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ABSTRACT 

High frequency (HF) radar and its application to mapping ocean surface currents 

is a relatively new field of study in oceanography.  Nevertheless, this scientific field 

produces real, tangible, accurate real-time results readily available to the military 

operational planner.  The information gained through this process aids in the planning 

and execution of littoral operations via the description of the battle-space environment.   

Additionally, commercial use of this information can aide in the containment of coastal 

oil spills, efforts in search and rescue, and the execution of coastal engineering projects.  

Indeed, the utilization of High Frequency radar in the ocean environment has many 

beneficial qualities used by a wide variety of organizations.   

This study focuses on the validation aspects of High Frequency radar through the 

use of four drifters placed in-situ from 23-27 January 2008 on the Central California 

Coast from Monterey to San Francisco.  A second experiment was conducted from 01-10 

April 2008 involving 32 drifters placed west of the San Francisco Bay.  Various 

statistical comparisons of radial current velocity data from 12 CODAR (Coastal Ocean 

Dynamics Application Radar) stations to the radial velocity data of each of the drifters 

are analyzed.   

CODAR type HF radar validated through the use of Lagrangian drifters is 

documented throughout this study.   Specific results document a robust correlation 

between in-situ measurements and surface current velocity vectors produced via the 

CODAR system suite.  With the exception of COMM data in the first experiment, the 

RMS differences of the measured patterns had a reasonable spread of between 9.0 cm/s to 

upwards of 19.124 cm/s.   In the second experiment, RMS differences ranged from 9.8 

cm/s to 15.9 cm/s.   
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I. INTRODUCTION  

A. HIGH FREQUENCY RADAR 

High Frequency (HF) radar and its application to mapping ocean surface currents 

is a relatively new field of study in oceanography.  Nevertheless, this scientific field 

produces real, tangible, accurate real-time results readily available to the scientific 

community as well as many other entities.  Measurement of the ocean surface current 

through high frequency radar dates back to Stewart and Joy (1974) and Barrick et al. 

(1977), who first discovered its practicable use to the ocean sciences. 

The fundamentals of ocean surface current mapping stems from the backscatter of 

electromagnetic energy in the 3-30 MHz range.  This frequency range is significant since 

Bragg scattering is strong and well characterized here (Crombie, 1955).  Bragg scattering 

is the coherent reflection of the pulsed energy by ocean surface waves, waves which 

exhibit exactly one-half the wavelength as the transmitted pulse.  As each wave that 

exhibits one-half wavelength presents itself to the radiated energy, the in-phase return 

contributes to a strong peak in the backscatter spectrum.  The primary type of wave that 

coherently reflects high frequency radar is shown to be surface gravity waves with 

approximately ten-meter wavelengths (Paduan and Graber, 1997). 

The backscatter spectrum that contains the Bragg peaks will show a slight 

Doppler shift, which is attributed to the underlying ocean current as well as the deep 

water phase speed of the ocean wave.  Since the phase speed of the wave is theoretically 

known due to the dispersion relation of surface gravity waves, the remaining shift is 

therefore due only to the current.   

Since each HF radar station can only determine the velocity of the current that is 

directly towards or away from the transmitting station, two or more stations that are 

offset from each other are needed to determine the true ocean current.  The optimum 

offset is 90 degrees and generally, two radials must have an angle greater than 30 degrees 

and less than 150 degrees to resolve the current vector (Paduan and Graber, 1997).  The 

addition of both radial vectors from separate radar sites will provide the true current 
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magnitude and direction for that specific point in the ocean.  By combining spatial 

averaging of about three km in radial length in five-degree increments with temporal 

averaging of about every hour, a horizontal map of surface current velocities can be 

obtained.   

For angular determination, there are two primary radar configurations that analyze 

the scattered signal from a given range cell: direction finding and phased array systems 

(beam forming).  The configuration that was used in this study is the direction finding 

(DF) system and is found on CODAR systems (Coastal Ocean Dynamics Applications 

Radar).  It consists of two crossed loops and a whip for receiving and a single whip for 

transmitting the HF radio pulses (Paduan and Graber, 1997).  A beam forming system, 

such as the Ocean Surface Current Radar (OSCR), uses a linear array of receive antennae 

to steer the receive antennae look angle to different directions (Prandle, 1991).  Each 

system has its advantages and disadvantages, but the CODAR system is prevalent on the 

Central California Coast due to the limited space needed for system deployment and is 

therefore used in this study. 

B. EVALUATION OF CODAR SEASONDE HF RADAR ON THE CENTRAL 
CALIFORNIA COAST 

This study evaluates the statistical correlation between a Pacific Gyre drifting 

buoy’s radial velocities with that of HF radar station (CODAR) radial velocities in order 

to validate HF radar surface current mapping abilities.  There is expected to be a  

statistical variation right from the start due to the inexact measurement capabilities of 

both drifter and radar systems and due to the different measurement footprints of the two 

systems, general errors (i.e., velocity differences) will arise due to the fact that HF radars 

only measure from the surface down to about 1 meter whereas the drifter buoys have a 

Drogue centered around 1 meter, which can slip by as much as 1 to 2 cm/s from the 

ocean water they follow (Niiler et al., 1987).  Also, HF radar gives vertically integrated 

values from the surface where drifters integrate their values over their drag elements 

(Ohlmann et al., 2006).  Furthermore, drifter radial velocities are somewhat of a point 

measurement of surface velocities.  As mentioned above, HF radar measurements are 

averages of both spatial and temporal scales.  These space and time differences in 
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measurements will account for basic errors and are unavoidable.  Determining the 

magnitude of these errors and whether a consistent pattern emerges from the data is one 

goal of this study.  

Various upgrades to the hourly reports that the Seasonde CODAR suite generates 

have allowed for further statistical analysis of various other parameters, such as the 

temporal quality of the HF radar data.     Temporal quality is a term used by the CODAR 

manufacturer and is one of a number of quality factors available in the reports.  Quality 

factors are values that relate to “measurement uncertainties such as noise, a changing 

surface current pattern, and/or horizontal shear over each measured area.  Most temporal 

uncertainty is due to the current pattern changing with time” (Seasonde, 10).  Temporal 

quality defined is the standard deviation of the velocities at the same range and bearing 

across the Short-Time radials (10 minute averaged measurements from the radar suite).  

The effect of temporal quality on HF radar performance is studied, along with other 

effects such as:  

• The distance each radar point is away from the HF radar station 

• The number of drifters that matched within a two kilometer filter of each 

HF radar point 

• The Root Mean Square (RMS) distance of matched drifters within a two 

kilometer filter of each HF radar point 

• The standard deviation of drifters that matched within a two kilometer 

filter of each HF radar point  

All of these factors are statistically compared with the absolute value of the difference 

between the radial velocities of the radar points and the drifters.  

The impact of the relative angular measurement from the CODAR station is 

looked at as well.  It has been determined from previous studies that radar accuracy can 

be affected by the local surrounding environment, i.e., new construction around a radar 

site (metal fence, building, etc.; Kohut and Glen, 2003).   These environmental factors 

affect the response of the receive antenna element as a function of look angle, which may 
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imprint sources of error in the DF systems that are, themselves, functions of look angle. 

To investigate that effect,  this study compares the measured antenna pattern velocities 

with those of the ideal, or theoretical antenna pattern velocities.  Since the MUSIC 

algorithm that is used for direction finding is based upon knowing the angular response 

pattern of each antenna element, the pattern’s accuracy will directly relate to the accuracy 

of the angular placement of radial current values around a given range cell (Paduan et al., 

2006).  The effect of accurate calibration of individual radar sites through the use of 

hand-held transponders to create a measured pattern, is assessed by noting whether or not 

measured pattern radar data agrees better with the drifter data and whether there are clear 

angular variations in the radar verses drifter comparisons.  

1. Use of Drifters in Validation Study 

Modern advancements in navigation and tracking through the use of the Global 

Positioning System allow drifting buoys to be an excellent choice for validation studies.  

Drifting buoys have many advantages over other oceanographic sensing equipment in 

regards to HF radar research.  For one, the vertical scales of each system are quite close 

to each other.  Drifting buoys give integrated values over their drag elements (depth 

down to one meter) whereas HF radar gives velocity values that have been integrated 

from the surface down to about 0.5 meters.  Though not identical, relative to other 

measurement equipment, such as moored current meters, moored buoys, ship board 

ADCP equipment, and Underwater Unmanned Vehicles (UUV), the scales are quite 

close.   

While moored current meters and moored buoys have excellent temporal 

measurement capabilities, they lack in spatial coverage of the ocean.  Practically point 

measurements, they do little to map the needed horizontal scales (up to several hundred  

km2) seen in HF radar measurements. Even though ship board ADCP and UUV systems 

show improvement in the spatial scale coverage factor, they are still limited by their 

small numbers.  Arrays of drifting buoys, on the other hand, can be dispersed for 

extended periods of time and cover vast amounts of the ocean surface.   
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The flexibility to grid the ocean domain of interest is also another excellent 

advantage of drifting buoys.   The proper placement of sensing equipment is paramount 

in getting the desired data needed for HF radar validation research.  Sensors too close, too 

far away, or at the wrong angular aspect from a radar station will degrade the usefulness 

of the data obtained.  Furthermore, the relative cost of each drifter compared to the other 

sensor equipment previously mentioned is superior.   With little maintenance required in 

the operation of the buoys, the overall cost of obtaining the data set is a definite 

advantage.     
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II. DATA COLLECTION 

A. HIGH FREQUENCY RADAR 

CODAR type HF radar is predominately deployed along the Central California 

coast and the type used for this study.  Each radar system has transmit and receive 

antennae and supporting electronics for data storage as shown in Figures 1 and 2.  The 

data from each site is sent to a central computer located at the campus of the University 

of California at Santa Cruz where it is stored and made available to researchers and the 

public via the Internet.  The website used for data dissemination can be found at 

http://www.cencalcurrents.org.  Hourly averaged data from approximately 74 minutes of 

raw data are taken and tabulated into each report. The most significant data used from the 

reports were the radial speed (in cm/s) either toward or away from the station.    A list of 

the sites studied can be found in Table 1.  The HF radar instrumentation and data used in 

this study were made available by the State of California’s Coastal Ocean Currents 

Monitoring Program (COCMP; http://cocmp.org/). 

A majority of the radar sites studied provided data using both a measured beam 

pattern and an ideal beam pattern.  Only the sites BIGC and PESC were limited to having 

only ideal beam patterns.   Numerous studies have shown the measured beam pattern to 

be more accurate than the ideal (Kohut and Glenn, 2003; Paduan et al., 2006), but the 

local environment of the site can sometimes make a difference and lead one toward the 

ideal.  Each radar site produces MATLAB-readable tabulated data each hour, each under 

the measured beam pattern as well as the ideal beam pattern.  Measured beam patterns are 

obtained by taking a survey boat out in the water in the coverage area adjacent to a  

particular radar site.  A semicircular pattern is done by the boat utilizing a constant speed 

and radius.  Equipped with a known transponder that modifies and re-radiates the 

transmitted signal from the radar site, precise data can be measured and analyzed to get 

the “real” beam pattern being used by the radar site.  It is important to get the correct 

beam pattern because “errors in the antenna pattern translates into errors in angular 

placement of radial current values around a given range cell” (Kim, 2004).  This  
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actual (measured) antenna beam pattern, as a function of azimuth angle, is then re-

programmed into the Seasonde MUSIC algorithm in order to improve the estimate of the 

surface currents.  

Spatial coverage for HF radars depends upon the frequency of the transmitting 

station.  For a station transmitting in the 25 MHz range, maximum ranges are 

approximately 42 km, whereas in the 12 MHz range, the range is approximately 83 km.  

Pattern angular resolution can be set from one to five degrees but all stations in this study 

were using increments of five degrees.  Range resolution for each station was around 

three km.   

A plot of all the locations of the radar stations can be found in Figure 3 along with 

all of the drifter tracks. Radar station BIGC was inoperable during the first experiment 

because mechanical failure precluded this station from providing any data. A summary of 

instrumentation used for analysis can be found in Table 2. 

 

Radar  ID Exp. # Name Position 
Center 
Frequency 

Beam Pattern 
Available 

BIGC  2 Big Creek N 37 05.3670, W 122 16.4502 12.190 MHz N/A Ideal 

COMM 1&2 Commonweal Center  N 37 54.7062, W 122 43.6908 13.400 MHz Measured Ideal 

DRAK 2 Drakes Bay N 38 16.6999, W 122 57.6440 13.400 MHz Measured Ideal 

FORT 1&2 Fort Funston  N 37 42.7500, W 122 30.0780 13.475 MHz Measured Ideal 

MLML 1 Moss Landing N 36 48.1980, W 121 47.2980 25.380 MHz Measured Ideal 

MONT  1&2 
Montara Sanitary 
District N 37 32.0232, W 122 31.1532 12.090 MHz Measured Ideal 

NPGS 1 
Naval Postgraduate 
School N 36 36.1920, W 121 52.3200 13.470 MHz Measured Ideal 

PESC 1&2 Pescadero N 37 15.1500, W 122 24.9672 12.190 MHz Measured Ideal 

PILR 2 
Pillar Point Long 
Range N 37 29.8050, W 122 29.9620   4.550 MHz Measured Ideal 

PPIN 1 Point Pinos N 36 38.2080, W 121 56.1360 13.390 MHz Measured Ideal 

SCRZ 1 Santa Cruz  N 36 56.9520, W 122 03.9660 12.150 MHz Measured Ideal 

SLID 2 Slide Ranch N 37 52.3500, W 122 35.8548 12.190 MHz Measured Ideal 

Table 1.   Summary of the HF radar stations used for analysis. 

B. DRIFTER 

During what is called experiment one, four Pacific Gyre Microstar drifters were 

released into Monterey Bay on 23 January 2008, and were subsequently picked up on 27 

January 2008, near the entrance to the San Francisco Bay.   The drifters are current 
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following Lagrangian surface floats with a drogue centered at approximately 1 meter 

depth.  The surface float contains a telemetry system, antenna, batteries and sensors.   

The various sensors include GPS (which records the position in 10-minute increments), 

measurements of sea surface temperature, battery voltage, and submergence.  Figure 4 

shows a deployed drifter, and Figure 5 shows the 1 meter drogue. 

Data from the drifters is transmitted via satellite to the Pacific Gyre website where 

the data can be retrieved by the end-user in near real time.  For experiment one, tracking 

equipment was brought onboard the research vessel Point Sur, shown in Figure 6, out of 

Moss Landing Marine Laboratory, in order to receive the direct satellite feed and get real 

time position updates of all drifters.  This significantly aided in the retrieval of drifters 

and led to a 100% recovery rate for Experiment One.  Drifter resources and research 

vessel support during experiment one were provided by the Oceanographer of the Navy 

and the Naval Postgraduate School.  

For Experiment Two, conducted 1-10 April 2008, 32 drifters were deployed from 

local research vessels, the R/V John Martin from Moss Landing Marine Laboratories and 

the R/V Mussel Point (Figure 6) from the Bodega Bay Marine Laboratory.  The boats 

deployed a majority of the drifters on 1 April 2008 within a grid in the Gulf of Farallones, 

just west of San Francisco bay.  Both vessels repositioned several drifters three days later 

in order to keep them within the HF radar footprint.  Near real time tracking equipment 

was once again brought onboard, this time on the R/V John Martin, which aided 

situational awareness and recovery operations.  At the end of the experiment, most of the 

drifters were recovered without incident, even though a few drifters were lost due to poor 

GPS reception and/or battery failure.  For the larger experiment two, drifter and research 

vessel support was provided by COCMP and by a grant from NOAA’s  Coastal Response 

Research Center, grant number NA04NOS4190063, Project Number 07-061. 



 10

 

Instrument Period 2008 Measured 
depth 

Measured 
Period Data Interval 

22 Jan 17:00 - 27 Jan 23:00 (GMT) ~ 1 m 1 hour 1 hour  
HF Radar 
 01 Apr 05:00 - 10 Apr 18:00 (GMT) ~ 1 m 1 hour 1 hour  

23 Jan 20:30 - 27 Jan 18:00 (GMT) ~ 1 m 10 minutes 10 minutes Drifters 
01 Apr 05:00 - 10 Apr 18:00 (GMT ~ 1 m 10 minutes 10 minutes 

Table 2.   Summary of Instrumentation used for analysis 
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III. DATA ANALYSIS AND RESULTS 

A. HIGH FREQUENCY RADAR COMPARED TO DRIFTER DATA 

For each drifter track, two velocity components were determined at 10-minute 

intervals, one in the North direction DV , and one in the East direction DU .  These velocity 

components were then rotated in the direction of each subsequent HF radar location to 

produce each radial velocity     

 cos( ) sin( )D D DU U Vα α′ = × + ×  (1)  

where α  is the angle of the drifter to a particular radar site and DU ′  is the radial speed of 

the drifter toward the HF radar site  (Kim, 2004).  

After the radial velocities were determined from the drifting buoys, these values 

were statistically compared to the radar radial velocities.  For each hourly radar report, 

there are tens if not hundreds of radar measurement points generated.  For each of these 

points, all drifter tracks that fell within two kilometers spatially and plus or minus 30 

minutes temporally were captured for comparison purposes.  A two-kilometer filter was 

used because it is comparable to the HF radar grid size and it is large enough to avoid 

gaps in coverage of the ocean surface as shown in Figure 7.  This ties the closest surface 

current measurements from the drifters to their representative radar point.  Figure 8 

visually depicts a typical calculation made during the analysis.  A portion of the radar 

points from FORT is shown along with all of the drifter tracks in closest proximity to 

these points.  For the time of 0200Z on 04 April 2008, all ten minute drifter positions 

within two kilometers of the radar point in question are highlighted in magenta.  For each 

ten minute drifter position a radial velocity was computed using center differencing.  

Each drifter endpoint position was assigned a velocity using forward or backward 

differencing as appropriate.   All of these velocity values, up to seven per drifter for a 

given radar match, also has an associated radial velocity according to (1).  Figure 8 

includes 7 points from one drifter and 7 points from a second drifter, for a total of 14 

points/matches.  The mean radial velocity of these 14 matches was then compared to the 
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radar radial velocity of the subject radar point.  This process was done for each radar 

measurement point, for each radar, for each hourly report.   

 Various statistical results were then computed from the resulting data, from 

correlation coefficient, coefficient of determination (r2), root mean squared (RMS) 

differences, and slope intercept values of the regression analysis.  The correlation 

coefficient was computed as follows: 
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Scatter plots were produced comparing the mean of all drifter radial data matches 

(30 minutes prior to and 30 minutes after the top of the hour) and the hourly HF radial 

data.   Least squares fitting was done for regression analysis to obtain the slope and 

intercept of the scatter plots.   

B.    EXPERIMENT NUMBER TWO RESULTS  

At the heart of the experiment was the validation of HF radar’s ability to 

effectively map the horizontal surface currents of the littoral ocean.  Experiment Two 

contained unique characteristics in its drifter trajectories which aided in the radar 

analysis.  Shown in Figure 10, Experiment Two exhibited excellent spatial coverage 

within a limited area of the Gulf of Farallones.   Also, the speed regime of the drifters 

stayed on the lower side of the spectrum.   This spatial coverage resulted in saturation of 

a specified area and allowed for a thorough analysis of a number of radar sites, primarily 

DRAK, SLID and FORT, as shown in Figure 11.  Figure 12 contains the coverage factor 

(i.e., radar radial sampling grid) of the remaining radars used in Experiment Two.    

1. Scatter Plot of Radial Data  

Scatter plots comparing the drifter radial velocities vs. radar radial velocities were 

computed for specific radar sites that contained the drifters within its coverage factor. 

Shown in Figures 13 through 15, the data is presented starting from the Northern most 

radar site, DRAK, and ends with the Southern most site, BIGC.   Measured pattern data is 

displayed in the left hand column and ideal pattern data is displayed in the right hand 

column.  Numerous studies have already shown the measured beam pattern to be more 

accurate than the ideal in most situations (Kohut and Glenn, 2003), and this study 

continues to document this fact.   Each and every measured pattern during the second 

experiment showed an improvement in the r2 value over the ideal pattern, signifying an 

increased correlation of the data.  DRAK radar site had the best correlation, with an r2 

value of 59.9% for the measured pattern.  The slope of the linear regression of each 

measured data set went from 0.83 for DRAK down to 0.36 for PESC.   It is peculiar to 

note that as the radar sites progressed from the North to the South, the r2 value decreased 

as well.   This could be due to the overall angular aspect of the radar pattern to the drifter 
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field or to some other environmental or instrumental factor.  The data sets obtained from 

the CODAR hourly reports did not provide any further insight into this phenomenon due 

to the independent nature of each radar sites’ data.   Nevertheless, there is excellent 

overall correlation between the data, especially the measured pattern data, signifying that 

HF radar is an adequate tool for operators wishing to obtain near real-time insight into 

local ocean surface currents.  The RMS differences of the measured pattern data ranged 

from 8.2 cm/s at COMM down to 15.9 cm/s for the lower resolution 5 MHz PILR site. 

The lower end of this range is close to the theoretical precision of the radar measurement. 

2. Effect of Radar Angular Aspect  

Being able to plot the relative positions of the radar points allows one to look at 

the effects that angular aspect has on the correlation.  Figures 16-23 plot the above results 

of each radar station (North to South) in five degree bins.   The RMS difference in (cm/s) 

is computed for each radar / drifter match within the respective angular bin.  In addition, 

its corresponding correlation coefficient is plotted as well (top graphs).  The bottom 

graphs note the number of observations / comparisons done per bin to give an adequate 

representation as to the relative influence each bin has to the overall RMS difference 

value.  As can be seen from most of the data, if there are fewer observations per bin, a 

general trend is observed in that there are more fluctuations in RMS difference relative to 

adjacent bins.   

Two examples that are indicative of a solid radar coverage factor are seen in 

Figures 16 and 18 with radars DRAK and SLID, respectfully.   DRAK’s corresponding 

angular aspect graph, Figure 16, and SLID’s corresponding angular aspect graph, Figure 

18, both are representative of increasing RMS differences toward the limits of coverage.  

In other words, the further away one angularly gets from the center of the radar coverage, 

there tends to be less correlation. This “U” shaped trend, or upside down bell curve, is 

typical of the radar’s accuracy relative to angular coverage factor.  DRAK results also 

indicate that between 170-175 degrees clockwise from North, there is a strong increase in 

the RMS difference.   This could reflect environmental factors from that specific angle 

that degrade the accuracy of the pulsed radar returns due, possibly, to local distortions of 
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the instrument’s antenna patterns.   Other peaks worth mentioning that document this 

observation are shown in Figure 22 (PESC), in the angular bin range of between 300 and 

305 degrees clockwise from North.  Nevertheless, throughout most of the angular 

coverage factor of any typical radar, there seems to be a relative steady RMS difference 

associated with a radar, indicating that a typical radar (and the MUSIC algorithm) 

produces quite stable returns, regardless of angular aspect.   

3. Effect of Drifter and Radar Standard Deviation 

Figures 16-23 plot the effect of drifter standard deviation and radar standard 

deviation in relation to the angular aspect of each radar station (North to South) in five 

degree bin increments (middle of the page(s)).  The solid lines represent drifter standard 

deviation and the dashed line represents the radar standard deviation.  Also, the thicker 

lines represent the measured patterns and the thinner lines represent the ideal patterns.  

The bottom graphs notes the number of observations / comparisons done per bin to give 

an adequate representation as to the relative influence each bin has to the overall standard 

deviation values.   

Each graph shows the general trend as to when the drifter standard deviation 

increases, the radar standard deviation increases as well.  The same can be said for when 

both values decrease.  This correlation is expected since we expect the radar to exhibit 

fluctuating values when the ocean surface current is fluctuating as well.   Significant 

examples of when the correlation is strong can be seen in a majority of the radar sites.  In 

addition, when there is a peak in the standard deviation of the drifters, an associated peak 

in the radar standard deviation can be seen as well.  This phenomenon can be seen in 

examples such as  DRAK from 165-175 degrees clockwise from North in Figure 16,  

FORT from 230 to 235  degrees clockwise from North in Figure 19 and PILR from 230 

to 235 degrees clockwise from North in Figure 21 to name a few.  

It can also be noted that when there is an associated increase in the standard 

deviation of either drifter or radar values, a similar increase in RMS difference can be 

seen.  The more variation in ocean current direction that one observes per given unit of 

time, there is greater error, or RMS difference, associated with the radar’s accuracy.  
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Noted examples of this can be seen in DRAK from 165-175 degrees clockwise from 

North in Figure 16,  FORT from 230 to 235  degrees clockwise from North in Figure 19, 

MONT from 290 to 335  degrees clockwise from North in Figure 20, and PESC from 295 

to 310 degrees clockwise from North in Figure 22.   

4. Effect of Temporal Quality 

Various upgrades to the hourly reports that the Seasonde CODAR suite generates 

have allowed for further statistical analysis of various other parameters.  Specifically, the 

temporal quality of the HF radar data that is generated is now able to be studied.     Table 

3 is an example of a portion of a generated report from COMM on 03 April 2008 at 

0100Z.  Temporal quality values are values that relate to “measurement uncertainties 

such as noise, a changing surface current pattern, and/or horizontal shear over each 

measured area.  Most temporal uncertainty is due to the current pattern changing with 

time” (CODAR, 10).  Temporal quality is defined as the standard deviation of the 

velocities at the same range and bearing across the Short-Time radials (10 minute 

averaged measurements).  Sample temporal quality values can be seen in Table 3 in 

column number six.   

Longitude 
(deg) 

Latitude 
(deg) 

U comp   
(cm/s) 

V comp 
(cm/s) 

Spatial 
Quality 

Temporal 
Quality 

Velocity 
Maximum 

Velocity 
Minimum 

Quality 
DVCount 

Quality 
RTCount 

-122.760 37.918 -18.636 4.640 3.098 4.625 -15.765 -22.287 2 6 

-122.761 37.916 -18.792 2.970 2.174 1.411 -17.939 -20.113 1 4 

-122.761 37.914 -16.809 1.169 999 11.151 -16.848 -16.848 1 7 

-122.761 37.911 -15.578 -0.277 6.893 3.267 -10.871 -19.022 2 4 

-122.761 37.909 -4.863 -0.513 999 11.099 -4.894 -4.894 1 3 

-122.761 37.907 -12.800 -2.493 2.717 3.875 -9.242 -16.848 4 7 

-122.760 37.905 -11.496 -3.301 2.174 2.241 -10.871 -13.045 1 4 

-122.759 37.902 -7.608 -2.923 999 5.220 -8.151 -8.151 1 5 

-122.758 37.900 -5.369 -2.621 999 3.674 -5.977 -5.977 1 4 

-122.757 37.898 -1.864 -1.121 999 1.625 -2.174 -2.174 1 2 

Table 3.   Example of portion of Typical Radar Hourly Report generated by CODAR HF 
Radar System. 

In addition to these temporal quality values, an associated Quality RTCount value 

is generated, as seen in Table 3, column number 10.   This temporal count is the number 

of velocities that went into the temporal calculation.  Therefore, the higher the number of 
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Quality RTCount, the more representative the temporal quality value is to the real ocean 

environment.  One basically has more values to average from, giving a better statistical 

result for the temporal quality value.  Therefore, in this study, we calculated a weighted 

temporal quality based upon the number of Quality RTCount values.  

                   wgt
TQTQ

QRTC
=                       (6) 

TQwgt = the weighted temporal quality, TQ = un-weighted temporal quality, and 

QRTC = the Quality RTCount number.   

The highest value of Quality RTCount that is expected for a specific radar point in 

an hourly report is seven, since this would indicate a valid ten minute interval return for 

every possible measurement cycle in a report.  QRTC values greater than seven are 

possible in theory because radial velocity determinations are made, independently, from 

both the positive and negative Bragg peaks in the backscatter spectra.  In reality, each 

report timeframe is between 74-75 minutes long to allow for a slight overlap in the seven 

(ten minute intervals), to ensure data capture.  This can be seen in the third and sixth 

entry in Table 3 where every 10 minute interval had a valid temporal quality return.  

Figures 24-31 plots the absolute value of difference between drifter and radar 

radial velocities vs. the weighted temporal quality (top graphs).  As a general trend, as the 

weighted temporal quality increases in value, there are less and less difference values that 

fall close to zero.  If a difference value is closer to zero, that would indicate better 

correlation between drifter and radar, i.e. a more accurate radar reading.   

The middle graphs in Figures 24-31 are the cumulative effects of increasing 

weighted temporal values in relation to RMS differences and r2 values.   For example, 

Figure 24 shows the weighted temporal quality effects on radar site DRAK.  For all 

drifter / radar matches that had an associated weighted temporal quality between zero and 

one, the cumulative RMS value was 8.763 cm/s and an associated r2 value of 0.7234.  If 

you then includes the weighted temporal quality values from zero to two, the RMS 

difference value decreases to 8.5862 and the associated r2 value increases to 0.7289.  As 

you can see, if you take all temporal quality values between 0 and 2 and disregard all 
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other values, you get the optimum lowest RMS difference and maximum r2 value.  This 

has its consequences though since, as seen in the bottom of Figure 24, only 32.78% of the 

data is used.  This is not realistic in a practical sense, because too much data is thrown  

away.  Nevertheless, there is a definite trade-off between the weighted temporal quality 

value chosen as a filter (to increase reliability in radar data output) and the percent data 

discarded.   

One interesting radar site, MONT, shown in Figure 28, has an excellent choice of 

a weighted temporal quality value to use as a filter.  A slight dip in RMS difference is 

noticed if a temporal quality value of five is used (which would in effect include all 

values from zero to five).  This would result in 64% of the data being used with a net 

decrease of 0.7977 cm/s in RMS difference and a net increase of 0.0622 in r2.  Another 

viable candidate would be the radar site PILR, shown in Figure 29.  A temporal quality 

filter of 9 would be adequate here since there is a noticeable increase in RMS difference 

after this value.  Here, 79% of the data is used, netting a decrease in 2.047 cm/s in RMS 

difference and a gain of 0.1235 in r2.  Absent of a significant dip occurring in the RMS 

difference line, and containing a large portion of the data set, one would then have to 

consider how much of a trade-off to use in choosing an appropriate temporal quality 

value. Nevertheless, it is shown that there is an advantage to discard some of the values 

toward the high end of the scale in order to increase the effectiveness of HF radar output.    

5. Effect of Radar Point Distance to the Radar Site  

The effect of radar point distance to the radar site was looked at as well.   By 

looking at Figure 32, it can be concluded that initially, there is good correlation in the 

three kilometer range.   But, there is a significant decrease in correlation  from about six 

to 18 kilometers away before again improving at about 45 kilometers.  The best range, 

from about 40-45 kilometers away, is pretty much the midpoint of a radar’s field of view. 

After 45 kilometers, very few points fall in the low range, signifying poorer correlation.  

Radar sites DRAK, COMM, SLID, and MONT, are typical examples of these trends.   
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6. Effect of the Number of Drifters that Matched within the Two- 
Kilometer Filter 

Figure 33 shows the effect that the number of drifters matched within the two- 

kilometer filter has on correlation.  An encouraging trend is shown within each radar site.  

As the number of drifters that matched increases, the difference between the average 

drifter radial current and the radar radial current decreases.   This signifies that there is 

better spatial and/or temporal sampling being represented in the drifter averages, which 

correlates better with the radar results.   Therefore, if many more drifters were used in the 

experiment throughout a larger spatial area, one could conclude that better correlation of 

the results would occur.  This also implies that the radar is possibly doing a better job at 

mapping the ocean currents than the data exhibit.   

In the graphs, the significant peaks at intervals of seven can be contributed to the 

inclusion of a vast majority of drifters that had a full range of data.  As previously 

discussed, there is a maximum of seven, ten minute intervals per drifter associated with a 

specific radar point if the entire drifter trajectory is captured within the two kilometer 

filter.    

Geographically, the further south that a radar site is located, then the less 

predictable and less correlated the data becomes.  This can be contributed to the fact that 

a majority of the drifter data was confined to the Northern most radar positions.  The 

effect of radar point distance becomes a contributing factor to this lack of correlation.  

Radar sites DRAK, COMM, SLID and FORT most represent this phenomenon, that the 

closer a drifter field is to the optimal range of a radar site (40-45 km, frequency 

dependant though), the better the correlation tends to be.  

7. Effect of RMS Distance of Matched Drifters within the Two- 
Kilometer Filter 

In Figure 34, the effect of RMS distance of the matched drifters within the two 

kilometer filter, relative to the radar point, was analyzed.  It is interesting to note that as 

the RMS distance of the matched drifters decreases, there tends to be better correlation in 

the data.   This is not intuitively an expected result, since the Seasonde HF radar suite’s 
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MUSIC algorithm doesn’t put any statistical weight as to where an energy return comes 

from within a radar point’s ocean coverage.  This coverage, again, is approximately three 

kilometers in the radial direction and contains five degrees in horizontal azimuth.  

Evidently, there seems to be a better correlation with drifters that have a smaller RMS 

distances   from the centroid of the radar grid point in question.    

8. Effect of Drifter Standard Deviation  

The effects of drifter standard deviation on correlation were analyzed too as 

shown in Figure 35.  The results of this section are the most counter-intuitive of all the 

data studied.   Contradictory to the previous conclusions discussed in the angular aspect 

section and the results of Ohlmann et al. (2006), these data suggest that as the velocity 

standard deviation of the drifters that matched within the two-kilometer filter increases, 

there is better correlation within the radar data.   The reasons behind this phenomenon are 

not quite understood at this juncture.  One would expect the opposite result, assuming 

that the cause of the drifter verses radar mismatch is true environmental velocity variation 

within the footprint of the radar grid point.  

9. Overall Summary of Combined Radar Site Data 

Figures 36 and 37 show a summary of each parameter studied that includes all the 

radar sites’ combined measured data.   Specific trends already discussed are more 

prominent in these graphs.  Of particular note is the RMS distance of matched drifters 

within two kilometers of a radar point shown in Figure 37 (top).  A general decrease in 

correlation is observed the higher the RMS distance becomes, but with this increase in 

RMS distance, there is an associated increase in the number of values observed.   

Because of this non-uniformity of sample data points across the full spectrum of RMS 

distance values, it is difficult to determine whether the decrease in correlation is 

attributed to the RMS distance or due to the number of samples.   Further experiments 

that contain equal amounts of data points with varying RMS distances would resolve 

this..       
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C. EXPERIMENT NUMBER ONE RESULTS 

At the heart of the experiment was the validation of HF radar’s ability to 

effectively map the horizontal surface currents of the littoral ocean.  Experiment One 

contained unique characteristics in its drifter trajectories which aided in the radar 

analysis.  Shown in Figures 12 and 38, Experiment One exhibited excellent angular 

aspects with regards to specific radar sites, primarily SCRZ, PESC, and MONT.  

Additionally, there was variety of speed regimes of the drifters to look at in the study.  

This experiment was a nice compliment to the second experiment because of the different  

nature of the data.  The only drawback to this experiment was the relatively few drifters 

that were deployed, which were four.  Nevertheless, general conclusions can be made 

from the resulting data.   

1. Scatter Plot of Radial Data 

Scatter plots comparing the drifter radial velocities vs. radar radial velocities were 

computed for specific radar sites that contained the drifters within its coverage factor. 

Shown in Figures 39 through 41, the data are presented starting from the Northern most 

radar site, COMM, and ending with the Southern most site, NPGS.   Measured pattern 

data are displayed in the left hand column and ideal pattern data are displayed in the right 

hand column.   With the exception of SCRZ data, each and every measured pattern 

during the first experiment showed an improvement in the r2 value over the ideal pattern, 

signifying an increased correlation of the data.  FORT radar site had the best correlation, 

with an r2 value of 81.1% for the measured pattern.  The slope of the linear regression of 

each measured data set went from 0.92 for FORT down to -0.1 for COMM.   The data in 

the first experiment was much more correlated overall compared to the second 

experiment.  This could be due to the fact that there was less variation in the drifters’ 

trajectories in comparison to the second experiment’s drifter trajectories.   In addition, the 

speed range covered in experiment one was significantly larger than in Experiment Two.  

As shown in Figure 39, MONT measured data showed strong correlation.  An 

interesting observation in the data set is the fact that MONT contained a section of data 

that had extremely high ocean surface currents as well as low ocean currents.  Within its 
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scatter plot, there are definitely two data regimes that are discernable.   After the radial 

velocity of the drifters was over 15 cm/s positive (toward the radar station), there was a 

drastic shift in correlation for the worse. Unfortunately, this was the only radar site that 

had such high velocities associated with it for research purposes.  Future experiments 

with high velocities need to be done in order to try to repeat these results.  Only then, can 

the effectiveness of HF radar be documented in the high velocity ocean current 

environment.   Nevertheless, there is excellent overall correlation between the data, 

especially the measured pattern data, signifying that HF radar is an adequate tool for 

operators wishing to obtain near real-time insight into local ocean surface currents.  With 

the exception of COMM data, RMS difference values for the measured pattern data 

ranged from 9.0 cm/s to 19.1 cm/s. 

2. Effect of Radar Angular Aspect  

Being able to plot the relative positions of the radar points allows one to look at 

the effects that angular aspect has on the correlation.  Figures 42-49 plot the above results 

of each radar station (North to South) in five degree bins.   The RMS difference in (cm/s) 

is computed for each radar / drifter match within the respective angular bin.  In addition, 

its corresponding correlation coefficient is plotted as well (top graphs).  The bottom 

graphs notes the number of observations / comparisons done per bin to give an adequate 

representation as to the relative influence each bin has to the overall RMS difference 

value.  As can be seen from most of the data, if there are fewer observations per bin, a 

general trend is observed in that there are more fluctuations in RMS difference relative to 

adjacent bins.   

Two examples that are indicative of a solid radar coverage factor are seen in 

Figure 12 with radars MONT and PESC.   MONT’s corresponding angular aspect graph, 

Figure 44, and PESC’s corresponding angular aspect graph, Figure 45, both are 

representative of increasing RMS differences toward the limits of coverage.  In other 

words, the further away one angularly gets from the center of the radar coverage, there 

tends to be less correlation. This “U” shaped trend, or upside down bell curve, is typical 

of the radar’s accuracy relative to angular coverage factor.  PESC’ data between 325-335 
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degrees clockwise from North is an excellent example of this trend.   This could reflect 

environmental factors from that specific angle that degrade the accuracy of the pulsed 

radar returns.   Nevertheless, throughout most of the angular coverage factor of any 

typical radar, there seems to be a relative steady RMS difference associated with a radar, 

indicating that a typical radar (and the MUSIC algorithm) produces quite stable returns, 

regardless of angular aspect. 

3. Effect of Drifter and Radar Standard Deviation 

Figures 42-49 plot the effect of drifter standard deviation and radar standard 

deviation in relation to the angular aspect of each radar station (North to South) in five 

degree bin increments (middle of the page(s)).  The solid lines represent drifter standard 

deviation and the dashed line represents the radar standard deviation.  Also, the thicker 

lines represent the measured patterns and the thinner lines represent the ideal patterns.  

The bottom graphs notes the number of observations / comparisons done per bin to give 

an adequate representation as to the relative influence each bin has to the overall standard 

deviation values.   

Each graph shows the general trend as to when the drifter standard deviation 

increases, the radar standard deviation increases as well.  The same can be said for when 

both values decrease.  This correlation is expected since we expect the radar to exhibit 

fluctuating values when the ocean surface current is fluctuating as well.   Significant 

examples of when the correlation is strong can be seen in a majority of the radar sites.  In 

addition, when there is a spike in the standard deviation of the drifters (up or down), an 

associated spike in the radar standard deviation can be seen as well.  This phenomenon 

can be seen in examples such as  PESC from 315 to 335 degrees clockwise from North in 

Figure 45, PPIN from 315 to 345 degrees clockwise from North in Figure 48  and  NPGS 

from 320 to 335  degrees clockwise from North in Figure 49 to name a few.  

It can also be noted that when there is an associated increase in the standard 

deviation of either drifter or radar values, a similar increase in RMS difference can be 

seen.  The more variation in ocean current direction that one observes per given unit of 

time, there is greater error, or RMS difference, associated with the radar’s accuracy.  
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Noted examples of this can be seen in PESC from 315-335 degrees clockwise from North 

in Figure 45, MLML from 245 to 295 degrees clockwise from North in Figure 47 and  

NPGS from 310 to 335  degrees clockwise from North in Figure 49.   

4. Effect of Radar Point Distance to the Radar Site 

The effect of radar point distance to the radar site was looked at as well.   By 

looking a Figure 50, it can be concluded that there is initially adequate correlation which 

gradually gets better up to about 20 kilometers in distance.  This data set also indicates 

that after about 22-25 kilometers away, correlation becomes far worse.  With the limited 

data set though, these conclusions would have to be further studied with multiple similar 

experiments in order to replicate these findings.   

5. Effect of the Number of Drifters that Matched within the Two 
Kilometer Filter 

Figure 51 shows the effect of the number of drifters matched within the two 

kilometer filter has on correlation.  An encouraging trend is shown within each radar site.  

As the number of drifters that matched increases, the better the overall correlation.   This 

was evident in experiment number two as well.  This signifies that there is better spatial 

coverage being represented in the drifter averages, which correlates better with the radar 

results.   Therefore, if many more drifters were used in the experiment throughout a 

larger spatial area, one could conclude that better correlation of the results would occur.  

This also implies that the radar is possibly doing a better job at mapping the ocean 

currents than the data exhibit.   

In the graphs, the significant peaks at intervals of seven can be contributed to the 

inclusion of a vast majority of drifters that had a full range of data.  As previously 

discussed, there is a maximum of seven, ten minute intervals per drifter associated with a 

specific radar point if the entire drifter trajectory is captured within the two kilometer 

filter.      
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6. Effect of RMS Distance of Matched Drifters within the Two 
Kilometer Filter 

In Figure 52, the effect of RMS distance of the matched drifters within the two 

kilometer filter, relative to the radar point, is analyzed.  It is interesting to note that as the 

RMS distance of the matched drifter decreases, there tends to be better correlation in the 

data.   This data trend is less obvious here in experiment one than it is in experiment 

number two.  This is due to the limited number of data points from only four drifters 

being used.  Again, this is not intuitively an expected result, since the Seasonde HF radar 

suite’s MUSIC algorithm doesn’t put any statistical weight as to where an energy return 

comes from within a radar point’s ocean coverage.  This coverage, again, is 

approximately three kilometers in the radial direction and contains five degrees in 

horizontal azimuth.  Evidently, there seems to be a better correlation with drifters that 

have a smaller RMS distances from the centroid of the radar grid point in question.    

7. Effect of Drifter Standard Deviation 

 The effects of drifter velocity standard deviation on correlation were analyzed 

too, as shown in Figure 53.  The results of this section are the most counter-intuitive of 

all the data studied, similar to Experiment Two’s results.   Contradictory to the previous 

conclusions discussed in the angular aspect section, these data suggest that as the velocity 

standard deviation of the drifters that matched within the two kilometer filter increases, 

there is better correlation within the data.   The reasons behind this phenomenon are not 

quite understood at this juncture.  One would expect the opposite result, assuming that the 

cause of the drifter verses radar mismatch is true environmental velocity variation within 

the footprint of the radar grid point.   

8. Overall Summary of Combined Radar Site Data 

Figure 54 shows a summary of each parameter studied that includes all the radar 

sites’ combined measured data.   Specific trends already discussed are more prominent in 

these graphs.   
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IV. SUMMARY 

A. STATISTICAL SUMMARY 

CODAR type HF radar validated through the use of Lagrangian drifters is 

documented throughout this study.   Specific results are shown in Table 4 and document a 

robust correlation between in-situ measurements and surface current velocity vectors 

produced via the CODAR system suite.  Previous validation studies have been conducted 

in the past, specifically with moored current meters and profiler data.  Holbrook and 

Frisch (1991) and Schott et al. (1996) studied the correlation between HF radar and 

current meters and found the RMS differences ranged between 10-15 cm/s.  Paduan and 

Rosenfeld (1996) compared both ADCP and drifter data to show RMS differences  

between 10-20 cm/s.  Chapman et al. (1997) compared shipborne current meter data  and 

HF radar data and showed the upper bound of HF radar accuracy  to be around 7-8 cm/s.  

Recent point measurement studies by Kohut and Glenn (2003), Emery et al. (2004), 

Paduan et al. (2006), Ohlmann et al. (2006) and Kaplan et al. (2005) showed RMS 

differences between 7 and 19 cm/s.  

This study’s results fall in line with the previous studies mentioned above.  With 

the exception of COMM data in the first experiment, the RMS differences of the 

measured patterns had a reasonable spread of between 9.0 cm/s to upwards of 19.1 cm/s.   

In the second experiment, RMS differences ranged from 9.8 cm/s to 15.9 cm/s.  Due to 

the inherent nature of data discrepancies mentioned previously, such as temporal and 

spatial scale miss-matches, comparing two quantities that have not come from the same 

testing environment tends to lead to slight biased differences, differences that can amount 

to roughly 5 cm/s (Ohlmann, 2006).  Nevertheless, even with these inherent differences, 

correlation between drifter derived radial velocity vectors and HF radar-derived radial 

velocity vectors is quite good, as shown by the results in Table 4.   

This study also further documents that measured radar patterns, for the most part, 

are far superior to that of ideal radar patterns.  Having recent, calibrated radar patterns via 

the use transmitters on range boats leads to better radar predictions of ocean surface 
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currents.  Though not the main focus of this study, these results are nonetheless evident in 

the data analysis and are provided to further bolster measured pattern effectiveness.  

One conclusion gathered from the analysis is that, through the use of a user 

defined filter in the temporal quality from the data generated in a Seasonde CODAR  

hourly radar report, one can  improve the accuracy of radar surface current mapping.   

Even though a certain percentage of data on the high end of the temporal scale is 

discarded, a majority of this data tends not to be correlated with drifter radial velocity 

values, and therefore slight improvements in r2 values and decreases in RMS differences 

can be obtained.  The numerical results of varying the temporal quality cut off value are 

shown by radar site in Table 5 through Table 12. 

Another conclusion can be made from the fact that as more drifter tracks were 

captured within a two kilometer filter of a radar measurement point, drifter and radar 

radial velocity correlations showed significant improvements.  With more drifter tracks 

being captured, a better coverage factor of the horizontal ocean surface is obtained, 

leading to a better, more representative mean ocean current flow.  As a result, it can be 

hypothesized that HF radar capabilities might be better that previously advertised in past 

studies.  As more and more in-situ data becomes available to the researcher, this trend 

can hopefully be further documented. 

Finally, it was shown that as the RMS distance of drifter tracks to a radar point 

decreased, there tended to be a better correlation between the radial values.   This result is 

not intuitively obvious or expected, since the MUSIC algorithm is documented to not put 

any statistical weight on where a specific pulsed return is measured within its given 

horizontal coverage factor.  Again, a general decrease in correlation is observed the 

higher the RMS distance becomes, but with this increase in RMS distance, there is an 

associated increase in the number of values observed.   Because of this non-uniformity of 

sample data points across the full spectrum of RMS distance values, it is difficult to 

determine whether the decrease in correlation is attributed to the RMS distance or due to 

the number of samples.   Further experiments that contain equal amounts of data points 

with varying RMS distances would solve this inconclusive result.   
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Future studies should address and document the effect that spatial averaging has 

on the HF derived surface current vectors.  Possible improvements in radar resolution to 

further increase the 5 degree bin resolution to 1 to 2 degrees could aid in making more 

precise measurements.  Additionally, with the combination of more deployed drifters, 

moored current meters and ship-board VMADCP data working in conjunction with each 

other could help quantify the errors exhibited by HF radar measurements.  Multiple 

experiments over the same swath of the ocean surface, ones which contain a variety of 

ocean trajectories and current velocities, would help in complimenting the conclusions 

made in this study.   
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First Experiment 23-27 January 2008 

Radar 
Site Type Correlation 

Coefficient 
R2 

(%) 

RMS 
Difference 

(cm/s) 
Slope Intercept Total # of Radial 

points with match 
Total # of 10 min drifter 
positions that matched 

Measured -0.177 3.1 72.943 -0.10 33.80 44 249 COMM 
Ideal 0.046 0.2 32.939 0.03 29.62 71 478 

Measured 0.901 81.1 9.310 0.92 4.44 270 1701 FORT 
Ideal 0.069 0.5 17.764 0.05 1.34 154 997 

Measured 0.899 80.9 19.124 1.06 7.75 423 2589 MONT  
Ideal 0.824 67.8 25.312 1.12 12.00 506 3080 

Measured N/a N/a N/a N/a N/a N/a N/a PESC 
Ideal 0.834 69.6 24.083 0.83 -12.59 295 1566 

Measured 0.735 54.0 9.001 0.66 3.40 388 2218 SCRZ 
Ideal 0.799 63.8 12.139 1.07 -3.00 514 2798 

Measured 0.817 66.8 8.954 0.87 3.87 366 2283 MLML 
Ideal 0.539 29.1 16.035 0.62 -9.55 531 3250 

Measured 0.730 53.3 14.157 0.85 -10.74 342 1904 PPIN 
Ideal 0.622 38.7 15.718 0.71 -13.30 334 1882 

Measured 0.628 39.5 14.949 0.63 -13.60 252 1386 NPGS 
Ideal 0.153 2.3 21.173 0.20 -17.89 69 415 

Measured 0.785 61.6 16.933 0.94 1.73 2085 12330 All Sites 
Ideal 0.755 57.0 19.561 0.94 -3.58 2474 14466 

Second Experiment 1-10 April 2008 

Radar 
Site Type Correlation 

Coefficient 
R2 

(%) 

RMS 
Difference 

(cm/s) 
Slope Intercept Total # of Radial 

points with match 
Total # of 10 min drifter 
positions that matched 

Measured 0.774 59.9 10.597 0.83 1.48 2309 19844 DRAK 
Ideal 0.469 22.0 17.876 0.44 -3.90 2164 18401 

Measured 0.759 57.6 8.164 0.75 -1.71 3288 28047 COMM 
Ideal 0.552 30.5 11.770 0.54 -1.26 2567 22963 

Measured 0.669 44.7 9.830 0.67 -0.40 3146 31323 SLID 
Ideal 0.507 25.7 14.824 0.51 -5.35 1493 14697 

Measured 0.504 25.4 11.938 0.48 1.43 1910 17544 FORT 
Ideal 0.488 23.8 11.602 0.54 1.10 2143 20004 

Measured 0.465 21.6 15.812 0.39 3.12 1395 12614 MONT 
Ideal 0.420 17.6 15.535 0.44 1.57 1743 15576 

Measured 0.536 28.7 15.935 0.49 -0.47 345 2724 PILR 
Ideal 0.605 36.6 13.497 0.66 -0.08 353 2782 

Measured 0.353 12.4 15.191 0.39 -1.24 750 6396 PESC 
Ideal 0.431 18.6 14.222 0.46 0.24 761 6016 

Measured N/a N/a N/a N/a N/a N/a N/a BIGC 
Ideal 0.497 24.7 19.687 0.77 5.92 137 672 

Measured 0.631 39.8 11.252 0.62 0.21 13143 118492 All Sites 
Ideal 0.457 20.9 14.400 0.44 -1.21 11361 101111 

Table 4.   Summary of Each Radar Site Studied including Ideal Radar Patterns. 
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V. APPENDIX 

 

 

 

 

 

 

 

 

 

Figure 1.   The SeaSonde measurement system includes a transmit chassis and receive chassis.  The 
MUSIC algorithm processes the radar returns to provide hourly radial velocity reports.   

 

 

 

 

 

 

 

 

 

Figure 2.   The  HF radar antenna suite for the SeaSonde system off the California Coast, consisting 
of a crossed loop and monopole receive antenna (left) and a monopole transmit antenna 
(right). 
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Figure 3.   Plot of drifter tracks obtained during both experiments.  The first experiment was 
conducted from 23-27 January 2008 using four drifters and is shown in blue.  A second 
experiment was conducted from 1-10 April 2008 using 32 drifters and is shown in black. 
HF radar station locations and their 4 letter identifiers are shown as well. 

 

 

 

 

 

 

Figure 4.   Deployment of the Pacific Gyre Microstar drifter. The surface float contains the 
telemetry system, antenna, batteries and sensors. Drifter positions are calculated by an 
onboard Global Positioning System (GPS) receiver that records and transmits a position 
every 10 minutes. 
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http://marineops.mlml.calstate.edu/ptsur.html

 
 
 
 
 
 
 
 
 
 
 
 
 
     
 
 
 
 
      
 

Figure 5.   Collapsible Nylon drogue shown with depth centered at approximately one meter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.   Research vessel Point Sur (top left) was used in Experiment One.  Research vessels John 
H. Martin (top right) and Mussel Point (bottom) were used during Experiment Two.  All 
were used to deploy and retrieve the drifters.  

http://marineops.mlml.calstate.edu/john_martin.html 

http://www-bml.ucdavis.edu/vesselops/musselpoint.html 
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Figure 7.   Representation of the spatial scale used in drifter/radial calculations.  Section of FORT 
radial pattern shown in area of a majority of Experiment Two drifter tracks.  A two 
kilometer filter (blue circle(s)) limits the closest drifter tracks to each respective radar 
point (red dot) used in velocity comparisons.  Only four circular filters shown here to 
exhibit no gaps in coverage. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.   Example of how a representative radar / drifter calculation was made.  For each hourly 
radar point (only one 0200Z radar point highlighted/described here), drifter tracks 
corresponding to plus or minus 30 minutes and less that 2km away are captured (magenta 
points inside blue circle).  This example has 14 total drifter matches. This process is done 
for each of the radar points in each hourly report, for each station.  
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Figure 9.   Representation of the drifter speeds shown during Experiment One.  This experiment 
exhibited excellent angular aspects with a wide variety of speed regimes.  Spatial 
coverage around a specific radar point was deficient here.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.   Representation of the drifter speeds shown during Experiment Two.  This experiment 
exhibited excellent spatial coverage within a limited area with moderate speed regimes.     
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Figure 11.   Typical measured radar patterns showing ocean coverage for DRAK, COMM, SLID and 
FORT, respectively.  First experiment drifter tracks are shown in blue and second 
experiment drifter tracks are shown in magenta.  
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Figure 12.   Typical measured radar patterns showing ocean coverage for MONT, PILR, PESC and 
BIGC (ideal pattern), respectively.  First experiment drifter tracks are shown in blue and 
second experiment drifter tracks are shown in magenta. 
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Figure 13.   Scatter Plot of Drifter Radial Velocity vs. Radar Radial Velocity for Radar Sites DRAK, 
COMM and SLID respectively (Second Experiment).  Measured Radar Patterns are 
shown on the left and Ideal Radar Patterns are shown on the right.  Dashed line represents 
one to one correlation and red solid line represents the linear least squares fit of the data.  
The standard deviation value refers to the best fit line. 
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Figure 14.   Scatter Plot of Drifter Radial Velocity vs. Radar Radial Velocity for Radar Sites FORT, 
MONT and PILR, respectively (Second Experiment).  Measured Radar Patterns are 
shown on the left and Ideal Radar Patterns are shown on the right.  Dashed line represents 
one to one correlation and red solid line represents the linear least squares fit of the data.  
The standard deviation value refers to the best fit line. 
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Figure 15.   Scatter Plot of Drifter Radial Velocity vs. Radar Radial Velocity for Radar Sites PESC 
and BIGC, respectively (Second Experiment).  Bottom graph is a combined plot of all 
Radar Sites.  Measured Radar Patterns are shown on the left and Ideal Radar Patterns are 
shown on the right.  Dashed line represents one to one correlation and red solid line 
represents the linear least squares fit of the data.  The standard deviation value refers to 
the best fit line. 
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Figure 16.   Correlation Coefficient and RMS difference plots vs. DRAK Radar Look Angle (top) and 
corresponding Drifter and Radial Standard Deviation plots vs. DRAK Radar Look Angle 
(middle).  Bold lines represent measured data and thin lines represent ideal data.  The 
lower plot indicates the number of drifter/radar point matches/observations that occurred 
vs. DRAK Radar Look Angle.  The thin blue bar represents the measured pattern and the 
wide yellow bar represents the ideal pattern.  Second experiment only.  
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Figure 17.   Correlation Coefficient and RMS difference plots vs. COMM Radar Look Angle (top) 
and corresponding Drifter and Radial Standard Deviation plots vs. COMM Radar Look 
Angle (middle).  Bold lines represent measured data and thin lines represent ideal data.  
The lower plot indicates the number of drifter/radar point matches/observations that 
occurred vs. COMM Radar Look Angle.  The thin blue bar represents the measured 
pattern and the wide yellow bar represents the ideal pattern.  Second experiment only. 
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Figure 18.   Correlation Coefficient and RMS difference plots vs. SLID Radar Look Angle (top) and 
corresponding Drifter and Radial Standard Deviation plots vs. SLID Radar Look Angle 
(middle).  Bold lines represent measured data and thin lines represent ideal data.  The 
lower plot indicates the number of drifter/radar point matches/observations that occurred 
vs. SLID Radar Look Angle.  The thin blue bar represents the measured pattern and the 
wide yellow bar represents the ideal pattern.  Second experiment only. 
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Figure 19.   Correlation Coefficient and RMS difference plots vs. FORT Radar Look Angle (top) and 
corresponding Drifter and Radial Standard Deviation plots vs. FORT Radar Look Angle 
(middle).  Bold lines represent measured data and thin lines represent ideal data.  The 
lower plot indicates the number of drifter/radar point matches/observations that occurred 
vs. FORT Radar Look Angle.  The thin blue bar represents the measured pattern and the 
wide yellow bar represents the ideal pattern.  Second experiment only. 
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Figure 20.   Correlation Coefficient and RMS difference plots vs. MONT Radar Look Angle (top) 
and corresponding Drifter and Radial Standard Deviation plots vs. MONT Radar Look 
Angle (middle).  Bold lines represent measured data and thin lines represent ideal data.  
The lower plot indicates the number of drifter/radar point matches/observations that 
occurred vs. MONT Radar Look Angle.  The thin blue bar represents the measured 
pattern and the wide yellow bar represents the ideal pattern.  Second experiment only. 
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Figure 21.   Correlation Coefficient and RMS difference plots vs. PILR Radar Look Angle (top) and 
corresponding Drifter and Radial Standard Deviation plots vs. PILR Radar Look Angle 
(middle).  Bold lines represent measured data and thin lines represent ideal data.  The 
lower plot indicates the number of drifter/radar point matches/observations that occurred 
vs. PILR Radar Look Angle.  The thin blue bar represents the measured pattern and the 
wide yellow bar represents the ideal pattern.  Second experiment only. 
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Figure 22.   Correlation Coefficient and RMS difference plots vs. PESC Radar Look Angle (top) and 
corresponding Drifter and Radial Standard Deviation plots vs. PESC Radar Look Angle 
(middle).  Bold lines represent measured data and thin lines represent Ideal data.  The 
lower plot indicates the number of drifter/radar point matches/observations that occurred 
vs. PESC Radar Look Angle.  The thin blue bar represents the measured pattern and the 
wide yellow bar represents the ideal pattern.  Second experiment only. 
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Figure 23.   Correlation Coefficient and RMS difference plots vs. BIGC Radar Look Angle (top) and 
corresponding Drifter and Radial Standard Deviation plots vs. BIGC Radar Look Angle 
(middle).  Thin lines represent ideal data.  The lower plot indicates the number of 
drifter/radar point matches/observations that occurred vs. BIGC Radar Look Angle.  The 
wide yellow bar represents the ideal pattern.  Second experiment only. 
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Figure 24.   Plot of absolute value of (Drifter Radial Velocity minus Radar Radial Velocity) vs. 
weighted temporal quality of the DRAK Radar Data (top). The middle plot represents the 
cumulative RMS difference and cumulative R2 value vs. weighted temporal quality as 
you increase temporal values from left to right.  The bottom plot includes the number of 
data points contained in each temporal increment and its associated cumulative percent of 
data.  Second experiment only. 
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Figure 25.   Plot of absolute value of (Drifter Radial Velocity minus Radar Radial Velocity) vs. 
weighted temporal quality of the COMM Radar Data (top). The middle plot represents 
the cumulative RMS difference and cumulative R2 value vs. weighted temporal quality as 
you increase temporal values from left to right.  The bottom plot includes the number of 
data points contained in each temporal increment and its associated cumulative percent of 
data.  Second experiment only. 
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Figure 26.   Plot of absolute value of (Drifter Radial Velocity minus Radar Radial Velocity) vs. 
weighted temporal quality of the SLID Radar Data (top). The middle plot represents the 
cumulative RMS difference and cumulative R2 value vs. weighted temporal quality as 
you increase temporal values from left to right.  The bottom plot includes the number of 
data points contained in each temporal increment and its associated cumulative percent of 
data.  Second experiment only. 
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Figure 27.   Plot of absolute value of (Drifter Radial Velocity minus Radar Radial Velocity) vs. 
weighted temporal quality of the FORT Radar Data (top). The middle plot represents the 
cumulative RMS difference and cumulative R2 value vs. weighted temporal quality as 
you increase temporal values from left to right.  The bottom plot includes the number of 
data points contained in each temporal increment and its associated cumulative percent of 
data.  Second experiment only. 
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Figure 28.   Plot of absolute value of (Drifter Radial Velocity minus Radar Radial Velocity) vs. 
weighted temporal quality of the MONT Radar Data (top). The middle plot represents the 
cumulative RMS difference and cumulative R2 value vs. weighted temporal quality as 
you increase temporal values from left to right.  The bottom plot includes the number of 
data points contained in each temporal increment and its associated cumulative percent of 
data.  Second experiment only.  
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Figure 29.   Plot of absolute value of (Drifter Radial Velocity minus Radar Radial Velocity) vs. 
weighted temporal quality of the PILR Radar Data (top). The middle plot represents the 
cumulative RMS difference and cumulative R2 value vs. weighted temporal quality as 
you increase temporal values from left to right.  The bottom plot includes the number of 
data points contained in each temporal increment and its associated cumulative percent of 
data.  Second experiment only. 
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Figure 30.   Plot of absolute value of (Drifter Radial Velocity minus Radar Radial Velocity) vs. 
weighted temporal quality of the PESC Radar Data (top). The middle plot represents the 
cumulative RMS difference and cumulative R2 value vs. weighted temporal quality as 
you increase temporal values from left to right.  The bottom plot includes the number of 
data points contained in each temporal increment and its associated cumulative percent of 
data.  Second experiment only. 
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Figure 31.   Plot of absolute value of (Drifter Radial Velocity minus Radar Radial Velocity) vs. 
weighted temporal quality of the BIGC Radar Data (top). The middle plot represents the 
cumulative RMS difference and cumulative R2 value vs. weighted temporal quality as 
you increase temporal values from left to right.  The bottom plot includes the number of 
data points contained in each temporal increment and its associated cumulative percent of 
data.  Second experiment only. 
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Figure 32.   Plot of absolute value of (Drifter Radial Velocity minus Radar Radial Velocity) vs. 
distance of radar point from radar station for each radar station (North to South).  The 
three kilometer spatial range separation of each radar station’s data is evident in the 
vertical groupings of the data.  Second experiment only. 
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Figure 33.   Plot of absolute value of (Drifter Radial Velocity minus Radar Radial Velocity) vs. the # 
of drifters that matched within 2km of a radar point for each radar station (North to 
South).  Vertical groupings at intervals of 7 are indicative of the predominance of having 
a full range of drifter data (+/- 30 min) per hourly radar point.  Second experiment only. 
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Figure 34.   Plot of absolute value of (Drifter Radial Velocity minus Radar Radial Velocity) vs. the 
RMS distance of matched drifters within 2km of a radial point.  Second experiment only. 
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Figure 35.   Plot of absolute value of (Drifter Radial Velocity minus Radar Radial Velocity) vs. the 
Standard Deviation of the radial velocities of the drifters that matched within 2km of a 
radar point.  Second experiment only. 
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Figure 36.   Scatter Plot of combined measured radar data for the second experiment vs. various 
queries.  Bottom chart includes density of points via use of a colorbar. 
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Figure 37.   Scatter Plot (with relative density of points) of combined measured radar data for the 
second experiment vs. various queries. 
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Std Dev of drifters that matched 
     within 2km of radar point
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Figure 38.   Typical measured radar patterns showing ocean coverage for SCRZ, MLML, PPIN and 
NPGS, respectively.  First experiment drifter tracks are shown red, green, blue and 
magenta. 
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Figure 39.   Scatter Plot of Drifter Radial Velocity vs. Radar Radial Velocity for Radar Sites COMM, 
FORT and MONT, respectively (First Experiment – 23-27 January 2008).  Measured 
Radar Patterns are shown on the left and Ideal Radar Patterns are shown on the right.  
Dashed line represents one to one correlation and red solid line represents the linear least 
squares fit of the data.  The standard deviation value refers to the best fit line. 
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Figure 40.   Scatter Plot of Drifter Radial Velocity vs. Radar Radial Velocity for Radar Sites PESC, 
SCRZ and MLML, respectively (First Experiment – 23-27 January 2008).  Measured 
Radar Patterns are shown on the left and Ideal Radar Patterns are shown on the right.  
Dashed line represents one to one correlation and red solid line represents the linear least 
squares fit of the data.  The standard deviation value refers to the best fit line. 
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Figure 41.   Scatter Plot of Drifter Radial Velocity vs. Radar Radial Velocity for Radar Sites PPIN 
and NPGS. respectively (First Experiment – 23-27 January 2008).  Bottom graph is a 
combined plot of all Radar Sites in the first experiment.  Measured Radar Patterns are 
shown on the left and Ideal Radar Patterns are shown on the right.  Dashed line represents 
one to one correlation and red solid line represents the linear least squares fit of the data. 
The standard deviation value refers to the best fit line.  
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Figure 42.   Correlation Coefficient and RMS difference plots vs. COMM Radar Look Angle (top) 
and corresponding Drifter and Radial Standard Deviation plots vs. COMM Radar Look 
Angle (middle).  Bold lines represent measured data and thin lines represent ideal data.  
The lower plot indicates the number of drifter/radar point matches/observations that 
occurred vs. COMM Radar Look Angle.  The thin blue bar represents the measured 
pattern and the wide yellow bar represents the ideal pattern.  First experiment only. 
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Figure 43.   Correlation Coefficient and RMS difference plots vs. FORT Radar Look Angle (top) and 
corresponding Drifter and Radial Standard Deviation plots vs. FORT Radar Look Angle 
(middle).  Bold lines represent measured data and thin lines represent ideal data.  The 
lower plot indicates the number of drifter/radar point matches/observations that occurred 
vs. FORT Radar Look Angle.  The thin blue bar represents the measured pattern and the 
wide yellow bar represents the ideal pattern.  First experiment only. 
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Figure 44.   Correlation Coefficient and RMS difference plots vs. MONT Radar Look Angle (top) 
and corresponding Drifter and Radial Standard Deviation plots vs. MONT Radar Look 
Angle (middle).  Bold lines represent measured data and thin lines represent ideal data.  
The lower plot indicates the number of drifter/radar point matches/observations that 
occurred vs. MONT Radar Look Angle.  The thin blue bar represents the measured 
pattern and the wide yellow bar represents the ideal pattern.  First experiment only. 
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Figure 45.   Correlation Coefficient and RMS difference plots vs. PESC Radar Look Angle (top) and 
corresponding Drifter and Radial Standard Deviation plots vs. PESC Radar Look Angle 
(middle).  Thin lines represent ideal data.  The lower plot indicates the number of 
drifter/radar point matches/observations that occurred vs. PESC Radar Look Angle.  The 
wide yellow bar represents the ideal pattern.  First experiment only. 
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Figure 46.   Correlation Coefficient and RMS difference plots vs. SCRZ Radar Look Angle (top) and 
corresponding Drifter and Radial Standard Deviation plots vs. SCRZ Radar Look Angle 
(middle).  Bold lines represent measured data and thin lines represent ideal data.  The 
lower plot indicates the number of drifter/radar point matches/observations that occurred 
vs. SCRZ Radar Look Angle.  The thin blue bar represents the measured pattern and the 
wide yellow bar represents the ideal pattern.  First experiment only. 
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Figure 47.   Correlation Coefficient and RMS difference plots vs. MLML Radar Look Angle (top) 
and corresponding Drifter and Radial Standard Deviation plots vs. MLML Radar Look 
Angle (middle).  Bold lines represent measured data and thin lines represent ideal data.  
The lower plot indicates the number of drifter/radar point matches/observations that 
occurred vs. MLML Radar Look Angle.  The thin blue bar represents the measured 
pattern and the wide yellow bar represents the ideal pattern.  First experiment only. 
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Figure 48.   Correlation Coefficient and RMS difference plots vs. PPIN Radar Look Angle (top) and 
corresponding Drifter and Radial Standard Deviation plots vs. PPIN Radar Look Angle 
(middle).  Bold lines represent measured data and thin lines represent ideal data.  The 
lower plot indicates the number of drifter/radar point matches/observations that occurred 
vs. PPIN Radar Look Angle.  The thin blue bar represents the measured pattern and the 
wide yellow bar represents the ideal pattern.  First experiment only. 



 74

305 310 315 320 325 330 335 340
0

10

20

30

R
M

S 
di

ff 
(c

m
/s

)
NPGS data 23-27 Jan 08

 

 

-1

-0.5

0

0.5

1

 

 

RMS diff Corr Coeff
-1

-0.5

0

0.5

1

C
or

r C
oe

ff

305 310 315 320 325 330 335 340
0

5

10

15

20

25

D
rif

te
r S

td
 D

ev
 (c

m
/s

)

 

 

0

5

10

15

20

25

 

 

Corr Coeff
0

5

10

15

20

25

R
ad

ia
l S

td
 D

ev
 (c

m
/s

)

 

 

Drifter SD

Radial SD

305 310 315 320 325 330 335 340
0

20

40

60

80

100

120

Angle (deg) clockwise from North

# 
O

bs
er

va
tio

ns

 

 

Ideal
Measured

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 49.   Correlation Coefficient and RMS difference plots vs. NPGS Radar Look Angle (top) and 
corresponding Drifter and Radial Standard Deviation plots vs. NPGS Radar Look Angle 
(middle).  Bold lines represent measured data and thin lines represent ideal data.  The 
lower plot indicates the number of drifter/radar point matches/observations that occurred 
vs. NPGS Radar Look Angle.  The thin blue bar represents the measured pattern and the 
wide yellow bar represents the ideal pattern.  First experiment only. 
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Figure 50.   Plot of absolute value of (Drifter Radial Velocity minus Radar Radial Velocity) vs. 
Distance of radial point from radar station for each radar station (North to South).  The 3 
kilometer spatial range separation of each radar station’s data is evident in the vertical 
groupings of the data.  First experiment only. 
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Figure 51.   Plot of absolute value of (Drifter Radial Velocity minus Radar Radial Velocity) vs. the # 
of drifters that matched within 2km of a radial point for each radar station (North to 
South).  Vertical groupings at intervals of 7 are indicative of the predominance of having 
a full range of drifter data (+/- 30 min) per hourly radar point.  First experiment only. 
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Figure 52.   Plot of absolute value of (Drifter Radial Velocity minus Radar Radial Velocity) vs. the 
RMS distance of matched drifters within 2km of a radial point.  First experiment only. 
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Figure 53.   Plot of absolute value of (Drifter Radial Velocity minus Radar Radial Velocity) vs. the 
Standard Deviation of the drifters that matched within 2km of a radial point.  Second 
experiment only. 
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Figure 54.   Plot of combined measured radar data for the second experiment vs. various queries. 
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DRAK Measured data 1-10 Apr 08 

Weighted 
temporal 

Quality Range 
Number of 

Values 
% Cumulative 

Sum 
Cumulative 

RMS difference 
Cumulative 

R2 

0<1 178 7.76 8.7630 0.7234 
1<2 574 32.78 8.5862 0.7289 
2<3 553 56.89 9.1904 0.6897 
3<4 369 72.97 9.5258 0.6657 
4<5 227 82.87 9.8592 0.6421 
5<6 143 89.10 10.0076 0.6345 
6<7 88 92.94 10.0739 0.6282 
7<8 51 95.16 10.1408 0.6254 
8<9 37 96.77 10.1735 0.6238 

9<10 38 98.43 10.3803 0.6111 
10<11 14 99.04 10.4080 0.6102 
11<12 6 99.30 10.4379 0.6079 
12<13 4 99.48 10.4472 0.6069 
13<14 7 99.78 10.5109 0.6027 
14<15 0 99.78 10.5109 0.6027 
15<16 3 99.91 10.5348 0.6012 
16<17 1 99.96 10.5325 0.6012 
17<18 1 100.00 10.5370 0.6012 

Table 5.   Summary of DRAK weighted temporal quality results  

COMM Measured data 1-10 Apr 08 
Weighted 
temporal 

Quality Range 
Number of 

Values 
% Cumulative 

Sum 
Cumulative 

RMS difference 
Cumulative 

R2 

0<1 435 13.54 6.5473 0.7205 
1<2 1028 45.55 7.0106 0.6689 
2<3 731 68.31 7.1636 0.654 
3<4 449 82.29 7.4328 0.6288 
4<5 257 90.29 7.7362 0.6022 
5<6 110 93.71 7.8963 0.5933 
6<7 77 96.11 7.9313 0.5912 
7<8 54 97.79 8.0103 0.5847 
8<9 22 98.47 8.0613 0.5811 

9<10 15 98.94 8.0653 0.5807 
10<11 14 99.38 8.0925 0.5794 
11<12 7 99.60 8.1017 0.5788 
12<13 8 99.84 8.1071 0.5777 
13<14 3 99.94 8.1150 0.5771 
14<15 0 99.94 8.1150 0.5771 
15<16 0 99.94 8.1150 0.5771 
16<17 0 99.94 8.1150 0.5771 
17<18 1 99.97 8.1153 0.5771 
18<19 1 100.00 8.1448 0.5771 

Table 6.   Summary of COMM weighted temporal quality results  
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SLID Measured data 1-10 Apr 08 
Weighted 
temporal 

Quality Range 
Number of 

Values 
% Cumulative 

Sum 
Cumulative 

RMS difference 
Cumulative 

R2 

0<1 203 6.51 7.0605 0.6342 
1<2 788 31.76 7.7684 0.5998 
2<3 810 57.72 8.3827 0.5569 
3<4 544 75.16 8.8111 0.5202 
4<5 341 86.09 9.0942 0.4946 
5<6 201 92.53 9.2720 0.4826 
6<7 94 95.54 9.4442 0.4694 
7<8 48 97.08 9.5161 0.4672 
8<9 43 98.46 9.6168 0.4611 

9<10 14 98.91 9.6950 0.4546 
10<11 14 99.36 9.6879 0.4565 
11<12 7 99.58 9.7129 0.4545 
12<13 1 99.62 9.7113 0.4545 
13<14 4 99.74 9.7378 0.4523 
14<15 3 99.84 9.7364 0.4539 
15<16 4 99.97 9.7371 0.4538 
16<17 1 100.00 9.7412 0.4538 

Table 7.   Summary of SLID weighted temporal quality results  

 
 

FORT Measured data 1-10 Apr 08 
Weighted 
temporal 

Quality Range 
Number of 

Values 
% Cumulative 

Sum 
Cumulative 

RMS difference 
Cumulative 

R2 

0<1 183 9.78 11.3907 0.2731 
1<2 488 35.86 10.5541 0.3437 
2<3 385 56.44 10.8063 0.3329 
3<4 286 71.73 11.2653 0.2996 
4<5 212 83.06 11.3235 0.304 
5<6 106 88.72 11.4999 0.2886 
6<7 75 92.73 11.5154 0.2858 
7<8 53 95.56 11.7411 0.2661 
8<9 32 97.27 11.7748 0.2631 

9<10 19 98.29 11.8038 0.2605 
10<11 14 99.04 11.8356 0.2566 
11<12 8 99.47 11.8339 0.257 
12<13 4 99.68 11.8264 0.2585 
13<14 2 99.79 11.8220 0.2584 
14<15 2 99.89 11.8166 0.2586 
15<16 1 99.95 11.8147 0.2586 
16<17 1 100.00 11.8147 0.2586 

Table 8.   Summary of FORT weighted temporal quality results  
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MONT Measured data 1-10 Apr 08 

Weighted 
temporal 

Quality Range 
Number of 

Values 
% Cumulative 

Sum 
Cumulative 

RMS difference 
Cumulative 

R2 

0<1 67 4.93 14.3821 0.3409 
1<2 246 23.01 14.1899 0.3214 
2<3 215 38.82 14.9979 0.2889 
3<4 208 54.12 15.0355 0.276 
4<5 141 64.49 14.9177 0.2843 
5<6 127 73.82 15.2009 0.255 
6<7 104 81.47 15.0922 0.2529 
7<8 63 86.10 15.2730 0.2473 
8<9 52 89.93 15.3039 0.2453 

9<10 34 92.43 15.3829 0.241 
10<11 41 95.44 15.4970 0.2341 
11<12 18 96.76 15.5629 0.235 
12<13 14 97.79 15.6501 0.227 
13<14 10 98.53 15.6662 0.2273 
14<15 4 98.82 15.6625 0.2265 
15<16 7 99.34 15.6793 0.2248 
16<17 4 99.63 15.6989 0.2234 
17<18 2 99.78 15.7077 0.224 
18<19 1 99.85 15.7254 0.224 
19<20 2 100.00 15.7154 0.2221 

Table 9.   Summary of MONT weighted temporal quality results 

PILR Measured data 1-10 Apr 08 
Weighted 
temporal 

Quality Range 
Number of 

Values 
% Cumulative 

Sum 
Cumulative 

RMS difference 
Cumulative 

R2 

0<1 11 3.21 11.0073 0.5222 
1<2 36 13.70 9.1903 0.6345 
2<3 47 27.41 10.2846 0.5705 
3<4 50 41.98 12.1091 0.5036 
4<5 49 56.27 13.3584 0.4663 
5<6 31 65.31 13.7033 0.4277 
6<7 22 71.72 13.5626 0.4331 
7<8 21 77.84 13.7331 0.4173 
8<9 16 82.51 13.5050 0.424 

9<10 14 86.59 13.8973 0.4054 
10<11 11 89.80 14.3901 0.3705 
11<12 11 93.00 14.7092 0.3465 
12<13 6 94.75 14.9460 0.3334 
13<14 7 96.79 15.1911 0.3234 
14<15 3 97.67 15.1241 0.3236 
15<16 4 98.83 15.4723 0.3082 
16<17 0 98.83 15.4723 0.3082 
17<18 2 99.42 15.7432 0.2968 
18<19 2 100.00 15.7801 0.2938 

Table 10.   Summary of PILR weighted temporal quality results 
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PESC Measured data 1-10 Apr 08 
Weighted 
temporal 

Quality Range 
Number of 

Values 
% Cumulative 

Sum 
Cumulative 

RMS difference 
Cumulative 

R2 

0<1 42 5.65 12.7723 0.3124 
1<2 117 21.37 14.2765 0.2016 
2<3 133 39.25 14.4198 0.1711 
3<4 120 55.38 14.0117 0.1658 
4<5 96 68.28 14.1208 0.1828 
5<6 73 78.09 14.4803 0.1569 
6<7 44 84.01 14.4581 0.1529 
7<8 48 90.46 14.3739 0.1574 
8<9 15 92.47 14.6883 0.1436 

9<10 23 95.56 14.8088 0.1376 
10<11 12 97.18 14.9556 0.1305 
11<12 9 98.39 15.0200 0.1338 
12<13 1 98.52 15.0910 0.1338 
13<14 5 99.19 15.1551 0.1272 
14<15 2 99.46 15.1693 0.127 
15<16 1 99.60 15.1821 0.127 
16<17 1 99.73 15.1718 0.127 
17<18 0 99.73 15.1718 0.127 
18<19 1 99.87 15.2207 0.127 
19<20 1 100.00 15.2105 0.127 

Table 11.   Summary of PESC weighted temporal quality results 

BIGC Ideal data 1-10 Apr 08 
Weighted 
temporal 

Quality Range 
Number of 

Values 
% Cumulative 

Sum 
Cumulative 

RMS difference 
Cumulative 

R2 

0<1 13 9.63 13.4289 0.5146 
1<2 21 25.19 18.7001 0.2623 
2<3 24 42.96 21.2116 0.2123 
3<4 20 57.78 21.2190 0.1724 
4<5 17 70.37 20.4605 0.1797 
5<6 9 77.04 20.3923 0.2124 
6<7 11 85.19 19.8347 0.2344 
7<8 9 91.85 19.7024 0.2366 
8<9 1 92.59 19.6375 0.2366 

9<10 7 97.78 19.9010 0.2392 
10<11 0 97.78 19.9010 0.2392 
11<12 0 97.78 19.9010 0.2392 
12<13 2 99.26 19.8039 0.2463 
13<14 0 99.26 19.8039 0.2463 
14<15 0 99.26 19.8039 0.2463 
15<16 0 99.26 19.8039 0.2463 
16<17 0 99.26 19.8039 0.2463 
17<18 0 99.26 19.8039 0.2463 
18<19 0 99.26 19.8039 0.2463 
19<20 1 100.00 19.8285 0.2463 

Table 12.   Summary of BIGC weighted temporal quality results 
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