between normalized angle of 0.13 and 0.21. We considered two cases for

the anti-symmetric clutter: one with the anti-symmetric clutter patches having a 0 dB gain

relative to the symmetric clutter patch power level and the other with the anti-symmetric

clutter patches having a 20 dB gain relative to the symmetric clutter patch power level.

The simulation results are summarized in Table 4.3. Figure 4.5 shows the SINR (loss)

performance of the identity and centrosymmetric matrix configurations relative to the

optimum processor. Table 4.3 and Fig. 4.5 show that the centrosymmetric matrix con-

figuration had better performance than identity matrix configuration. An examination of

Table 4.3 reveals that the lower bound on efficiency does, in this example, indicate which

configuration will perform better, but only in the 0 dB case with the centrosymmetric

matrix configuration does the lower bound approach the simulated efficiency. Plotted in

Fig. 4.6 are the eigenvalues of G, showing that G has a lower rank for the centrosymmetric

matrix configuration. The better performance of the centrosymmetric matrix configuration

is attributed to this lower rank. The centrosymmetric matrix configuration has a lower

rank because the transformation block diagonalizes the symmetric clutter correlation ma-

trix and thus, B̃ is only function of the anti-symmetric clutter which only has a few clutter

patches. In the case of the identity matrix configuration, B̃ is function both the symmet-

ric and anti-symmetric clutter. Again, this simulation example highlights the importance

of selecting a transformation that decreases the rank of the matrix G. This simulation

example also suggest that the centrosymmetric block diagonalizing transformation is good

candidate in non-jamming environments as noted earlier.

The previous discussion and simulation examples have highlighted that the Block

STAP SINR efficiency depends both on the spectral radius and rank of G. The efficiency

is, in general, higher when these two factors are small and is one when either the spectral

radius or rank is zero (one implies the other). Thus, the transformation selection criterion

should consider the spectral radius and rank of G with the objective of minimizing both.

One way to simultaneously consider both the spectral radius and rank of G is by averaging

the magnitude of the eigenvalues of G. This average is zero only if the spectral radius or
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(c) Identity matrix configuration - 20 dB case
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(d) Centrosymmetric matrix configuration -
20 dB case

Figure 4.5 SINR performance of the identity matrix and centrosymmetric matrix con-
figurations relative to the optimum processor, where the interference plus
noise environment consisted of receiver noise, symmetric clutter, and anti-
symmetric clutter with a gain of either 0 dB or 20 dB above the symmetric
clutter patches.
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Figure 4.6 Eigenvalues of G sorted in ascending order for the identity and centrosymmet-
ric configurations, where the interference plus noise environment consisted of
receiver noise, symmetric clutter, and anti-symmetric clutter with a gain of
either 0 dB or 20 dB above the symmetric clutter patches.
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Parameter Identity Centrosymmetric
Case 0 dB 20 dB 0 dB 20 dB
Average Efficiency 0.7490 0.7487 1 0.9993
Lower Bound of ε 1.4967 × 10−6 1.3638 × 10−7 9.6167 × 10−1 7.7436 × 10−2

Minimum ε 0.1345 0.1311 0.9807 0.9469
Maximum ε 0.9341 0.9338 1 1
Average of |σp| 2.9878 × 10−1 3.1080 × 10−1 9.773 × 10−3 7.4690 × 10−2

Table 4.3 Summary of simulation results for the identity and centrosymmetric matrix
configurations, where the interference plus noise environment consisted of re-
ceiver noise, symmetric clutter, and anti-symmetric clutter with a gain of
either 0 dB or 20 dB above the symmetric clutter patches.

rank of G is zero. In general, the average is small if the rank is low or if the spectral radius is

small. The average of the magnitude of the eigenvalues of G from the simulation examples

are listed on the last lines of Tables 4.2 and 4.3. Observe that the average provides a reliable

indication of the configuration with the highest average efficiency. Thus, we propose the

following transformation selection criterion:

Definition 4 (Proposed Block STAP Transformation Selection Criterion). Let R

be the positive definite and Hermitian interference plus noise correlation matrix, V be a

unitary matrix, and s be the steering vector (desired signal). Define the SINR efficiency of

the Block STAP processor relative to the optimum STAP processor as

ε =
SINRblk

SINRmax
=

(
zHQ̃−1z

)2
zHQ̃−1R̃Q̃−1z

1
zHR̃−1z

, .

where

R̃ =


VH

1 RV1 VH
1 RV2

VH
2 RV1 VH

2 RV2


 =


 Ã B̃

B̃H C̃


 ,

Q̃ =


VH

1 RV1 0

0 VH
2 RV2


 =


Ã 0

0 C̃


 ,
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and z = VHs. Let

G =


 0 Ã−1B̃

C̃−1B̃H 0


 .

To maximize the average SINR efficiency (minimize the SINR loss) of the Block STAP

processor relative to the optimum STAP processor, the transformation V should be selected

to minimize the average of the magnitude of the eigenvalues of G.

Although our analysis and simulation examples support the proposed transformation

selection criterion, a rigorous analysis and proof this criterion remains as an open research

area.

4.6 Summary

Without a block diagonalizing transformation, the Block STAP processor is not

equivalent to the optimum STAP processor and as a result, a Block STAP processor based

on non-block diagonalizing transformation will experience a loss in SINR performance. In

this chapter, we addressed the problem of how to select a non-block diagonalizing transfor-

mation to minimize or reduce the loss SINR performance. We first noted that a suboptimal

Block STAP processor has the potential to perform worse than one of its channels if the

transformation is not selected properly. We showed that a suboptimal Block STAP process

based on the identity matrix has the desirable property of providing SINR performance

greater than or equal to either channel. Then, we discussed two heuristic approaches to

developing a transformation selection criterion. The first approach was to approximately

block diagonalize the correlation matrix by reducing the l2-norm of the off-diagonal blocks.

The second approach was to reduce the l2-norm of the difference between the optimum

and the equivalent full dimension Block STAP weight vectors. Using simulation examples,

we showed that these two approaches did not provide a reliable indication of SINR perfor-

mance. Next, we analyzed the SINR efficiency of the Block STAP processor relative to the

optimum processor and provided a lower bound for the efficiency. The utility of a transfor-

mation selection criterion based solely on this lower bound is limited, because the bound
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is not obtained, in general. We discussed and demonstrated through simulation examples

that the transformation selection criterion should combine the condition for improving the

lower bound with additional information (i.e., spectral radius and rank of G). Finally,

we proposed a transformation selection criterion based on this combined information that

provides a reliable indication of SINR performance for the simulation examples presented.

The rigorous analysis and proof of this criterion is a future area of research.
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V. Reduced-Rank Direct Form Transformation Selection

5.1 Introduction

In this chapter, we depart from the dual channel concept and address the problem

of selecting the optimal rank reduction transformation for a data adaptive, reduced-rank

direct form processor. We introduce the SINR metric and propose a reduced-rank direct

form processor based on this SINR metric, which we refer to as the SINR metric method.

The SINR metric is a quantifier that identifies the eigenvectors of the interference plus

noise correlation matrix having the greatest impact on the output SINR. If the rank re-

duction transformation is constructed from r eigenvectors of the correlation matrix, then

the r eigenvectors with the largest SINR metric are the optimal set of r eigenvectors in

terms of SINR performance. That is, any other set of r eigenvectors will yield an output

SINR less than the r eigenvectors with the largest SINR metric. The SINR metric and the

reduced-rank SINR metric method are the direct form analogs to the cross-spectral metric

(CSM) and the reduced-rank CSM generalized sidelobe canceler introduced by Goldstein

and Reed [11–14]. Both the SINR metric direct form processor and the CSM generalized

sidelobe canceler exhibit a graceful degradation in SINR performance as the transforma-

tion rank is reduced below full dimension. In contrast, principal component methods, such

as the principal component inverse (PCI) [25] and minimum norm eigencanceler [18], can

exhibit a sharp decrease in performance if the number of principal components is under-

estimated [14]. Although ordering the eigenvectors according to the largest eigenvalues

(principal components) yields the best low-rank approximation to the full dimension cor-

relation matrix [35:45-46], the principal component ordering does not consider the output

SINR and as such, does not yield the maximum output SINR. Basically, the SINR metric

and CSM methods use the output SINR as a cost function in the transformation selection

process which yields a smooth decrease in SINR performance as the transformation rank

is reduced.

The remainder of this chapter is organized as follows. In Section 5.2, we briefly

review the cross-spectral metric generalized sidelobe canceler. Note that in Appendix A,

we show that the CSM for each of the noise subspace eigenvectors is zero which implies the
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Figure 5.1 Block diagram of a reduced-dimension (rank) generalized sidelobe canceler.

optimum generalized sidelobe canceler weight vector lies in the interference subspace. The

development of the SINR metric method is presented in Section 5.3. In Section 5.4, we

present simulation results that highlight the importance of incorporating a cost function

in the transformation selection process and demonstrate that the performance of the SINR

metric and CSM methods depend on the interference plus noise environment and available

resources. In Section 5.5, we discuss the limitations of the SINR metric and CSM methods

in practical applications and the relevance of these limitations to the Block STAP method.

We summarize the chapter in Section 5.6.

5.2 Cross-Spectral Metric Generalized Sidelobe Canceler

The basic implementation structure of the reduced-rank generalized sidelobe canceler

(GSC) is shown in Fig. 5.1. The upper branch forces the GSC to have a response in the

spatial and Doppler directions defined by the steering vector, s. The lower branch provides

an estimate of the noise in the upper branch and the final processing step of subtracting the

lower branch from the upper branch reduces the output noise level. In the lower branch,

the MN − 1 ×MN matrix B, referred to as the blocking matrix, annihilates the steering

vector (i.e., Bs = 0) and has full rank. The blocking matrix prevents the cancellation of

signals received in the spatial and Doppler directions defined by the steering vector. The

MN − 1 × r matrix V is the rank reduction transformation and the weight vector wgsc is
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an unconstrained Wiener filter. Without the rank reduction transformation matrix V, the

weight vector for the Wiener filter is given as [14]

wgsc = R−1
b rbd (5.1)

where rbd = BRs, Rb = BRBH , and R is the interference plus noise correlation matrix.

The output SINR from the GSC shown in Fig. 5.1 (ignoring V) is [14]

SINRgsc =
|α|2

σ2
d − rH

bdR
−1
b rbd

=
|α|2

σ2
d −

L∑
i=1

|uH
i rbd|2
λi

, (5.2)

where σ2
d = sHRs, |α|2 is the power of the desired signal, {ui}L

i=1 are the eigenvectors of

Rb, {λi}L
i=1 are the associated eigenvalues, and L = MN − 1. In Eqn. (5.2), the term

|uH
i rbd|2
λi

(5.3)

is the so-called cross-spectral metric (CSM) [14]. Since the interference plus noise correla-

tion matrix is positive definite, the cross-spectral metric is non-negative.

Recall the interference plus noise correlation matrix can be written as the sum of

the interference (correlated noise) correlation matrix and the receiver noise (uncorrelated

noise) correlation matrix. The interference correlation matrix is the sum of the clutter

and barrage noise jamming correlation matrices and in general, is not full rank. As noted

earlier, the eigenvectors of the interference correlation matrix are also the eigenvectors of

the interference plus noise correlation matrix, since the correlation matrix of the receiver

noise is a scaled identity matrix. The eigenvectors of the interference correlation associated

with the non-zero eigenvalues form the interference subspace and the remaining eigenvec-

tors form the noise subspace. Note that these two subspaces are defined relative to the

interference plus noise correlation matrix Rb in the case of the GSC. One can show that the

CSM for each of the noise subspace eigenvectors is zero which implies the optimum GSC

weight vector lies in the interference subspace (See Appendix A for a proof). Thus, we can

exploit the low rank nature of the interference correlation matrix to reduce the dimension
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of the weight vector wgsc. That is, if the rank reduction transformation V spans the inter-

ference subspace, then the reduced-rank GSC provides the same SINR performance as the

full dimension GSC. Now, since the optimum GSC weight vector lies in the interference

subspace, we can rewrite Eqn. (5.2) as

SINRgsc =
|α|2

σ2
d −

P∑
i=1

|uH
i rbd|2
λi

, (5.4)

where P is the rank of the interference subspace, {ui}P
i=1 are the eigenvectors that span

the interference subspace, and {λi}P
i=1 are the associated eigenvalues.

Suppose we want to reduce the rank of the transformation V (or equivalently, the

dimension of the weight vector) below the rank of the interference subspace, say to rank

r. We are now faced with the problem of how to select the r columns of V to minimize

the loss in SINR performance. Observe that if the r columns of V are a subset of the

interference subspace eigenvectors, then the summation in Eqn.(5.4) will only include the

terms associated with the r eigenvectors used in V. Thus, the output SINR of an eigen-

based reduced-rank GSC is given as

SINRRRgsc =
|α|2

σ2
d −

r∑
i=1

|uH
i rbd|2
λi

, (5.5)

where {ui}r
i=1 are the columns of V and {λi}r

i=1 are the associated eigenvalues. The partial

sum given in Eqn. (5.5) will obviously be less than the summation over all P interference

subspace eigenvectors and thus, the output SINR of the reduced-rank GSC with r < P

will be less than the full dimension GSC. The objective is to select the eigenvectors which

minimize the reduction in SINR performance. Clearly, the partial sum in Eqn. (5.5) is

maximized by selecting the r eigenvectors with the largest CSM which, in turn, minimizes

the loss in SINR performance. Thus, when the rank reduction transformation V of a GSC

is constructed from r eigenvectors of the interference plus noise correlation matrix, the

SINR is maximized by selecting the r eigenvectors with the largest CSM.
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Figure 5.2 Block diagram of a reduced-dimension (rank) direct form processor.

5.3 SINR Metric Direct Form Processor

The basic implementation structure for the reduced-rank direct form processor is

shown in Fig. 5.2, where the MN × r matrix V is the rank reduction transformation and

w is a r×1 weight vector designed to maximize the SINR. The full dimension (i.e., without

V) weight vector of the direct form processor is given by

w = wdfp = R−1s, (5.6)

and the reduced-rank weight vector by

w = wRRdfp = (VHRV)−1VHs, (5.7)

where R is the interference plus noise correlation matrix and s is the steering vector.

As with the reduced-rank GSC, the SINR performance of the reduced-rank direct form

processor will be less than the full dimension direct form processor. Thus, the objective is

to select the r columns of V such that the loss in SINR performance is minimized. Inspired

by Goldstein and Reed’s CSM method, we propose a method where the r columns of V

are eigenvectors of R and are selected based on their impact on the output SINR from

a direct form perspective. That is, we are using the output SINR as a cost function to

identify the r eigenvectors (columns of V) that minimize the loss in SINR performance.

Without the rank reduction transformations, the GSC shown in Fig. 5.1 provides

the same output SINR as the direct form processor shown in Fig. 5.2 when the weight

vectors wgsc and wdfp are defined by Eqns. (5.1) and (5.6), respectively. However, the
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SINR equations for the full dimension GSC and direct form processor are different. The

SINR for the full dimension direct form processor is

SINRdfp = |α|2sHR−1s = |α|2
MN∑
i=1

|fH
i s|2

λ̃i

, (5.8)

where {fi}MN
i=1 are the eigenvectors of R and {λ̃i}MN

i=1 are the associated eigenvalues. In

Eqn. (5.8), the term

|fH
i s|2

λ̃i

, (5.9)

is referred to as the SINR metric. Since R is positive definite, the SINR metric is always

greater than zero. Thus, unlike the GSC, we cannot state that the optimum weight vector

lies in the interference subspace (or in the noise subspace).

With the reduced-rank weight vector defined as in Eqn. (5.7), the output SINR for

the reduced-rank direct form processor is given by [19]

SINRRRdfp = |α|2sHV
(
VHRV

)−1
VHs. (5.10)

Now, if we restricted the r columns of V to be a unique subset of the eigenvectors of R,

then we can rewrite Eqn. (5.10) as

SINRRRdfp = |α|2sHVΛ̃
−1

VHs = |α|2
r∑

i=1

|fH
i s|2

λ̃i

, (5.11)

where Λ̃ is a diagonal matrix of the eigenvalues associated with the r eigenvectors ({fi}r
i=1)

that compose the columns of V. The output SINR of the reduced-rank direct form pro-

cessor given by Eqn. (5.11) is only a partial sum of the output SINR for the fully adaptive

processor given by Eqn. (5.8). Thus, in general, the reduced-rank direct form processor

will incur a loss in SINR performance. The objective is to select the columns of V as

the eigenvectors of R that minimize the loss in SINR performance, which is equivalent to

maximizing the partial sum given in Eqn. (5.11). Clearly, the partial sum is maximized by

selecting the r columns of V to be the eigenvectors with the largest SINR metric. Thus,
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with the SINR metric method, the r columns of V are the r eigenvectors of R with the

highest SINR metric and as a result, yields the optimum eigen-based rank r direct form

processor in terms of SINR performance.

The eigenvectors {fi}MN
i=1 form an orthonormal basis for the signal space and thus, the

steering vector and the interference plus noise vector can be written as a linear combination

of the eigenvectors. The SINR metric given by Eqn. (5.9) basically represents the SINR

along each of the basis vectors. We denote the subspace spanned by the r eigenvectors

with the highest SINR metric as the high SINR subspace and the subspace spanned by

the remaining eigenvectors as the low SINR subspace. Now, note that the high SINR

subspace is orthogonal to the low SINR subspace. If we select the r columns of V to be

the eigenvectors with the largest SINR metric, then the weight vector defined by Eqn. (5.7)

lies in the high SINR subspace and thus, cancels any signal components (eigenvectors) in

the low SINR subspace.

In summary, both the CSM and SINR metric methods introduce the output SINR as

a cost function into the process of selecting the rank reduction transformations. The CSM

and SINR metric provide an ordering of the eigenvectors of BRBH and R, respectively,

based on their relative impact on the output SINR. In contrast, ordering the eigenvectors

according to the principal components (i.e largest eigenvalues) is not directly related to

the output SINR. The principal component (PC) ordering provides the best low rank

approximation to the full dimension matrix as noted earlier. One can show that the CSM

GSC and PC GSC provide the same SINR performance when the rank of the transformation

exceeds the dimension of the interference subspace. However, as Goldstein and Reed have

shown, the best low rank approximation does not translate into maximizing the output

SINR when the rank is below the dimension of the interference subspace. One can also show

that the full dimension direct form processor and GSC have the same SINR performance,

but as the rank is reduced below full dimension, a direct analytical comparison of the CSM

and SINR metric methods becomes a difficult task. The SINR performance of the CSM

and SINR metric methods as a function of the transformation rank r (i.e., the number

of columns in the rank reduction transformation) is determined by their respective SINR
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equations:

SINRgsc(r) =
|α|2

σ2
d −

r∑
i=1

|uH
i rbd|2
λi

for 1 ≤ r ≤MN − 1, (5.12)

SINRdfp(r) = |α|2
r∑

i=1

|fH
i s|2

λ̃i

for 1 ≤ r ≤MN, (5.13)

where r is the number of columns in the rank-reduction transformation. Basically, the rel-

ative performance of the CSM and SINR metric methods will depend on the rate that

Eqns. (5.12) and (5.13) increase as a function of r. The direct relationship between

Eqns. (5.12) and (5.13) as well as the behavior of uH
i rbd and fH

i s as a function of the

steering vector and the interference plus noise environment remain as open research ar-

eas. In the next section, we present simulation results that show the SINR performance of

the CSM GSC and SINR metric direct form processor in several scenarios. Our intent in

showing the simulation results is not to suggest that one method is better than the other,

but to show the importance of incorporating a cost function in the process of selecting

the rank reduction transformation. Additionally, the simulation results highlight that the

SINR performance of each method is dependent on the interference plus noise environment

and the available resources (i.e., transformation rank).

5.4 Simulation Results

In this section, we examine the SINR performance as a function of the number

of eigenvectors used in the rank reduction transformation for the SINR metric method,

the CSM GSC method, and a principal component (PC) version of the GSC processor.

With the PC GSC, the columns of V are filled with the eigenvectors associated with the

largest eigenvalues of BRBH . We also present simulation results from a hypothetical

direct form processor where the columns of V are filled with the eigenvectors associated

with the smallest eigenvalues, which we refer to as the small method. Recall that each

eigenvalue gives an indication of the interference plus noise power level along its associated

eigenvector. The small method represents the heuristic reasoning that one should select
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Target Jammer 1 Jammer 2 Jammer 3 Clutter
Case Angle Doppler SNR JNR JNR JNR CNR

1 0.0 0.0750 15 dB 40 dB 30 dB 30 dB 55 dB
2 0.0 0.0375 15 dB 40 dB 30 dB 30 dB 55 dB
3 0.0 0.0125 15 dB 40 dB 30 dB 30 dB 55 dB
4 0.0 0.0750 15 dB 0 dB 0 dB 0 dB 20 dB
5 0.0 0.0375 15 dB 0 dB 0 dB 0 dB 20 dB
6 0.0 0.0125 15 dB 0 dB 0 dB 0 dB 20 dB

Table 5.1 Simulation parameters, where SNR, JNR, and CNR denote the signal-to-
receiver noise, jammer-to-receiver noise, and total clutter-to-receiver noise
ratios, respectively.

the eigenvectors with the smallest eigenvalues because the interference plus noise power

level along these eigenvectors is the smallest. Basically, the small method forces the weight

vector w to lie in a subspace orthogonal to the eigenvectors with higher interference plus

noise power levels and thus, leading to their cancellation. The simulated radar had a

linear array of 14 antenna elements spaced at half a wavelength with 16 pulses in a coherent

processing interval. The interference environment consisted of three barrage noise jammers

and clutter. The three jammers were at normalized angles of 0.25, 0.433, and -0.433,

and are referred to as Jammer 1, Jammer 2, and Jammer 3, respectively. The clutter

was simulated by 360 point scatters evenly distributed in azimuth and with the radar

parameters selected such that β = 1, where β defines the slope of the clutter ridge across

the normalized angle-Doppler plane (See Ref. [41:24-28] for a complete discussion of β).

The simulation results from six cases (scenarios) are presented with the relevant parameters

listed in Table 5.1. Cases 1-3 represent a high clutter and jamming environment and

Cases 4-6 represent a low clutter and jamming environment.

Figures 5.3 and 5.4 show the SINR performance of the four methods as a function

of the number of columns (transformation rank) in the rank reduction transformation for

Cases 1 and 4, respectively. Plotted in Figs. 5.3 and 5.4 are Eqn. (5.12) with the sum-

mation ordered by the largest CSM and by the largest (PC) eigenvalues and Eqn. (5.13)

with the summation ordered by the largest SINR metric and the smallest eigenvalues. An

examination of the plots in Figs. 5.3 and 5.4 reveals that the SINR metric method out-

performs the small method and the CSM GSC method outperforms the PC GSC method
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as the transformation rank is reduced below full dimension, attesting to the importance

of incorporating a cost function into the process of selecting the rank reduction transfor-

mation. Similar plots for the other cases show the same characteristics in regards to the

difference in SINR performance of the SINR metric method and CSM GSC method with

their respective counterparts. Note that additional comments on the small method are

provided at the end of this section.

A further examination of Figs. 5.3 and 5.4 reveals that above a certain rank the CSM

GSC method outperforms the SINR metric method and below this rank, the converse

is true. As shown in Figs. 5.5 and 5.6, the SINR performance curve crossover trend

holds for all the cases in Table 5.1. Figure 5.5 shows the performance curves (SINR

vs. transformation rank) for SINR metric and CSM GSC methods in the high clutter

and jamming environment (Case 1-3). Figure 5.6 shows the performance curves for the

low clutter and jamming environment (Cases 4-6). Observe from Figs. 5.5 and 5.6 that

the crossover rank for the SINR performance curves for the SINR metric and CSM GSC

methods varies as the interference plus noise environment and steering vector change. The

determination of the crossover rank remains an open research area and its resolution will

depend on resolving the relationship between Eqns. (5.12) and (5.13). In general, we

expect the crossover rank to move to the left as the dimension of the interference subspace

decreases, since the reduced-rank GSC achieves optimal SINR performance when the rank

of the transformation matches the dimension of the interference subspace. However, by

the same token, we expect the crossover rank to move to the right as the dimension of the

interference subspace increases. Figures 5.5 and 5.6 highlight that the SINR performance

of the two given methods, and most likely any STAP method, is dependent on the scenario

as well as the transformation rank. Thus, one can not in general claim that one method

is ‘better’ than another without specifying the scenario and the transformation rank. We

now examine Cases 1 and 4 in more detail to gain additional insight into the difference

between the SINR metric and CSM GSC methods, starting with Case 1.

First, observe that the interference plus noise correlation matrix has a rank of ap-

proximately 77 and as noted previously, the PC method displays a sharp decrease in

performance as the transformation rank decreases below 77 (See Fig.5.3). Both the CSM
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and SINR metric methods display a more graceful degradation in performance as the trans-

formation rank decreased below 77. The SINR metric method has better performance as

the transformation is decreased below 57. The eigenvalues of R and the SINR metric for

Case 1 are plotted in Fig. 5.7. Figure 5.7 reveals that the largest SINR metrics occur in

the noise subspace (i.e., the eigenvectors associated with the smallest eigenvalues) which

is orthogonal to the interference subspace. Thus, even as the rank of the transformation

approaches 1, the SINR metric method will provide a weight vector that lies in a subspace

orthogonal to the interference subspace which effectively cancels all the interference. The

SINR performance of CSM and PC GSC is significantly less than the SINR metric method

at a transformation rank of 1 because the GSC can only cancel a single interference com-

ponent leaving approximately 76 interference components uncancelled. The eigenvalues of

Rb and the CSM are plotted in Fig. 5.8. Figure 5.8 shows that the largest eigenvalues

do not necessarily correspond to the largest CSM. The SINR performance of the PC GSC

is less than the CSM GSC because the sum in Eqn. (5.12) will not be maximized when

the eigenvectors associated with largest eigenvalues are used. The interference plus noise

power after upper branch processing, σ2
d, is also plotted in Fig. 5.8.

The difference between Case 4 and Case 1 is the reduction of the CNR from 55 dB

to 20 dB and JNR for each jammer 0 dB. A comparison of Figs. 5.3 and 5.4 reveals

that the SINR metric method has the same basic performance in both cases, while the

performance of the CSM and PC GSC is better in Case 4 than in Case 1. An examination

of the SINR and CSM metric plots for Case 4 (See Figs. 5.9 and 5.10) provides insight

into explaining these observations. As Fig. 5.9 shows, a large percentage of the highest

SINR metrics occur in the noise subspace and in fact, the largest SINR metric occurs in

the noise subspace. Thus, as the transformation rank approaches 1, the weight vector w

lies in a subspace orthogonal to the interference subspace providing complete cancellation

of the interference. Since the power in the noise subspace did not change from Case 1 to

Case 4 and most of the largest SINR metrics occur in the noise subspace, the performance

of the SINR metric method is nearly identical in both cases. The eigenvalues of Rb, the

CSM, and σ2
d are plotted in Fig. 5.10. A comparison of Figs. 5.8 and 5.10 reveals that

σ2
d and the CSM are approximately 35 dB less in Case 4 than in Case 1. The improved
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performance of the GSC methods can be attributed to this 35 dB difference. Since the

SINR at a transformation rank of 1 is starting approximately 35 dB higher in Case 4, the

addition of each CSM to the summation in Eqn. 5.12 causes a greater change in the SINR

performance in Case 4 than in Case 1.

The nearly identical SINR performance of the SINR metric method between Case 1

and Case 4 is also present between Cases 2 and 5 and Cases 3 and 6 (See Figs. 5.5 and 5.6).

This similarity in SINR performance suggest that the SINR metric method is nearly invari-

ant to changes in the interference power level, which is not true for the CSM GSC method.

We also expect the SINR performance of the SINR metric method to be relatively invari-

ant to changes in the dimension of the interference subspace. That is, the basic shape of

the SINR metric method performance curves will remain constant as the dimension of the

interference subspace changes, but will shift up or down by an amount consistent with the

change in the full dimension SINR performance. As the interference environment changes,

the dimension of the interference and noise subspaces will change. However, the low rank

nature of the interference plus noise correlation matrix should ensure that the eigenvalues

of the noise subspace remain relatively constant, since these eigenvalues are essentially

determined by the receiver noise power which should be constant for a given radar system.

Recall that the numerator of the SINR metric is the projection of the steering vector onto

a particular eigenvector. Thus, as long as the projections of the steering vector on the

noise subspace do not change significantly as the interference environment changes, then

the SINR metric method should be relatively invariant to the interference changes. The

above argument assumes that the largest SINR metric occurs in the noise subspace which

is not guaranteed.

Recall that as the steering (target) vector approaches the interference, the SINR

performance of a STAP process will decrease. Now, notice that in Cases 1-3 and Cases

4-6 the steering (target) vector is moving towards the clutter ridge which passes through

the zero Doppler and zero angle point of the normalized angle-Doppler plane since β = 1.

Thus, Figs. 5.5 and 5.6 provide an indication of the SINR performance of the SINR metric

and CSM GSC methods as the steering vector approaches the interference. An examination

of Figs. 5.5 and 5.6 reveals the expected decrease in SINR performance, but also reveals
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that the basic shape of the SINR performance curves of the two methods do not change

significantly as the steering vector approaches the interference.

In Case 1 (high clutter and jamming), we observe that the small method provides

better performance than the CSM method below a rank of approximately 53 and approxi-

mately 3 to 4 dB less than the SINR metric method (See Fig. 5.3). As noted earlier, when

the rank decreases below 77, the CSM method does not have sufficient degrees of freedom

to cancel all the interference components. In contrast, the small method forces the weight

vector to lie in the noise subspace effectively canceling all the interference components.

An examination of Fig. 5.7 reveals a wide separation in the SINR metric values associated

with the noise and interference subspaces. Thus, the SINR is primarily determined by

the noise subspace SINR metric values and leads the SINR metric method to compute a

weight vector that also lies in the noise subspace. Therefore, the small and SINR metric

methods provide similar performance, with the difference attributed to the ordering of the

eigenvectors. Note that this similarity does not carry over to Case 4 (lower clutter and

jamming, See Fig. 5.4), since the separation in the SINR metric values associated with the

noise and interference subspace is decreased (See Fig. 5.9). Thus, the relative weight of

each noise subspace SINR metric is decreased and the SINR builds up at a slower rate as

a function of rank for the small method.

5.5 Limitations and Relevance to Block STAP

Although the CSM and SINR metric methods provide a graceful degradation in

performance as the rank is reduced, the computational cost of both of these methods (and in

general, any eigen-based method) is an issue due to the high computational cost associated

with the eigendecomposition. Further, one must consider the cost of performing the rank

reduction transformation on the signals, evaluating the cost function, and sorting/selecting

the eigenvectors based on the cost function. In the end, these additional computational

costs may be counter productive to the goal of reducing the high computational costs

associated with STAP.
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Figure 5.3 SINR Performance of the SINR metric, Small, CSM GSC, and PC GSC meth-
ods as a function of the transformation rank for Case 1: SNR=15 dB, Jam-
mers at normalized angles and JNRs of (0.25, 40 dB) and (±0.433, 30 dB),
and CNR=55 dB.
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Figure 5.4 SINR Performance of the SINR metric, Small, CSM GSC, and PC GSC
methods as a function of the transformation rank for Case 4: SNR=15 dB,
Jammers at normalized angles and JNRs of (0.25, 0 dB) and (±0.433, 0 dB),
and CNR=20 dB.
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Figure 5.5 SINR Performance of the SINR metric and CSM GSC methods as a function
of the transformation rank for the high clutter and jamming environment
(Cases 1-3).
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Figure 5.6 SINR Performance of the SINR metric and CSM GSC methods as a function
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(Cases 4-6).
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Figure 5.7 Eigenvalues of R and SINR metric for each eigenvector of R for Case 1:
SNR=15 dB, Jammers at normalized angles and JNRs of (0.25, 40 dB) and
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Figure 5.8 Eigenvalues of Rb and CSM for each eigenvector of Rb for Case 1:
SNR=15 dB, Jammers at normalized angles and JNRs of (0.25, 40 dB) and
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Figure 5.9 Eigenvalues of R and SINR metric for each eigenvector of R for Case 4:
SNR=15 dB, Jammers at normalized angles and JNRs of (0.25, 0 dB) and
(±0.433, 0 dB), and CNR=20 dB.
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Figure 5.10 Eigenvalues of Rb and CSM for each eigenvector of Rb for Case 4:
SNR=15 dB, Jammers at normalized angles and JNRs of (0.25, 0 dB) and
(±0.433, 0 dB), and CNR=20 dB.
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To implement the SINR metric CSM methods in practice, we must overcome the

high computational burden of these methods. As with the Block STAP method, this

requirement to reduce the computational burden suggests the need for a fixed, efficient

transformation. The key to the SINR metric and CSM methods is that the metric pro-

vides a direct indication of the basis vectors that have the greatest impact of the output

SINR. Thus, the fixed, efficiency transformation should provide a similar capability. That

is, we need a metric that is similar to or is an approximation to the SINR metric or CSM

so that we can express the output SINR as a sum similar to Eqns (5.12) and (5.13). This

suggests the concept of approximate eigenvectors that approximately diagonalize the cor-

relation matrices such that diagonal elements are approximate eigenvalues. This concept of

reducing the computation burden with a fixed, efficiency transformation constructed from

approximate eigenvectors is not new. In the applications involving wide-sense stationary

random processes, the DFT or other sinusoidal transformations (e.g., the discrete cosine

transformation) are commonly used to approximately diagonalize the correlation matrix,

since the basis vectors of these transformations are approximate eigenvectors of Hermitian,

Toeplitz matrices and can be implemented efficiently [33,38,39]. Unfortunately, STAP cor-

relation matrices are not Hermitian, Toeplitz matrices which implies the vector form of

the interference plus noise is not stationary. Thus, the basis vectors of these sinusoidal

transformations are not approximate eigenvectors of STAP correlation matrices. The de-

velopment of approximate eigenvectors for STAP correlation matrices is an open research

area.

The resolution of approximate eigenvectors for STAP correlation matrices would also

be beneficial to the Block STAP methods. Recall that the overall efficiency of the Block

STAP method improves when the rank of the matrix G is low and that the rank of G is de-

termined by the rank of the off-diagonal blocks of the correlation matrix. Suppose that we

had approximate eigenvectors for STAP correlation matrices, then we could approximately

diagonalize a STAP correlation matrix in the sense that the resulting matrix would be a

banded diagonal matrix with bandwidth p. Note that a banded diagonal matrix X with el-

ements [X]m,n has bandwidth p if [X]m,n = 0 when m > n+p and n > m+p [15:149]. Now,

observe that the off-diagonal blocks of such a banded diagonal matrix will have at most
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p non-zero rows (columns) and thus, will have a rank less than or equal to p. Therefore,

if we can approximately diagonalize a STAP correlation matrix such that the bandwidth

is narrow (small), then the rank of G will be low and we would expect the Block STAP

processor to have a high efficiency over a large portion of the angle-Doppler plane.

5.6 Summary

In this chapter, we have extended the cost function concept used by Goldstein and

Reed with the GSC to the direct form processor. The result is a new reduced-rank direct

form processor, where the columns of the rank reduction transformation are selected as the

eigenvectors of the interference plus noise correlation matrix based on the SINR metric.

The SINR metric is used to identify the eigenvectors which minimize the loss in output

SINR. We presented simulation results that demonstrate the potential of the SINR metric

method under ideal conditions and highlight that the SINR performance of the SINR

metric and CSM methods are dependent on the interference plus noise environment and

transformation rank. For a given interference plus noise environment, the simulation results

show that the CSM method outperforms the SINR metric method above a certain rank,

while the converse is true below this rank. These results suggest the potential need for

more than one implementation structure (method) in a STAP system, where the method

is selected based on the scenario and available resources (e.g., secondary data support

and computational power). Tools, such as the CSM and SINR metric, should prove to be

invaluable in assessing candidate methods for a given environment and resource level.

We noted that the high computational burden of the SINR metric and CSM methods

limit their utility in practice and that like the Block STAP processor, we need a fixed,

efficiency transformation to overcome the high computational burden. For the SINR metric

and CSM methods, this requirement for a fixed, efficiency transformation leads to the

concept of approximate eigenvectors for STAP correlation matrices, which is an open

research area. Finally, we noted that the Block STAP processor would benefit from the

discovery of approximate eigenvectors for STAP correlation matrices, since one could then

approximately diagonalize the correlation matrix which would have low rank off-diagonal

blocks.
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VI. Conclusions and Recommendations

We summarize the major results and contributions of this research effort and present

several areas of future research in this chapter.

6.1 Results and Contributions

We have proposed a dual channel matched filtering system that addresses two key

challenges in the practical implementation of a single channel matched filter (maximum

SINR filter) in an unknown environment: secondary data support and computational cost.

When the correlation matrix of the interference plus noise is a block diagonal matrix or can

be efficiency transformed to a block diagonal matrix, the proposed dual channel system

requires 50% less secondary data to achieve nearly the same level of SINR performance

as an equivalent single channel system with a reduction in the computational cost of

approximately 75%. We derived an exact expression for the normalized SINR in terms of

random variables with known distribution and approximate expressions for the mean and

variance of the normalized SINR as a function of weight vector dimension and secondary

data support that characterize the SINR performance of the dual channel system in an

unknown environment. Using these approximate expressions, we demonstrated the reduced

secondary data requirements of the dual channel system. The correlation matrix from any

real, wide-sense stationary random process is a member of the centrosymmetric family of

matrices which can be efficiently block diagonalized with a fixed transformation. Thus, in

any matched filtering applications involving real, wide-sense stationary random processes,

a dual channel system can be used in place of a single channel system to realize a reduction

in the secondary data support and computation cost.

We investigated the potential of applying a dual channel system to the problem do-

main of space-time adaptive processing (STAP) for airborne surveillance radars, referring

to the system as Block STAP. We defined a family of STAP correlation matrices that

was representative of the interference plus noise environments typically encountered by an

airborne surveillance radar. We provided evidence to support the conjecture that STAP

correlation matrices cannot be block diagonalized by a fixed transformation. Based on this
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conjecture, optimum STAP processing cannot be divided into two independent processing

steps and thus, any implementation of the Block STAP method with a fixed transformation

will be suboptimal. Numerous suboptimal STAP methods have been proposed based on a

fixed transformation, but often signal processing heuristics are used to select the transfor-

mation. In contrast, we have provided an in-depth analysis of the Block STAP efficiency

relative to the optimal processor, yielding a worst-case lower bound for the efficiency and

the identification of the factors that control the efficiency. From this analysis, we proposed

a mathematical-based criterion for selecting the Block STAP transformation.

Finally, we addressed the problem of selecting the optimum eigen-based rank reduc-

tion transformation for a direct form processor. We introduced the SINR metric for the

direct form processor which is an extension the cross-spectral metric (CSM) introduced

by Goldstein and Reed [11–14] for the generalized sidelobe canceler. The result is a new

reduced-rank direct form processor, referred to as the SINR metric method, where the

columns of the rank reduction transformation are selected as the eigenvectors of the in-

terference plus correlation matrix based on the SINR metric. The SINR metric identifies

the eigenvectors that have the greatest impact on the SINR performance of a direct form

processor. If the rank reduction transformation is constructed from r eigenvectors of the

correlation matrix, then the r eigenvectors with the largest SINR are the optimal set of

r eigenvectors in terms of minimizing the loss in SINR performance of an eigen-based

reduced-rank direct form processor. Via simulations, we demonstrated the importance of

including a cost function (output SINR) in the transformation selection process and that

the best implementation structure (SINR metric director form processor versus CSM gen-

eralized sidelobe canceler) depends on the interference plus noise environment and available

resources (i.e., transformation rank). Tools, such as the SINR metric and CSM, should

prove to be invaluable in identifying and assessing methods for a given environment and

resource level. With regard to the CSM, we proved that the CSM for each of the noise

subspace eigenvectors is zero, a result that does not appear to be widely known. Our proof

also provides a clear proof of the more widely known result that the optimum generalized

sidelobe canceler weight vector lies in the interference subspace.
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6.2 Directions for Future Research

Although the normalized SINR is a useful performance metric, we are often inter-

ested in how a particular detection system performs in terms of probability of detection

and probability of false alarms. Thus, one area of future research would be to develop

expressions for the dual channel probability of detection and probability of false alarms.

Additionally, since the ultimate objective is to declare the presence or absence of a target

in an unknown environment, we need to develop a constant false alarm rate test statistic

for the dual channel system or method for selecting the threshold to achieve a given level of

performance. Along these lines, the exact expression for the normalized SINR in terms of

random variables with known distributions should be revisited with the goal of establishing

its probability density function. Finally, in regards to future research related to the gen-

eral dual channel concept, we note that the concept of block diagonalizing the correlation

matrix is not restricted to maximum SINR (matched) filtering applications. The block

diagonalization concept could be extended to Wiener filtering, subband adaptive filtering,

and compression applications.

With regard to the Block STAP method, we proposed a transformation selection

criterion based on a lower bound for the efficiency and an analysis of the efficiency expres-

sion. The criterion provided a consistent indication of the system with the highest average

efficiency for the systems and environments simulated. However, a rigorous analysis and

proof of the proposed criterion is needed. This represents a challenging problem, since it

requires the development of a relationship between the steering vector and the eigenvectors

of the correlation matrix. As mentioned earlier, we could abandon the fixed transforma-

tion concept and move to a data adaptive transformation approach. In which case, one

would need to develop a method for efficiently implementing the proposed transformation

selection criterion with only knowledge of the estimated diagonal blocks of the correlation

matrix. Along these lines, a data adaptive method that starts with the symmetric and

skewed symmetric subspaces (i.e., subspaces invariant to centrosymmetric matrices) and

updates the subspaces as secondary data becomes available is one option. In general, mod-

ern surveillance radar platforms have additional sources of information that could be used

to predict the anti-symmetric part of the interference environment and aid in the subspace
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update cycle. For example, an electronic support measures system could provide estimates

of the spatial location and power level of the barrage noise jammers in the environment.

Additionally, using a map/terrain database, one could also predict the spatial location of

strong clutter discretes such as cities. To effectively incorporate this predicted informa-

tion into subspace update cycle, one would need to develop an understanding of how the

subspaces change with the introduction of anti-symmetric interference.

As noted earlier, the STAP community would certainly benefit from the develop-

ment of approximate eigenvectors of STAP correlation matrices. As evident by the fact

the STAP correlation matrices are not Hermitian, Toeplitz matrices, one could consider

the vector form of the interference plus noise as a nonstationary random process. Both

Kozek [26] and Mallet et. al. [30] have reported that functions that are localized in time

and frequency are approximate eigenvectors for certain classes of non-stationary random

processes. Kozek provides an in-depth treatment of the general problem of defining and

analyzing the time-varying power spectrum of nonstationary random processes while the

treatment of Mallet et. al. is more specialized to local cosine basis functions and adaptive

best basis selection. We believe the works of Kozek and Mallet et. al. (and references

contained there in) represent a good starting point for gaining additional insight into

the characteristics of the STAP correlation matrices and the development of approximate

eigenvectors.
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Appendix A. CSM of the Noise Subspace Eigenvectors

In this appendix, we show that the cross-spectral metric (CSM) for the eigenvectors that

span the noise subspace is zero. This result does not appear to be widely known, although

one could deduce this result from Van Veen’s [40] observation that the GSC weight vector

lies in the interference subspace. In addition to showing that the CSM associated with each

noise subspace eigenvector is zero, the analysis provides a clear proof that the GSC weight

vector lies in the interference subspace. As a result, one can conclude that a reduced-rank

generalized sidelobe canceler will not experience a SINR loss if the span of rank reduction

transformation contains the interference subspace. The following analysis is based on the

single interference source plus receiver noise analysis given by Van Veen [40].

Recall that the CSM is defined as

|uH
i rbd|2
λi

, (A.1)

where {ui}L
i=1 and {λi}L

i=1 are the eigenvectors and eigenvalues of Rb = BRBH , respec-

tively, rbd = BRs, R is the MN ×MN interference plus noise correlation matrix, s is the

MN ×1 steering vector, B is the L×MN blocking matrix with the property that Bs = 0,

and L = MN − 1. Now, observe that the interference plus noise correlation matrix can

be written as the sum of the interference correlation matrix and the receiver (white) noise

correlation matrix. That is,

R = RI + σ2
wIMN , (A.2)

where RI is the interference correlation matrix, σ2
wIMN is the receiver noise correlation

matrix, IMN is a MN ×MN identity matrix, and σ2
w is the variance of the receiver noise.

We can express RI in terms of its eigendecomposition as

RI = AΓAH , (A.3)

where A is a unitary matrix composed of the eigenvectors and Γ is a diagonal matrix of

the associated eigenvalues. Now, if we assume RI has a rank of P < MN , then only P of
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the eigenvalues are non-zero (i.e. positive) and the remaining eigenvalues are zero. Using

this low rank assumption, we can rewrite Eqn. (A.3) as

RI = A1Γ1AH
1 , (A.4)

where Γ1 is an P × P diagonal matrix of the positive eigenvalues and A1 is a MN × P

matrix composed of eigenvectors associated with the positive eigenvalues. Using Eqn. (A.4)

and by assuming that BBH = IL, we can write Rb as

Rb = BRBH

= BRIBH + σ2
wIL

= BA1Γ1AH
1 BH + σ2

wIL

= BA1Γ
1/2
1 Γ1/2

1 AH
1 BH + σ2

wIL, (A.5)

where we used the fact that since the diagonal elements of Γ1 are positive and real, we can

write Γ1 = Γ1/2
1 Γ1/2

1 . Now, let

Q = BA1Γ
1/2
1 (A.6)

and substitute into Eqn. (A.5) to yield

Rb = BRIBH + σ2
wIL = QQH + σ2

wIL. (A.7)

Note that the rank of BRIBH , and hence, the rank of Q, is less than or equal to P . We

can write the singular value decomposition of Q as

Q = UΣVH , (A.8)

where U is the L× L unitary matrix of the left singular vectors, V is the P × P unitary

matrix of the right singular vectors, and Σ is the L × P matrix of the non-negative real
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singular values. Observe that Σ can be written as

Σ =


Σ1

0


 , (A.9)

where Σ1 is an P × P diagonal matrix of the singular values. Then, by partitioning U as

U = [U1 U2], where U1 is a L× P matrix and U2 is a L× L− P matrix, we can rewrite

Eqn. (A.8) as

Q = U1Σ1VH , (A.10)

and thus,

BRIBH = QQH = U1Σ1VHVΣ1UH
1 = U1Σ2

1U
H
1 . (A.11)

The right-hand side of Eqn. (A.11) represents the eigendecomposition of BRIBH , where

the columns of U1 are the eigenvectors of the interference subspace and the diagonal

elements of Σ2
1 are the associated eigenvalues. Now, observe that

BRIBH =
[
U1 U2

]Σ1 0

0 0




UH

1

UH
2


 , (A.12)

and thus, we can express the eigendecomposition of Rb as

Rb =
[
U1 U2

]Σ1 0

0 0




UH

1

UH
2


+


σ2

wIP 0

0 σ2
wIL−P




=
[
U1 U2

]Σ1 + σ2
wIP 0

0 σ2
wIL−P




UH

1

UH
2




= UΛUH , (A.13)
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where

Λ =


Σ1 + σ2

wIP 0

0 σ2
wIL−P


 . (A.14)

The columns of U are the eigenvectors {ui}L
i=1 of Rb and the diagonal elements of Λ are

the associated eigenvalues {λi}L
i=1. Note that the columns of U2 are the eigenvectors that

span the noise subspace and are orthonormal to the columns of U1 since the eigenvectors

{ui}L
i=1 form an orthonormal set.

With these building blocks in hand, we can now examine the properties of the CSM

and weight vector wgsc as function of the eigenvectors of Rb. Recall that the eigenvectors

{ui}L
i=1 form an orthonormal basis for the L dimensional vector space and thus, we can

write the weight vector as a linear combination of the eigenvectors. That is,

wgsc =
L∑

i=1

ciui√
λi
, (A.15)

where the ci’s are scalars to be determined and the reason for the
√
λi term will become

obvious in a few steps. Recall that wgsc = R−1
b rbd which can be rewritten as Rbwgsc = rbd

and after substituting Eqns. (A.13) and (A.15), we have

UΛUH
L∑

i=1

ciui√
λi

= rbd. (A.16)

To solve for the ci’s, we premultiply both sides of Eqn. (A.16) by uH
k for some k yielding

uH
k UΛUH

L∑
i=1

ciui√
λi

= uH
k rbd, (A.17)

which reduces to

√
λkck = uH

k rbd, (A.18)
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where we used the fact that uH
k UΛUH = λkuH

k and the orthonormal property of the

eigenvectors. Solving Eqn. (A.18) for ck yields

ck =
uH

k rbd√
λk

for each k. (A.19)

Notice that the magnitude squared of the right side of Eqn. (A.19) is the CSM of the kth

eigenvector. Next, using Eqns. (A.2), (A.4), (A.6), (A.10) and Bs = 0, we can write

rbd = BRs

= BRIs

= BA1Γ
1/2
1 Γ1/2

1 AH
1 s

= QΓ1/2
1 AH

1 s

= U1Σ1VHΓ1/2
1 AH

1 s. (A.20)

Substituting Eqn. (A.20) into Eqn. (A.19) yields

ck =
uH

k U1Σ1VHΓ1/2
1 AH

1 s√
λk

. (A.21)

Using the orthonormal property of the eigenvectors, we observe that

uH
k U1 =




ek if uk ∈ span(U1),

0 otherwise,
(A.22)

where ek is a 1×P vector with a 1 in the kth position and zeros in all other positions and

0 is a 1 × P vector of zeros. Finally, using Eqn. (A.22), we can write

ck =




uH
k rbd√
λk

if uk ∈ span(U1),

0 otherwise.
(A.23)

From Eqn. (A.23), we can conclude that the CSM is zero for any eigenvector of Rb that

is not in the interference subspace, since the kth CSM is equal to the magnitude square of
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ck. Using Eqn. (A.23), we can rewrite Eqn. (A.15) as

wgsc =
P∑

i=1

ciui√
λi
, where ui ∈ span(U1). (A.24)

Thus, the weight vector wgsc is a linear combination of the eigenvectors {ui}P
i=1 which

span the interference subspace defined by BRIBH . That is, wgsc lies in the interference

subspace. The fact that the weight vector of the GSC lies in the interference subspace is

not surprising. If the weight vector was not confined to the interference subspace, then

the lower (blocking) branch of the GSC would emit uncorrelated noise in addition to the

estimate of the interference (correlated) noise in the upper branch. Any uncorrelated

noise emitted by the lower branch would combine with the uncorrelated noise in the upper

branch, effectively increasing the receiver noise floor.
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