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Abstract 

The United States Nuclear Detonation Detection System (USNDS) relies on 

sensors onboard NAVSTAR Global Positioning System (GPS) satellites to detect 

atmospheric nuclear detonations. Though there are currently over 24 operational GPS 

satellites, USNDS ground based antennas are only capable of actively monitoring 24 

satellites at a time. Personnel at the Air Force Technical Applications Center (AFTAC) 

desire a well-defined methodology for selecting which 24 satellites should be monitored 

to maximize global coverage capability. This research introduces a means to numerically 

quantify each satellites individual contribution to the coverage provided by the 

constellation as a whole. A heuristic generates a set of possible combinations of satellites 

that yield high global coverage. 
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ANALYSIS OF GPS SATELLITE ALLOCATION FOR THE UNITED STATES 

NUCLEAR DENTONATION DETECTION SYSTEM (USNDS) 

I. Introduction 

Background 

Despite the end of the Cold War and the existence of both non-proliferation and 

test ban treaties, nuclear weapons related issues remain at the forefront of national policy. 

This is due in part to the increased availability of nuclear materials and the irresistible 

lure of becoming a nuclear superpower [Blocker, 48]. As recently as 28 May 1998, 

Pakistan announced that it conducted five nuclear tests in the wake of a series of five 

nuclear test detonations conducted by India in the same month. “Global Engagement: A 

Vision for the 21st Century Air Force” predicts that there will be a more rapid spread of 

nuclear weapons and an increases chance of limited attacks on the U.S. homeland 

resulting from new and unpredictable oppone nts [USNDS Strategic Plan, 5]. 

The United States maintains a vigilant role in the continued effort to deter and 

detect nuclear detonations. In 2001, $36.4 million dollars were allocated to monitoring 

nuclear explosions [DOE National Security R&D Portfolio, 83]. The mission of the 

United States Nuclear Detonation Detection System (USNDS) is to “provide worldwide, 

highly survivable capability to detect, characterize, locate and report nuclear detonations 

and associated data: in earth’s atmosphere and near space, in near real time, and support 

three national- level missions”[USNDS Strategic Plan, 2]. 
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The three USNDS missions areas and those with primary responsibility for those 

areas are: 

1.	 Integrated Tactical Warning and Attack Assessment (ITWAA) -
United States Space Command (SPACECOM) 

2.	 Nuclear Force Management (NFM) - United States Strategic 
Command 

3.	 Nuclear Treaty Monitoring (TM) - Air Force Technical Application 
Center (AFTAC) 

Each mission specifies unique event detection requirements with respect to event yield, 

event altitude, atmospheric environment, and event reporting. SPACECOM has overall 

management responsibility for the operational NDS to include space and ground 

segments. NDS ground processing is done at the Mission Control Station (MCS) located 

at Buckley Air National Guard Base, CO. The Satellite Operations Center (SOC) is 

operated by the 2nd Satellite Operations Squadron at Schriever AFB, CO. The SOC, with 

AFTAC support, is responsible for optimizing operations of the space segment [NDS 

CONOPS, 5]. 

By the year 2020, the USNDS is to be fully integrated into the US Atomic Energy 

Detection System (AEDS) which will be a fully integrated portion of an International 

Atomic Energy Detection System. These systems will be part of the global capability to 

identify and monitor the growing number of non-proliferation and test ban treaty 

violators for application of sanctions [USNDS Strategic Plan, 5]. 

NDS consists of a suite of sensors aboard Global Positioning System (GPS) 

satellites and the associated ground systems responsible for monitoring the surface of the 

earth, the atmosphere, and the near space environment for nuclear detonations. AFTAC 
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uses Global Positioning System Modeling and Simulation (GPS/MS), developed at 

Sandia National Laboratories, to assess its global coverage with respect to its various 

mission requirements. 

As the prominence of the Global Positioning System’s navigation mission 

continues to grow, so does the number of satellites in orbit. At present, there are 29 

operational GPS satellites in orbit, with a new block of satellites (IIF) scheduled for 

future launch [USNDS Strategic Plan, 5]. Unfortunately, the original NDS ground 

system design is limited to monitoring 24 satellites at time. Any satellites in excess of 

the 24 monitored by NDS are designated as spares. While those satellites designated as 

spares continue to broadcast NDS information, the ground station does not allocate time 

to receive information from the spares. The constellation of GPS satellites represent 3 

block types (II, IIA, IIR) with varying states of health. Although future plans to upgrade 

the NDS infrastructure exist, at present, AFTAC is principally responsible for nominating 

which 24 satellites are monitored by NDS from the current constellation. The capability 

to alter the set of 24 satellites being monitored and those designated as spares is readily 

available. However, the task associated with choosing 24 of 29 satellites represents over 

590,000 unique combinations. The computational effort required to evaluate each 

combination can be impractical, particularly if a number of changes occur in a year. 

Problem Statement 

Though informal research has been conducted, AFTAC does not posses a well-

defined methodology for selecting which 24 satellites should be monitored by NDS to 

maximize global coverage. The current method for determining which satellites are 
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designated spares has been described as “piecemeal” [Holtgrave]. Spares are generally 

assigned based on the states-of-health of the NDS components on each satellite. The 24 

healthiest satellites with respect to NDS are chosen with some consideration given to not 

allowing too many spares in one orbit plane. The concept of satellite health, however, is 

very subjective; neither a specific numerical method nor objective means to determine 

NDS health has been formally established. 

Research Objectives 

The overall objective of this research effort is to provide AFTAC with a well-

defined methodology for selecting which 24 GPS satellites should be monitored by NDS 

to maximize global coverage of nuclear detonations. The methodology is robust in 

design to account for the anticipated future changes in the constellation, allowing it to be 

a useful tool well into the future. The research also includes an investigation into which 

parameters have the most significant contribution to a satellite’s contribution to coverage. 

The results from the methodology are aimed to meet or exceed the current state of 

coverage. 

Methodology 

The first step taken in attempting to maximize satellite coverage was determining 

which parameters influenced a satellite’s ability to detect and report nuclear detonations. 

When possible, the critical parameters were quantified and combined to produce an 

estimate of each satellite’s value with respect to coverage. Because the satellites are 

constantly in motion and each satellite’s position with respect to the other satellites 

continuously changing in three-dimensional space, satellite interaction is not readily 
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numerically quantifiable in a tractable fashion. However, these interactions are an 

important part of coverage. 

The nature of the problem appeared to fit the structure of a knapsack linear 

program. However, because of the difficulty involved in accurately representing satellite 

worth, a strictly deterministic approach was ruled out. A heuristic approach was 

constructed that builds on insight gleaned from previous research to generate a set of 

likely good solutions. The heuristic was evaluated based upon robustness and solution 

quality. Robustness was determined by the ability of the heuristic to consistently produce 

solutions yielding high coverage for a variety of inputs. Solution quality was evaluated 

based on proximity to the upper bound. 

The remaining chapters will elaborate the background information, methodology, 

data analysis, conclusions, and recommendations for future research. Chapter 2 is 

dedicated to providing historical perspective and pertinent background research specific 

to the problem. This research constitutes the basis for the methodology presented to 

solve the problem in Chapter 3. A detailed analysis of the results is found in Chapter 4, 

and Chapter 5 summarizes the significant conclusions and provides suggestions for future 

research. 
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II. Background 

Overview 

Beginning with the endorsement of the Limited Test Ban Treaty in 1963, the 

United States (U.S.) has recognized the advantage of using space-based resources to 

monitor nuclear detonations. The U.S. has a clear interest in monitoring international 

nuclear activity. There is a long history of international diplomacy regarding nuclear 

arms development and proliferation. Due to the unique characteristics governing nuclear 

phenomenon, space based detection devices have proven to be an invaluable asset to 

monitor nuclear activity. Utilization of a constellation of satellites provides an efficient 

means to monitor the entire surface of the earth simultaneously [USNDS CONOPS]. 

The development of the NAVSTAR GPS satellite program in the 1980’s provided 

an ideal global coverage platform from which NDS could piggy-back. The original GPS 

constellation was designed to include 24 satellites (21 active, 3 spares). Correspondingly, 

the NDS ground system was designed to monitor NDS data from 24 satellites. Currently, 

there are 29 operational GPS satellites in orbit capable of providing NDS data with more 

satellites scheduled for launch in the near future. The active constellation includes 

satellites from three distinct block types with individual varied component states of 

health. In order to maintain the best global coverage possible, efficient techniques must 

be developed to get the most out of the available resources [Parkinson, 10]. 

A large amount of research has been devoted to designing satellite constellations 

for continuous whole earth coverage; however, there is limited research on managing 

existing constellations and their failure modes. From an operations research perspective, 
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the issue of selecting satellites to maximize coverage represents a combinatorial 

optimization problem. Both deterministic and heuristic techniques have been used to 

solve this class of problems. 

History 

When President Kennedy and Chairman Khrushchev signed the Limited Test Ban 

Treaty (LTBT) on August 5, 1963, one of the conditions was that each party to the treaty 

could use its own technical means to monitor the ban on nuclear testing in the atmosphere 

or in space. The relationship between the United States and the members of the former 

Soviet Union has greatly improved since the early steps taken by Kennedy and 

Khrushchev. However, now nuclear technology has widely diffused throughout the 

world [USNDS Roadmap]. 

The second significant international nuclear arms management agreement was the 

Non-Proliferation Treaty (NPT), originally signed by the U.K., U.S., and Soviet 

governments on 1 July 1968. This treaty bans nuclear weapons development by its 

signatures, which currently includes over 140 countries. Notable non-signatures include 

India, Pakistan, Argentina, Brazil, and Israel [Higbie, 48]. The signing of the 

Comprehensive Nuclear Test Ban Treaty (CTBT) in September 1996 was a turning point 

in history, creating for the first time an international norm against all nuclear testing 

[DOE National Security R&D Portfolio, 80]. Should either of these treaties fail, the 

United States must still posses the capability to detect clandestine nuclear tests conducted 

anywhere in the world [DOE National Security R&D Portfolio, 81]. 
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The Vela satellites were developed as the first space based observation devices in 

a joint effort by the U.S. Air Force (USAF) and the Atomic Energy Commission. The 

USAF launched the first Vela satellite almost 40 years ago on 17 October 1963. Vela 

was based on the experience obtained from developing the measurement instruments for 

the rockets flown during the Dominic series of atmospheric nuclear tests conducted 

in1962. Vela represented a quick response to the LTBT [USNDS Strategic Plan, 9]. 

Originally, ten Vela satellites were to be built. However, the first six satellites 

were so successful, reliable, and long-lived that the last four were never launched. The 

Vela satellites monitored compliance with the NTBT and provided scientific data on 

natural sources of space radiation for many years. The least successful of the original 

Vela satellites operated for ten times its design lifetime of six months. The last of the 

advanced Vela satellites was deliberately turned off on Sept. 27, 1984, over 15 years after 

it had been launched. From initial deployment to program termination, Vela was one of 

the Air Force space program’s greatest success stories [www.fas.org]. 

NAVSTAR GPS is a space-based radio-positioning system consisting of a 

constellation of 24 orbiting satellites which provide navigation and timing information to 

military and civilian users worldwide. The constellation provided global coverage and 

thus an excellent platform to deploy future generations of space based nuclear detection 

sensors [Parkinson, 36]. 

Nuclear Phenomenology 

Space based sensors provide an unparalleled field of view for optical sensors and 

a platform to monitor the effects of an atmospheric nuclear blast. The physical output 
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(light, gamma rays, X-rays, and neutrons) from a nuclear explosion, as well as secondary 

effects due to the interactions with the atmosphere of these primary forms of energy 

output is well known. A standard reference for a detailed discussion of these phenomena 

is Samuel Glasstone’s book The Effects of Nuclear Weapons, first published in 1950. 

Measuring the outputs of an event using instruments sensitive to different phenomena 

helps prevent incorrectly identifying an event due to some natural occurrences (for 

example, a lightning flash) as a nuclear detonation. The sensors onboard GPS satellites 

have been designed to measure the outputs due to the various phenomena. In particular, 

visible light, radio waves, and X-rays are measured. In addition, background 

measurements of the radiation environment are performed by instruments on some of the 

GPS satellites [Parkinson, 36]. 

An exoatmospheric nuclear detonation will release enough elementary particles 

and photons that can travel huge distances through the void of outer space and be 

detected by instruments on a spacecraft. Similarly, a nuclear detonation within the 

atmosphere, endoatmospheric, also generates uniquely characteristic phenomena and 

signals that support detection by space-based instruments. Figure 1, taken from the 

USNDS Project Officer Workbook, illustrates the detectable physical phenomenon for 

nuclear detonations at different levels in the atmosphere [USNDS Project Officer 

Workbook]. 
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Figure 1. Nuclear Phenomenology [USNDS Project Officer Workbook] 

No other atmospheric event s, natural or man-made, can cause the simultaneous 

appearance of all these interrelated phenomena in such a precisely predictable time 

sequence. 

For up to a minute after a nuclear detonation, energy in the forms of radiation, EMP 

(electromagnetic pulse), light, heat, sound, and blast are released in all directions. The 

detectable characteristics of these emissions are governed by the surrounding 

environment, as well as the weapon’s design and material composition. Sensors aboard 

GPS satellites are capable of detecting light, EMP, and radiation in the form of x-rays, 

gamma rays, and neutrons.  The phenomenology detected is highly dependent upon the 

altitude of the nuclear explosion.  The nuclear phenomena is detected by the satellite 

sensors, downlinked to the USNDS ground segment, and processed [DOE National 

Security Profile, 86]. 
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GPS 

Most GPS users are unaware that the satellites serve a role other than navigation. 

In addition to carrying the navigation and timing payload, the satellites carry a payload 

that enables them to detect nuclear weapons bursts. Starting with the launch of satellite 

vehicle 8 (PRN 11), the GPS satellites have formed an important component in the U.S. 

arsenal for monitoring compliance with the nuclear weapon Non-Proliferation Treaty. 

The fact that the GPS satellites have the capability to detect nuclear detonations has been 

neither classified nor well advertised [Parkinson, 36]. 

The Nuclear Detonation (NUDET) Detection System (NDS) provides a 

worldwide, highly survivable capability to detect, locate, and report any nuclear 

detonations in the earth's atmosphere, near space, or deep space in near real- time. The 

NDS consists of space, control, and user equipment segments [USNDS Strategic Plan, 2]. 

The space segment consists of NUDET detection sensors on the GPS and Defense 

Support Program (DSP) satellites. The control segment consists of ground control 

hardware and software known as the Integrated Correlation and Display System 

(ICADS). The user equipment segment consists of the Ground NDS Terminals (GNT). 

NDS supports NUDET detection requirements for Air Force Space Command (AFSPC) 

Integrated Tactical Warning and Attack Assessment (ITWAA), United States Strategic 

Command (USSTRATCOM) Nuclear Force Management, and Air Force Technical 

Applications Center (AFTAC) Treaty Monitoring. Figure 2 illustrates the flow of data 

from the space segment to the control and ground processing segments to the users. 
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Figure 2. USNDS Overview [USNDS Project Officer Workbook] 

NDS Components 

The prime component of the NDS subsystem onboard GPS satellites is the Global 

Burst Detector (GBD) containing a suite of detectors and a sensor data processor. All 

GBDs host a BDY optical sensor (bhangmeter). Most also have a BDX X-ray sensor, 

and many of the GBDs support the BDW sensor to detect an electromagnetic pulse. 

Satellite communications are accomplished via the Integrated Transfer Subsystem (ITS). 

Figure 2 illustrates the various NDS components [USNDS Project Officer Workbook]. 

The bhangmeter (BDY) is a non-imaging radiometer responding to optical signals 

generated by NUDET fireballs. It consists of a light-collecting lens with a 30-degree 

primary field-of-view (FOV), a non-metallic conical sunshade, a three-segmented photo 

diode sensor, and an electronics subsystem. Because the satellite will periodically pass 

into and out of eclipse, a "solar inhibit" function disallows BDY data processing to 
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prevent the BDY from creating false events due to viewing of the sun [USNDS Project 

Officer Workbook]. 

Figure 3. NDS Subsystem Components [USNDS Project Officer Workbook] 

The Burst Detector Processor (BDP) is the functional interface between the 

detectors and the satellite. It primarily provides power, timing, commanding, and data 

processing and transfer for the detectors and the satellite communications processors 

[USNDS Project Officer Workbook]. 

The BDX, or X-ray sensor, samples the X-ray energy spectrum in four spectral 

bands to detect nuclear detonations. The function of the BDX is detection and location in 

the high altitude endo- and exo-atmospheric arenas [USNDS Project Officer Workbook]. 

The W-Sensor Receiver/Processor, or also known as the EMP sensor (BDW) 

provides data in the endo-atmospheric arena. It monitors the atmosphere for the 

electromagnetic pulse from a nuclear detonation. The BDW is also slaved to the 

bhangmeter (BDY), meaning a signal is declared, by the BDP, only when a BDY signal 

is detected within a coincidence window. Slaving helps make the initial determination 
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that a NUDET has occurred, and then provides time-tagging, characterization, and 

location information [USNDS Project Officer Workbook]. 

As with any mechanical component, the various NDS sensors are subject to 

degradation and failure over their useful lifetime. The state-of-health of the satellite as 

well as each of the critical NDS components onboard are recorded several times daily. 

The corresponding data is often illustrated in a format similar to the GPS/NDS status 

chart found in Appendix A. This chart clearly illustrates planar distribution of satellites, 

which satellites are spares, and specific component status. The actual state-of-health of 

the constellation is CLASSIFIED. 

Satellite Constellations 

The use of multiple satellites, forming a constellation, provides an effective 

means to gain satellite coverage over the entire globe. The coverage of the Earth’s 

surface by the multiple-satellite systems has been studied by J.G. Walker and many other 

researchers. These studies have mostly been confined to satellites following multiple 

circular orbits of equal period, providing continuous multiple coverage of the entire 

surface of the Earth. Elliptical orbits appear less suitable than circular orbits for whole-

Earth coverage as opposed to regional coverage. Moreover, only satellites in a common 

circular orbit can maintain station relative to none another continuously as they move 

around this orbit [Wang, 968]. 

The Walker Delta Low-earth-orbit satellite network was first proposed and 

investigated by Walker in the early 1970’s. It represents a general class of circular orbit 

satellite constellations with equally spaced satellites and orbit planes. In this family of 
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constellations, there are T total satellites in P uniformly spaced planes of circular orbits, 

each plane at the same inclination with respect to the equatorial plane. There are T/P 

uniformly spaced satellites in each plane. The relative phasing between satellites in 

adjacent planes is given by F, which is in units of 360 deg/T. Hence, when a satellite in 

any plane is at its ascending node, there is a satellite in the adjacent plane having a more 

easterly ascending node [Walker, 370]. 

Walker has shown that continuous worldwide coverage with at least six satellites 

in view everywhere is possible with 24 satellites in six planes using a 24/6/1 constellation 

at an inclination angle of 57 deg for users with a minimum elevation angle of 7 deg. The 

selected GPS-24 satellite constellation is shown to give fivefold visibility. Although it 

does not have as good a full constellation satellite visibility as the (24/6/1) constellation, 

the GPS-24 satellite constellation has instead been selected based on the basis of best 

coverage if a single satellite becomes inoperative [Parkinson, 42]. Figure 4 illustrates the 

location of the GPS satellites for the initial 24. Each plane contains four satellites. Three 

of the four satellites in each plane are active and spaced approximately equidistantly. 

One satellite in is designated as a spare and located adjacent to an active satellite 

[USNDS Project Officer Workbook]. 

Most constellations aim to provide the users with a continuous reliable service or 

at least a minimum level of service. When one satellite fails to operate, the remaining 

satellites are required to provide needed services at a comparable level. Three 

approaches to performing satellite replacements are: 1) placing spare satellites in the 

constellation, 2) placing spares in parking orbits, or 3) keeping spare satellites on the 
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ground [Cornara, 2]. As seen in Figure 4, the GPS constellation was designed to include 

spare satellites within the constellation. 

Figure 4. Representation of GPS-24 Constellation [USNDS Project Officer Workbook] 

GPS Constellation 

The GPS constellation currently consists of three versions of GPS satellites 

(Block II, Block IIA, and Block IIR). The current operational constellation consists of 4 

Block II, 18 Block IIA, and 6 Block IIR satellites. The Block II satellite was designed to 

provide reliable service over a 7.5 year life span [Parkinson, 65]. 

The satellites have a period of 12 hours sidereal time and a semi-major axis of 

26,561.75 km. A sidereal day is defined as the time for the Earth to complete one 

revolution on its axis in Earth-Centered-Inertial (ECI) space and consists of 24 sidereal 

hours where 1 sidereal day is slightly shorter than a mean solar day. One sidereal day is 
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23 hr, 56 min, 4.009054 s. Their orbital period is approximately 11 hrs 58 minutes, so 

that each satellite makes two revolutions in one sidereal day (the period taken for the 

earth to complete one rotation about its axis with respect to the stars). At the end of a 

sidereal day, the satellites are again over the precise same position on earth. Reckoned in 

terms of a solar day (24hrs in length), the satellites are in the same position in the sky 

about four minutes earlier each day. The orbit ground track approximately repeats each 

day, except that there is a small drift of the orbital plane to the west (-0.03 per day) 

[Parkinson, 180]. 

The ground trace is the line generated on the Earth’s surface by the line joining 

the satellite and the Earth’s center as both the satellite moves in its orbit and the Earth 

rotates. Because the satellites have precisely a 12-hour (sidereal time) orbit, each satellite 

traces out exactly the same track on the Earth’s surface each sidereal day. A user at any 

fixed point sees exactly the same pattern of satellites every day. However, because the 

user’s clock time is mean solar time rather than sidereal time of the satellite period, the 

user sees this satellite pattern appear approximately four minutes earlier each day 

[Parkinson, 184]. 
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Figure 5. Satellite Visibility at Fixed Point [STK] 

Figure 5 illustrates which GPS satellites are visible from a fixed location over a 

24 hour period. The set of observable satellites continually changes. A satellite is 

generally in view for a period of approximately 3 hours at a time. 

Communications 

The Integrated Correlation and Display System (ICADS) is the primary 

component of the ground processing segment of the NDS ground system. Its function is 

to process the sensor data to identify and report nuclear detonations in support of the 

mission requirements. The ICADS antenna scheduler algorithm computes a plan for 

managing the assignment of antenna and receiver resources to accessible GPS satellites 

(those satellites above the local horizon by a specified elevation angle). The ICADS 

system uses antenna/receiver hardware to monitor the L-Band data. The antennas are 

electronically steered and capable of establishing simultaneous receive-only connections 

with up to six GPS satellites. This has proven to be a limitation since often times there 
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are more than six satellites in view of the antenna. Limiting the number of satellites the 

antenna can monitor restricts the number of downlink paths, possibly excluding real- time 

information from certain satellites [Hogg, 1]. 

The GPS L3 link operates as needed to transfer NDS data from the GPS satellites 

to the ground station. It uses time-division multiplexing with twenty-four timeslots, each 

lasting for 1.5 seconds. Thus, there is a 36 second transmission cycle during which each 

satellite has one opportunity to transmit its NDS data to the ground station. This 

capability is the backbone behind the problem. The ICADS system was only designed to 

accommodate data from 24 satellites. Currently, there are 28 operational GPS satellites 

capable of providing NDS data. In addition to transmitting its own L3 data during its 

assigned timeslot, each satellite will immediately retransmit on L3 any data that it 

receives from another satellite (during that satellite’s assigned time slot) via a UHF cross-

link [Hogg, 3]. 

A satellite is accessible to the ground station when it is above the local horizontal 

plane by a specified elevation angle. The elevation angle constraint is a conservative 

estimate of the ability to reliably receive data from a satellite, and depends on: 1) 

transmitter power, 2) transmitter and receiver antenna gains, 3) channel parameters such 

as quiet or scintillated atmospheric conditions, and 4) the presence of noise sources. The 

number of satellites accessible to the ground station varies over time as the satellites orbit 

the rotating Earth [Hogg, 2]. 

Opportunities for communications over the crosslink depend on a timing window 

implemented by the crosslink receiver. Following each X1 epoch (every 1.5 seconds), 

the receiver listens for the leading edge of a valid transmission to be detected within a 
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timing window that accounts for a transmitter turn-on and propagation delays. The 

timing window produces an acceptable range for crosslink communications of 

approximately 12500 to 47500 kilometers. The ability to deliver information over the 

crosslink also depends on several aspects of the design of the crosslink equipment, 

including age, transmitter power, and antenna gain (a function of the azimuth and 

depression angles). In Build 4, opportunities for crosslink communications were 

specified using the depression angle, the angle between the local horizontal plane and the 

line of sight to another satellite. The aspects of SATCAP that affect connectivity are the 

statuses of: 1) the crosslink receiver (ITSR), 2) the crosslink transmitter (ITSX), and 3) 

the L3 downlink transmitter (L3). Each satellite has a status for these three items, and 

each of these has one of four possible values: 0 (no information), 1 (red), 2 (yellow), 3 

(green). The scheduler assumes a connection is possible only when the relevant hardware 

status is “GREEN” [Hogg, 3]. 

There are a number of issues that affect the availability of a path from a source 

satellite to the ground station. First, the source satellite must have an assigned NDS 

timeslot. For the direct path the source satellite’s downlink transmitter (L3) must be 

operational, the satellite must be accessible to the ground station, and it must be selected 

for tracking. For the indirect paths the source satellite’s crosslink transmitter (ITSX) 

must be operational and a relay satellite must have an operational crosslink receiver 

(ITSR), must be configured to receive from the source satellite, must have an operational 

downlink transmitter, must be accessible to the ground station, and must be selected for 

tracking [Hogg, 4]. 
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Figure 6. Satellite Communication [USNDS Project Officer Workbook] 

The GPS system supports up to 32 satellites for the navigation function, but as 

explained previously the NDS communications system provides timeslots for only 24 

satellites. Those GPS satellites that do not have a timeslot have no value as a data source. 

The value of specific satellites can be decreased if they have faulty NDS sensors or other 

problems [Hogg, 6]. 

Computing Coverage 

GPS/MS is a classified modeling and simulation program capable of providing a 

variety of information regarding the coverage associated with the GPS constellation. The 

logic code was written in C++ programming language with an interface to IDL for 

graphical outputs and user interface. The basis for evaluating coverage lies in reducing 

the surface of the earth to a series of equally spaced grid points and evaluating coverage 

at each grid point at time steps for the entire simulation time. The results for all grid 

points are then combined to reveal a numerical value for global coverage. A coverage 
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value of 26 indicates that an average of 26% of the grid points are coverage for the 

simulation period [GPSM/S]. 

Prior to simulation, orbital data and state-of-health inputs for the 24 satellites 

monitored by NDS are read into GPS/MS from a current ICADS file. China Lake 

almanac files were used to gather the orbital data for the spares satellites since they are 

not actively tracked by ICADS [http://sirius.chinalake.navy.mil/almanacs.html]. 

The simulation determines coverage at each grid point for the specified 24-hr 

period. The default settings have a grid point every 2.5 degrees. Over the entire surface 

of the earth, there are a total of 10585 points. Coverage is calculated every 15 minutes 

for the specified day leading to a total of 96 time steps. For each grid point and each time 

step, GPS/MS determines the satellites in view, their ability to detect an event as 

specified by the mission requirements, and the ability of the satellites to relay the 

information back to the ground station [GPSM/S]. 

Use of GPS/MS was limited due to its classification of SECRET. The 

consequences of this restriction were eased by the availability of Satellite Took-Kit 

(STK). STK is a simulation model provided by Analytical Graphics Inc. (AGI). The 

specific inputs in GPS/MS could not be modeled exactly in STK. However, STK proved 

to be a valuable substitute when GPS/MS was not available. 

Previous Research 

Extensive documented research exists describing the use of genetic algorithms to 

construct satellite orbits that will maximize global coverage while minimizing the 

number of satellites employed [Confessore, 1]. There are a number of applications for 
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satellites including cellular telephone networks that depend on large satellite coverage 

areas. Through a constellation of 66 low earth orbiting satellites, the Iridium Satellite 

System delivers essential communications services to and from remote areas where 

ground based communications are not available [Confessore, 2]. Cellular phone 

communications infrastructure is aided by the presence of numerous local ground stations 

to relay data. However, in the case of NDS coverage, all event data must be relayed to a 

single ground station in real-time for processing. This requirement severely constrains 

the NDS problem and makes the communications link infrastructure critical. 

The analysis of failure configurations of satellites and the influence of the failure 

of satellites to coverage performance of a constellation is rarely reported. Chan-Wang 

Park analyzed the coverage performance of satellite constellations in low earth orbits 

[Park, 1]. In Park’s research, the performance of constellations was evaluated based on 

the maximum non-visibility time at one receiver position on earth by using simulation 

software. Maximum non-visibility time was compared to the configuration of failure of 

satellites to establish the worst case combination of failures in a satellite constellation. 

Park also examined the effects of phase changing to reduce the degradation of 

performance. Lateral and longitudinal failures were explored. Longitudinal failures 

referred to failure of more than one satellite in series within a plane. Lateral failures are 

the failures of two satellites in adjacent planes. The significant results were that 

longitudinal failures had the greatest effect and overall performance is enhanced with a 

phase changes to close the planar gaps [Park, 6]. 
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Knapsack Problems 

Consider the problem of preparing for a hike. You can only bring those items that 

fit into your backpack. Unfortunately, you have more things that you want to bring than 

can fit into that backpack. You are faced with the problem of selecting those items to 

maximize their utility on the hike and not exceeding the volume limits of the backpack. 

This is known as the knapsack problem [Martello and Toth]. This type of problem falls 

into the category of mathematical programming problems called integer programming 

problems, more specifically binary integer programming problems (BIP). BIPs derive 

their name from our use of decision variables taking on values of 0 or 1 to represent a 

binary condition: on/off, select/non-select, yes/no. In the case of the knapsack problem, 

the binary decision variables represent selection of the item and inclusion in the knapsack 

(value of 1 assigned), or rejection of the item (value of 0). When selected, that item adds 

value (its associated pj) to the objective function and consumes knapsack resource (it’s wj 

coefficient) from the constraint. The knapsack constraint cannot be violated. 

Mathematically, the problem has the following form: 

n 

Maximize � p j x j 
j = 1 

Subject to: 
n 

� w j xj £ b 
j=1 

x j ˛(0,1) 
where pj is the value of placing item j into the knapsack, wj is the cost (amount of 

resource used) when item j is placed in the knapsack, and b is the total resource available 

in the knapsack [Martello and Toth, 156]. 
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While simple in form, this combinatorial problem can be difficult to solve to 

optimality in practice. Thus, as with many BIPs, non-optimal algorithms, or heuristics, 

are employed. One naïve approach is to simply add item randomly until no more are 

allowed by the knapsack constraint. A slightly better approach is to simply choose those 

items with the smallest aj values, again until no more are allowed by the knapsack 

constraint. Another approach is to choose those items with the largest cj values, again 

until no more are allowed by the knapsack constraint. The better heuristics account not 

only for the value of the item, but also the relative cost of that item [Martello and Toth, 

156]. An item’s “bang” for “buck” is represented by the ratio (pj/wj). 

A more specialized form of the knapsack problem is the multiple choice knapsack 

problem [Martello and Toth, 157]. The multiple choice knapsack problem is defined as 

given a set of n items and a set of m knapsacks (m £ n), with 

pj = profit of item j, 

wj = weight of item j, 

ci = capacity of knapsack i, 

m n 

Maximize z = �� p j xij 
i =1 j =1 

m 

subject to � wj xij £ ci , i ̨  M = {1,..., m}, 
j=1 

m 

� xij £ 1, j ˛ N = {1,..., n}, 
i=1 

xij = 0 or 1, i ̨  M , j ˛ N , 

where 
xij = 1 if item j is assigned toknapsack i; 

0 otherwise. 
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When m = 1, the multiple choice knapsack problem reduced to the single knapsack 

problem [Martello and Toth, 157]. For this application, each orbit plane could represent 

a unique knapsack (m = 6). The capacity of each knapsack, ci, is the maximum possible 

number of satellites in each respective plane. Variations of the model are possible. The 

difficulty with fitting this application to a multiple choice knapsack format is assigning 

benefits for each of the satellites. An individual satellite’s independent contribution to 

global coverage is difficult to quantify. 

In this application, a satellites profit is gauged by its ability to detect nuclear 

detonations and relay the data back to the ground station. Penalties could be assigned to 

satellites with degraded states of health or constellations with sparse orbit planes. 

Heuristics 

A heuristic method is a procedure for solving problems by an intuitive approach 

in which the structure of the problem can be interpreted and exploited intelligently to 

obtain a reasonable solution. There are several instances where the use of heuristics is 

desirable and advantageous. The most common of these is when an exact method may be 

available but is computationally unattractive due to the excessive time and/or storage 

requirements. In general, and without regard to a specific problem, a good heuristic 

should have the following qualities and features: 

• Simplicity, which facilitates user understanding and acceptance. 

• Reasonable storage requirements. 

• Accuracy 
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•	 Robustness – the method should obtain good solutions, in reasonable 
times for a wide variety of problems and not be too sensitive to 
changes in parameters 

•	 Produce multiple solutions (ideally in a single run). This allows the 
user to select the result that is most accurate or satisfying. 

Problem dependent heuristics, that take advantage of the special structure of a problem, 

are more efficient than general mathematical programming heuristics, but their use is 

limited to the specific class of problems for which they were developed [Barr, 12]. 

Evaluating Heuristics 

“There are two ways to study the performance of heuristics. One is analytical and 

relies on the methods of deductive mathematics. The other is empirical and uses 

computational experiments” [Hooker, 33]. In choosing test problems to evaluate a 

heuristic, the most obvious pitfall is to generate random problems that do not resemble 

real problems. Most computational experiments measure solution quality and running 

time. Although no set standards exist for publishable heuristic research, it is generally 

accepted that a heuristic method makes a contribution if it is: 

• Fast – producing high-quality solutions quicker than other approaches; 

• Accurate – identifying higher-quality solutions than other approaches; 

•	 Robust – less sensitive to differences in problem characteristics, data 
quality, and tuning parameters than other approaches 

• Simple – easy to implement 

•	 High- impact – solving a new or important problem faster and more 
accurately than other approaches 

• Generalizeable – having application to a broad range of problems 

• Innovative – new and creative in its own right 
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Essentially, most researchers and practitioners wish to answer the following questions 

when testing a heuristic on a specific problem: 

• What is the quality of the best solution found? 

• How long does it take to determine the best solution? 

• How quickly does the heuristic find good solutions? 

• How robust is the method? 

• How “far” is the best solution form those more easily found? 

•	 What is the tradeoff between feasibility and solution quality? 
[Hooker, 37] 

When possible, the heuristic solutions obtained should be compared to the optimal 

solutions. Generally, the percent deviation from optimality is reported. The rate at which 

heuristics converge to a solution close in value to that of the best found solution should 

be measured. A heuristic that can obtain an excellent solution for only once instance of a 

problem is not robust and arguably not very interesting. Robustness is based on the 

ability of a heuristic to perform well over a wide range of test problems [Barr, 10]. 

This chapter was devoted to summarizing the key background issues in literature 

supportive of this research. Included was a brief overview of the physical characteristics 

of a nuclear detonation and the history regarding the use of space-based sensors to 

monitor such events. The process by which GPS satellites are utilized as a platform to 

detect and report nuclear events via the NDS infrastructure was described in detail. A 

summary of previous research regarding satellite constellation design and the impacts of 
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satellite failures within a constellation was provided. Finally, operations research 

techniques related to solving this class of problem were reviewed. Chapter 3 is dedicated 

to applying the insight gleaned from the literature to solution methodology. 
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III. Methodology 

Introduction 

At first glance, determining the optimal solution to the NDS problem appears to 

readily lend itself to a deterministic solution via a classic knapsack problem structure. 

However, quantifying the value cj, the contribution of each satellite, is not an easy task. 

Many of the critical parameters related governing satellite value numerically quantifiable, 

yet others, such as the value of a satellite’s orbital location are difficult to effectively 

quantify. The value of an orbital location is dependent on where the other satellites are 

arranged within the constellation. For each unique combination of 24 satellites selected 

for NDS coverage (there are over 590,000 combinations) there is a unique value for each 

orbital location. The prospect of enumerating all combinations of 24 satellites to 

determine the value of each satellite’s orbital location is an unattractive, computationally 

intensive option. Because accurate event reporting depends on reporting by multiple 

satellites, the arrangement of satellites in orbit is critical to maintaining global coverage. 

Failure to include the influence of an orbital location parameter into the model was not an 

option. A heuristic approach was selected based on this uncertainty and previous 

research that has offered insight into the effects of satellite failures within a constellation 

[Park, 1]. 

General Approach 

The issue of selecting 24 satellites to maximize NDS global coverage can be 

represented by the following knapsack linear programming problem: 
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n 

Maximize � c j x j 
j = 1 

Subject to: 
n 

� x j £ b 
j=1 

x j ˛(0,1) 
Where: 

cj = value of satellite i 
b = 24 

The single constraint limits the contents of the knapsack to 24 satellites. For this 

application, each satellite has an equal weight of one unit. Therefore, while maximizing 

satellite value, the resource (24 satellites) will be exactly used up and thus represent the 

optimal solution. However, the solution to is only as good as the representation of 

satellite value. Determining how to effectively quantify a satellite’s value is not trivial. 

A satellite’s individual state of health is readily quantifiable, but assessing the 

interaction among satellites is difficult due to the constant movement of satellites 

[Parkinson, 186]. Inter-satellite dependency for communications cross- links restricts a 

satellite’s value from being independent. Cross- link and downlink structures constantly 

change. It is difficult to accurately account for inter-satellite interaction with out 

enumerating all possible combinations of solutions (over 590,000). Walker’s work 

highlights the importance of consistent distribution of satellites between and within the 

planes for obtaining multiple satellite coverage over the entire globe [Walker, 560]. The 

overall objective of maximizing global coverage can be effectively reduced to two sub-

objectives: 1) maximize the sum of satellite value and 2) minimizing orbital gaps created 

by satellite voids. 
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A heuristic was developed that begins with an optimal knapsack solution in terms 

of satellite value; unrestricted by satellite orbital location. The heuristic then proceeds in 

an iterative manner, replacing satellites until orbital gaps are minimized and inter-planar 

parity is achieved. The fundamental premise guiding the heuristic is that establishing an 

effective proxy for satellite value that incorporates all critical parameters is 

computationally challenging. 

Satellite Value 

In a knapsack LP, each item available for selection is associated with a coefficient 

indicating its value, utility, and/or an incurred penalty incurred for inclusion in the 

knapsack. Previous research at Sandia National Laboratories involving spare satellite 

analysis attempted to associate penalties with satellites based on sensor and 

communication component failure [Stuart]. The penalties were generated from empirical 

results. Though the penalty system has not been formally recognized as a means for 

decision making, the results are useful as indicators of the relative weight of various 

system failures. Table 1 contains a sample of penalties assigned for various component 

failures. 

Table 1. Penalties 

Component 
Failure 

Penalty 

L3 4 
ITSX 8 
ITSR 2 
BDY 7 

A satellite’s total penalty is assessed by summing the penalties of all component 

failures. The penalty assignment system is easy to quantify, but is not a comprehensive 
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assessment of satellite value. While it may be effective, it should be reviewed for its 

scientific rigor and merit. A few discrepancies with this approach are readily apparent. 

First, all healthy satellites are assigned a penalty of zero and thus have a numerically 

equivalent value. Second, the same component failure on separate satellites is reflected 

by the same penalty, yet the failure’s effects on overall coverage might not be equal. For 

example, one satellite’s L3 might be more important than another because it is in view of 

the ground station for a longer period of time. The penalty system only addresses 

component failures and does not account for satellite value based on orbital location. In 

addition, BDY sensor degradation based on lens darkening effects was not taken into 

consideration [GPS/MS]. 

Despite the existence of a number of parameters that have a role in determining a 

satellite’s individual contribution to global coverage, the two overriding forces governing 

coverage rest in the optical sensor’s ability to observe an event and the subsequent ability 

to communicate what the sensor observes. A satellite’s contribution to coverage can be 

effectively reduced to a function of three critical parameters: real-time connectivity 

(RTC), optical sensor sensitivity, and orbital location. 

BDY Sensitivity 

The satellite’s ability to optically detect a nuclear event is related to the sensitivity 

of the BDY sensor. BDY sensitivity, Oi, is dependent on satellite block type (II, IIA, IIR) 

and sensor degradation. Both block II and block IIA satellites are equipped with the 

same BDY sensor, while the BDY onboard block IIR satellites is an improved version of 
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the sensor. The approximate ratio of the difference in sensitivity of the block II/IIA and 

block IIR sensors is 13 to 17 [Christiansen]. 

Once in orbit, the BDY is subject to a lens darkening effect that may be due to 

environmental conditions. Regardless of the cause, the lens-darkening effect that takes 

place reduces sensor responsiveness. The degree to which the lens-darkening effect has 

degraded the sensor is represented by a value termed responsivity (Christiansen). 

Responsivity is determined by observing the trends related to the current 

necessary to compensate for a fully illuminated earth. When exposed to anything other 

than a completely dark earth, the BDY sensor must compensate for the background 

lighting. Compensation current is measure several times per day. Years of accumulated 

data has allowed the lens darkening effect to be quantified. Responsivity is represented 

by a unitless value between 0 and 1.0. A value of 1.0 indicates that the lens has not 

suffered from the darkening effect, while a value of 0.5 would indicate a 50% reduction 

in responsiveness. A block IIR BDY with a 0.765 responsivity value has a sensitivity 

value equivalent to a block II/IIA BDY with a responsivity of 1.0 [Christiansen]. 

Real-time Connectivity (RTC) 

Real-time connectivity (RTC) was established and defined as the number of hours 

a satellite is in communication with the ground station (either directly or via a cross- link) 

over a 24-hour period. This value provides a means to quantify communication system 

failures within the constellation. A semi-synchronous orbit dictates that the satellites will 

trace the exact same ground track every twenty-four hours. Therefore, a satellite’s real-

time connectivity is consistent every 24 hours. 
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Satellite Tool-Kit (STK) was used to compute RTC for each of the operational 

satellites and the notional satellites from the test cases. STK is an independently 

validated and verified commercial simulation tool widely used for aerospace applications. 

The chains module within STK allows the user to model these communications 

pathways. A chain is defined to represent a string of resources [STK v.4.2.1]. The 

simulation is used to assess the amount of time a chain is connected over a 24-hour 

period. RTC can be determined by evaluating two chains: 

Chain 1) Direct-link chain (ground station – satellite) and 

Chain 2) Cross- link chain (ground station – x- link satellites – satellite). 

Chain 1: 

Chain 2: X-link 
Satellites 

Figure 7. RTC Chains 

The ground station is defined by the location of Denver, Colorado (39:40:00N, 

104:57:00W). The “x- link constellation” resource is the set of satellites capable of cross-

linking (healthy ITSR and L3 components). Table 2 indicates the how RTC is computed 

given the possible failure modes. 
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Table 2. ITS Component Failure Implications 

Component 
Failures 

Real-time Communication Implication RTC (hours) 

ITSX 
Contributes individually when directly ground linked via 
L3. Serves as a viable x-link option. 

Chain 1 

ITSR 
Useless as x-link. Indiv idual contribution when 
connected. 

Chain 1 + Chain 2 

L3 Useless as x-link. Only contributes when x-linked. Chain 2 

GPS/MS is the accepted modeling tool by which AFTAC calculates global coverage 

[Holtgrave]. To maintain consistency, STK simulations were confined by the same 

constraints as GPS/MS when possible [GPSM/S]. Cross- link access and satellites in-

view of the ground station were restricted by depression angles and elevation angles 

respectively. The STK simulation period to compute RTC was limited to 24-hours, since 

the satellites repeat the exact same ground track over this period [Parkinson, 185]. The 

RTC calculations are made assuming the availability of all operational satellites. RTC is 

represented by a unitless, normalized value. An RTC value of 1.0 indicates continuous 

connectivity. 

Coverage Contribution Coefficient (CCC) 

The coverage contribution coefficient (CCC) was established and defined as a 

means to incorporate the effects of a satellites optical sensor degradation and real-time 

connectivity into a single parameter serving as a proxy for satellite value. CCC is 

defined as the product of RTC and responsivity (CCC = (RTC) x (Responsivity)). The 

upper bound on CCC was a value of 1.0. This number would indicate uninterrupted RTC 

(RTC = 1.0) and no degradation to BDY sensitivity (Responsivity = 1.0). CCC serves as 

a proxy for each measure, RTC and Responsivity. By combining each multiplicatively, 
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the interaction of the effect is approximated. While not a precise measure, CCC captures 

the essence of the key effects. 

Value Evaluation 

A pilot study was conducted to evaluate the merits of assigning CCC as a proxy 

for satellite value. An assumption was made that CCC would serve as a better proxy for 

satellite value than BDY sensitivity (Oi), RTC, or the penalty function. Greedy solutions 

were computed, subject to the knapsack LP definition, using the four different parameters 

in place of the variable cj  (CCC, Oi, RTC, and penalty). The resulting solutions were 

each input into GPSM/S to compute the respective global coverage. 

Key Assumptions 

All coverage calculations required by the heuristic were computed using GPS/MS 

software. The simulation software contains a number of mission specific classified 

parameters that are not available in other commercial software packages. The three 

mission areas (NFM, TM, ITWAA) specify different detection requirements with regard 

to event yield, atmospheric conditions, and event reporting. The Treaty Monitoring 

mission was selected for all simulations per sponsor input. 

All regions of the globe were treated with equal importance with regard to 

coverage per the Operational Requirements Document (AFSPC 003-94-T). Coverage by 

the constellation for the simulated day was assumed representative of the coverage of the 

same constellation over a period of time due to the daily repetition of the ground tracks. 

The state-of-health for the BDW sensor was not included in the model. Since the BDW 

is slaved to the BDY, the state-of-health of the BDW was eliminated. The period of time 
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that satellites shut down to avoid the sun was neglected. The eclipse time for a satellite 

depends on which orbital plane it is located in. Since the eclipse season was not unique 

to individual satellites, it was removed from consideration. 

The link-error or noisy earth model was turned off for simulations in GPS/MS. 

The link error model accounts for a “noisy” region of the earth where cross- link 

transmissions between satellites would have a reduced chance of accurate reception. Use 

of this option would add a source of variability when comparing solution results. This 

could, however, be an area for future study. 

The states-of-health for the spare satellites were assumed to be the same as the 

last time each respective satellite was active. Once designated as spares, the NDS ground 

segment does not maintain state-of-health updates. This information should be accurate 

for component failures, however, responsivity values could be worse. 

Search Heuristic 

An iterative search heuristic was constructed to produce a set of solutions yielding 

high coverage percentages. The coverage contribution coefficient (CCC) does not 

completely account for all satellite effects. Satellite orbital location is not accounted for 

in the proxy value. Research indicates that spatial gaps or holes in constellations degrade 

global coverage performance. This heuristic begins with an initial solution that is 

selected with a greedy approach with respect to CCC. Hypothetically, the solution could 

leave one of the six orbital planes devoid or sparse in satellites. The heuristic seeks to 

improve on the initial solution by filling in the orbital gaps present in the initial solution 

while maintaining a highest overall total constellation CCC value possible. Satellites in 
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planes with more than 4 basis satellites will be replaced by spares in planes with less than 

4 basis satellites. At each iteration, the highest valued spare will replace the lowest 

valued satellite in the basis that meeting the criteria. These replacements will proceed 

until the 24 basis satellites are evenly distributed among the 6 satellite planes (Step 7). 

Each plane will have 4 satellites in the basis. These satellites will be the best with respect 

to satellite value in each plane. 

All coverage calculations will be made with GPSM/S. The search will allow less 

attractive solutions with respect to CCC to form the basis to expand the solution space. 

The second part of the heuristic involves local replacements in planes with spares. For 

those planes containing a spare, the least desirable basis satellite is replaced with the 

spare to examine potential improvements to the solution. 

{B}: Basis (the set of 24 satellites tracked by NDS)

{S}: Spares (set of all satellites not in the basis)

If xi ˇ {B}, then xi ˛ {S}

{B} ˙ {S} = 0

{E}: Set of satellites in planes containing greater than n/6 satellites in the basis

{E} � {B} ¨ {S}


{E}{S} {B} 

Figure 8. Satellite Sets 

n = number of operational satellites 

xi = satellite i  (i = 1, 2…n-1, n)

B- : basis satellite with the lowest value w.r.t. CCC 
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S+ : spare satellite with the greatest value w.r.t. CCC

{Pj} = set of satellites in Plane j (j = 1,2,3,4,5,6)

u = iteration counter

Cu = global coverage at iteration u (computed with GPS/MS)


The heuristic begins at Step 1 with the optimal solution to the knapsack using 

CCC as a proxy for satellite value. This solution is not constrained by satellite orbit 

location. Steps 3 through 6 will attempt to improve coverage by generating solutions 

with increased planar parity. 

Initialize counters: u = 0, j = 0 

Procedure 
Step 1. Initialize the basis. Assign the top 24 satellites w.r.t. CCC to {B} 
Step 2. Compute Cu with GPSM/S 
Step 3. Increment counter u = u + 1 
Step 4. Replace B- with S+, where B- ˛ {E} and S+ ˇ {E}. 
Step 5. Compute Cu with GPSM/S 
Step 6. If E „ {˘}, Go To Step 3 

(NOTE: Following Step 6, each of the six planes will contain an equal number of 
satellites in the basis, 4; representing the best 4 satellites from each plane with respect to 
CCC.) 

Steps 7 – 13 of the heuristic dictate local replacements within each plane 

containing spares in an attempt to improve global coverage. If the replacement does not 

increase coverage, it will be rescinded. 

Step 7. j = j + 1 and u = u + 1 
-Step 8. If {Pj}  ̇{S}, replace Pj with S+


Step 9. Compute Cu


Step 10. If Cu < Cu-1, undo the replacement in Step 8 Go To Step 7

Step 11. STOP when j = 6
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As seen in Figure 9, as the heuristic progresses, the objective of maximizing CCC is 

traded for the objective of minimizing orbital gaps. 

#  o f  I t e ra t i ons  

. .1 2 n -1 n 

O b j e c t i v e :  
E m p h a s i s  

Figure 9. Objective Trade-off 

M a x i m i z e .  C C C  

M i n i m i z e .  O r b i t a l  G a p s  
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Computational Effort 

A unique solution is generated after each iteration in the heuristic. Each solution 

must be inputed into GPSM/S to compute the coverage corresponding to the solution. A 

single simulation takes over three minutes for the model to compute. Enumerating all 

possible solutions for a 29 choose 24 case would require over 3 years of simulation. 

Enumeration was quickly ruled out as a solution technique. Due to the classification 

level of GPSM/S use of the software was restricted. On site access to the software was 

restricted to AFTAC at Patrick AFB, Florida and Sandia National Laboratories in 

Albuquerque, New Mexico. 

Test Cases 

The robustness of the heuristic was evaluated against three unique test cases. The 

number of satellites and their respective orbital parameters for each test case was 

consistent with the cur rent GPS constellation. The state-of-health of the communications 

system components and the BDY responsivity were generated using reliability data 

obtained from SNL. The reliability of each satellite’s communication system 

components (ITSR, ITSX, L3) was represented by Weibull distributions in the form 

b �
x 

a 

F (x) = 1- eŁ ł 

where x represents time in months (Stuart). The test cases anticipate possible state-of-

health changes over the next three years. Test Case 1 represents a nominal constellation 

state-of-health for 1 Jan 2002, Test Case 2 1 Jan 2003, Test Case 3 1 Jan 2003. Each case 

is generated independent of the previous case. Consistent with GPS/MS, each 
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component’s capability will either be fully operational (represented by a 1) or degraded 

(indicated by a 0). Degraded systems are considered inoperable. 

The sensor’s lens darkening effect, varies according to block type and are 

approximately normally distributed for block II/IIA. Test case conditions were randomly 

generated from this distribution. Block IIR satellites, remarkably, have not suffered any 

darkening effects, therefore they all have a responsivity value of 1.0. The table below 

shows the format of a test case inputs. 

Table 3. Test Case Format 

Satellite: Transmitter Receiver Downlink Responsivity 
1 
2 
.

.

.


n-1

n


The state-of-health data was inputed into STK, which will generate the real- time 

connectivities for the satellites in each of the test cases. Each run in STK takes 

approximately 10 seconds on a desktop computer. 

Evaluating Results 

The best coverage generated by each search was compared to the optimal 

coverage for the test case. The optimal coverage for each test case was computed based 

on a hypothetical scenario that would allow all operational satellites to contribute to 

coverage. It represented an idealized, unattainable solution for the current state of health. 

The robustness of the heuristic was evaluated based on the consistency of performance 

1 0 1 0.809 
1 0 0 0.758 
0 0 1 0.867 
1 1 1 0.681 
0 1 0 0.010 
0 0 0 0.832 
0 1 1 0.127 
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with respect to the test cases. In order to be useful, the heuristic must return reliable 

results with a variety of state-of-health inputs. The results were analyzed based upon, 

best coverage, number of iterations to best coverage, and how close the solutions are to 

the optimal coverage. The results indicated which critical parameter best represents 

satellite utility. The number of iterations before local optimality is obtained indicates the 

relative importance of the satellites’ distribution among the planes. 
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IV. Data Analysis 

Overview 

The heuristic technique was designed to generate a set of feasible solutions. Each 

solution, identified as a basis {B}, represented a unique set of 24 operational GPS 

satellites. The heuristic required the user to input state of health parameters for each 

operational satellite in the constellation. Given these inputs, the heuristic generated an 

initial solution and then stepped through a finite series of iterations based on one-for-one 

satellite replacements at each step. GPS/MS was used to compute the global coverage for 

the solution at every iteration. 

Test Cases 

The heuristic was benchmarked against three test cases prior to being 

applied with current state-of-health inputs. The test cases were designed to 

exercise the heuristic through a variety of inputs. Reliability data for satellite 

component failures and optical sensor degradation was supplied by personnel at 

Sandia National Laboratories [Stuart]. The data was used to create independent 

test cases simulating hypothetical constellation states-of-health for 1 January 

2002, 1 January 2003, and 1 January 2004. Since new satellites continue to 

replace the aging constellation, propagating the current constellation state-of-

health three years into the future (without replacements) provided the heuristic a 

worst case scenario. Only satellite state-of-health was varied for the test cases. 

Satellite locations for the test cases remain consistent with the actual 
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constellation, and are indicated by Plane (A-F) and slot (1-5). Currently, there are 

28 operational GPS satellites in orbit available for NDS [Holtgrave]. Figure 11 

illustrates the approximate location of each operational satellite in its respective 

plane. The satellites are labeled by the 4-digit inter-range operational number 

(IRON) followed by the plane and slot location. 

A Plane B Plane C Plane 
0443-B5 

8800-B1 

3326-B2 

5596-C1 

3365 

5689 

-C2 

2272-A3 

2524-A4 

3722 

1920-A2 

-A5 
4780-C3 

2567-B3 
9531-A1 

-C4 
4614-B4 

D Plane E Plane F Plane 
8006-E3 

2034-E4 

1436-E1 
6809-F4 

142 3 

8456-F3 

3055-F2 

5473-D4 

5681-D1 

1597 

8639-D5 
8896 

0470-E2 3659-F5 
-D2 

-F1 

Figure 11. Satellite Planes (USNDS Project Officer Workbook) 

Table 4 displays the notional state-of-health inputs for each test case. 

Communication components (ITSX, ITSR, L3) reliability trends follow Weibull 

distributions. The parameters used reflect historical data from Sandia National Labs. A 

“0” indicates component failure. A “1” indicates a fully functional component. 

Responsivity, corresponding to optical sensor degradation due to lens darkening effects, 

is indicated by a fractional value between 0 and 1.0. A value of 1.0 indicates no 

degradation. The responsivity values for block II/IIA satellites were randomly generated 
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from a normal distribution.  -darkening 

effects and thus all have a responsivity of 1.0. 

Table 4.  -of-Health 

  Test Case 1:   Test Case 2:   Test Case 3: 
IRON ITSR ITSX L3 Resp.  ITSR ITSX L3 Resp.  ITSR ITSX L3 Resp.

2567-B3 0 1 1 0.663 1 1 1 0.643 1 1 1 0.757
2272-A5 1 1 1 0.576 1 1 0 0.667 0 1 0 0.631
470-E2 1 1 1 0.614 1 0 1 0.499 0 1 0 0.591

8639-D5 1 1 0 0.589 1 1 0 0.561 1 1 0 0.478
8896-E5 1 1 1 0.377 1 1 1 0.636 1 1 0 0.640
5681-D1 1 1 1 0.504 1 1 0 0.821 1 1 1 0.742
1920-A2 1 0 1 0.764 1 1 1 0.735 0 1 1 0.673
3055-F2 1 1 1 0.633 1 1 1 0.647 1 1 1 0.518
2524-A4 1 1 1 0.723 1 1 1 0.713 1 1 1 0.461
6809-F4 1 1 1 0.530 1 1 1 0.529 1 1 1 0.648
3659-F5 1 1 1 0.418 0 1 1 0.470 0 1 1 0.422
8800-B1 1 1 1 0.832 1 1 1 0.538 1 1 1 0.831
4780-C3 1 0 1 0.670 1 0 1 0.649 1 1 1 0.593
5689-C4 1 1 1 0.569 1 1 1 0.741 1 0 0 0.651
9531-A1 1 1 1 0.675 1 0 1 0.578 1 1 1 0.715
4614-B4 1 1 1 0.38 0 1 1 0.849 1 1 0 0.524
5473-D4 1 1 1 0.811 1 1 1 0.855 1 1 0 0.762
5596-C1 1 1 1 0.326 1 1 1 0.418 1 0 1 0.542
3365-C2 1 1 1 0.540 0 1 1 0.452 1 1 1 0.530
8006-E3 1 1 1 1.098 1 1 1 0.513 1 0 0 0.785
3326-B2 1 1 1 0.591 1 1 1 0.609 1 1 1 0.440
3722-A3 1 1 0 0.605 1 1 1 0.474 1 1 1 0.596
8456-F3 1 1 1 1.000 1 1 1 1.000 1 1 1 1.000
1597-D2 1 1 1 1.000 1 1 0 1.000 1 1 1 1.000
1436-E1 1 1 1 1.000 1 1 1 1.000 1 1 1 1.000
443-B5 1 1 1 1.000 1 1 1 1.000 1 1 1 1.000

1423-F1 1 1 1 1.000 1 1 0 1.000 1 1 1 1.000
2034-E4 1 1 1 1.000 1 1 0 1.000 1 1 1 1.000

 

Table 4 summarizes the communication component failures for the test cases.  

be expected, the number of component failures increased with the passage of time 

represented by each successive test case.  

conjunction with STK to compute RTC for the satellites. 

Block IIR satellites have not experienced lens

Test Case States

As would 

The data from these test cases were used in 



Table 5. Component Failures per Test Case 

ITSR ITSX L3 

Test Case 1 1 2 2 

Test Case 2 3 3 6 

Test Case 3 4 3 8 

Idealized Upper Bound 

One measure to evaluate the performance of a heuristic is to compare the solution 

value to the problem’s optimum solution. Often times, however, the optimal solution is 

not known. For this application, the optimal global coverage from all combinations of 24 

satellites is not known. It is necessary to identify an idealized upper bound with which to 

compare the heuristics results. An upper bound was established and defined by relaxing 

the constraint restricting the constellation to 24 satellites and determining the global 

coverage resulting if all operational satellites contribute simultaneously. GPS/MS is 

capable of calculating coverage based on any number of satellites. It is not restricted to 

simulating only 24 satellites. For the three test cases, the idealized coverage was 

computed by performing the simulation with all 28 satellites contributing to coverage. 

No combination of 24 satellites will yield a greater coverage than this upper bound. 

Table 6 contains the results. 

Table 6. Idealized Upper Bounds for Test Cases 

Idealized Upper Bound 
(% coverage) 

Test Case 1 55.8 
Test Case 2 42.2 
Test Case 3 42.8 
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The constellation from Test Case 1 has the greatest idealized coverage. This comes as no 

surprise since Test Case 1 had the least number of component failures. The results for 

Test Case 2 and Test Case 3 are interesting since Test Case 3 had more component 

failures and a greater idealized upper bound than Test Case 2. This indicates that not all 

component failures have an equal effect on coverage. The previously defined component 

failure penalty system reflects this assumption. 

Value Evaluation Results 

The first step in the search heuristic requires an initial solution corresponding to 

the optimal solution to the knapsack problem. Coverage contribution coefficient (CCC) 

was used as a proxy of satellite value, cj, in the knapsack objective function (Figure 12). 

Prior to exercising the heuristic, simulations were performed using GPS/MS to evaluate 

how CCC compared to responsivity, RTC, and penalty as an indicator of satellite value. 

The knapsack function was solved substituting responsivity, RTC, penalty, and CCC for 

cj. This procedure was repeated for each of the three test cases. 

n 

Maximize � c j x j 
j = 1 

Subject to: 
n 

� x j £ 24 
j=1 

x j ˛(0,1) 
Figure 12. Knapsack Function 

Figure 13 illustrates the global coverage resulting from solving based on each of the 

individual parameters. The data labels are normalized to the idealized upper bound. The 
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upper bound is represented by a value of 1.0, and all other results indicate a percentage of 

the unattainable upper bound. Ideal coverage is represented by a coverage value of 1.0. 

Each result indicates the fraction of optimal coverage achieved. Recall that the ideal 

coverage is achieved with the use of 28 satellites. As the idealized upper bound clearly 

indicates, coverage could be improved if more than 24 satellites could be used. For each 

test case, optimizing based on CCC produced greater global coverage than selection 

based solely on RTC, responsivity, or penalty respectively. This confirms the 

supposition that a multi-dimensional parameter such as CCC would serve as a better 

indicator of satellite worth than the single dimensional parameters. Solving based on the 

penalty proposed in GPSM/S (versus CCC) corresponded to 2.4%, 2.6%, and 2.3% 

reductions in coverage for test cases 1, 2, and 3 respectively. 

0.74 
0.77 

0.73 
0.78 

0.75 

0.820.80 
0.76 

0.86 
0.82 

0.78 

0.88 

1 1 1 

1 2 3 

Test Case 

C
o

ve
ra

g
e 

Responsivity RTC Penalty CCC Upper Bound 

Figure 13. Value Comparison 

Solving based on responsivity as an objective only addresses a single factor 

related to satellite performance, neglecting any consideration of communications state-of-

health. Though responsivity returned a greater coverage than both RTC and penalty in 

Test Case 2, the results were based on the selection of satellites with high RTC. Test 

51 



 

                            

                            

                            

                            

                            

                            

                            

                            

 52

Cases 1 and 3 clearly illustrate responsivity as the worst representation of satellite worth.  

In Test Case 3, solving based on CCC led to an excellent coverage value of 88% of the 

idealized upper bound.   

Heuristic Progression 

The best way to illustrate the performance of the heuristic is to step through an 

example using Test Case 1.  

Case 1.  

With exception of iteration 0, the basis is made up of 24 satellites indicated by a “1” and 

4 spares indicated by “0”.  

case of 28 satellites rather than the system requirement of 24 satellites.  

coverage is computed with all available satellites in the basis.  

case is 55.8%.  

The solution at iteration 1 is generated by optimizing the knapsack problem with respect 

to CCC.   

Table 7.  – Test Case 1 
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0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

3 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1

4 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1

5 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1

6 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1

7 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0

 

Table 7 illustrates the progression of the heuristic for Test 

Each iteration yields a unique set of satellites in the basis {B} and spares {S}.  

Iteration 0 represents the unattainable upper bound for the test 

At iteration 0, 

The upper bound in this 

At iteration 1, the basis is reduced to 24 satellites per NDS requirements.  

Heuristic Progression 



After iteration 1, the heuristic’s immediate goal is to add satellites to deficient 

planes until all planes have an equal number of satellites, while maintaining the highest 

total CCC value possible. A deficient plane is defined as a plane containing fewer than 

n/6 satellites. Table 8 indicates each satellite’s rank with respect to CCC. The basis at 

iteration 1 includes the satellites ranked 1 through 24. 

Table 8. Test Case 1 CCC Rankings 
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For every basis change, the highest ranking spare meeting the criteria is added, 

and the lowest ranking basis satellite meeting the criteria is removed. The set {E}was 

established and defined as containing all basis satellites in planes containing more than 4 

satellites. The set {U} was established and defined as containing all spare satellites in 

planes with less than 4 basis satellites. When {E} = {U} = ˘, all planes have an equal 

number of satellites in {B}. At iteration 1, {E} contains all satellites in planes E and F 

(since these planes have 5 basis satellites each). Planes A, B, and D each have four 

satellites in the basis while plane C has only two. At iteration 2, the lowest ranking 

satellite in {E}, denoted E-, is removed from {B}, and the highest ranking satellite in 

{U}, denoted U+ is added to {B}. At iteration 3, again, U+ replaces E- in the basis 

resulting in all planes containing an equal number of satellites in the basis. After planar 

parity has been achieved, the next phase of the heuristic aimed accounting for inter-planar 

interaction begins. 
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The premise guiding the heuristic at this phase is that a spare satellite might be in 

a critical orbital location as a cross- link for other satellites and lead to a greater global 

coverage if it replaces a basis satellite in the same plane. For each plane containing 

spares, the highest ranking spare replaces the lowest ranking basis satellite. If the 

replacement does not produce an increase in coverage, the replacement is rescinded. At 

iteration 4, satellite 2272 is replaced by 1920 in plane A. 4614 replaces 8800 for iteration 

5. 0470 is replaced by 8896 at iteration 6, and 6809 replaces 3659 at iteration 7. The 

heuristic terminates after a replacement is made in plane F. Each of the replacements 

confined the solution to including 4 basis satellites in each plane. The solution could be 

adjusted to try other alternatives. It should be noted, however, that additional simulations 

runs would be required. The potential for possible increased coverage would have to be 

balanced against additional computational time. The coverage trend lines in Figure 14 

illustrate the coverage resulting at each iteration in the heuristic. 

Table 9 indicates the total RTC, total responsivity, total CCC, and global 

coverage for the solutions generated at each iteration. Between iteration 4 and iteration 5, 

RTC slightly increased, responsivity decreased, CCC decreased, yet the coverage 

increased. 

Table 9. Test Case 1 Data Breakout 

Iteration Total RTC 
0 21.11 

Total Resp. 
19.39 

Total CCC Coverage 
409.18 1.00 

1 19.25 17.25 332.09 0.82 
2 18.93 17.39 329.13 0.75 
3 18.87 17.34 327.17 0.74 
4 18.42 17.53 322.87 0.69 
5 18.44 17.07 314.92 0.7 
6 18.43 16.84 310.31 0.67 
7 18.11 16.95 306.95 0.68 
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The basis at both iteration 4 and 5 contain an equal distribution of satellites among the 

planes. Once again, this highlights the importance of satellite location as a factor 

contributing to coverage. Without the inclusion of this factor, it is difficult to assess the 

role of objective trade-off between RTC and responsivity. 

1 

0.9 

0.8 

0.7 

0.6 

0.5 
0 1 2 3 4 5 6 7 

Iteration 

Test Case 1 Test Case 2 Test Case 3 

Figure 14. Heuristic Results 

The coverage was normalized to the upper bound at iteration 0 for each test case. The 

coverage at Iteration 1 (optimized knapsack solution) was at least as high as coverage at 

any of the other iterations in every case as would be expected. In each of the cases, 

replacements made during the heuristic’s progression increased the net coverage at some 

iteration. The most significant coverage increase occurred between iterations 7 and 8 for 

Test Case 3. Replacing a basis satellite with a less desirable spare (w.r.t. CCC) yielded a 

8.2% increase in coverage. The coverage at iteration 8 was equivalent to the coverage at 
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iteration 1. The step by step progression of the heuristic for test cases 2 and 3 can be 

found in Appendix A. 

Real Data 

After evaluating the test cases, the final step was to perform the heuristic with the 

inputs from the constellation’s current state-of-health. Each of the solutions the heuristic 

provided was different than the solution currently monitored by NDS. Figure 15 

indicates the coverage for the solutions generated by the heuristic at each iteration 

compared to the coverage provided by the current constellation. 
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Figure 15. Heuristic Results using Real Data 

The heuristic produced a solution yielding greater coverage than the current solution at 

iteration 1 and a solution approximately equal to the current coverage at iteration 2. The 

current solution does not contain the best 24 satellites with respect to CCC. Greater 

global coverage can be obtained from the resources available by selecting satellites based 

on CCC. The solutions at iteration 1 and 2 indicate two unique constellations that yield 
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high coverage. Having multiple solutions yielding high global coverage provides the 

decision maker with flexibility. 

The heuristic indicates that global coverage can be improved by altering the set of 

24 satellites currently being monitored. Exchanging one of the current basis satellites for 

a spare provides a 1% increase in coverage with respect to the idealized upper bound. 

Both the current solution and the best solution from the heuristic are close to the upper 

bound coverage. The solution at iteration 2 also provided a solution yielding a high 

coverage. This indicates that for some constellations, alternate optimal solutions may be 

present. Since the NDS portion of GPS represents a secondary mission, such alternate 

solutions may be important for when the first choice solution is not available. 

Though individual component failures on satellites do not have the same effect on 

the coverage as a whole, without exception, failure of the ITSX produced the most 

dramatic results. A satellite’s RTC value is most effected by ITSX failure. In each test 

case, the satellites with failed ITSX were ranked last with respect to CCC, regardless of 

their responsivity value. These satellites were always chosen as spares in the initial 

solution. For the real data, there were six satellites with failed ITSX components. Three 

unique solutions yielded similar coverage results. In each of these three cases, all of the 

spares were satellites with failed ITSX components. These results could be used to 

reduce the size of future problems. Eliminating satellite’s with failed ITSX components 

from basis contention would reduce the size of the problem considerably. This, however, 

is not an option when the number of satellites possessing failed ITSX exceeds the number 

of spares. 
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Contrary to this argument, the solution at iteration 7 (Test Case 2) yielded a 

coverage nearly equaling the initial solution (iteration 1). Most notable about this result 

was that of the four spares, only one had a failed ITSX. This supports the assertion that 

CCC is not a perfect indicator of satellite value and the importance of satellite interaction 

as an area for future research. 

58 



V. Conclusions and Recommendations 

Overview 

The heuristic defined, evaluated, and exercised in this research provides AFTAC with 

a well-defined methodology for determining which 24 satellites should be monitored for 

NDS. The heuristic demonstrated a strong performance for a wide range of theoretical 

inputs. Using state-of-health inputs from the current constellation, the heuristic generated a 

solution yielding greater coverage than satellites currently being monitored. 

Conclusions 

The coverage contribution coefficient (CCC) was established and defined as a readily 

quantifiable indicator of satellite value. The CCC was a better predictor of overall satellite 

value than single dimensional criteria such as optical sensor sensitivity, real-time 

communications, or the penalty function. Optimizing the knapsack function based on CCC 

yielded the highest coverage value in all three test cases and for the real data. The use of test 

cases benchmarked the heuristics performance with varied failure inputs. The results proved 

that the heuristic was robust enough to handle these scenarios. 

Though the iterative portion of the heuristic did not lead to any increase in coverage 

from the current solution, it should not be discarded. None of the test cases lead to an initial 

solution in which one of the planes was left without any satellites (the initial solution never 

left any one orbital plane with less than 3 satellites). In such a case, the initial solution would 

not likely yield the best coverage. Coverage would be expected to increase when satellites 

were placed in the void plane during subsequent iterations. 
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Though the coverage contribution coefficient proved to be a reliable proxy for 

satellite value, the task of thoroughly quantifying satellite interaction remained daunting. In 

several instances solutions with lesser total CCC value produced greater coverage than 

solutions with higher aggregate CCC, because satellite value was not fully accounted for by 

CCC. This proved that interaction among satellites was important and was not adequately 

represented in CCC. 

The effects from communications component failures were consisted with the scaled 

values from the penalty function. ITSX failure clearly had the greatest effects. Satellites 

with failed ITSX components were consistently designated as spares in the solutions with the 

greatest coverage. When the number of satellites with ITSX failures exceeds the number of 

spares, multiple solutions yielding similar coverage are likely. Multiple “good” solutions 

provides AFTAC more insight than attempting to isolate a single best solution. The best 

solution might not always be feasible, and it is important to provide good alternatives. Re-

run the calculations no more than quarterly unless there is a component failure. Responsivity 

degradation might alter the answer slightly. 

Recommendations 

The solution presented in this research is only valid as long as the constellations state 

of health remains the same. Changes to the constellation including the addition of new 

satellites or component failures on an existing satellite require the heuristic to be performed 

to determine if a basis change needs to be made. 

In this research, STK was used to compute RTC for the satellites in each case. The 

heuristic depends on the computation of real-time connectivity for each of the satellites. 

Computing this parameter is relatively simple and could easily be generated within the 
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confines of the GPS/MS platform. This addition to GPSM/S would provide the best means 

to continually apply the heuristic technique. 

This research was constrained by the availability of GPSM/S. The heuristic presented 

was constructed based on the knowledge that access to the software was limited. A much 

more complete analysis with regards to the role of satellite interaction would be possible with 

a more complex heuristic such as Tabu Search or a Genetic Algorithm. Both these 

techniques would require the researcher to spend a significant amount of time with GPSM/S 

to accommodate a large number of test runs. 

61 



Appendix A. GPS NDS Status 

62




 

      

                            

                            

                            

                            

                            

                            

                            

                            

                            

 63

Appendix B.   

 

Test Case 1: 
Table 10.   
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Figure 16.  Heuristic Results (Test Case 1) 
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Test Case 2: 
Table 12.   

It
er

at
io

n
 

95
31

-A
1 

19
20

-A
2 

37
22

-A
3 

25
24

-A
4 

22
72

-A
5 

88
00

-B
1 

33
26

-B
2 

25
67

-B
3 

46
14

-B
4 

44
3

-B
5 

55
96

-C
1 

33
65

-C
2 

47
80

-C
3 

56
89

-C
4 

56
81

-D
1 

15
97

-D
2 

54
7

3-
D

4 
86

39
-D

5 
14

36
-E

1 
47

0
-E

2 
80

06
-E

3 
20

34
-E

4 

88
96

-E
5 

14
23

-F
1 

30
55

-F
2 

84
56

-F
3 

68
09

-F
4 

36
59

-F
5 

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1
3 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1
4 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1
5 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1
6 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1
7 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0

 
Table 13.   

 14
23

-F
1 

15
97

-D
2 

14
36

-E
1 

84
56

-F
3 

30
55

-F
2 

54
73

-D
4 

56
89

-C
4 

20
34

-E
4 

44
3

-B
5 

19
20

-A
2 

46
14

-B
4 

25
24

-A
4 

56
81

-D
1 

33
26

-B
2 

22
72

-A
5 

88
96

-E
5 

80
06

-E
3 

25
67

-B
3 

36
59

-F
5 

37
22

-A
3 

33
65

-C
2 

88
00

-B
1 

55
96

-C
1 

68
09

-F
4 

47
80

-C
3 

95
31

-A
1 

86
39

-D
5 

47
0

-E
2 

Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
 
 

1.00

0.77 0.73 0.68 0.71 0.68 0.67
0.78

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 1 2 3 4 5 6 7

Iteration

%
 o

f U
p

p
er

 B
o

u
n

d

 
Figure 17.  ase 2) 
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Test Case 3: 
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Figure 18.   

Heuristic Progression (Test Case 3)

CCC Ranks (Test Case 3)

Heuristic Results (Test Case 3)
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Real Data: 
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Figure 19.  

Heuristic Progression (Real Data)

CCC Ranks (Real Data)

Heuristic Results (Real Data)
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