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ABSTRACT

The Treaty on Opens Skies allows any signatory nation to fly a specifically
equipped reconnaissance aircraft anywhere over the territory of any other signatory
nation. For photographic images, this treaty allows for a maximum ground resolution of
30 cm. The National Air Intelligence Center (NAIC), which manages implementation of
the Open Skies Treaty for the US Air Force, wants to determine if post-processing of the
photographic images can improve spatial resolution beyond 30 cm, and if so, determine
the improvement achievable. Results presented in this thesis show that standard linear
filters (edge and sharpening) do not improve resolution significantly and that super-
resolution techniques are necessary. Most importantly, this thesis describes a prior-
knowledge model fitting technique that improves resolution beyond the 30 cm treaty
limit. The capabilities of this technique are demonstrated for a standard 3-Bar target, an

optically degraded 2-Bar target, and the USAF airstar emblem.
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Post-Processing Resolution

Enhancement of Open Skies Photographic Imagery

1. INTRODUCTION

The Treaty on Opens Skies is an international effort to promote goodwill and
openness. The treaty allows any signatory nation to fly a specifically equipped
reconnaissance aircraft anywhere over the territory of any other signatory nation [12:4].
For photographic images, the treaty allows for a maximum ground resolution of 30 cm.
Unfortunately, due to advances in technology, post-processing may increase this
maximum ground resolution. The goal of this research is to develop Matlab models that
demonstrate post-processing resolution enhancement of Open Skies photographic
imagery.

Chapter II provides background on Open Skies and the data set of aerial images
used for this research. Chapter III presents some relevant previous research, results, and
Chapter IV reviews super-resolution theory. Chapter V discusses results, and Chapter VI

presents conclusions and recommendations.



Il. BACKGROUND

History

The United States, along with 26 other nations, signed the Treaty on Open Skies

(OS) on 24 March 1992 as part of an international effort to promote openness and trust

building; however, “The Treaty is not an arms control program [12:5].” Each country

allows overflights of their entire national territory, including territorial waters and islands

by other countries. The treaty enters into force (EIF) when twenty countries that include

Canada, Germany, Russia, Belarus, US, France, UK, Italy, Turkey, and Ukraine ratify it;

this has not happened yet [37]. Table 1 gives examples of items that are and are not

visible under the treaty resolution limit of 30 cm. The OS aircraft are equipped with an

approved suite of sensors.

Table 1. Items Visible Based on the 30 Centimeter Ground Resolution Limit [37]

CAN

CANNOT

Identify small aircraft by type (such as
F-14s, F-15s, F-16s) when singly
deployed.

Read call letters and numbers on wings
when 3 feet high.

Detect uploaded weapons on aircraft
wings.

Identify an F-16 fighter from an F-16
trainer by canopy configuration.

Detect presence of shipboard weapons
and major electronics (guns, missiles,
surface search radar).

Detect the presence and pattern of
mooring lines.

Detect presence of life rails when raised.

Accurately distinguish smaller vehicle
types (for instance, pick-up trucks versus
sedans).

Identify a specific model fighter (such as
an F-16A versus F-16C) by small details
such as dielectric patches on wings.

Identify the pitot tube on a fighter aircratft.
Identify a specific weapon type.

Identify on the appropriate model fighter,
wing flap actuator fairings and yaw vanes.

Accurately identify by specific type
shipboard weapons and major electronics.

Identify draft marks.

Identify mast configuration.

Identify small ground support equipment
by type, such as dollies, tow bars, and fire
extinguisher carts.




KA-91C Panoramic Camera KA-87E Framing Camera
Figure 1. US Optical Cameras

Data Collection and Aircraft Operations

The Treaty allows three types of sensors: optical, infrared, and Synthetic Aperture
Radar (SAR). Optical cameras (Figure 1) include one vertically mounted framing
camera, two obliquely mounted framing cameras, one panoramic camera, and one video
camera. Infrared sensors include a line scanner and a side-looking SAR. Currently, and
until EIF, the Treaty allows only optical sensors (cameras) [12:5]. The optical and SAR
sensors may be used during the first three years after EIF, but the infrared (IR) may not
be used until three years after EIF unless otherwise agreed. During an observation flight,
sensor operation is suspended if the aircraft altitude is below the minimum altitude, or if
the flight deviates more than 50 km from the planned flight path. Both parties receive

copies of the data, and any other treaty signatory may get a copy by written request and



payment for reproduction. Both ground resolution distance (GRD) [12:9-10], shown in
Equation 1, and safety of flight restricts the lowest operating altitude over a particular
area.

GRD - height * resolution ’
~ focal length * theta M

where height is the altitude difference between the camera and target, resolution is the
distance between observable cycles on the film substrate, the focal length is that of the
camera, and theta is the tangent angle when the target is not directly under the camera

(Figure 2). The GRD, which is the minimum distance on the ground between two closely

Camera

Theta

Height

Target

Figure 2: Ground Resolution Distance

located objects at which they are distinguishable as separate objects, defines the altitude
that allows maximum resolution for the operating sensors (the lower the altitude, the
better the spatial resolution because the sensor is closer to imaged objects). The aircraft’s
service ceiling restricts the maximum operating altitude [37]. The country being

overflown has the right to supply the aircraft (taxi option), otherwise, the observing



country may use its own aircraft. In either case, an inspection at the OS point of entry
ensures treaty conformance of aircraft and sensors. The United States uses OC-135B

aircraft as depicted in Figure 3.

Figure 3. US Open Skies OC-135 Aircraft [37]



Imaging Test Objects

The United States Air Force (USAF) uses a 3-Bar target (Figure 4) which includes
horizontal and vertical bar groups of various sizes and spacings. The two triangles show
which bar group meets the treaty spatial resolution limit of 30 cm, which means that

objects at least 30 cm apart on they can distinguish ground from each other [12:8-9].
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Figure 4. 3-Bar Target
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The airstar emblem (Figure 5) is a painted object on all US military aircraft; it
consists of a blue field with a white star and white and red stripes. This colored version
of the airstar emblem has been phased out and replaced with a grayscale version to

reduce visibility and increase survivability.

Figure 5. Airstar Emblem

For this research the data set is a series of aerial negatives from an altitude of
approximately 1,250 m provided by NAIC ( Appendix B). The images in these negatives
are of the 3-Bar target, the USAF Museum, and surrounding area in Area B at Wright-
Patterson AFB, Ohio, and a 2-Bar target located in Europe. These images were digitized
using a scanner with a pixel resolution of 5.7 microns. An example of one of these
images (66target.tif) is given in Figure 6. Since multi-frame resolution was not the goal
of this thesis, frames were chosen (checkmarked in Appendix B) and the relevant regions
of interest were extracted. For example, an area that contained the 3-Bar target was
extracted from 66target.tif (Figure 7). The grain sizes on negatives are usually uniform

and submicron in size, but the grain size can be up to 4 microns [30]. Since the



resolution of the negatives is much finer than the scanner’s 5.7 micron resolution, the
negatives were optically enlarged and digitized to provide more samples. For example,
the group 9 bar group in the original negative yielded a 21 by 21 pixel matrix (Figure 8) ,
whereas the enlarged negative yielded a 200 by 200 pixel matrix (Figure 9). Enlarging

the negatives added some noise but did not affect the results, which are discussed in

TIIE

W T R -

Figure 6. Aerial View of Area B, WPAFB



Chapter IV. Additionally, the data set includes images of aircraft on static display at the
USAF museum, a C-119 cargo plane (Figure 10) and a B-1A bomber (Figure 11), and a
2-Bar target (Figure 12), which was optically degraded by a German phase filter [35].
For the B-1A and C-119, the measured width across the stripes in the airstar is 28.2 cm
(red: 6.2 cm, white: 6.2 cm times 2, and blue: 4.8 cm times 2) and 57.8 cm (red: 13.0 cm,
white: 12.8 cm times 2, and blue: 9.6 cm times 2) respectively. The bar groups next to
the white rectangular region (Figure 12) are both 30 cm and satisfy the Treaty

requirement. The images of the planes and the 2-Bar target were also optically enlarged

to provide additional samples.
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Figure 7. Extraction of 3-Bar Target from Area B Imagery
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Figure 12. Image of 2-Bar Target Degraded with German Filter
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III. REVIEW OF RELEVANT LITERATURE AND RESEARCH

The review given here is based upon information available from libraries, the
Internet, and the National Air Intelligence Center.

Super-Resolution of Images: Algorithms, Principles, and Performance

Many technical documents relating to image enhancement [3, 4, 7, 10, 14, 15, 32,
38, 39], blind deconvolution [28, 29], and super-resolution [1, 9, 11, 17-22, 24-27, 34,
41-47] present methods for improving the resolution of multi-frame sequences.
Unfortunately, these documents do not apply to this research, because image registration
[1,8, 19,20, 23, 26, 25-27, 43, 45] is assumed, and the data set used in this research is
not registered. Image registration is an area of research beyond the scope of this thesis.
From these documents, only two are relevant to this research.

The first relevant article to this research is a paper on the super-resolution of images
by Hunt [22], which provides a good overview of super-resolution principles and
techniques. This paper discusses diffraction as the key motivation for performing super-
resolution, and it indicates that the use of prior information is one critical principle that
enables super-resolution:

. “The spatial frequencies that are captured by image formation below the
diffraction limit contain some of the information necessary to reconstruct
spatial frequencies above the diffraction limit;

. Using additional information about the object (e.g., compact, hence
possessing an analytic Fourier transform) provides a means to use the

information below the diffraction limit to reconstruct information above that
limit [22:298-299].”

This paper also lists some features that affect the performance of super-resolution

13



algorithms:

. Object, size, shape, and location - “Usually the image of an object is adequate
to make an estimate of the approximate size, shape, and location of the object.
The size and shape characteristics of the object can be inferred from measured
size and shape of the image and optical system PSF [22:301].”

. Bounds on object intensity - “The minimum intensity level of an object is
zero, because negative light is meaningless in incoherent optical image
formation[22:301].”

The other article that is relevant to this research is by Matson [33] and discusses
error reduction in images through use of perfect prior knowledge. The technique is based
on the notion that “part of an image may be known exactly, and this can be used as a
constraint to decrease noise levels in the image outside the region of perfectly known
data [33].” Matson’s algorithm requires multiple iterations between the spatial and
frequency domains until the noise is minimized outside the region of prior knowledge.
“The algorithm’s steps are: (1) in the image domain, replace the measured data with the
prior knowledge in the region where prior knowledge is available; (2) Fourier transform;
(3) if the real (imaginary) part of the measured Fourier data is less noisy than the
imaginary (real), replace the iterated real (imaginary) part of the Fourier data with the
measured data, but leave the imaginary (real) part unchanged; (4) inverse-Fourier-
transform; (5) go back to step (1) until the noise is minimized outside the region of prior
knowledge [33].”

The use of prior information, positive image intensity, object size, error reduction,

and shape relationships are the basis for the super-resolution techniques discussed in the

next chapter.
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1V. RESEARCH METHODOLOGY

The Open Skies treaty requires a calibration flight to be flown over a 3-Bar target
before a signatory nation performs data gathering missions. Data from the calibration
flight is used to set the minimum altitude and GRD at which the data gathering missions
are flown. Due to weather constraints (i.e., clouds, storms, etc.), the National Air
Intelligence Center wants the capability to fly at lower altitudes while still maintaining
the 30 cm spatial resolution limit. Flying at lower altitudes increases spatial resolution.
Therefore, the optics used to record images must be degraded to the treaty requirement.
Since the optics are artificially degraded, it is also necessary to ensure that the increased
spatial resolution from flying at lower altitudes cannot be recovered (e.g., by post-
processing). This research demonstrates that the resolution of Open Skies photographic
imagery can be increased beyond the treaty limit of 30 cm if certain a priori knowledge
of the image exists. The methods reported here deal with a 3-Bar target (Figure 4) and an
airstar emblem (Figure 5).

Enhancement Using Commercial Software

Resolution enhancement was attempted using three commercially available
programs for editing photographs: Ulead Photolmpact 4.2, Scion Image, and
Micrografx’s Picture Publisher. All three programs contain image enhancement

functions for sharpening, edge detection, and contrast adjustment.

15



Enhancement Using Model Fit

One classic approach to increasing the resolution of an image is to use the
Gerchberg algorithm [22], which requires multiple iterations and transformations
between the spatial and spatial frequency domains. Since enough prior information
exists about the 3-Bar target and the airstar emblem, employing a spatial domain model
fit algorithm is appropriate.

Resolution enhancement using the model fit method may be justified by extending
the rationale presented by Hunt [22] and Matson [33]. Suppose that a given gray level
digital image consists of an underlying model plus additive noise, but that no prior
knowledge is available about the model. Then the most unbiased (equivalent to
maximum entropy) choice for the underlying model is the image mean (i.e., the mean of
all pixel level values), and the standard deviation about this mean may be chosen as the
variance in the given data. Now suppose that prior knowledge about the model exists
(i.e., the model is a known object) and that the knowledge is perfect except for linear
transformations. Then the only unknowns are the relative translation, rotation, and scale
of the object and the linear scaling of the image intensity. Thus, six parameters may be
evaluated to fit the model to the image: horizontal and vertical placement, rotation angle
about the horizontal axis, size of the object, and minimum and maximum gray level
values. Some of these parameters may be fixed (e.g., the rotation angle is assumed zero).
The values of the six parameters that minimize the mean squared error (MSE) [5:11]
between the model and given data may be chosen to specify the fitted model where the

minimized quantity is:

16



Zn: y {(Givenij - Model,, )2]

i=1 j=1

2

MSE =
nm

Where Given represents the input data (image) matrix, Model represents the model data
matrix, and » and m denotes the number of rows and columns in the matrices. Note that
the two matrices have equal dimensions. When the MSE equals zero, the model fits the
data perfectly. Depending on the situation, a perfect fit may or may not be desirable. For
example, if the given (original) image of a 3-Bar target is well-defined and free of
distortions (i.e., atmospheric, scanner, camera, etc.), then a MSE that equals zero is
highly desired because the given data and the model are very similar. The Open Skies
imagery falls is not well-defined, which means that the MSE for the best fit model cannot

be equal to zero. Therefore, finding the best fit model becomes a bias/variance tradeoff

250

200

150

100

Gray Scale Intensity

50
— Qriginal
-+ MSE~0
-- Constrained MSE
?50 155 160 165 170 175

Position

Figure 13: Bias/Variance Tradeoff
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(i.e., fit vs. smoothness of fit of the model to the given data) [5, 13] with the minimum
MSE contrained by prior knowledge (see Figure 13). The standard deviation about the
fitted model (i.e.,~/AZSE ) may then be chosen as a measure of the added noise, and this
standard deviation will generally be less than the standard deviation [5:34] about the

image mean ( Gjven ):

]

{(Givenij - %)2 }

i-1 j= 3
STD Given = || )
nm
where
z (Givenij) @
Given = ——
nm

Therefore, the following expression may be chosen to specify a processed image that

incorporates the prior knowledge:
New,, = Given,; + (Model,.j - Givenij) () for0<T <1 )]

where New is the processed image, and T = / MSE / STD Given , is the ratio of
standard deviations for the given data about the fitted model to the given data (or image)
mean. This ratio is a scale factor that measures the extent to which available prior
knowledge reduces noise and enhances resolution. Note that Equation (5) is applied to

each pixel independently, and when necessary, the new data is re-scaled for gray level

18



values outside the 0-255 range. The model fit method matches a model (procedure in
Table 2, Matlab code in Appendix A) of the object to the given data in the spatial domain
only. Finally, for modeling purposes knowing the altitude and speed of the aircraft, or
the camera parameters (focal length, etc.) is not necessary; the only required information
is some prior knowledge about the imaged object.

The 3-Bar target has a height to width ratio of 5:1 and equal spacing within each
bar group ( i.e., the widths of the white bars and the black spacing between them are
equal, see Figure 4). The minimum contrast ratio (white/black) is 2:1, which means that
the minimum/maximum gray levels in the optimized image should be close to the
minimum/maximum gray levels in the original image. Each row of pixels across a bar
group has uniform gray intensity levels, and therefore the same model. By using this
prior knowledge, the model fit method can generate a model of each row or the whole bar
group. In addition, since the 3-Bar target consists of simple objects (rectangles),
generating the model is straight-forward because the algorithm adjusts only a few

variables. Adjusting five variables (bar width, horizontal and vertical bar placement,

Table 2. Generic Model Fit Procedure

1. Extract the region of interest from the given image.
2. Estimate initial parameter values (horizontal and vertical placement, the rotation
angle about the horizontal axis, the size of the object, and the minimum and

maximum gray level intensity).

3. Perform an exhaustive search to minimize the mean squared error between the
given data and the model (using the initial estimates from Step 2).

4. Incorporate the prior knowledge into the given data using Equation 5.

19
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minimum and maximum gray value) minimizes the mean squared error (Equation 2)
between the model and the given data (rotation is assumed zero for the 3-Bar target
images). Since the number of bars in each group is the only difference between the 2-Bar
and 3-Bar targets, modeling the 2-Bar target follows the same process. The algorithm
applies two types of models to a Bar target image: an image model (Figure 15) and a line
scan model (Figure 16).

The procedure for increasing resolution begins with the extraction of a square
matrix. The image model begins by applying a line scan algorithm to estimate minimum

and maximum gray scale values, bar width, and bar starting position (Figure 14). By
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fmins('minmize’,lam)
lam = initial guesses for bar width & starting position

Make model using results from minimize

Calculate new MSE

4

Incorporate
—No prior
knowledge
) 4
Yjs Save &
MSE = new MSE d'Sp'ft‘y
model = new model resufts
bar width = new bar width
start position = new start position v
MSE_Count=MSE_Count + 1 end

Figure 15: Flowchart for 3-Bar and 2-Bar Target Model Fit
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iterative search, models are generated from these estimates to minimize the MSE
between the model and the given data, with Equation 5 incorporating the prior knowledge
into the given data. Any of the adjustable parameters can be a source of possible fit

error, but measuring this error is impossible because an original perfect image does not
exist.

An optimized image could be generated for any of the smaller bar groups (13 and
up) using prior knowledge. However, the accuracy or confidence level of the model fit
method would be lower because the smaller bar groups do not show any distinguishable
bar separation (Figure 17). Therefore, the method was not used for bar groups that do not

show relative separation between bars.

Obviously, there are many more variables for complex objects such as airplanes or
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buildings, and generating a model is much more difficult. For such objects, developing
the model for a small region of interest (ROI) limits the number of variables. For
example, instead of developing a model for a whole aircraft, or even an aircraft wing, the
ROl is limited to a part of the wing. For this research the ROI was limited to the area
surrounding the airstar emblem.

Modeling the airstar is much more difficult than the 3-Bar target because each row
of pixels is different and there are multiple gray levels that represent the red, white, and
blue colors. Although the airstar shape is more complex due to the stripes, circle, and the
star, it has known characteristics. The general procedure for modeling the airstar (Figure
18) is similar to modeling the bar target. Estimates are made for rotation, minimum and
maximum gray scale values, and placement. An iterative search is performed using these
estimates to minimize the MSE between the model and the given data, and Equation (5)
then incorporates the prior knowledge into the given data. As before, the adjustable
parameters can be a source of fit error, but the use of prior knowledge allows
development and application of a robust model while processing only in the spatial

domain.
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Note: Due to noise, the
ratio of MSE1/MSE2 is
necessary to limit the
sized airstar in the model
from being to small/large
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edge, min/max gray scale values

- b1 = scale factor lower limit

While MSE_Count >0
& rat<=ratio
& b1>=0.08
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Set gray scale area outside wing surface = 0

Make model airstar.
Adjust: scale, rotate, & placement

v

Calculate MSE between Given & Model (MSE2)
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Cal

Incorporate prior knowledge
culate MSE between Given & Modified (MSE1)
rat = MSE1/MSE2
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35 Save &
MSE = MSE1 display
MSE3 = MSE2 results

model airstar = new model airstar
Optimized = Modified
MSE_Count=MSE_Count + 1

Figure 18: Flowchart for Airstar Model Fit
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V. RESULTS

Enhancement Using Commercial Product

At best, the three commercial products produced marginal results (Figure 19) using

the generic filters included in each product. Only two of the programs, Ulead’s
PhotoImpact and Scion Image, allowed for the creation and use of custom filters. The
generic filters generally enhanced image resolution, but also amplified image noise as

evidenced by speckling. Results also indicate that a darkening contrast adjustment had
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Figure 19. Enhancement by Commercial Software
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the greatest enhancement effect. The bar targets in Figures 19 and 20 are the same, but
the latter displays line plots for selected bar groups that show resolution before and after
enhancement. Enhancement was also tried on the image of a C-119 (Figure 21) with the

same noise amplification results.
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Figure 20. Line Plots for Bar Groups 9, 11, &13
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Figure 21. Enhancement of a C-119 Cargo Plane
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Enhancement Using Model Fit

Results from the model fit technique were far better than the results obtained
through use of the commercial software. The procedure in Table 2 was applied to the
extracted group 9, bar width 30 cm[36] (Figure 22) and produced an optimized image
(Figure 23). A side-by-side comparison (Figure 24) of line plots for group 9 shows that
the original image does not have well defined peaks and valleys, whereas the optimized
image is visually well defined. The original contains blurring due to aircraft motion and
atmospheric effects not present in the optimized group 9 image. Furthermore, the line
plots show that the overall intensity (62-192 vs. 67-188) did not change during the
optimization process.

The same algorithm was applied to group 12, bar width of 21 cm [36] (Figure 25)
of the same image with different results. A comparison of Figures 22, 25, and the first
line plot in Figure 27 shows an almost nonexistent separation between bars in the bar
group. Since the original enlarged negative showed some separation of the bars,
suspicion arose that the scanning process undersampled some data. Consequently,
application of the algorithm failed to produce a good optimized image (Figure 26).
Scanning group 12 at a 5.7 micron resolution produced a 150 by 150 pixel matrix (Figure
25), while scanning at a 4 micron resolution produced a 200 by 200 pixel matrix (Figure
28). Figure 28 shows more noise (due to the scanner), but the algorithm produced a very
well defined bar group (Figure 29). Here, the algorithm adjusted the noise elements and
the optimized image is visually almost perfect. As before, the overall intensity (65-180

vs. 67-175) did not change. The results (Figures 27 and 30) show that the model fit
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algorithm is highly dependent upon the number of available samples (i.e., scanning at 5.7
microns vs. 4 microns). In addition, the results indicate that sampling limits the amount
of increased resolution (i.e., the resolution of the film used to record the original image,
or the digital scanner used). For example, Figure 17 shows line plots of groups 13, 14,
and 15 that are unresolved. Prior knowledge insures that the object contains three bars,
but the film does not have the resolution to record three separate bars at an altitude that
satisfies the Treaty limit of 30 cm. Since the image satisfies the Treaty limit and the bar
group12 width is 21cm [36], post-processing increases the resolution by 9 cm, or a 30
percent increase.

Applying the model to the degraded image (Figure 31) introduced some new
challenges due to the added noise introduced by the German phase filter. The three-
dimensional plot in Figure 31 and the upper line plot in Figure 33 indicate that little or no
separation exists between the two bars. Modifying the model to handle two bars instead
of three was straight-forward, but handling the additional noise required a different
approach to finding the center of the first bar. For example, in the undegraded 3-Bar
target images (Figure 22) the bars have defined peaks and valleys, whereas the degraded
2-Bar target image (Figure 31) has much noise where the first bar should be. Therefore,
modifying the algorithm was necessary to find all values above a threshold in the first
130 positions of each row to estimate the starting bar width and bar position. In addition,
the algorithm used five rows instead of three to generate these estimates. Application of
the modified algorithm to the degraded 2-Bar target image (Figure 31) removed or

adjusted the added noise to produce an optimized image (Figure 32) for the 30 cm bar
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group. Like the results from the 3-Bar target, the line plots (Figure 33) show that the
overall intensity (140-200 vs. 140-196) did not change during the optimization process.

Noise in the image made the model fit of the airstar on the B-1A wing and on the
C-119 wing more challenging, but produced results just as dramatic. Adding more
constraints to the algorithm was necessary due to noise problems. For example, while
the bar group algorithm minimized only the MSE between the given and model data, the
airstar model fit algorithm minimized two different MSEs: the MSE between the given
and model data (MSE1), and the MSE between the given and optimized data (MSE?2).
MSE] decreased as the size of the airstar used in the model decreased while MSE?2
decreased as the size of the airstar increased. Therefore, the ratio of MSEyMSEz was
applied to further constrain the size of the model airstar from getting to small or to large.
Part of the B-1A wing (Figure 34) extracted from an enlarged negative (plane55b.tif)
shows an almost unintelligible airstar. Through application of the model fit algorithm
with the necessary constraints, a model (Figure 35) generated an optimized image (Figure
36) with a well-defined airstar. Again, the image satisfies the treaty limit of 30 cm and
post-processing increased the resolution by 25.2 cm to 4.8 cm (the width of the blue
stripe in the airstar), or 84 percent.

The algorithm produced similar results when applied to the airstar on the C-119
wing. As before, part of the image containing the airstar (Figure 37) was extracted from
an enlarged negative (plane55a.tif). After an exhaustive search, a model (Figure 38) of
the wing section optimized (Figure 39) the given data with a resolution increase of 20.4

cm to 9.6 cm (the width of the blue stripe in the airstar), or 68 percent. Comparing the
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original images (Figures 34 and 37) shows more definition in the C-119 airstar than the
B-1A airstar. The five points of the star on the C-119 are identifiable, and a fairly
uniform rectangular region on each side faintly outlines the stripes of the star. None of
these features are clearly visible on the B-1A. The star on the B-1A is (for lack of a
better term) a blob in the middle of what should be a blue circular background, and the
stripes are not present. A comparison of the optimized images for the B-1A and C-119
with their respective original images indicates that the algorithm produced a better fit for
the C-119 than the B-1A. However, this is not so: A visual inspection of Figures 34 and
36 shows that the star is centered in the optimized image just as the blob is centered on
the original. Likewise, Figures 37 and 39 show that the star is centered in both the
original and optimized images. Therefore, the algorithm performed correctly when

minimizing the MSE.
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VI. CONCLUSIONS and RECOMMENDATIONS

The results clearly show that using prior information to develop a model fit super-
resolution algorithm can increase the resolution of any Open Skies aerial photographic
image (including optically degraded images) by processing only in the spatial domain.
This conclusion is evident from the sharp edges in the optimized images when compared
to the original images. Also, use of a model fit algorithm can produce results that are
almost perfect compared to the original or compared to the results achievable with
commercially available photograph editing software. Furthermore, this research shows
that increasing the resolution of OS photographs is dependent upon sampling: if the
original images were not optically enlarged, there would have been insufficient samples
for processing. For example, using the 5.7 micron scanner on group 9, the original
negative produced a 21 by 21 pixel matrix, while scanning the enlarged negative
produced a 200 by 200 pixel matrix. Scanning group 12 at 5.7 microns produced a 150
by 150 pixel matrix (Figure 25), while scanning at 4 microns produced a 200 by 200
pixel matrix (Figure 28). For group 12, the algorithm successfully optimized a 4 micron
scan, but failed when applied to the 5.7 micron scan. The algorithm also increased the
resolution of the airstar emblem present on the B-1A and the C-119 aircraft found outside
the USAF Museum by 84 and 68 percent respectively. In both cases the optimized
images show less noise (e.g., due to speckling) and more feature definition. In addition,
the results indicate that sampling limits the amount of increased resolution.

The robustness of the model fit method is tied to prior knowledge (i.e., the better
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the prior knowledge, the better the results). In this application, prior knowledge allows
generation of specific models for specific images. When these models are applied to the
wrong object (i.e., 3-Bar target model applied to an airstar image), the algorithms fail and
the finished product may be nonsensical. For example, due to prior knowledge the 3-Bar
target model is coded to find the first bar in a 3-Bar target within the first third of the
image, while the 2-Bar target model finds the first bar within the first half of the image.
Since the first third in a 2-Bar target image should not contain a bar (or at best, should
contain only a portion of a bar), the 3-Bar target model fails when applied to a 2-Bar
target image. Likewise, the 2-Bar target model fails when applied to a 3-Bar target
image.

Follow-on research could easily extend this spatial domain prior knowledge model
fit method by incorporating wavelet-based noise reduction, the error reduction technique
developed by Matson [33], and developing additional models. Another area of research
could develop methods that limit the amount of increased resolution achievable using

prior knowledge.
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APPENDIX A. Matlab Code

Table 3. List of Matlab Code and Data Files

Models Input Data Output Data
BarModel 3d.m group9 tar66a.mat tar66al group9.mat
groupl2 tar66a.mat tar66al groupl2.mat
groupl2 targetb6u.mat | targetb6u groupl2.mat
tar66a.mat
target66u.mat
astar model plane55.m airstar.mat astar_plane55b B1l.mat
plane55a.mat astar_plane55a C119.mat
plane55b.mat
BarModel GE S1.m gesl.mat gesl vbar.mat
Functions
makemodelc.m rect3.m scale intensity.m line. MSE.m
minmize.m minmize 2bar.m  suptitle.m roundoff.m*
makemodelc 2bar.m rect 2bar.m line MSE 2barm  fmins.m**
shiftu.m* shiftl.m* shiftr.m* shiftd.m*

*  Files are available at www.matlab.com
** Matlab built-in function

%
%
% program astar model plane55.m
% By Dan Sperl

% AFIT/GEO/ENG/00M-03

%
% subroutines called

% suptitlem  fmins.m roundoff.m

% shiftd.m shiftu.m shiftl.m shiftr.m
% scale_intensity.m

%
% This program compares the airstar extracted from an image of a C-119 or a B-1A to a airstar model.
% The program begins by estimating the degree of rotation in the original, then resizes the model

% until it is smaller than the extracted section. Then the algorithm slides and rotates the model

% until the MSE is minimized. Finally, the results are plotted.

%
clear all

close all

format compact

% Uncomment selection, either C-119 (default) or B-1A
% Comment the others

plane='C-119';

%plane="B-1A";
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load airstar.mat
if stremp(plane,'C-119")
load plane55a.mat
figl tit="C-119 Cargo Plane';
fig tit="C-119 Airstar";
data_out='astar plane55a C119";
test rat=.1; rat=0.9; ratio=1.5;
MSE=1E100; MSE3=4E100; qt=20;MSE_count=1;
scale_test=0; count=20; count y=5;
angle=0; scale=0; adjust=0.04;
bl=.2; b2=4; al=-2;a2=2;
else strcmp(plane,'B-1A")
load plane55b.mat
cargo=B1A;
figl tit='"B-1A Bomber";
fig_tit='B-1A Airstar’;
data_out='astar plane55b B1';
test rat=0.16; rat=0.9; ratio=1.5;
MSE=1E100; MSE3=4E100; qt=20;MSE_count=1;
scale_test=0; count=20; count y=3;
angle=0; scale=0; adjust=0.03;
bl=.1; b2=.15; al=-1; a2=1;
end; % if
%

airstar=airstar.*255;

star_ wing=double(star wing);
k=double(star wing);

p4=k;

%

%determine spacing for x and y axis
[yk,xt]=size(p4);
%

% Determine degree of rotation
[a,b]=size(k);
angle=-atan((row2-row1)/(col2-coll));
angle deg=angle*180/pi

%

% Begin main program
'Performing Best Fit'

while (MSE_count>0)&(b1>=.08)&(rat<=ratio))
x=linspace(b1,b2,count); y=linspace(al,a2,3);
MSE _count=0;
for scale=length(x):-1:1
for angle=1:length(y)
test_sc=x(scale)
test angle=(angle deg+y(angle))
air=zeros(yk,xt)+max(max(airstar));
airstar_test=imresize(airstar,(test_sc));
[a,b]=size(airstar_test);
ax=floor(yk/2-a/2); bx=floor(xt/2-b/2);
if ((ax+a-1>yk)|(bx+b-1>xt)[ax<1|bx<1) % test size
'do nothing' %move on to next case
else % test size
air(ax:ax+a-1,bx:bx+b-1)=airstar_test;
airstar_rotate=shiftu(air,0,25,1);
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airstar_rot=imrotate(airstar_rotate,test angle,'crop');
[a,b]=find(airstar rot==0);
air=abs(airstar_rot);
clear airstar rotate airstar_test
k=max(max(airstar));
for g=1:length(a)
if air(a(q),b(q))==0, air(a(q),b(q))=k; end; % if
end; % forq

p4=air;
for s=1:9 % shifting procedure
for t=1:4:qt
switch s
case 1, ift== % 'No shift'

p4a=p4; end,

case 2 %,['Shift ',num2str(t), row(s) up']
p4a=shiftu(p4,0,t,1);

case 3 %,['Shift ',num2str(t),' row(s) down']
p4a=shiftd(p4,0,t,1);

case 4 %,['Shift ,num2str(t), colums(s) left']
p4a=shiftl(p4,0,t,1);

case 5 %,['Shift ',num?2str(t),' columns(s) right']
p4a=shiftr(p4,0,t,1);

case 6 %,['Shift ,num2str(t),' row(s) up & column(s) left']
pS=shiftu(p4,0,t,1); pda=shiftl(p5,0,t,1);

case 7 %,['Shift ,num2str(t),' row(s) up & column(s) right']
pS=shiftu(p4,0,t,1); p4a=shiftr(p5,0,t,1);

case 8 %,['Shift ',num2str(t), row(s) down & column(s) left']
pS=shiftd(p4,0,t,1); p4a=shiftl(p5,0,t,1);

case 9 %,['Shift ',num2str(t),' row(s) down & column(s) right']
pS=shiftd(p4,0,t,1); p4a=shiftr(p5,0,t,1);

end; % case

airl=p4a;

%
% Redo the banding for trailing edge
if stremp(plane,'C-119")
rise=length(rowt1:rowt2);
run=length(colt1:colt2);
xcol=length(run:rise); Y%number or column adjustments
shift=run/xcol;
count=0; col=1;
for g=rowt1:rowt2
count=count+1;
col=col+1;
if count>shift, col=col-1; count=shift-round(shift); end;
airl(qg,1:col)=0;
end;
end; % if

%
% Redo the banding for leading edge
rise=length(row1:row2); run=length(coll:col2);
count=0; col=coll;
if stremp(plane,'C-119")
xcol=length(run:rise);
for qg=1:length((row1):row2)
count=count+1;
if count==xcol
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airl(g,col:end)=0; col=col-1; count=0;
else
col=col+1; airl(q,col:end)=0;
end
end; % for
else
xcol=rise/length(rise:run);
for g=1:length((row1):row2)
count=count+1;
if count>=xcol
airl(qg,col:end)=0; col=col+2; count=count-xcol;
else
col=col+1; airl(qg,col:end)=0;
end
end; % for
end; % if C-119
[al,a2]=size(star_wing);
%

% Calculate MSE between given data and model
MSE2=sum(sum((airl-star wing)."2))/(al*a2);
qrms=sqrt(MSE2);

model_diff=(airl-star wing);

%

% scale intensity of model diff if greater than 255 or less than 0
model_diff=scale_intensity(model diff);
%

mean_given=(sum(sum(star_wing)))/(al*a2);
std_given=sqrt(sum(sum((star wing-mean_given)."2))/(al*a2));
ratio=(qrms/std_given);

y_minz=(star_wing+ratio);

%

% scale intensity of y minz if greater than 255 or less than 0
y_minz=scale_intensity(y_minz);
%

% Calculate MSE between given data and modified image
MSE1=sum(sum((y_minz-star wing)."2))/length(star wing);
rat=MSE1/MSE2;
if ((MSE1<MSE)|(MSE2<MSE3))&(abs(rat-ratio))>=test_rat)
MSE=MSEI;
MSE3=MSE2;
ratio_test=rat;
ratio;
airstar new=y_minz;
airstar_model=airl;
shift angle=test angle;
scale_new=test sc;
qrms_min=sqrt(MSE1);
MSE count=MSE count+1;
end; % if
%

end; % test size
end; % for t
end; % for s
end; % for angle
end; % for scale
if MSE count>0
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bl=scale new-adjust;

b2=scale_new+adjust;

count=20;

end; % if
end; % while
%
% Save variables
variables=' star wing airstar model airstar new MSE MSES3 shift angle scale new ratio_test';
eval(strcat('save ',data_out,variables))
%
% Plotting routines
%
eval(strcat('load ',data_out))
az=75; el=78,;
figure(11), set(gef,'color',[1 1 1])
subplot(121)
imagesc(star_wing),axis image, grid on;
title("2D View'),ylabel('Row #'),xlabel('Column #')
subplot(122)
surf(star wing'),axis image, grid on, view(az,el), shading interp;
title('3D View'),ylabel('Row #'),xlabel('Column #')
set(gcf,'PaperType','usletter'), set(gcf, PaperOrientation','landscape');
set(gca,'ZTick',[0;100;200])
set(gcf,'PaperPosition',[ .25, .25, 10.5, 8]);
% left bottom width height

colormap(gray(256))
suptitle(strcat(fig_tit,' - Original Image"));
%

figure(12), set(gef,'color',[1 1 1])
subplot(121)

imagesc(airstar_model),axis image,grid on
title(2D View'),ylabel('Row #'),xlabel('Column #')
subplot(122)
surf(airstar_model"),axis image, grid on, view(az,el),shading interp;
title('3D View'),ylabel('Row #'),xlabel('Column #')
set(gef,' PaperType','usletter’), set(gcf, PaperOrientation’,'landscape’);
set(gca,'ZTick',[0;100;200])
set(gcf,PaperPosition',[ .25, .25, 10.5, 8]);
% left bottom width height
colormap(gray(256))
suptitle(strcat(fig_tit,' - Model"));
%
az=75; el=78;
figure(13), set(gef,'color',[1 1 1])
subplot(121)
imagesc(airstar_new),axis image, grid on;
title('2D View'),ylabel('Row #'),xlabel('Column #')
subplot(122)
surf(airstar_new'),axis image, grid on, view(az,el),shading interp;
title('3D View'),ylabel('Row #'),xlabel('Column #')
set(gef,' PaperType','usletter’), set(gcf, PaperOrientation’,'landscape’);
set(gca,'ZTick',[0;100;200])
set(gcf,'PaperPosition',[ .25, .25, 10.5, 8]);
% left bottom width height

colormap(gray(256))
suptitle(strcat(fig_tit,' - Modified Image"));
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%
%
% Program BarModel 3d.m
% By Dan Sperl

% AFIT/GEO/ENG/00M-03

%

% subroutines called

% makemodelc 2bar.m rect 2bar.m suptitle.m fmins.m

% line MSE 2bar.m roundoff.m shiftd.m scale_intensity.m
% minmize 2bar.m shiftu.m shiftl.m shiftr.m

%

% This program compares an extracted square matrix from the 3-Bar Target to a model.
% The program begins by scanning three rows to get an average estimate of the bar width and the
% the starting position. Using these estimates, the program calls subroutine 'makemodel.m’
% to create a model. The program then tries to minimize the mean square error (MSE) by varing the
% placement of the model by shifting the matrix (left, right, up, & down), width, starting
% position, as well as adjusting the minimum and maximum gray levels in the given matrix..
% The results are then plotted.
%
clear all
format compact
% Uncomment selection, either Group 9, tar66a.tif (default), Group 12, tar66a.tif, or Group 12, target66u.tif
% Comment the others
test bar='Group 9, tar66a.tif’;
%test bar='Group 12, tar66a.tif’;
%test_bar='Group 12, target66u.tif';
if stremp(test_bar,'Group 9, tar66a.tif")

fig_tit=" Group 9, tar66a.tif;

data_in 1='tar66a.mat’;

data_in 2='grp9 tar66a.mat’;

data_out='tar66al_group9';

av=1200; bv=2000; cv=1400; dv=2100;

eval(strcat('load ',data_in_1))

eval(strcat('load ',data_in_2))

k=bar;

b width est=[40];
elseif strcmp(test_bar,'Group 12, tar66a.tif")

fig_tit=' Group 12, tar66a.tif';

data in 1='tar66a.mat’;

data in 2='grpl2 tar66a.mat’;

data_out='tar66al groupl2';

av=800; bv=2000; cv=1400; dv=2100;

eval(strcat('load ',data_in 1))

eval(strcat('load ',data_in_2))

k=bar;

b width_est=[];
elseif strcmp(test_bar,'Group 12, target66u.tif')

fig_tit="Group 12, target66u.tif';

data_in_1='target66u.mat’;

data_in 2='grpl2 target66u.mat’;

data out='target66u_ groupl12';

av=1; bv=1300; cv=350; dv=1100;

eval(strcat('load ',data_in_1))

eval(strcat('load ',data_in_2))

k=bar;

b_width_est=[];

57



else
'do nothing'
end; % if
%
% Declare global variables
global max_gray floor min_gray ceil x yk xt yt min_gray max_gray pl ab_max_p ab _min p ...
scale factor max gray floor min gray ceil p4 p4ay2 x0 b_width

%
% setup initial conditions
sl=a; % Start Row
s2=c+ta; % End Row
x1=b; % Start Column
x2=c+b; % End Column

p=double(k(s1:s2,x1:x2));

p4=p; xx=x1:x2; beta=0.05;

y_minl=[]; y_rms=[]; bf=[]; x0_rms=[]; y_min2=[];
ab_max_p=max(max(p)); % maximum gray scale value
ab_min_p=min(min(p)); % minimum gray scale value

%determine spacing for x and y axis
[vk,xt]=size(p4);

x=linspace(x1,x2,xt); %y axis spacing

yt=linspace(s1,s2,xt); %x axis spacing

%

% determine min and max gray levels

max_gray floor=round(ab max p-beta*ab max p); %determine floor and ceiling values
min_gray ceil=round(ab_min_p-+beta*1.5*ab_max_p); %for gray scale threshold

%

% Perform the linescan of the three rows to obtain estimate
% Pass variables row data
'Performing Line Scan to Determine Estimate of Width and Starting Position'
rows=[round(yk/3) round(yk/2) 2*round(yk/3)];
pl=p4(rows,:); x0_est=[];
for t=1:length(rows)
pl=p4(rows(t),:);
[b_width,x0,MSE,qrms,y min]=line MSE(pl); % data to estimate bar width & starting position
b_width est=cat(2,b_width_est,b width);
x0_est=cat(1,x0_est,x0);
end;
% determine estimate for bar width & starting position
if (strcmp(test_bar,'Group 12, tar66a.tif')|strcmp(test_bar,'Group 12, target66u.tif'))
if mean(b_width_est(1:2))>mean(b_width_est(2:3))
b_width=mean(b_width_est(2:3));
x0=mean(x0_est(2:3,1));
elseif mean(b_width_est(2:3))>mean(b_width_est(1:2))
b width=mean(b_width est(1:2));
x0=mean(x0_est(1:2,1));
else
b_width=mean(b_width_est);
x0=mean(x0_est(:,1));
end; % inner if
else
b_width=mean(b_width_est);
x0=mean(x0(:,1));
end; % outer if
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pl=p4(rows(2),:);

%

% Begin main program
'Performing Best Fit'
MSE=1E12; g=10;

for s=1:9

for t=1:q

switch s

case 1, ift== % 'No shift'
p4a=p4; end,

case 2 %,['Shift ',num2str(t), row(s) up']
p4a=shiftu(p4,0,t,1);

case 3 %,['Shift ',num2str(t),' row(s) down']
p4a=shiftd(p4,0,t,1);

case 4 %,['Shift ,num2str(t), colums(s) left']
p4a=shiftl(p4,0,t,1);

case 5 %,['Shift ',num2str(t),' columns(s) right']
p4a=shiftr(p4,0,t,1);

case 6 %,['Shift ,num2str(t),' row(s) up & column(s) left']
pS=shiftu(p4,0,t,1); pda=shiftl(p5,0,t,1);

case 7 %,['Shift ',num2str(t),' row(s) up & column(s) right']
pS=shiftu(p4,0,t,1); p4a=shiftr(p5,0,t,1);

case 8 %,['Shift ',num2str(t), row(s) down & column(s) left']
pS=shiftd(p4,0,t,1); p4a=shiftl(p5,0,t,1);

case 9 %,['Shift ',num2str(t),' row(s) down & column(s) right']
pS=shiftd(p4,0,t,1); p4a=shiftr(p5,0,t,1);

end; % case

count=11; bl=b_width-.5; b2=b width+.5;
MSE _count=1;

while (MSE _count>0&(b1<b2))
MSE _count=0;
lam=[b_width, x0(1)];
MSE1=double(fmins(‘minimize',lam));
b test=MSE1(1);
x0=MSE1(2);

[y2,x0]=makemodelc(b_test,x0,p4a);
MSE 1=sum(sum((y2-p4).”2))/(xt*yk); %Determine MSE
if MSE1<MSE)
MSE=MSE1
y_min=y2;
x0_min=x0;
b_min=b_test;
qrms_min=sqrt(MSE1);
MSE new=qrms min+MSE;
MSE_count=MSE count+1;
end; %if
if MSE_count>0'MSE Lowered'; end; % if
end; % while
%

% Collect variables
bf=cat(2,bf,b_min);

x0 rms=cat(1,x0_rms,x0_min);
mean_given=sum(sum(p4))/(xt*yk);
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std_given=sqrt(sum(sum((p4-mean_given)."2))/(xt*yk));
ratio=(y_min-p4).*(qrms_min/std_given);
y_minz=p4+ratio;
end; %for t
end; %for s

bf=roundoff(bf,4);
x0_rms=roundoff(x0_rms,4);
%
% Replace optimized section in Original matrix
k up=k;

k up(sl:s2,x1:x2)=y minz;

%

% Save variables

varl="y minl y rms X0 rms bf pl x xx y miny minz y min2';
var2='ab min p ab max p sl s2 qrms min k up p4 xt yk b_min’;
eval(strcat('save ',data_out,varl,var2))

%
% Plotting routines
%
eval(strcat('load ',data_in_1)) % Load data file
eval(strcat('load ',data_out)) % Load data file

if stremp(test_bar,'Group 12, target66u.tif')

k=target;
else

k=bar;
end;
% Display upsampled image
az=-20; el=38;
figure(12), set(gef,'color',[1 1 1])
subplot(121)
imagesc(p4),grid on,axis image,ylabel('/Row #'),xlabel('Column #');
set(gca,'ydir','normal');
subplot(122)
surf(p4),shading interp,view(az,el),axis image,ylabel('/Row #'),xlabel('Column #');
colormap(bone),axis square
set(gcf,'PaperType','usletter'), set(gef, PaperOrientation','landscape');
set(gcf,'PaperPosition',[ .25, .25, 10.5, 8]);

% left bottom width height

suptitle(strcat(fig_tit,' - Original Image"));
%
az=-7.5; el=14;
y_minzl=y minz;
%scale intensity if greater than 255 or less than 0
if max(max(y_minz1))>255

y_minzl=y minzl-(max(max(y minz1))-255);end;
if min(min(y minz1))<0

[a,b]=find(y_minz1<0);

for g=I:length(a), y minzl(a(q),b(q))=0; end
end;
zl=min(min(y minz1))-20; ifz1<0, z1=0; end;
z2=max(max(y minzl))+20; if z2>255, z2=255; end;
figure(2), set(gcf,'color',[1 1 1])
subplot(121)
imagesc(y _minz1),grid on,axis image,ylabel('/Row #'),xlabel('Column #');
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set(gca,'ydir','normal')
subplot(122)
mesh(y minzl),view(az,el),axis square,axis([0 yk 0 xt z1 z2]);
ylabel('Row #'),xlabel('Column #')
set(gcf,'PaperType','usletter'), set(gcf, PaperOrientation','landscape');
set(gcf,"PaperPosition’,[ .25, .25, 10.5, 8]);

% left bottom width height
colormap(bone)
%colormap(copper)
suptitle(strcat(fig_tit,' - Optmized Image'));
%
figure(4), set(gcf,'color',[1 1 1])
subplot(121)
imagesc(k(av:bv,cv:dv)),colormap(gray(256)),grid on,axis image,ylabel('/Row #'),xlabel('Column #');
subplot(122)
imagesc(k_up(av:bv,cv:dv)),colormap(gray(256)),grid on,axis image,ylabel('Row #'),xlabel('Column #');
set(gcf,'PaperType','usletter'), set(gcf, PaperOrientation','landscape');
set(gcf,PaperPosition’,[ .25, .25, 10.5, 8]);

% left bottom width height

suptitle(strcat(fig_tit,' - Original and Optmized Images'"));

%
% Line plots

figure(1), set(gcf,'color',[1 1 1])
subplot(211)
plot(p4(round(yk/2),:))
subplot(212)
plot(y_minzl(round(yk/2),:))
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%
%
% Program BarModel GE S1.m
% By Dan Sperl

% AFIT/GEO/ENG/00M-03

%

% subroutines called

% makemodelc 2bar.m rect 2bar.m suptitle.m fmins.m

% line MSE 2bar.m roundoff.m shiftd.m scale_intensity.m
% minmize 2bar.m shiftu.m shiftl.m shiftr.m

%

% This program compares an extracted square matrix from the 2-Bar Target to a model.

% The program begins by scanning five rows to get an average estimate of the bar width and the

% the starting position. Using these estimates, the program calls subroutine 'makemodel.m’

% to create a model. The program then tries to minimize the mean square error (MSE) by varing the

% placement of the model by shifting the matrix (left, right, up, & down), width, starting

% position, as well as adjusting the minimum and maximum gray levels in the given matrix..

% The results are then plotted.

%

clear all

format compact

load gesl.mat % necessary data file

%

% Declare global variables

global max_gray floor min gray ceil x yk xt yt min_gray max_gray pl ab_max_p ab_min p ...
scale factor max_gray floor min gray ceil p4 p4a y2 x0 b_width

%
% Setup initial conditions

k=bar;
% Uncomment selection, either v_bar (default) or h_bar
% Comment the others
test bar='v_bar";
%test_bar="h_bar";
if stremp(test bar,'v_bar")
figl tit='Vertical Bars';
fig_tit="German S1 Filter";
data_out='gesl vbar'
a=av; b=bv; c=cv; d=dv;
p=double(v_bar);
else stremp(test_bar,'h_bar")
figl tit="Horizontal Bars',
fig_tit="German S1 Filter";
data out='gesl hbar'
a=ah; b=bh; c=ch; d=dh;
p=double(h_bar'); % transpose data to calculate
end; % if

sl=a; % Start Row
s2=cta; % End Row

x1=b; % Start Column
x2=d+b; % End Column
p4=p; xx=x1:x2; beta=0.05;

y minl=[]; y rms=[]; bf=[]; x0 rms=[]; y min2=[];
ab_max_p=max(max(p));

62



ab_min_p=min(min(p));

%determine spacing for x and y axis
[yk,xt]=size(p);

x2a=x1+xt;

x=linspace(x1,x2,xt); %y axis spacing

s2a=sl+yk;

yt=linspace(s1,s2,xt); %x axis spacing

%

%determine min and max gray levels

max_gray floor=round(ab max p-beta*ab max p); %determine floor and ceiling values
min_gray ceil=round(ab_min p-+beta*1.5*ab_max_p); %for gray scale threshold

%

% Perform the linescan of the five rows to obtain estimate
% Pass variables row data
'"Performing Line Scan to Determine Estimate of Width and Starting Position'
rows=[round(yk/6) 2*round(yk/6) 3*round(yk/6) 4*round(yk/6) 5*round(yk/6)];
pl=p(rows,:);
x0_est=[];
b_width est=[];
for t=1:length(rows)
strcat('row ',num2str(t))
pl=p(rows(t),:);
[b_width,x0,MSE,qrms,y min]=line. MSE 2bar(pl);
b width est=cat(2,b width est,b width);
x0_est=cat(1,x0_est,x0);
end;
b_width=mean(b_width_est)
x0=mean(x0_est(:,1))

%
% Begin main program
'Performing Best Fit'
MSE=1E12; g=10;
for s=1:9

for t=1:q

switch s

case 1, ift==1 'No shift'
p4a=p4; end;

case 2, ['Shift ',num2str(t),' row(s) up']
p4a=shiftu(p4,0,t,1);

case 3, ['Shift ',num2str(t),' row(s) down']
p4a=shiftd(p4,0,t,1);

case 4, ['Shift ',num2str(t),' colums(s) left']
p4a=shiftl(p4,0,t,1);

case 5, ['Shift',;num2str(t),' columns(s) right']
p4a=shiftr(p4,0,t,1);

case 6, ['Shift ',num2str(t),' row(s) up & column(s) left']
pS=shiftu(p4,0,t,1); p4a=shiftl(p5,0,t,1);

case 7, ['Shift ',num2str(t),' row(s) up & column(s) right']
pS=shiftu(p4,0,t,1); p4a=shiftr(p5,0,t,1);

case 8, ['Shift ',num2str(t),' row(s) down & column(s) left']
pS=shiftd(p4,0,t,1); p4a=shiftl(p5,0,t,1);

case 9, ['Shift',num2str(t), row(s) down & column(s) right']
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pS=shiftd(p4,0,t,1); p4a=shiftr(p5,0,t,1);
end; % case

count=11; bl=b_width-.5; b2=b_ width+.5;
MSE _count=1;

while (MSE _count>0&(b1<b2))
MSE_count=0;
lam=[b_width, x0(1)];
MSE1=double(fmins('minimize_2bar',lam));
b_test=MSEI1(1);
x0=MSE1(2);

[v2,x0]=makemodelc_2bar(b_test,x0,p4a);
MSE 1=sum(sum((y2-p4)."2))/(xt*yk);
if (MSE1<MSE)
MSE=MSE1
y_min=y2;
x0_min=x0;
b min=b_test;
qrms_min=sqrt(MSE1);
MSE new=qrms_min+MSE;
MSE count=MSE count+1;
end; %if
if MSE count>0'MSE Lowered'; end; % if
end; %while
%

% Collect variables
bf=cat(2,bf,b_min);
x0_rms=cat(1,x0_rms,x0_min);
mean_given=sum(sum(p4))/(xt*yk);
std_given=sqrt(sum(sum((p4-mean_given)."2))/(xt*yk));
ratio=(y_min-p4).*(qrms_min/std_given);
y_minz=p4+ratio;
end; %for t
end; %for s

bf=roundoff(bf,4);
x0_rms=roundoff(x0_rms,4);
%

% Replace optimized section in Original matrix
k up=k;

k up(x1:x2,s1:52)=y minz;

%

% Save variables

varl="y minl y rms x0_rms bf pl x xx y_miny_minz y min2',
var2='ab min p ab max p sl s2 qrms min k up p4 xt yk b_min’;
eval(strcat('save ',data_out,varl,var2))

%

% Plotting routines

%
eval(strcat('load ',data_out))
load ges1.mat

k=bar;
% Display upsampled image
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az=-30; el=50;
figure(12), set(gef,'color',[1 1 1]),subplot(121)
imagesc(p4),grid on,axis image,ylabel('/Row #'),xlabel('Column #');
set(gca,'ydir',normal')
subplot(122)
surf(p4),shading interp,view(az,el),axis image,ylabel('/Row #'),xlabel('Column #');
%colormap(copper)
colormap(bone)
set(gcf,'PaperType','usletter'), set(gcf, PaperOrientation','landscape');
set(gcf,PaperPosition',[ .25, .25, 10.5, 8]);
% left bottom width height

suptitle(strcat(fig_tit,' - Original Image"));
%
az=-19; el=40;
y_minzl=y minz;
% scale intensity if greater than 255 or less than 0
if max(max(y_minz1))>255

y_minzl=y minzl-(max(max(y_minzl))-255);end;%(255-ab_max_p); end;
if min(min(y_minz1))<0

[a,b]=find(y minz1<0);

for g=I:length(a), y minzl(a(q),b(q))=0; end
end;
zl=min(min(y minz1))-20; ifz1<0, z1=0; end;
z2=max(max(y_minzl))+20; if z2>255, z2=255; end;
figure(2), set(gcf,'color',[1 1 1])
subplot(121)
imagesc(y _minz1),grid on,axis image,ylabel('/Row #'),xlabel('Column #');
set(gca,'ydir',normal')
subplot(122)
mesh(y_minzl),view(az,el),axis square,axis([0 xt 0 yk z1 z2]);
ylabel('Row #'),xlabel('Column #')%,set(gca,'ydir','rev')
set(gef,' PaperType','usletter’), set(gcf, PaperOrientation’,'landscape");
set(gcf,'PaperPosition',[ .25, .25, 10.5, 8]);

% left bottom width height

%colormap(bone)
colormap(copper)
suptitle(strcat(fig_tit,' - Optmized Image'));
%
figure(4), set(gcf,'color',[1 1 1])
a=2000; b=4300; c=1000; d=3100;
subplot(121)
imagesc(k(a:b,c:d)),colormap(gray(256)),grid on,axis image,ylabel('Row #'),xlabel('Column #');
subplot(122)
imagesc(k_up(a:b,c:d)),colormap(gray(256)),grid on,axis image,ylabel('Row #'),xlabel('Column #');
set(gcf,'PaperType','usletter'), set(gef, PaperOrientation','landscape');
set(gcf,'PaperPosition',[ .25, .25, 10.5, 8]);

% left bottom width height
suptitle(strcat(fig_tit,' - Original and Optmized Images'));
%
% Line plots
figure(1), set(gcf,'color',[1 1 1])
subplot(211),plot(p4(round(yk/2),:))
subplot(212),plot(y_minzl(round(yk/2),:))
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%
%
function [B_ MIN,X0 MIN,MSE,qrms_min,y min]|=line MSE(P1)
% Program line. MSE

% by Dan Sperl

% AFIT/GEO/ENG/00M-03

%
global max_gray floor min_gray ceil x yk xt yt
%
% Begin main program
PX=sort(P1); MSE=1E12; MSE2=0;
count=5; bl=1; b2=60; MSE _count=1; b_min=b2;

% determine zz

zz=1; aa=1; bb=1;

max_gray=255; min_gray=0; % initialize gray levels for while loop

while max_gray>max_gray floor&min gray<min gray ceil
max_gray=round(mean(PX(length(PX)-aa:length(PX))));
min_gray=round(mean(PX(1:bb)));
zz=7z+1; aa=aa+tl; bb=bb+1;

end;

kz=linspace(1,zz,count);

y2x=zeros(count™4,length(x)); MSElx=zeros(1,count*4); b x=zeros(l,count*4); y minx=[];
qrms_x=zeros(1,count*4); min_gray x=zeros(1,count”4);

aa_count=1; bb_count=1; y _count=1; y1=[];

max_gray x=zeros(l,count™4);

t1=find(P1==max(P1(1:round(yk/3)+2)));

t2=x(t1(1)); % starting point for rectangle

x1a=linspace(t2-1,t2+1,count);

while (MSE_count>0&(b1<b2)) %&(b_min<b2)

z_count=1;

MSE_count=0;

%use 'for loops aa and bb' to minimize MSE for min_gray and max_gray

for aa=1:length(kz)

for bb=1:length(kz)
max_gray=round(mean(PX(length(PX)-aa:length(PX))));
min_gray=round(mean(PX(1:bb))); %detrmine min/max gray scale for each iteration

% find desired square wave that minimizes the MSE with P1
b=linspace(b1,b2,count); % set width dimensions for rectangle
%use 'for loops y and z' to minimize MSE for rectangle width
for y=1:length(x1a)
for z=1:length(b)
z_count=z_count+1;
[y2,x0]=rect3(x1a(y),b(z),x); % rectangle function
y2xb=find(y2==1); y2(y2xb)=max gray; % replace one values with max_gray values
y2xa=find(y2==0); y2(y2xa)=min_gray; % replace zero values with min_gray values
y2=y2+(P1-y2)/(sqrt(std(P1)));

MSE1=sum((y2-P1).”2)/length(y2);
qrms=sqrt(MSE1); % calculate root mean square error

if (MSE1<MSE))
MSE=MSEI;
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y_min=y2;
x0_min=x0;
b min=b(z)
gray min=min_gray;
gray_max=max_gray;
qrms_min=qrms;
MSE new=qrms+MSE;
MSE count=MSE count+1;
end; % if
end; % for z
end; % fory
end; % for bb
end; % for aa
mk=abs((b2-b1)/8);
if MSE count>0
'MSE Lowered'
b1=((b_min))-mk-0.2; % reduce rectangle testing width
b2=((b_min))+mk+0.2; % reduce rectangle testing width
if (b2-b1)<3, count=21; end;
if (b2-b1)<=1.5, count=41; end;
end; % if
end; % while
B MIN=b min;
X0 MIN=x0 min;
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%

%
function [B_ MIN,X0 MIN,MSE,qrms_min,y min|=line MSE 2bar(P1)
% by Dan Sperl
% AFIT/GEO/ENG/00M-03
%
global max_gray floor min_gray ceil x yk xt yt
%
% Begin main program
PX=sort(P1);MSE=1E12; MSE2=0;
count=5; bl=1; b2=60; MSE_count=1; b_min=b2;

% determine zz

zz=1; aa=1; bb=1;

max_gray=255; min_gray=0; % initialize gray levels for while loop

while max_gray>max_gray floor&min gray<min gray ceil
max_gray=round(mean(PX(length(PX)-aa:length(PX))));
min_gray=round(mean(PX(1:bb)));
zz=z7z+1; aa=aa+l; bb=bb+1;

end;

kz=linspace(1,zz,count);

y2x=zeros(count™4,length(x)); MSElx=zeros(1,count*4); b x=zeros(l,count*4); y minx=[];
qrms_x=zeros(1,count*4); min_gray x=zeros(l,count™4);

aa_count=1; bb_count=1; y _count=1; y1=[];

max_gray x=zeros(l,count™4);

t1=find(P1==max(P1(1:round(yk/3)+2)));

t2=x(t1(1)); % starting point for rectangle

xla=linspace(t2-1,t2+1,count);

while (MSE_count>0&(b1<b2))

z _count=1;

MSE_count=0;

%use 'for loops aa and bb' to minimize MSE for min_gray and max_gray

for aa=1:length(kz)

for bb=1:length(kz)
max_gray=round(mean(PX(length(PX)-aa:length(PX))));
min_gray=round(mean(PX(1:bb))); % determine min/max gray scale for each iteration

% find desired square wave that minimizes the MSE with P1
b=linspace(b1,b2,count); % set width dimensions for rectangle
%use 'for loops y and z' to minimize MSE for rectangle width
for y=1:length(x1a)
for z=1:length(b)
z_count=z_count+1;
[v2,x0]=rect_2bar(x1a(y),b(z),x); % rectangle function
y2xb=find(y2==1); y2(y2xb)=max gray; % replace one values with max_gray values
y2xa=find(y2==0); y2(y2xa)=min_gray; % replace zero values with min_gray values
y2=y2+(P1-y2)/(sqrt(std(P1)));

MSE1=sum((y2-P1).”2)/length(y2);
qrms=sqrt(MSE1); % calculate root mean square error

if (MSE1<MSE))

MSE=MSEI;
y_min=y2;
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x0_min=x0;
b_min=b(z)
gray min=min_gray;
gray_max=max_gray;
qrms_min=qrms;
MSE new=qrms+MSE;
MSE count=MSE count+1;
end; % if
end; % for z
end; % fory
end; % for bb
end; % for aa
mk=abs((b2-b1)/8);
if MSE_count>0
'MSE Lowered'
b1=((b_min))-mk-0.2; % reduce rectangle testing width
b2=((b_min))+mk+0.2; % reduce rectangle testing width
if (b2-b1)<3, count=21; end;
if (b2-b1)<=1.5, count=41; end;
end; % if
end; % while
B_MIN=b_min;
X0 MIN=x0 min;
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%

%

function [Y,X0]=makemodelc(B_ ROWS,B X0,Y MINI)

% by Dan Sperl

% AFIT/GEO/ENG/00M-03

%

global x yk xt yt min_gray max gray pl ab max_p ab min p scale factor ...
max_gray floor min_gray ceil

%

X=x; YK=yk; XT=xt; MIN_GRAY=ab_min_p; %min_gray;

MAX GRAY=ab max_p;%max_gray;

Pl=pl;

start_ row=1; end row=1;

[QQ.RR]=size(Y_MIN1);

% Scan each to find beginning and ending row above threshold
for t=1:QQ
PX=sort(Y_ MINI1(t,:));
aa=1; bb=lI;
max_gray=255; min_gray=0; % initialize gray levels for while loop
while max_gray>max_gray floor&min gray<min gray ceil
max_gray=round(mean(PX(length(PX)-aa:length(PX))));
min_gray=round(mean(PX(1:bb)));
aa=aat+l; bb=bb+l;
end
end; %for
start_row,
end_row;

% determine # of rows and average starting position

Kl1=round(YK/2-1); %use middle row

NUM_ROWS=round(B_ROWS*5);

% calculate values for optimum square wave

MIN_GRAY=round(min(Y_MINI1(K1,:)));

MAX GRAY=round(max(Y MIN1(K1,:)));

[Y2,X0]=rect3(B_X0,B ROWS,X); % rectangle function

Y2xb=find(Y2==1); Y2(Y2xb)=MAX GRAY; % replace one values with max_gray values
Y2xa=find(Y2==0); Y2(Y2xa)=MIN_GRAY; % replace zero values with min_gray values
Y2=Y2+(P1-Y2)/(sqrt(std(P1)));

Y _min2=zeros(YK,XT)+min(Y2)+10;

for t=round(K1-NUM_ROWS/2+1):round(K1+NUM_ROWS/2)
Y min2(t,:)=Y2;

end;

Y=Y min2;
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%

%

function [Y,X0]=makemodelc 2bar(B_ ROWS,B X0,Y MINI1)

% by Dan Sperl

% AFIT/GEO/ENG/00M-03

%

global x yk xt yt min_gray max gray pl ab max_p ab _min p scale factor ...
max_gray floor min_gray ceil

%

X=x; YK=yk; XT=xt; MIN_GRAY=ab_min_p; %min_gray;

MAX GRAY=ab max_p;%max_gray;

Pl=pl;

start_ row=1; end row=1;

[QQ.RR]=size(Y_MIN1);

% Scan each to find beginning and ending row above threshold
for t=1:QQ
PX=sort(Y_ MINI1(t,:));
aa=1; bb=lI;
max_gray=255; min_gray=0; % initialize gray levels for while loop
while max_gray>max_gray floor&min gray<min gray ceil
max_gray=round(mean(PX(length(PX)-aa:length(PX))));
min_gray=round(mean(PX(1:bb)));
aa=aat+l; bb=bb+l;
end;
end; %for
start_row,
end_row;

% determine # of rows and average starting position
Kl1=round(YK/2-1); %use middle row
NUM_ROWS=round(B_ROWS*5);

% calculate values for optimum square wave
MIN_GRAY=round(min(Y_MINI1(K1,:)));

MAX_ GRAY=round(max(Y_MINI1(K1,:)));

[Y2,X0]=rect 2bar(B_X0,B ROWS,X); %rectangle function
Y2xb=find(Y2==1); Y2(Y2xb)=MAX GRAY; % replace one values with max_gray values
Y2xa=find(Y2==0); Y2(Y2xa)=MIN_GRAY; % replace zero values with min_gray values

Y2=Y2+(P1-Y2)/(sqrt(std(P1)));
Y _min2=zeros(YK,XT)+min(Y2)+10;
for t=round(K1-NUM_ROWS/2+1):round(K1+NUM_ROWS/2)
%for t=start row:end row
Y min2(t,:)=Y2;
end;

Y=Y _ min2;
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%

%
function MSE 1=minimize(lam)

% By Dan Sperl

% AFIT/GEO/ENG/00M-03

% This function is called by the Matlab command ‘fmins’ to minimize the mean
% squared error

global x yk xt yt min_gray max_gray pl ab_max p ab _min p scale factor ...
max_gray floor min_gray ceil p4 p4a y2

b_width=lam(1);

x0=lam(2);

y2=makemodelc(b_width,x0(1),p4a);

MSE I=sum(sum((y2-p4)."2))/(xt*yk); %Determine MSE

%

%

function MSE1=minimize 2bar(lam)
% By Dan Sperl
% AFIT/GEO/ENG/00M-03

global x yk xt yt min_gray max gray pl ab max_p ab _min p scale factor ...
max_gray floor min_gray ceil p4 p4a y2

b_width=lam(1);

x0=lam(2);

y2=makemodela_2bar(b_width,x0(1),p4a);
MSE1=sum(sum((y2-p4).”2))/length(y2); %Determine MSE

%

%
function [Y]=scale_intensity(X)
% By Dan Sperl

% AFIT/GEO/ENG/00M-03

% This function scales the intensity of an matrix to values between 0 and 255
if min(min(X))<0
X=X+abs(min(min(X)));
end;
if max(max(X))>255
scale X=max(max(X))/255;
X=X/scale X;
end;
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%

%
function [YY,X0]=rect3(X1A,B,X)
% By Dan Sperl

% AFIT/GEO/ENG/00M-03

XO0=(];

for w=1:3% this for loop determines the placement of the 3 rectangles
X01=double(X1A+2*B*(w-1));
X0=cat(2,X0,X01);

end; % for w

% Optimum Rectangle Function
Y2=zeros(1,length(X));
for t=1:length(X0)
q=(X-XO(t))/B;
for r=1:length(q)
if abs(q(r))>0.5
Y 1(r)=0;
else
Y1(r)=1;
end; % if
end; % forr
Y2=Y2+Y1; % sum the 3 iterations to get a vector with 3 rectangles
end; % fort
YY=Y2;

%

%

function [YY,X0]=rect 2bar(X1A,B,X)
% By Dan Sperl
% AFIT/GEO/ENG/00M-03

X0=(];
for w=1:2% this for loop determines the placement of the 3 rectangles
X01=round(double(X1A+3*B*(w-1)));
X0=cat(2,X0,X01);
end; % for w
%X0=x(X0);
adj=.2;
% Optimum Rectangle Function
Y2=zeros(1,length(X));
for t=1:length(XO0)
q=((X-X0(1))/B);
g=roundoff(q,3);
for r=1:length(q)
if abs(q(r))>0.5+adj
Y 1(r)=0;
else
Y1(r)=1;
end; % if
end; % forr
Y2=Y2+Y1; % sum the 2 iterations to get a vector with 2 rectangles
end; %for t
YY=Y2;
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%
% This function was obtained from www.mathworks.com
%
function hout=suptitle(str)

%SUPTITLE Puts a title above all subplots. SUPTITLE('text') adds text to the top of the figure
% above all subplots (a "super title"). Use this function after all subplot commands.

% Drea Thomas 6/15/95 drea@mathworks.com

% Warning: If the figure or axis units are non-default, this will break.

% Parameters used to position the supertitle. Amount of the figure window devoted to subplots.

plotregion = .92;

titleypos = .95; % Y position of title in normalized coordinates
fs = get(gcf,'defaultaxesfontsize’)+4; % Fontsize for supertitle
fudge=1; % Fudge factor to adjust y spacing between subplots
haold = gca;

figunits = get(gcf,'units');

% Get the (approximate) difference between full height (plot + title + xlabel) and bounding rectangle.
if (~strcmp(figunits,'pixels')),
set(gef,'units','pixels");
pos = get(gcf,'position’);
set(gcf,'units',figunits);
else,
pos = get(gcf,'position');
end
ff = (fs-4)*1.27*5/pos(4)*fudge;

% The 5 here reflects about 3 characters of height below
% an axis and 2 above. 1.27 is pixels per point.

% Determine the bounding rectange for all the plots

% h = findobj('Type','axes");

% findobj is a 4.2 thing.. if you don't have 4.2 comment out
% the next line and uncomment the following block.

h = findobj(gcf, Type','axes'); % Change suggested by Stacy J. Hills

% If you don't have 4.2, use this code instead
%ch = get(gcf, 'children');

Yoh=[];

%for i=1:length(ch),

% 1if stremp(get(ch(i),'type'),'axes"),

% h=[h,ch(i)];

% end

%end

max_y=0;
min_y=1;

oldtitle =0,
for i=1:length(h),
if (~strcmp(get(h(i), Tag"),'suptitle")),
pos=get(h(i),'pos);
if (pos(2) < min_y), min_y=pos(2)-{f/5*3;end,
if (pos(4)+pos(2) > max_y), max_y=pos(4)+pos(2)+ft/5*2;end;
else,

74



oldtitle = h(i);
end
end

if max_y > plotregion,
scale = (plotregion-min_y)/(max_y-min_y);
for i=1:length(h),
pos = get(h(i),'position’);
pos(2) = (pos(2)-min_y)*scale+min_y;
pos(4) = pos(4)*scale-(1-scale)*{f/5*3;
set(h(i),'position’,pos);
end
end

np = get(gcf,'nextplot');
set(gef,'nextplot','add");
if (oldtitle),
delete(oldtitle);
end
ha=axes('pos',[0 1 1 1],'visible','off",'Tag','suptitle");
ht=text(.5,titleypos-1,str);set(ht,'horizontalalignment','center','fontsize',fs);
set(gcf, nextplot',np);
axes(haold);
if nargout,
hout=ht;
end
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%
% This function was obtained from www.mathworks.com
%
function y = shiftd(A,column,shift,type)

% PURPOSE: y = shiftd (A, column, shift) moves #column of matrix A downwards by #shift positions.
% INPUT ARGUMENTS:

% 'A' is the input matrix. ('A' can be a vector). 'column' is the number of the column to be shifted. If

% column' is zero, then all columns in the matrix are shifted. 'shift' is the number of positions by which the
% column is shifted down. 'type'is an optional argument. The shifted matrix-elements are discarded if
% this argument is 0 or is omitted, then vacated spaces at the top are filled with zeroes. The shifted

% matrix-elements are retained if 'type' is 1or any other non-zero value, then vacated spaces at the top are
% filled with the shifted column-elements from the bottom (i.e. "wraparound").

%

[M,N] = size(A);

if column > N | column < 0, error('Invalid Column'"); end

if shift < 0, error('"Negative shift value - use "shiftu" instead'); end

if shift > M, error('Shift value exceeds number of rows'); end

if column ==
if nargin == 4 & type ~=0
A = [A(M-shift+1:M,:); A(1:M-shift,:)];
else
A = [zeros(shift,N); A(1:M-shift,:)];
end
else
if nargin == 4 & type ~= 0
A(:,column) = [A(M-shift+1:M,column); A(1:M-shift,column)];
else
A(:,column) = [zeros(shift,1); A(1:M-shift,column)];
end
end
y=A;
Y=X;
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%
% This function was obtained from www.mathworks.com
%
function y = shiftr(A,row,shift,type)

% PURPOSE:

% 'y = shiftr (A, row, shift) moves #row of matrix A to the right by #shift positions.

% INPUT ARGUMENTS:

% 'A' is the input matrix. ("A' can be a vector). 'row' is the number of the row to be shifted. If 'row' is zero,
% then all rows in the matrix are shifted. 'shift' is the number of positions by which the row is shifted

% to the right. % 'type'is an optional argument. The shifted matrix-eclements are discarded if this

% argument is 0 or is omitted, then vacated spaces to the left are filled with zeroes. The shifted

% matrix-elements are retained if 'type' is 1 or any other non-zero value,

% then vacated spaces to the left are filled with the shifted row-elements from the right (i.e. "wraparound").
%

[M,N] = size(A);

if row > M | row < 0, error('Invalid Row'); end

if shift < 0, error('Negative shift value - use "shiftl" instead'); end

if shift > N, error('Shift value exceeds number of columns'); end

ifrow==0
if nargin == 4 & type ~=0
A =[A(:,N-shift+1:N) A(:,1:N-shift)];
else
A = [zeros(M,shift) A(:,1:N-shift)];
end
else
if nargin == 4 & type ~= 0
A(row,:) = [A(row,N-shift+1:N) A(row,1:N-shift)];
else
A(row,:) = [zeros(1,shift) A(row,1:N-shift)];
end
end
y=A;
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%
% This function was obtained from www.mathworks.com
%
function y = shiftl(A,row,shift,type)

% PURPOSE:

% y = shiftl (A, row, shift) moves #row of matrix A to the left by #shift positions.

% INPUT ARGUMENTS: 'A'is the input matrix. ('A' can be a vector). 'row' is the number of the row to
% be shifted. If 'row' is zero, then all rows in the matrix are shifted. 'shift' is the number of positions by
% which the row is shifted to the right. 'type'is an optional argument. The shifted matrix-elements are

% discarded if this argument is O or is omitted, then vacated spaces to the right are filled with zeros.

% The shifted matrix-elements are retained if 'type' is 1 or any other non-zero value, then vacated spaces to
% the right are filled with the shifted row-elements from the left (i.e. "wraparound").

%

[M,N] = size(A);

if row > M | row <0, error('Invalid Row'); end

if shift < 0, error('"Negative shift value - use "shiftr" instead"); end

if shift > N, error('Shift value exceeds number of columns'); end

if row ==
if nargin == 4 & type ~=0
A =[A(,1+shift:N) A(:,1:shift)];
else
A = [A(:,1+shift:N) zeros(M,shift)];
end
else
if nargin == 4 & type ~= 0
A(row,:) = [A(row,1+shift:N) A(row, 1:shift)];
else
A(row,:) = [A(row,1+shift:N) zeros(1,shift)];
end
end
y=A;
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%
% This function was obtained from www.mathworks.com
%
function y = shiftu(A,column,shift,type)

% PURPOSE:
% y = shiftu (A, column, shift) moves #column of matrix A upwards by #shift positions.
% INPUT ARGUMENTS: 'A'is the input matrix. ("A' can be a vector). 'column' is the number of the
% column to be shifted. If 'column' is zero, then all columns in the matrix are shifted. 'shift' is the number
% of positions by which the column is shifted vertically. 'type'is an optional argument. The shifted
% matrix-elements are discarded if this argument is 0 or is omitted, then vacated spaces on the bottom are
% filled with zeroes. The shifted matrix-elements are retained if 'type' is 1 or any other non-zero value,
% then vacated spaces on the bottom are filled with the shifted column-elements from the top (i.e.
% "wraparound").
%
[M,N] = size(A);
if column > N | column < 0, error('Invalid Column'); end
if shift < 0, error('Negative shift value - use "shiftd" instead'); end
if shift > M, error('Shift value exceeds number of rows'); end
if column ==
if nargin == 4 & type ~=0
A = [A(1+shift:M,:); A(1:shift,:)];
else
A = [A(1+shift:M,:); zeros(shift,N)];
end
else
if nargin == 4 & type ~=0
A(:,column) = [A(1+shift:M, column); A(1:shift, column)];

else
A(:,column) = [A(1+shift:M, column); zeros(shift,1)];
end
end
y=A;
%
% This function was obtained from www.mathworks.com
%

function y = roundoff(number,decimal places)
% Rounds a number (vector) to a specified number of decimal places

decimals = 10."decimal places;
y = fix(decimals*number + 0.5)./decimals;
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APPENDIX B. List of Scanned Negatives

3-Bar Targets

55target.tif 55aircraft.tif v/
S6target.tif S6aircraft.tif
STtarget.tif S6aircraft.tif
S8target.tif 57aircraft.tif
S9target.tif 58aircraft.tif
60target.tif 59aircraft.tif
61target.tif 60aircraft.tif
62target.tif 6laircraft.tif
63target.tif 62aircraft.tif
64target.tif 63aircraft.tif
65target.tif 64aircraft.tif
66target.tif v/ 65aircraft.tif
67target.tif
68target.tif tar66a.tif v/
69target.tif target66u.tif v/
70target.tif plane55a.tif v/
71target.tif plane55b.tif v/
72target.tif geslatif v/
(7,283 feet)
73target.tif
74target.tif
75target.tif
76target.tif
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