
1

~
t"- o::

Lt.l
CQ

~
:;
:J
Z

~
Z
0 en

00
CIl
Lt.l
U

0
U
<
U

~
i=
°1

0
<t:

ACCESSION FOR
NTIS GRA&I

OTIC TAB

UNANNOUNCED
I

JT.JSTIFICATION

BY
DISTRIBUfION I
AVAILABILITY CODES
DIST AVAIL AND/OR SPECIAL

R

--

PHOTOGRAPH THIS SHEE7

DISTRIBUTION STF.T£IC~'~~:- ~).---,
.... -.-.--....

Approved for public re:~c.:.~;
Distribution Unillnited

D1STRmurIoN STATEMENT

DATE ACCESSION ED

l
DATE RECEIVED IN DTIC

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2

.---~~
OTIC FORM 70A

OCT 79

DOCUMENT PROCESSING SHEET

r

NAVAL POSTGRADUATE SCHOOL
,
i
I·

Monterey, California

THESIS
The Design of a Sec~re File Storaqe System

by

Edward James Parks

December 1979

Thesis Advisor: L.A. Cox

Anproved for public release; distribution unlimited

.

80 8 18 042

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY

PRA.CTICABLE. THE COpy FURNISHED

TO OTIC CONTAINED A SIGNIFICANT

NUMBER OF PAGES WHICt'1 DO NOT
REPRODUCE LEGIBLY.

-
->=~--':-::~;-

REPORT DOCUMENTATION PAGE READ INSTRUC ... ·ONS
BEFORE COMPLETISG FORM . "a"o'" IlUlIIaElil r OCVT ACCEUION 1.0 J. "aCI"I£NT'S C.TALOG Nw".EIII

4 TITLE (Md Subll',.) 5 TY"r:: OF "EPORT • P£R'OO COVE:"EO

The Design of a Secure File Storage Syste Master's ThesisiDec 7(

•• "a"'OR .. INO ORO. Ra"oR,. NuNIIER

7. .U THOR(.) •• CONTR.CT 0" GR~NT lu ER'.}

Edward James Parks

I "ERI'OR"ING ORO IZATION N ... E ANO AOO"E .. 10. 00 ELE .. ENT. PROJECT. 1'10.5,,'-
A"EA • WO"I(UNIT Nu .. ar:: illS

Naval Postgraduate School I

Monterey, California 93940

:. CONTROLLINO O"I"::;E N E AND .00"E55 12. "EPO"T OATE

Naval Postgi:aduate School De ~ ,l-, !r 1979
Monterey, California 93940 n. NU ... E" GF P"OES

120
Ii" IoIOOl,TOltlNG AOEOlCY E II: "OO-ES5'1I t/:".,.", 'rom Con',ollln, O'flc.) 15. SECU"ITY CL ASS. (0' ''''. '.l><>tf;

Naval Postgraduate School Unclassified
Monterey, California 93940 II •. Or:CL AISI'I CATION/ OOWNOR .. Do .. :;

SCr4EOUI,E

16 OISTRIBUTION ST.TE .. £N T (01 '"I. It ,,}

Approved for public release: distribution unlimited

I
I

17. OISTIlI.UTlON ITATEM!!:NT (", ," _, ... d '" .,,,,,It 20, It dill., .. , Ire. It.,. .. ,,) 1
II SU""LEMENTAltv NOTES

\I KEY WOltOS (Conllnu. "" ,.~ • 'd. "".c ••• .". _ ,_"". ..,. " .. clt ,,_toe,)

Data Security, Security Kernel, Operating Systems, File System,
Secure File System, Secure Operating System

20. ".ST"ACT (C_" ,. • 'd. "".c ••• MF _d ,_"".." .'.clt _.."
A design for a secure, mUlti-user, File Storage System

is developed. This design, incorporating a concurrently
developed Security Kernel, provides a multilevel secure
f1e_ib1e file storage serving a
computers.

DO I ~~:~, l~n
(Page 1)

The Security Kerr.~l

EDITION 01' I NOV III IS oeIOLIlT!:

S/" 0 J 0'- 0 14 - 111101

dj stl.'ibuted system of dissimilar

is respo:1sib1e for non-discretion-

I
J

I
I

-~

UNCLASSIAEu
.. c " CLall'p,c •• '0" OP 0 .. ""'_ ... _ "_;,;'-.;.;,;.. ______________ _

ary (e.g.,classification and clearance) security and the File
Storage System Supervisor is responsible for discretionary
(e.g., "need to know") security. Multilevel security is achieved
by the controlled access to consolidated file storage by Host
computer systems. Multiprogramming of surrogate Supervisor
processes operating on behalf of the Host computer systems provides
for system efficiency. A segmented memory at the Supervisor
level allows controlled data sharing among authorized users. .
System integrity is independent of the internal security controls I
(or lack of them) in the distributed systems; the File Storage
System prevents system-wide security side effects. A loop free I!

structure along with system simplic~ty and robustness are design ".,',
characteristics.

I

I

I •

DD Form 1473
1 Jan ,3

SIN 0102-014-6601

Approved for publIc release; distribution unlimited.

THS DESIGN OF A
SECURE FI1~ STORiGE SYSTEM

by

Ed¥ard James Parks
Lieutenant~ United States Navy

FS. Ur.ited States Naval Academy, 1971

Submitted in partial fulfillment of the
reQuirements for the degree of

~ASTER OF SCIENCE I~ COMPUTER SCIENCE

from the

~AV~1 POS~GRADU!TE SCHOOL
necember 1979

Dean of and Policy Sciences

3

A~sr?ACT

~ desi~n for a secure. ~ulti-user. File Storaze Syst€w

is developed. This desigr;. incorporati:1i-7 a cnncu-rrently

developed Security Kernel. provides a ~eltilevel secrrp

flexible file stora~e servin~ a distributed syste~ of

dissimilar computers. The Security Kernel is resDonsible

~0n-discreticr:a!'y (e.~. , classificatio~ and clearance}

security and t~e ?ile Stora~e System Supervisor is

respor.si ble 'iiscretionary {Co -\ ~ .. ,-
need

security. MultileVEl security is achieved by the contrclle~

access to c0nsolidated file storage for Eost cc~puter

systems. Multipro~ra~ming of s~rro~ate Supervis~r processes

operati~~ on behalf cf t~e Eost co~puter syste~s provides

fer system efficiEnCY. ~ se~~ented memcry at the SupErvisor

level allows controlled data sharine ~mon~ authcrized users.

System iTIte~rity is in1eper-de~t of the internal security

controls {or lark of the~) in the distrihuted systems: the

File St0ra~e Syste~ p~events 5yste~-vidp security si~e

effects. ~ loop free structure alonz with system sinplicity

and robustness are desien ~haracteristic5.

1.

II.

T~F1F O¥ CONTENTS

INT?ODUCTION .•.•..•.... .9

PRO~L~~ D~FI~ITION. II ""10

~. BACKGROU~D '*.4o,13

c. BASIC DE~INIT!ONS .. .15

A

J. • Security. ... 1 ==_ .. -'"

2. Process. ~ -1d

3. Seg;1!entation. '*18

4. ~u]tip!"o~ram~i~z .• 1,-
• ::1

5. Protection !)omains. ~20

D. "5!ST!~ ?:!OUlii?M?'~TS _ .. 20

P~SI'N••.••••••.••.••.•.•.•.•.

A. HARDaARE SELECTIO~ •••••••••••••••••••••. ~ ••••.•• 23

B.

,..

SYST~~ STRUCTmn:

1. System Levels •• .. .24

2. System ?rotocol. ,..26

3. B:Qst Fnvironment •• .. • 27

a. Directory Files

b. nata'iles ••••••••••••••.•..•...•••••••• 38

r.ult!ple Se~~er.t File Directory ••••••.•• 38

::iost System COi'lmanl!s. .38

P:tOCESS STRUCTURE. . .. ~.- *.
1. Shared S~~ent~ Intera;tion ••.•••••.•••••.•. 49

2. rile Pro-:eoss. -.... -........ . .57

a. File Manage~ent Com~and Handler Module •• ~?

b. Directory Cor.trol f'-odule ••••• ..63

c. Discretionary Centrol M~dule •.•••••••••. ?0

5

1

-~

d. Seg~ent H~ndler Module •....•.•.•• ?3

2. Memory RandIer t-1oQule ••77

3. !~}nlt/Output ?rocess ·E0

a. !nnut Outpu~ Cum~and Handler Module •..•. 89

b. File Handler ~odu Ie90

c. Packet Handler M~dule •••••••••• - ••• _ •••• 94

III. cn~CIUSI ONS.-
II
-t.

F.

APp~NrIX

ST!TU5 OF -_ 99

'FOLLOw ON "{\w V f V.ii.:~ • ... ~- .- .- .- -.1~0
~--SYSTEM PA~AMET~~S ~ '* '* ,.

~P?!NDIX I--SUCr~ss AND FRROR rOD~S •• ,~~ -..•...••• ~~-

APPENDIX HA~DLER MODULES ~-.-
LIST 0: R~F?RyNC:S ••.•.•. .. -... -~•...••••••••. 118

I~ lTIAL !'ISTRI =UTIC~i * ~ " •• 120

LIST OF ?lGU?.!:S

L S ys te<n Confi2tl~atior: • .- .- -, .11

2. Protectic~ ncmains ••.•..•..•• ··•··•·•·••••·•••••·•·

~bs tract System Vi e •. - • ;0.

4. lJeneral ?ile ~xarple .•.•••..•.

5. Virtual Fil~ - .. -................ . .3?

6.
":t", .. . -......................... ~~

7. File Dis~retiona~Y ~ccess ~o~trol ·41

3.

1"1. •

1:Z •

14.

..... _
,.,
-' .
18.

21.

22.

Precess Mc~u.lps •• - •.••

Sea-Mento ~ .. '"'

rooduleoS0

Dire~tor~ Cont~ol Module •....•.•.....• ·•·•·····•···• 54

C07'1trol ••• "i72

5e~nent Table ..
~. ~ ~'":

.................................... ?4

rodule •..•......•••• ···•··•····••···

..7~
r.e~ory~Handler ~emorY ~an•......... ······-···~P

H' r"'!!\du1es •• ... '*

Packet canstr"ctio~ •. -- •.• · ,. ..

10 Module •• 91

file Handler !-':odule.

Packet

finite State ?~cket !ransfer ,. ..

?

This Q!

Joel

Trimble.

and

assistance.

I,~:::I

II~~:
1:11
'I
til
I:"
~::::~I
I~:::m
'!,jl
IIIUI

~I)
'lIf~.

"III:~~
I:I,!
~II'.'I
n,!

.'IIIII~
~':I~'"
~IUIH"

~,~~,

~"~~
1::1
ll1i~
~I'II"
"'''I

,~,

II,i:~1
1~llIIlIiII

~IIIIIIIH

III'
'~I,.

UI
~:"*
1~1II:~1

II'II:~'
~, jli'
III'

t'.'
~:':t

~:":~I
111::::111

~i::ffi
I/i
t,~
~llIIIi

.'II~"
~IIJI~I

II,!
1111'1111

11'11
,,,1,,

II;~,~
'W:::~:
,~, ~,

't,::'*
"-;~)

'''1
.'"",.
f"I~

,,'111
~I:::~,HI

I~:::
III
(II
""1
I,ll

IIIU
:,1

j::I.

I'd
In"IIII~1

111'1I:~1
IIII"~

:~,
'\I~""
''''1
1~'lIIt
~1I;:I11~

IH
~IIII'
~1I1'~1

ttl
\/1
~,II

IU,11.,

Iqi'::~1

OJ

~"':~I
l~i:::~1
I'''!I
VI
~
'~I
.lIh~ •

I~:::~~I
j'II
'III""
III
~:"~H

'~lItI'ij

11,lil

&,1.
III
~,j'I

I""

,I:~:II
I~III~
IWII
,:,:1"

~~I.

.,,:»

j'h
~:~:t
t::~'11
~11I"1

I'll
",I
III

'"
,""IIIIHI

1111111111111

!!jill.'

C)

I~:I~
MII'f
III:::~
IIIII~

~."" ~
("J.
III

!,/I
I"'!I"
Ili:i,!
''''1
.,11111

I:J
N

~lIIm
MIII.~1

~:::~~I
I'I,!
,(III.

f'll

UI'
:IIII:!
III:::~
,1'::,1

")1111

11::ijl

'~:I
"'''I
Idll~ •

;)1
III
"1
IIHII~

I:~,'
II)
\II
.,~"

JII
:~:'~

1Ii:::~1
I~:,:WH

J~IIIII"~
II) .,
111

m
.' ~IIII~IH

,,111

III'U

1'",11
1,;"
1'1,1
iII'"'
ill

n,
.'" II»

~III.'

." "" III:;~

"~II
"'''I
i~
tll.,'
1,/'1

~ ,",
:::::11

111

~11II~~1

III

III
~'Hli'
Vi
IIIIIII~I

11:1
~1"

I:'I~II~
~I"'.'I
II::::.
'''1
11,1

'I~
'I>

~:~I':~I
""11
1,1"
~III'"

(II
"1,1

" ~I
~:il
I:/,I
'illl1I1~I(II

.,1"
~::'1

'NW~:
~:::~IH
"I'!MI~
('~
~!:J~

.'""'~
';'II~
~I'I'!IIP

1'1~1
'_'I'j
::'1
III
."11111

1111"~1

%;:~
'li,1

11,~::,t

~II:
~~ .
"II
.III~'

'II,WI
IIIU
('"
1:1
"~f
.";,
II".

11'111

:J II ~I,
1:,/1

":1:,\
m,uH'
."UIIIII

1111

1

.' til'.
.... ,'
'II 0,1
"III
M,IIIU_'

1/1
tl)
I)
,i::ml
"'''I
11I'lil

("I
t~:l
"::'11

"1"1' ~::: I

1111
,'.,1

I'U
'''''I

II)

'~~:,$
iii!
11""$
UI
~IIU"
.,~Ifi.

1"1
11'1

'11,/1
1~IIII:l

v'
~II.'

III
":1

'.
101""
"",j"
(II

'''1111
illlll' ~I

~IIIIIIII

1'1:1

.'III~.
1:1

dl.I'1

'Ii:::~
t::~
_'ilt'
''''I
01
VI
'MII

II
.'

~UI+

:~,.

.,11111

\/1

1111111111

~::~,~
III
\,/1
.1";'
IJI

llil~illill
""1
I'U
\II
.11
\,.,
~HI.

1111,

n,1

.,:1,
n:.
!,II
~ III~I"

:~III
1':,1

"'.I
(I~

111

111

'

1:1"

ij~
1~lOlIjI~1

11"'1' ,,,,,

III
I ,,,· ,,'
""I
I,'III~

,n~1
~,j'ti
<\II

III_I

I,::!'"
m
III
',,",
1/1

'''.'
"II 1'%

1::1"
,I)
\,/1
til'"
:11
",t

"~I

MI.':,

.. ," MI
1'«::,11

~III'II'~

"III'
'Ii:('

IU
''':1 .. ~
1'1
~~I'+'
~lIlIh

iI':::~,
i,::1

I:~' ,
01
"~ I
III

"I
11':::1'
~I'i ...

l'I
III
~ ',~,

il:11
IIIII:~

tli
""'111
l",l~

'~,I

'il'il
~ 'II:~
"I".

""1((;,$
I~III~

I~:,::~
,,,,1
.'I"II~
e:l.
11'1

111"'.
'~:::~.~
1"1:11

1,:1
III
(')
/'11
1,/\'
U'i
~I~,II
iIIll',
I'~II:I

1/1
1"11
U'i
~I"'"
fl~1
"Ii:~

VI
HI
.:""
1:::1
I~II t
~,"'_'I

~I"I"
I'~I::

~11~f

1:::1

I~I"'.'
II""W~I

'~i~:I'
.'~I!Ifi
III
~I"I.

'i'~:~'
~II'~

,,~

~"I'
(.1,1

rJ'lI
1\1
I,j'ti'

III;::~
'''~I

"~:)
I~I'~

'''1 ii,
.oII"MIi
.'";,
4'":~
~,"dI.,

Ie:::,
~:~$
1,/1

'~::I
"I:~
~ ::~
Iii'
1

1011
",

""I
01 .. ~
~'II'.tI

111:::~
::1

'1i,~'1

"II1II111,
(,/I
I:")
1:::1'"
I'!:II
~lllm'

~IIIIIII
mllllllll<

.,""
·q,HlIIIf'I

>~I"II"'"

'~'III,lhN
I~",~,-

1:1'
"i:)
I")

li~1

'U'''''"
1Il'1 •• '

, I~
:::J

'I:~I
~I'II.'
Ul

IU"
II
'"

la~:,

""/'
IIIU,
1,::1
~:'~I~
I'll
.,,'
\,/1

1111".'
~'::~HI

~ II
'liii:~

'~:j
'''1
,,,~,

I:',:.
11'1:~

~illl'"

t:,
1/1
III
("1
I~:::~

.11'
_11,J1~

1("1'.
'~,I

~II,I

I~'II" "
IIIII:~
~lIlIlIiII

11,/
~IIII.'

,'1,"1

:~I~
::::.
!,II

,', ~j

.',,'
t)
,II

~i:~ ~
W'~I

<:"~
.,11111 1

',,~'
"11
1:::1
~III'.
.'III~I~

~::~I~
1,111111

~uu4 ..

1",1,

~::*
':,
1,/1
~.II.

'''''I'I~

1~llIh

'"''
"I

,,,~~

j'I'I"

III
h'"
.'ItIII'

""l1li'

11111)

II::::~
"""I
~I'.'
I'U
'I

'1'''1
~::::~I
11111111

'1:1,1
IIIII'~'

"",:1

(~

""I
iI'l

"~:':':~'
I luH

IIiH

I~III.I

I'll
'J

~"II'
"1111.11

,1,/1
1111

11+,
I',':~
"'~ III

'''''i,l
1::'11"
11111I1~~1

1,/'1,

~,:~"

'~IoI=
.'''' I'"I_'~

1:::1
)1/

1:::'-'
'~:I,!

.":,
'I'II~I~I

~~:'
1'iI
'"f
III

j'll
~:::~
I~:::~III

III:::~II~
\i,liI'

''''1

1,,/1
,,,~,

!111~~1

~illl_11

III~,:
III
.'I'i
!ll

!,/'I
ni'
~"IIIII~I

'n~'
f")
'II'''
~II'

~~~, 

~III:~' 

1'11/' 
I:,::!' 
~II:~I~ 

' .... 
.;,) 

"1,' 

'11mll:11 

_'"~ 
~::~I 
1",1" 

":: (") 
~liII.' 
~'IIIHII 

Ili:::~1 
ii::,~ 

li"~1 
Wllll~ 

l:iril 
',!":I 

1::,1' 
11(1"'''-

!II 
,,,'t 

"1,/1 
"'!,~ 
,'U) 

c:::: 
'''1 "'. 
~III"" 

'I'"m 
III' ~I~ 
i:i; 
\/1 

11111 

~i:':t 
IMI".I 

~I"'r~ .:b 
'I:, 
!"'f 

I'll' 

1ii:1, 

I~:II 
I,:' 
i~:)" 
/:II 
1111"+ 
~::~~I 
IIIII~' 

~1'Hli~1 

u,' 
1'1:1 
\,/1 
till' 1 

I"~ 
/"1 

III:,:~ 
~:~~w 

• '~'I 
/'11 
('~ 

,~"'I' 
I~IIII~'~ 

'~III~: 
''''1:# 

1,,,'11 
/"'1" 
~+IO.' 
II 

,,/'I 
::",~dl 

1/'1::1' 

I 
~.I'+ ., 
:) 
":1 

."liI'~ 

1:"~' 
'I'~l 

""1 
'Il 
1/1 
I,,' <0' 
~""III~I 

1111'.1 

1,,11 

, 'I 
"f 
';1 
":::1 

1"'''." 
~:::tI~1 
,';» 

III.) 

11,1/ 
11I'"~1 
111'111111 

,"e!' 

.,'" 
~:1.' 
'UIIII.I 

1liI/I\N 

:,~ 

~". I I:~ 
'''''I 
't'''1 
11:ljl 
jmwJ 

1'::1 
~:I::I' 
~I"'." 

'1"'1' 
I't' 
III 
I"'t 

III 
~i:::~ 
~ IIIIII~ 

FIII:'l 
'11 
1:'.1, 

I'll 
'~'::~ 
1:::1," 

~111~ 

f.J 
~1I1 

~III.' 

tilil
" 

11':::1, 

111::::1 

1'1:' 
l,I'i' 

. ". -::11 

~IIII~'II 

'11:ijlll' 

III 

!'J 
"'I 
~::::~ 
~:"I!III 

~IIIIIII~I 

"11' ,~i: I 

1,/1 
I"I~ 
/"'1 
111111) 

::::, 
I::~. 

n. 
If' 
" ~:i!, 
Ili":I' 

~ " .' 
) 

",I} 

~1:~lo!l 

11:1,1 
,"" 
IU 

\/\ 
II) 
II' ) 

~:::= 
IIIII'~ 

'~III,.1 

~I'I" 
"IIIj': 
• 
'illl: 
~IIII_ i 

1111111 

.'/1" 
:1 

1IIIIt 

,"1:1 
1/'111 

I~,:,~ 
u,/ 
,,,",' 
.,11 
,I:, 
!::,:i 
~III~ 
'IIOII~ 
,mil. 
,III,. , .. ; 

~",' ~ 
lI:i~,11 
.11 

::::::1 
,~::;, 

i:::I' 
i'1:I 
~iIIl= 

I,:J, 
1:11 

1111"
1

." UI 
,111111 

,:I. 
f"tFl' 

11:1 

111111 ~'" 
(::) 

(") 
~') 

'In,~1 
II'I~:::~I 

'II;"~J 
I'''· 
III 
'" 

Wb 
~IIIII 

~:::~ 
III'H~' 
.'" 

~ 1111. 
.IIIIII~ 

~IIIIII~ 

"1
1,

: 

\11 
I'''' 
"11, 
1,:1,/ 

~IIII'" 
1111:11 

!I"t 
1'''1' 
III 
I'"'' 

II'"'' 
I'~"I 

i'~ 

11':1 

",:I 
,,'''.' 

"1 ,,~, 
~~; 
'/I 
III 

/:1,/ 

III,/!, 
.III.~ 

!"' 
J 

"~Ih 

.".~ 
~III~. 

11:'") 

11:'11 

::1 
,,"' . 

."~::1 
'''',I 

:::~ 
IW',~~I 
111,,,,"111 

<ill 
"':1 
,,~ 

'~:I;I 
1111 ~~ 
~:'i,1 

'"IIIII:~ 

n 
~I 
/:'1 
11!llIt' 
~~I~ II 

"",I 
1"'1 III 
1,,1,0 

.,,,,,1 
'il 

~li 11~1:'~~III~fIi 
III 

"--1. 
.,,1 
,,"b 
11111,' 

Vi 
I~,I 
'11,11 

,'''''.' ,'I) 

~'I 

III 
'11 
~III)I 

11:::::: 

""I 
~lIluh 

I'". 
'IIII~ , 
~lIIlIi:1 
'::1:"' 
I' I~' 

',"j 
t:" 
""'I 
II' 
.'IIIII~' 

II'I'~~ 

~:I,II 
~ "II" 

I'll 
\,/1 

'1::,1 
"0 
IIHI'III 
,,"I' 

.,"i. 
III 

~',:~ 
~1I1'!1 

~::,~~ 
~'~~I 

''''1 
III 
~" I 

',111" 
'II) 
i,:I" 

:1 I'll 
;",,\ 
Ib:::~iI' 

I:l. 
~III~~ 
11 11:11 
1,/'1 

~'") 

1,~'i;1 
Irll 
''''I 
I'll 
," . 
.i,ll 

I~) 

oj, 
I,ll 

'111111 

hill It 

I'" 
:) 

,"'I' 
I,:~' 

''':1 
"'1 

I: 
I",)' 
~'IIIII ! 
~IIII~ 

t:~I" 

01 
"1 
U!, 

I':::~I 

III 
~") 

~ !) 
\,/1 
\,/1 
!WI,! 
11111* 

"IIIII~ 

',/~ 
" ,~ 
'''''I 

i ~:I 
" I" 
.11',. 

I'll 
I"') 

II". 
1,1111, 

"III~ 
I'I~I 

I,ll 
~ 
1,/1' 

"i"
l

.' III 
'::1,1 

!"I' 
I:::~I 
~'U 
I"") 
~ . 
11'1 

'"", 
~llIliII~ 

.' I'!:~ 

~11t~. 

:,,::1 

111

111

." m 
'"'I 
.'" ii, 
""1'11,11 

~l~ 

I:,il 

"', 
~,', 

1'1: 
1'1/ 
1111'1 

,III 

III 
'''''I 
~ ':h 

'I'~'" 
III 
'''j 
I,~I. 

.: 
I'I! 
""" 
~'ll 

'I:~ 
1,1:"tII 

''''I \,11 
.'Nilil 

(") 
(II ., ..... , 

IWi,! 
1,,/1 
"~::j, 
'II 
1"'1 
,~I. 

I,ll 

,,''''lilli, 

~II'.' , 
"n 

, ~:II 
I~'" I 

'~:iIH 
""I 
.:1. 

1/1 
• 
~II·,~I 

H~ 
~I:,~ 

\'1) 
IU 
1(1 

I:U 
1111Itt" 
I"') 

,.' 

1,1,1 
1:,:1 
""I" 

.lIlIh 

"'\ 
.1'10+ 
II 

:'::.1 
II"'~ 
I~:I,! 

~'""'~ 

III 
(") 
~I"h 

j"l1 
~":I 
I'" 
III 

I'" 
I''') 
~::~'i 
li'l) 
~'lIIiI~ 

"j 
til 
~III". 

11,1 

'lti 
III 
I') 
tw

: 

'" .It'. 
,,~"I' 

1"'1 

(") 
j'll 
'"I~ 

\'''1'' 
1,li:~ 

1,:1" 
I ~,Il 
~I: 

.I~'" 
/,I. 
,~'II 
I::,~" 

.'IU_ 
1,,1 
IJ'I'.' 
I~I~:~' 

m 
1'04 
~II'. 1\,1 
"j 
I,,~ 
111,1 
~IIIIIIIII 

t::""1 
j'\I 
I"~ 

'I' 

II::::~ 

I~"~~ 

i":~t 
III 
IIM't' 
li),1 

til 
III 
(''') 
~'II" " .. 
'1 
till'. 
111'lIt' 

'I'IIIII~ 

., .. 
1,/\ 

111,1 

II ') 
II:' 
til'. 

"'f 
(II 
tlllil" 

'"II~'II 
'!,II 
1.11 
tII'"" 11111' 
.\) 

1"1,11111 

""I 

I~:") 
~IIN~ 

I~:I 
'1::1 

1::1 
111111 • 

I ,,~I 

""I~I 

_"'1114 

'IIIIIII~ 

::illlI':~ 
.'''il:1 
hll~ 
."11 

I~~') 
1,::1 
<::;:1: 
t,") 

i "'I~I 
~IIIMI~ 

~:::::) 
~il~, 



d d ' .. It , f 
,a~a. pre lcates ~ star networK or the system structure 

as depicted in fi~~re 1. It ~ust be noted, however, that the 

FSS ca~not cor:trol the physical security of the ~cst systems 

and that Host systems have the ability to circumvent PS8 

security by direct inter-host cO~Munlcatic~ li~~s. To 

preserve data security. all accesses to the PS5 co~solidated 

data must ~0 throURh the FSS ~or access validation. 

Data sharine amon~ authorized ~sers is accomplished by a 

seg~ented e~vircn~e~t wh!ch allows controlled direct access 

to all on-line data. The Security Kernel (or si~ply Kernel) 

is used to irsure that norc-discretionary da~e access is 

perfcrmed i~ an absolutely controlled (i.e., secure) manner. 

{See [Colema~] fer detailen information cn the Security 

Kernel.) 

A. PROBLEM DEFINITION 

"It is illogical to ignore the fact that c();.)puters may 
dissemirate infor~ation to anyone who knows how to ask for 
it. completely bypassing the expensive controls ulaced on 
paper ci r'culation." rSchell (1)] 

That this fact is 19~ored is de~o~strate~ by the 

estimated 100 million dollars lost yearly by non-secure 

co~puter systems in the Unitei States [Denning(2)1. It is 

obvious that a primary problem/limitation of computer 

systems in use today is the lack of ~ata security. As 

reQuire~ents to store and access data by computer increase, 

the seriousr.ess of this pr0ble~/11mitation cannot be 

i~nored. 

A system that can simultaneously provide data at 



Secret Unclassif'1ec 

:!ost_2 

FSS 

Supervisor 

Security Kernel 

Disc 

Confi1e!1tial 

Rost_3 

?t~U~E 1~ SYsterr. Conf1gurat1o!1 

11 



differe~t sensitivity (viz., "classificatio~") levels for 

users with different access authorizations (viz., 

"clearances~) without a security violatio1 is said to be a 

multilevel secure syste~. Because it is ~su311y not 

desirable to authorize all syste~ users access to the 

highest level of iata! 'system high") or provide separate 

(without sharinp-) syste~s f~r each level of data, a 

multilevel syste~ is highly desirable. ~ multilevel system 

also allo«s the ~axi~um amount of contralled data sharin? 

amon~ a'lthorized users, a primary ~oal of any dat3 stora~e 

system. 

Previous research shows that a viable approac~ to the 

auestion of internal co~puter security exists. This 

approach. so~eti~es ter~ed the security kernel approach 

[Scr.ell(2}], was introduced ty Schell in 1972. It gathe~s 

into one ~odu2e all ele~e~ts the system 

security. The module. by bein~ restricted in siZE, can be 

verified ccrrect which in turn allows the total system to be 

certifed s~cure. 

The FSS software is composed of the Supervisor and the 

Kernel. It will provide a multilevel secure consolidated 

file stora?e for distributed Host computer systems. T~e 

non-discretionary security provided by the Kercel and the 

1iscretionary security prcvided ty the Supervisor will 

implement a w:de range ~f security p~licies, i~cludinF the 

standard Department of Defense (DOD) security policies. Data 

sharinp- is achieved by a seemented memory enviror.me~t at the 

12 



Supervisor level. The Supervisor uses seRments !invisible to 

the Host syste~s} to construct the Host files. Multilevel 

security is achieved by the ~a~agement of files sub~itted by 

~he Host syste~s which eTist at distinct security levels. 

This allows the construction of a multilevel sec~re system 

vhich is deperde~t en crly one secure ele~e~t of t3P 

FSS--t::'e Ke rr.e 1. 

3. BACKG?OUND 

The dramatic reduction in size and cost alc~g with the 

i~crease in perfGr~ance nf ~icrcprocessors 1;' t~e last 

decade has made their use feasible in areas that have 

previously bee~ reserved for ~ini/~axi computers (or rot 

cOMputed at all). Whereas security has been notoriously 

lacking i~ the lar~er syste~s. it has been no~-existe~t ir 

Microprocessors to date. 

~ecause of their small size, low cost. durability. ar-d, 

perhaps most i~pcrtantlY. the manpower savin~s induced (just 

to me~ticn a fe~ of r.any adva,.tages), r.icroprocessors have 

hi~h a~peal for ~5e in a military environment. However, the 

~ilitary alsc bas an cbvious need for security within their 

~omputer systems, whether they are micro. mini, or maxi 

base1. 

For example. t~e Navy is presently conSiderine systems 

for the next generatio~ of non-tactical shipboard computers 

[Smithl. They ~i!l be mainly usp~ for data processin~ in the 

areas of: 

13 



Pay and Personnel 

Supply and Finance 

Maintenance. 

Cost. size a~d speed constraints wi~l seon be met by 

('cmme rci all y available nroducts. Security, however, 

continues tJ be a proble~ :,ct adeauate!y addressed in any 

available systems. To preserve data c~~fidentiality (not 

only ~ith respect to cleara;;ce level but also with respect 

to the current stipulations of the Privacy Act), security is 

a necessary part of anv shiv~~ard Go~putpr SysteA. Pay 

records. ~or example. should not have t~e same a~cess level 

as maintenance records. I~ order to store records in a 

common data base and to have controlled sharing when 

appropriate, the computer must be able to maintain a 

multilevel secnre en7irD~~~~t. 

There arE several possible approaches achieve a 

secure ~ultilevel environment. The frontal approach, wbich 

is most difficult. is to certify all distributed computers 

which have access to the data base as secure. ~ second 

method and the method adopted for the ?SS, is to cerfify 

only o~e eleMe~' of the F55 secure--the S~curity Ker~el. All 

access tc the ~SS that involves non-discretionary securit~ 

will be validate~ by the Ker;-el. The FSS therefore 

guarantees to mana?E files in a manner consista~t with the 

F55 security policies. 

The desi~r. for the ~SS is one member of a family of 

SysteMS prcposed by O'C~r:1ell and ~ichardso~ [0' 'C"T\Dolll -.,.I ... __ _!. 

14 



security. configuration independence. and a loon-free 

structure are characteristics of this family of syste~s. 

C. BASIC DFFINITIONS 

1. Security 

tlthou~h any viable secure system i~cludes beth 

i~terna} a~d e~ternal aspects. relyinG excessively cp 

external c~ntrols is no! desirable in many caSES due to the 

added expenses and i~crease~ security risks involve1 in 

error-prone ~anual procedcres. ~7ternal controls also cannot 

~rovide the secure sbarin~ of data that is needed in such 

applications as inteFrated data bases and computer networks. 

primary characteristics of the PSS. The use of the Kernel 

concept is a demor,s:ratively effective and practical method 

for providing the internal computer security centrols that 

are nece~sary for a secure ~ultilevel syste~. This co~cept 

is at the centEr of the FSS design. 

The basic c~pcept behi~d this approach is that a 

small portion of hardware/software, the Kernel, can provide 

the internal Security c~ntrols that are effective against 

all attacks. {malicious or accidental) including those never 

thought ~f by t~e deslg~eT. (This also mea~s that errors in 

the FSS Supervisor cannot cause u~authorized access to 

data.) 

System security is the implementation of a security 

policy. This policy 1s a collection of laws. rules, and 

reRulations that establish t~e rules for access to th~ data 

15 



in the sYstem. Such policies. such as the one established by 

the DOD. have two distinct aspects: iiscreticnary and 

non-discretionary secm"i ty. N~n-discretio~arJ security 

externally ccnstrai~s what access i; pcssibl~. In the DOD 

e~viron~ent. the familiar non-discreti~nary security levels 

are: tcp secret. cDnfide~tial. and unclassifie1. 

Since most contemporarY iputer systems de 30t provide the 

data labeliTIE: !'ece~ -ry to suppert ~c~-discreti0TIary 

security. all data is i~plicitlY accessible. 

seg~enta~ic~ allows uni~ue identificatio~ and labeli~g of 

data; nor-1iscretionary security is therefore supported. The 

Kernel is th~ one eleme~t in t~e FSS responsible for 

enforcine non-discretionary security. 

Non-discreti~nary security involves the comparin~ of 

the access class of a specific object (object access class. 

{oac)} with the access class of th~ recuestor (subject 

access class, (s~c)) to insure compa~ibility. Ir. a DaD 

epviro~went. fer exa~ple. a perso~ (subject) with sa~ o~ 

secret has access to files (objects) at any access class 

equal tr or less thar: secret. The relatic~ships between 

different access classes are represented by a partially 

ordered lattice structure This lattice 

represents tt.~ authorized access based on the relationships 

of two levels. p~ exa~ple of the not-relate1 (~aking the 

lattice partially ordered) relationship. occurs because of 

DOD compartwentalizatioTI (e.R •• secret is not related to 

secret.n~clear). The followin~ accesses are per~itted for 

16 



-the rei~tionships represented. D;'f this lattice structure. 

sac - oac :read/write access 

sac ) oae :read access (read dO't:n \ 

sac " oae :write access (write up) , 
sac <> oae :no access (sac !lot related. to oae) 

In each case. the Kernel must know the 

'identification of the Host system if it is to perfOT~ 

correct non-discretionary security checks. Unique system 

idsttiSication is provided by the system port number. which 

is liardwired. and known to the Kernel. 

Discretionary security provides a refinement to the 

non-discretionary security policy and is refiected in tne 

-DOD i'need to .. 
know policy. Computer systems which have 

Access Control Lists (ACL) associated with data. implement 

·this discretionary policy. The FS5 Supervisor is responsible 

for the System discretionary security and although this 

aspect of the System security is not validated by the Kernel 

(~na ther~for~ not c~rtified corr~tt). the validity of the 
, 

non~dlsc tiOnary security is not affect~d. 

implement l~s 'aspect of seCbrity, the Supervisor 

needs to know the identification of the Host system 
.. ~t 

user • 

This Host system user identification must be passed to the 

F5S Supervisor by the Host System. Since an insecure Bost 

'system cannot be trusted to pass the cnrrect information. 

the user identifIcation is only as good as the Host system 

implementation. (i.e •• FSS discretionarY' security 1s only as 

17 



-, 

good as th~ Host System's ImpleNentation of discretionarY 

security.) This implementation may be good on S3me systems, 

(e~g.j UNIX [Morrisl) but ncn~existent on other systems 

(~.g.t CP/M ~lgitplJ). It must be r~memb~red that this in 

no way affects the enforcement of the non-discretionary . 
security by the Kernel. 

2. Process 

~ process can be described as a locus of execution. 

The collection of locations that May be accessed during this 

execution is known as the process' address space [Madnick). 

A precess also has the characteristic that it may be 

executed in parallel with other processes, enhancin~ system 

efficiency a~d allowing the separation of tasks into 

different processes for design clarity. 

The FSS has tvo processes per Host systero. These are 

an input/output (10) process for Supervisor to Sost data 

transfer and communication and a file management (EM) 

process that controls and maintai~s the Supervisor file 

structu~e. Interprocess communication is achi~vcd by the use 

of eventcounts. sequencers, and synchroni7ation primitives 

internal to the Kernel (described later). 

3. Sezmentation . -

Seg~en~ation allows for the direct addressing of all 

sYstem 'on-line information and the application ot access 

control -to this information. Note that direct addressing 

18 



does not mean random access to the on-line infor~ation. On 

the contrary. access to segments 15 controlled by explicit 

'memorJ management calls to the Kernel to swap in/out a 

seg~ent. A seg~ent can be defined as a logical grouping 

information such as a subro~tinet procedure. data area. or 

file. Each processes' address space consists of a collection 

of segments. In a segmented environment. all address space 

references reQuire two components. a se~~ent specifier and 

an offset within that segment. SeFmentatlon is used to 

provide the Supervisor domain ~f each precess a virtual 

memory of limited size. Se~ments~ as mentioned earlier. are 

used by the Supervisor to construct the Eost files which 

fetaiu the attributes of segme~ts (t.e •• access controi). 

~ multiprogramffled envlron~~nt is one in which more 

than one process is in a state of execution at the same 

time. 'hese processes share processor tiwe. memory. and 

other resoarces amon~ the active processes. In the design 

for the FSS. the Supervisor processes are ~ultiprogrammed in 

an asynhcronous manner for syste~ efficiency. A 

multipro~Ta~min~ environment allows the Host systems to 

operate. in a logically parallel manner whIch adds to S7ste~ 

design simplicity and clarity. 

5. Protection Domain~ 

One of the key elements necessary for valid Kernel 

19 



implementation is ·the isolation of the Kernel from all 

possi ble ou.tside influences. This can be done through the 

USE pf protection domains. 

Protection domal~ns are used to arra~ge prOCESS 

address spaces into 
.. . 
rl.ngs iSchroeder] of different 

privilege. This arrangeme~t is a hierarchical structure vith 

the most privileged do~ain being tbe inner Most ring. Figure 

2 re¥resents the ~ing organizatIon in the FSS. 

Protection rings mat te creatEd by eitber hard~are 

or soft~are. Hardware is ~Qrp efricie~t but is 

commercially availi:ole in !ijicronrocessor devices today. Two 

state devices are available. however. and by implementing 

the tvo states as separate rings and prCvidinR fer scftvare 

ring c~ossing ~erhanisims. the necessary ~wc protection 

rings can be created-. 

There aTe no fixed hardware reqUirEments for the 

i~plementation of the iSS. Syste~ efficiency does. hOWever. 

depend on an appro~riate choice of bard.arE. Tyo basiC 

hard~are features that are felt to be necessary for a viable 

domains. 

Se~entaticn is necessary for ~cceS5 c~ntrcl and data 

sharinR. § ~ultiple state (two in this case) is necessary 

for the isolation of the Kernel fr~m tbe ~emaining {and 

uncertified} software. 

23 



Outer Exte~d~d Machine 
Supervisor 

InnEr 5xtended ~achine 
Security !err.el 

Bare Machine 
Hardware 

----Tj/v 

'_ ____ ..;'_ 5 Ti Ga te---"-----... 

Figure 2. Protection Do~alns 

21 

I 
I 



the Kernel has access priv1.1e~ed ~chine 

and controls all input;olltput. 

pro7ides a segmen~ed envircn~ent Supervisor 

operates. The Supervisor in ~~evldes a virtual file 

egv1ron~ent for the ~ost comD~ter syste~s. 



II. 

secure s7ste~ is 

as 

above. ~ltiple are considere! 

of 

object. 

teeping lernel 

size s~~11. § Se~nt address CODsists of a se~Dt D~~ and 

offset within the se~st. Although this addressiDg can t~ 

done scftva~e. is 

also 

authorized access. a necessary reature of a secure s7steR. 

used in so!:: 

larger ~acblDes to protect the operating srsteRS fr~ the 

applicaticEs progr~s. Multiple DDt!l 

and ODe for tbe Supervisor. 

The Zilog series 

.i~rGprocessol" ~ets ar.d aultiple 

tbe se~nted ~lcrGprocessor [Zilcz(2}l with its 

associated ~or7 -. -rae 

ze-aSl is a 15 tvo-d~aift Racnine which 



-
log-lcal address. The Z8~10 MMU maps the 23 bi t log-1cal 

~ddre§s lnto a 24 bit absolute addr~~s and allow~ th~ 

qapabiJlty of ad'd-ressing up to 128 segments (with two HMU's) 

of 64! bytes each (8M-bytes total) In a two-dimensional 

memory space. (See [Coleman] for further details.) RS-232 

bus compatibility is assumed for serial data input/output at 

the hardw?re level. This allows byte synchronization and 

byte parity checks to be performed at the hardware level by 

the !S5 universai asynchronous receiver-transmitter (UART). 

B. SYSTEM STRUCTURE 

Abstraction 15 a way of avoiding complexity and a 

mental tool for approaching complex problems [Dljkstra(2»). 

Th~ use of abstaction allbw5 the presentation of a system 

design that Is conCise, precise, and east to understand. 

Ther~ ate fOur levels of abstraction for the ISS as 

~resented in figure 3. 

Level 0 is the hardware level and consists of the 

Z8001 microprocessor m~mory and some form of disc storage 

(initial implementation may be with floppy disc). 

Levell, the Kernel. is isolated and protected from 

manipulation (accidential or malicious) by being placed in 

the more privileged domain of the Z8001. Only the Kernel has 

access to "system- machine instructions and controls all 

access to the system hardware elements (memory, disc). The 

Ke~nel provides a segmented environment in which the 

24: 



:S_ecret 
r- Rost ... ! 
f 

rt -f' 1_ -: \Jon~ 
- Eost_2 

I .." 

I 
I 
I ":"""----.;.,-.;.;,;:;,..-----T---=- ~---""'--...;.---...,.""'------------~-1----

SuperviSor 

: .... 

Superv:scr Gate Gate 

Securi ty Ierne 1 "Keeper Keeper 

Security Ier!lel 
~~-~~--~~-~~~--------~--------~- -------------------"Data Warehouse" 

------ data 
- - - control (i.e •• communication) 

Figure 3. Abstract System View 

1 



.. :~\lperviS or operates. 

Level 2, the Supe~visor. operates in the outer (less 

:privlieged) domain of the Z8001. It has aCCess to "normal" 

machine itrst·i'uctlons" but must go through the software 

Gatekeeper [Coleman] of the Kernel to get access to memory 

(viz., segments) and disc storage. The Supervisor provides a 

vi~tuai file hierarchy to each Host System for fiie· storag~. 

In o~der to manage the file hierarchy, surrogate processes 

Hrtput/output (yO) and file managemeut (FM» are assigned to 

each Host System. These processes act on the reauests 

submitted by the Host computer systems. All processes ·are 

~reated at si5te~ *e~erati6n time aftd are n6t created ·ot 

deleted in a dynamic manner. 

Level 3 consists of the Host computer systems. Tliese 

systems are hardwired to the Z8001 in the FSS design. Each 

port has a fixed access level so that if a multilevel secure 

Host desires to handle data at two levels. it must have two 

connections to the ISS. (Not~ that if th~ Host Is not a true 

secure multilevel Host, and does have multiple connecttons 

~itB distinct levels, then the ISS security constraints ire 

ci rcuJ11ven ted. ) 

2. SIstem Protocol 

Protocols are formal specifications which constrain 

data exchange between systems and the FSS. These 

~pecifications allow the FSS to achieve bounded~ deadlock 

free and fault tolerant communication. To organ1~e and 

26 

r 
! 



~i'!flpiifY protocol design i~the FSS. protocol is logically 

~i v-ld,ed ~ i-nto a hierarchical structure of two interactlnit 

~ayers. !.evel 1- protocol handles packet (described later) 

~Ynch~6niiat1oft. ~~for detectiort~ and co~~and typ~ 

de,termlna\iol'f. Level 2 handles the repetl tive activity of 

data transfer'. 

Data and comm.ands are transmitted between FSS and 

lies t v ia fixed 51 ze packets. Packet synchroni za tion i 5-;' 

necessary for Rost~FSS communicatlo~. . Error 

detettlon/corre~tion is closely related to the -problem ~f 

packet synchronization; packets no-t in synchronization will 

not be corr.etL The ·converse is, 'not true t however. A 

synchronized packet may contain trans~lssi6ri errors. ~here 

are several rile·thodsfcr errol' detecti:on/correction 

[Ramming] • ! design choice of a simple cheCk sum pel' pa,cket 

(to detect pac~et errors) was made in the interest of System 

sJmplic1ty. If an error is dete~ted in a packet. the Host 

will be requested to stop ~acket transmission and to be~in 

agaln with the packet in w~lch the error was detected. Of 

course. tbe F55, must be able to provide the same service. 

This retransmission upon error detect1o~ strategy, combined 

with the byte parity checks performed at the hardware !evel 

by the UART, w111 provide the error detection/correction

scheme in the initial FSS design. 

3. Host Environment 

The job of the FSS is to provide a service, viz., to 



"data The are 

submitted by various HOst computer t The- v,ir'tu' aI' ':'s ems. 

'en,vi"ronment prov~ded -the Host systems is therefore a primary 

'design constderatioll of tbe overall F55 design. Design goals 

ar.e to make this Host environment simple. easy to use and 

understand. efficient and robust. 

The center of the Host environment is the 

hierarchical ~ile structufe rnairitained by the Supervisor of 

the FSS. This file structure is a tree organization which 

facilitates design abstraction (virtual file systems per 

Host) as well ~s file system search~s via tree traversal. 

Figure 4 iilustra"~s- theo7eral1 logical structure of the 

~ -S~pervisor file syste~. 

A f!le can be defined, in the case of the 155. as 

one or more Supervisor segments ~rouped together· for the 

purpose of access control (security). retrieval (read). and 

modification (write) [Shaw]. In the FSS the file is the 

basic unit of storage at the Host system level. 

The hierarchical file system contains two types of 

files: 1) data flIes, and 2) directory files. Both file 

tyyes are constructed from segments (invisible to the !ost 

sys-te.p!s) at the Supervl sor level. The characteristics 

usually associated with a segmented environment (Supervisor 

level) such as data sharing and access contrOl. are 

transferred to the file environment (Bost level) by the FSS. 

The Host system environment consists of a Virtual 

file hierarchy ma1ntained for each Host system {1.e., oee 

28 



--~~_ _ _?-.:t¥P 
~ ~- ~~ --=---

Al tQsAt trl1iute 5 

• 
• 

UNIX - --- - -

luser~l_ JAtJrlJ)ut~s 

User-2 - Atttib:utes 
IGrpup.-~_ 

• 
• 

• · 

Figure 4. General Supervisor File Hierarchy Example 

29 



\ttrtual fiie system per hardware port) .. Aprlmary reason for 

.having l'1ultiple virtual file hierarchtes is to avoid the 

problem of nal1l1ng cOllflcts which would eventually occur in 

the Supervisor hierarchy as the sYstem grew if per-host 

virtual file systems did not exist. Multiple directories 

also allow the Ho~t systems to group related files into one 

directory. simplifying search and Host use. The Supervisor 

will control the dupltcation problem withih a virtual file 

system by not aliowing duplicate file names in a single 

directory file. Patlinames are required to uniquely identify 

files ~n the Supervis~r file systems and must be included in 

the Host request. 

Access to the Supervisor hierarchy is 

controlled in both a discretionary and non~iscretionary 

manner. The non-discretionarY access is controlled by the 

!ernel which will prevent a Host system from reading ~p or 

writing down (confinement property). Disc~etionarY access to 

the files is bandIed by the SupervisQr which compares the 

Host.user (Host user combination) w!th the file ACt. 

Requested access 1s permitted only if the Host.use~ is 
~ -

e~plicitlt permitted access bJ the file ICt. 

!ach Rost system virtual file hierarchy is 

constructed from data files and directory files wbich, as 

mentioned above. are constructed of Supervisor segments. 

Althou~h dynamic ~rowth and shrinkage are usual segm~nt 

attributes, a desif,n choice for System simplification was 

made to fix segment size at three increments. SMALL (512 

30 



bytes), MEDIUM (2K bytes). and LARGE (aK bytes). These siies 

were chosen as a compromise between expected file sizes • 

. Supervisor butfer requirements. and minimizing the number of 

software ring crossings that would be required during a data 

file ·'rea.d'" or "sto~e" operation. lJecause segment size is 

limited and there exists the likelihood of encountering 

~iles larger than the maximum segment size. the concept of a 

multiple segment file (msf) is known to the Supervisor. 

Fi~ure 5 depicts the general tree structure of a 

Supervl~cr virtual file hierarchy. Directory riles are 

represented by squares and data files by circles. Data 

~·files. as their- name implies, contain data only. Directory 

. ', 

file~ are tbnstructed of a header and zero or more 

·'entries. There are two types of entries. branch entries 

and link entries • 

Branch entries contain the attributes of the file 

which they' identify. In figure 5. for example. the 

~attributes of directory file User_1 (entry name, ACt. size, 

type, ,etc.) are contained in directory file Bost 1, branch 

entry User_l. One branch entry designates one Supervisor 

segrr;ent. 

A link entry, represented by the dotted line in 

fi~.lre 5, is composed of 
.. 

an entry Dame 
.. 

(link name) and a 

pathname. (A. pathname is the concatenation of entry names 

starting from the Toot directory and proceeding in 

sequential order to the specified file.) Lilre a branch 

.entry. a l\nk entry is used to access a specific tIle. !or 

31 



Host.J· 

User..;;o1 User 2 Group_ 1 

Fil.e 
File 

, File 

, I 
.. I .. 

.. .... .. 
" .. .... • :-. ... ... .... 

--
File -1 File 1 1 

-

~i?ure 5. Virtual vile Hierarchy (logical view) 

32 



in flgu!'e the pathname contained in the link 
- -

entry is Rost~1>User_3>Dir_l. Unlike a branch entry. 

the link entry does not contain any file 

attributes. Access is controlled as the Supervisor traverses 

the specified path to the requested file. 

The use of link entries allows sharing of flIes 

among Eost systems and among Host system users. Loops which 

might be generated by two links which reference each Qther. 

are prevented by the Supervisor. (Loops could present a tree 

traversal prOblem to the Supervisor.) 

Each file has a fiie name (Entry_Name--unioue per 

directory file) given by the Host system at file creation 

time. This file name and its pathna~e are used to uniquely 

locate the file in the Host's virtual file system. By 

traversing the virtual hierarchy. the Supervisor can locate 

the requested file if it exists in the system. In either 

case !viz •• whether ~he rile exists or not). appropriate 

action can be taken by the Supervisor. 

a. Directory File 

Figure 6 is a logical representi:tion of a file; 

diTector7. Bach directorY file is ~ade up of a header and 

zero or more Sixed size branch/link entries. A fixed 

directory size of LARGE (Si bytes) was chosen to insure a 

reasonalble amount of directory space for Eost system use. 

ThiS could pose a "space~ p~oblem. especially fer secondary 

storage. (Adequate main memory can be installed for rEquired 



Directory 111e 

ttl-ad ) " ... e· er 
Entry ,Count-l byte 
IrL C;'unt-2 b-,vtp~ ~ __ ~ V a... y -- <4--

(Branch ~trY) 
~ntrY_Na~e-18-bYtes 
Branch_Lir.K_Switch-l byte 
aCI._Ptr-2 bytes 
File Slze-4 bytes 
Data:Dir_Switch-l byte 
File Created-'-'16 bytes 
tast~U~fate~16 bytes 
Access:Class-l byte 

itink~Entry)~ _ 
~~trY_Na~-lo bytes 
Eranch1ink Svitch-l byte 
Ll.!lk-128 bytes 
11~k~Created~16 bytes 

P1~ure 6. Lo~ical DirettorY Structure 



Duffer space.) The Iernel, .hich stores segments as pages, 

roay want to -"compact" se~mtmts b:1 not storing on secondat7 

storage pages which contain all 
H _ _ ft 

zeros • This would great1" 

reduce the amount of ~asted space on secondary storage. 

(Another equally viable solution. but not selected for thi~ 

aesien. is to nave multiple se~ent directories in t~e 

Supervisor siroilar to multiple segment data files.) The 

directory file neader contains the following ififor~atjon: 

entries in the directory. 

of the nu.~ber 

If the entry is a branch entry. it ¥ilJ co~tain 

the rollovin~ elements: 

'Host syste~s are responsible for supp~Yir.~ th~e n&~es but. 

as mentioned above. viII be prevented by the SUpeViSOT ftc. 

having d~plicate Da~es (file na~es) in one directory file. 

access I'evel. 

the entr7 as a branct e~try which in t~rn specifies the 

entr7 fon=at. 

the braDch entry. the VSS has onl7 three distinct 

discretionary access modes: 1) ~~ul1" access as the na~~ 

implies, declares that no access is t~ be alloved to \he 



specified Host.nser c~blnation. 2) reaQ" access allow~ a 

qualifiea Host. user read a file on17 (i.e •• no write 

access}, .. -In'lte access allows a Eost.user wri~e aocess 

to a file (alse implicit read access). The actual Act vill 

be a list of authorized users i~ the forw Host_user with an 

associated access authorization 

this case a *). will allow genera! aCCess in th~t category • 

'For *.user would cllow the specif"ied 
.. 
USe!" to 

access thiS file from any conr.ect~i Host syste$ with a 

specified access ~ode. This ~Cl for entry US2r can easily 

be ex~~nded to ir-cl~ae ether categories such as -project to 

further refine the discretionary access allowed to a fl1e~ 

is necessar7 fOr 

it alloys 

to calculate the nu~t~r of Se~',2Gts that ~ake u~ a ~ultiple 

seg~nt file. It viII be supplied ~y the Rest s7ste~ 1U the 

tells tne 

directory). This is necessa~7 ~ue to t~e different 

file foraats. 

creator end tbe time of creation. 

Host ar-d user to store i~to th~ file. This identification 

36 

I 

I 
I 
i 

i 
J . , 
I , 
i 



! 
J 

I 
f 
f 

I 

I 
t 

i 
I 
i 

FSS to have a liiaite:d audit cape. bi 1 i t7 • 

preveiit;s the FSS iron also keepin~ trac~ of read 

accesses since processes at hi~er levels ca~ reaa at lover 

levels cannot 

directories 

~~y not be aCCurate fOT the saae reaSOG. 

foer ele~ents. These are: 1} identify the 

file. 3) 

uniQuel$' identity file .. and 4) 

the ti_e of initiatio~ alGng vita 

Bost.user yhO createi the liak~ All attribute checking Is 

done as the Supervisor traverSES the specif!ed path. 

to 128 bytes. This plaCeS S~ rEstrictions O~ the East ill 

tb8t long file na~s Yill scc~ c~nsu~ the b~tes available 

pathDa~es which contain several link 

bytes. Vlth 32 branebilisk e~\ries 

directory, t~ere ere aD avera~ of 32 

each) availatle to eacb branch entry. 

do not have ICL entries.) 

field sizeS for the directO!'7 

facter in calculating tbe size of br~ncbiliak e.tri~s is the 

Size or the link pathna~e. This increases the 5iz~ or link 

-elltries to 11:=3 bytes and. althc~h space is vaslea il" 



entries. the simplification of System design resulting from 

a fixed size of branch/link entry is felt to be sufficient 

just1ficat1on in the initial design. 

t. Data 'Files 

Data files are always "leaf
q 

nodes in the file 

hierarchy and contain only data. 

c. Multiple Seg~e~t File Directory 

A msf Qirectory is a Supervis~r construct 

(invisible to Eost systems) to mana~e files lar~er ttan the 

maximum fixed segment size. ~ecause the number of segments 

that will be reQuired by the Supervisor to store a file C5n 

be calculated from the file size information passed -by t~e 

Host. a Msf directory need only be a segment of size zert. 

This Makes the Kernel alias table (which is a fix~d 

size--see [Colemanl) the limiting factor in the maximum file 

size. The alias table has the same number of entries as a 

Supervisor directory (viz., 32) which li~its maximum Host 

file size to 25eK bytes. Files that exceed the maximum file 

size must be split by the Host system. A~ attempt to store a 

file tha t is "too' large will resul t is an error condi tion 

response to the Host and an unexecuted co~mand. 
, . 

4. Eost System Commands 

The Host commands provide the only interface that a 

Host system has with the FSS. Each command is interpreted by 

38 

j 

i • j 
i 



the FSS and acted upon by surrogate Supervisor processes; 

the Eost system has no direct access to the FSS. There is 

one acknowledgement between the Host and FSS at this level. 

This is a 
,. Ii 

command complete acknowledgement that informs 

the Host syste~ that the Supervisor has completed action on 

its request. If an error condition occurs, the appropriate 

error c~ee 1s returned in the acknowled~ement. 

!noth~r aspect of the 30st environment needs to be 

defined alse. The Eost environment can be divided into two 

states; they are the "old" state, before the F58 has acted 

upon the Host req ues t t ann the 
.,. ,. 
new state, which oCCurs 

after action has been completed by the FSS. The specLf1c 

state of the FSS at any instant is indeterminate at the Host 

level if more than one Fost is accessing the same file of 

the FSS at one time. That is. since Supervisor processes 

execute in a completely asynchronous manner, the PSS state 

w:ay change after a Host command is sent but before the FSS 

acts en the command. This will not affect the perf~rmance of 

the System or validity of its security; Host commands will 

be executed as a single, atomic operation in the FSS state 

in which they are received and interpreted. The Host will 

get some "correct" response for some state existing between 

the sending of the Rost cOMmand and the FSS ack~owledgement 

on the same command. This ellows several Hosts to safely 

synchronize their actions external to the FSS. 

The followin~ is considered to be a minimal subset 

of commands avail~ble to the Host System for adeouate file 

39 

I 



control. Figure 7 illustrates the required discretionary 

access attributes. The files are referenced in the ~ost 

command descriptions startin~ from the root of the Host 

virtual file system. The pathname specifies the parent 

directory file (containing access attributes of the file), 

and the file (data or directory) to which the Host command 

refers. All co~rean~s require a pathname for unique file 

identification. Each command also requires the suecificatlor: 

of the Host system "user~ in order for tte Supervisor to 

perform discretionary security checks. This 'userid" will be 

supplied by the Host syster. or the Host system user, which 

ever is appropriate. 

<pat~naflle, 

(direco;ory, data». This command requests that the 

Supervisor create a branch entry in the specified directory 

under the specified file name at the specified access class. 

An i ni tial access mode· of writ e will be given to file 

creator and may be altered by the use of the ADD_Act_ENTRY 

and DELETE_ACL_E~TRY commands. This is the o~IY Rost command 

where file access class is specified. It is used in this 

command to create upgraded directory files, if desired. 

(Data files may not be u~graded--described later.) In the 

initial implementation (with single level Hosts), there will 

be no upgraded directories within a Host virtual file 

system. Initial data file size Is zero; initial directory 

file size is tARGE (aK bytes). Actions taken: 

1) The Supervisor locates the root of the virtual 

4:0 

j 

I 
I 
I , 



Discretionary 
Access 

·ir _B At tri butes 

D1scretionar 
Access 

lle_l Attributes 

Figure 7. File Discret10nary Access Cont~ol 

41 



file system for this Host and does a tree traversal to 

locate the parent directory file. 

2) If the parent directory file is not found or 

found but write access to the parent directory file is not 

allowed. an appropriate error code is returned ("file not 

found d or ~write not permitted·'. 

3) If th~ directory file is found, and room exists 

in the directory, the new file is enterei in a branch. !s 

~entioned above, no duplicate file names will be allowed by 

the Supervi SOl'. 

CREATE LINK <pathname, link tuserid>. This command 

reauests that the Su~ervisor create a link in the specified 

directory under t.he specified file name. AS alreac.y 

mentioned, the Supervisor will not allow links to form 

loops. This is done by restrictin~ the ~aximum number of 

files in one pathname to 64 files. (This figure is reached 

by allowing a maximum pathlength of 128 bytes and having 

file names of one character. File na~e delimiters of one 

character, viz. ")", will give a maximum pathlength of 64 

files.} By keepir.~ track of the path traversed, the 

Supervisor is able to determine if and when a loop is 

fermed. Actions taken: 

1) The Supervisor locates the ~oot of the virt~al 

file sYstem for this Host and does a tree traversal to 

locate the parent dIrectory file. 

2) If the parent directory file is not found or 

found but write access to the parent directory file is not 

42 



allowed. an appropriate error code is returned. 

3) If tbe parent directory file is found and room 

exists in the directory. the link 1s entered in a link 

entry. 

DELETE_FILE (yathname .userid). This command 

reauests that the S~pervisor delete the specified file from 

the virtual file hierarchy. for design simplicity, only 

terminal files (including msf's). can be deleted. This means 

that directories must be empty in order tJ be deleted. 

Actions taken: 

1) The Supervisor locates the root of the virtual 

file system for this Host and does a tree traversal to 

locate the parent directory file. 

2) If parent directory file is not fOJnd or found 

but write access to the parent directory file is not 

permitted. an ap~ropriate erro~ code is returned. 

3) Otherwise. 1f the file is located, it is deleted 

by the Supervisor. 

READ_FILE (pathname. command_type(directory. data, 

size) .userid). ThIs command reauests that the Supervisor 

transmit to the Host either a data file. directory file 

(selected elements only), or the File_Size. Last_Update. and 

AcceSS_Class (entry data) elements associated with a 

particular file. An explanation of the last parameter. to 

transmit entry data only. needs some explaination. 

Branch entry element~ can be logically divided into 

43 



two categories with respect to dlspreticnary security.. The 

first cate~ory. which includes 

Branch_Link_Svltch. Access_Class. and ACL_Ptr are brancb 

entry attributes which cannot be altered by a Eost process 

unless the process has discretionary write access to the 

directory which contain~ the file branch entry. 

The second category. which contains File_Size and 

Last_Update, are attributes which ·belon~~ to the file and 

must be updated when the file is updated. A situation may 

exist where a process may not have any discretionary access 

to a directory but may have discretionary read access to a 

file in the directorY (plus implicit access to the rest of 

the directory during the rlsearch"). In order to read this 

file. the Host system will need to know file size in order 

to prepare to receive it. This is the situation where the 

READ_FILE (size) command 15 needed. ~ctions taken: (for data 

file) 

1) Tbe Supervisor l~cates the roct of the virtual 

file system for this Rost and does a tree traversal to 

locate the desired directory file. 

2) If the file is not found or found but read access 

to the file is not allow~d, an ap9ropriate error message is 

returned. 

3) OtherWise, the file is transmitted to the 

reQuesting Host System. 

(for directory file) 

1) Same. 

44 

I 
I 

I 



2j Same. 

3) If the directorY file is found and read access 

allowed, selected elements of ~he branch/link ent~i~s are 

returned to the Host. 

(for file size) 

1) The SupervIsor locates the root of the virtual 

file system for this !ost ~·.d does a tree traversal to 

locate the desir~d file. 

2) If the file is not found or found but rea~ a~cess 

to the file is not permitted. an appropriate error code is 

returned. 

3) Otherwise. tbe File_Size and tast_Update elements 

are returned to the Host. 

<pathname. file_size ,userld>. This 

command reouests that the supervisor store the specified 

file in the PSS. Actions taken: 

1) The Supervisor locates the roet of the virtual 

file system for this Host and does a tree traversal to 

locate the data file. 

2) If the data file is not found or found but write 

access to the data file not allowed. an appropriate error 

code is returned. Note that Bost systems can store only data 

files; directories are ~built~ by the Supervisor. 

3) Otherw1se, a store operation i~ performed by the 

FSS. 

REIn_Act <pathna~e ,userid). This cOMmand is used by 

45 

I 
i 
i 



the Rost systerrs In conjunctIon with the ADD_AC1~ENTRY and 

to adjust (~ive/rescind) the access ~ode 

(read/write) allowed to a Rost/~ost user to a specific file. 

Actions taken: 

1) The SupervlsoT locates the the root of the 

virtual file system for this Host and does a tree traversal 

to locate the parent directory file. 

21 If the file is not found or is found but read 

access is net allowed to the parent directory file, an 

a~propriate error code is returned. 

3) Otherwise, the supervisor returns the file ACL 

for !ost system user examination. 

ADD_Act_ENTRY <pathna~e. ACL_Bntry .userid>. This 

command reQuests the Supervisor to add to the specified file 

Act the speciflei ACt_Entry (Bost.user co~bination plus 

associated access mode). Ps with the previous co~roands. the 

access is checked for correctness by b~th the Supervisor and 

the Kernel before any action is taken. 

DELETE_ACt_ENTRY <pathIlame. ~CL_E'1try .userid>. This 

command reauests that an ACL_Entry be deleted from a file 

Act. Again. appropriate discretionary and non-discretionary 

checks are ~ade before any action is taken by the iSS. 

!~ORT. This command reQuests the Supervisol' to quit 

execution of the present command and return the file system 

to its ori~inal state. There are only certain locations ttl 

the e~ecution of Host co~manas that the Supervisor is able 

46 



to interupt. If an ABORT co~mand is received after an 

operation has been co~pleted but before the final Host 

acknowledgement is sent, the original co~mand completion 

will be acknowleiged ana the abort command will ignored. 

Otherwise. action of the command will be halted and the 

supervisor will wait for another Host command. All Host 

commands (including A~ORT} will be explicitly acknowledged 

with either a "command complete" message or an appropriate 

er!"or code. 

c. PROC!SS STRUCTURE 

There are two SupervIsor processes which act on behalf 

of each Host system (hardware port). The input/output (10) 

process and the file mana~ement (IM) process. The 10 process 

is responsible for commun1cation and data transfer (via 

packets) between the Supervisor and the East syste~. Tte !M 

process is respcnsible for ma~a~ing the per-Host virtual 

file systems and ~rovid1ng overall '55 control. All nost 

:ommands are interpreted by the FM process; the to process 

acts in a "slave" mode to the :1'1 process. Acting together, 

the FM and to processes interpret and execute the file 

management requests of the Host systems. Kernel pr1mitives 

READ. ADVANCE. AW~IT. and TICKET used in conjunction with 

eventeounts and seauencer (described later). are used to 

synchronize Host surrogate process execution. 

Both the FM and 10 processes calIon Kernel primitives 

to perform actual seRment manipulation. The normal order in 

47 



which these calls are made is fixed by the Kernel design. To 

add a segm:nt to a process ~emo~y. the order of ~ernel calls 

is: 1) Gatekeeper.Create_Segment. 2} Gate~eeper.Make_Kaown, 

and ~) Gatekeeper.Swap_I~. To delete a se~P.ent fro~ a 

process memory, the order of Kernel calls 

?' -I Gatekeeper.Terminate, 

is: 1) 

and 3) 

Gatekeeper.Delete_Segment. The Suyervisor procedures use 

these invokationorders. 

There are three levels of abstraction for a Host 

su~rogate process. They are: 1) the level at which Host 

co~mands are known. 2} the level at which files are known, 

ana 31 the level at which Supervisor segments or packets are 

kno.n. These levels of abstractionsnould be kept in mind 

when readin~ the FM and 10 process descriptions. 

A design choice to simplify file system maintenance and 

control 1s to allow upgrading of only directories (e.g., 

unclassified to secret). This .i11 eliminate the yossibillty 

of having a secret file in an unclassified directory. a 

situation which would prevent updating of the file branch 

data by the secret process since writing ndovn~ 15 not 

allowed. This restriction is not felt to exclude any 

Significant F55 capabilities and provides for a simpliflea 

im~lementation. 

The mo~ular construction of PSS enhances Syste~ 

stru~ture. All data bases. except the files the~selves, are 

module local. Code is expected to be _ritten in PLZ/SYS 

{Snook1. which is a higb level ~ascal-like stTuctured 

48 



programming language. Fecause of the its length~ code is 

loca~ed In Appendlz C. The code 11stea ~n this appendix 

gi7SS the interproceSS and lnterM9du}e control structure of 

the FSS. 

1. Shared Segment Interactions 

Supervisor ~~ocess ~xecution occurs in a completely 

as~nchronous roanner. When a process is re~ered to in the 

,follovin~ discussions. the two Bost surroeate processes are 

being referenced; these surrogate processes nave the same 

:-clearance levels as the Host they represent. 

1s already mentioned. the tast of the FSS 1s to 

provide a service. To be of maximum benefit, thiS service 

should be unambl?Uous, easy to use. and roeust. 

The ~ajor proble~ that the FSS reust bandle for 

prOper System security is the confinement probl~. viz.. t~ 

preve~t a process from readinF a file with a bigrer 

classification or writing ii.e •• storIng or up!ating) a file 

with a lover classification. ThiS job is handlEd entIrely by 

the Kernel. 

Another problem ~losel7 related to the confinement 

proble~ whicb also involes tbe Supervisor. is the 

~readers/Yrlfersft probleM [Courtoisl. In order to preserve 

tile inte~ret7. reading and vritin~ of s shared file canno~ 

be allowed at the same time. Since a pri~ar7 objective of 

the ?SS 1s to provide for the sharing of files. this problero 

viII certainly occur and ~st be handl~i properly ~or System 

I 
I 
1 



viabilit1. 

30th the cO~ri~eMent problem and the readers/writers 
-

proble~ can be solved i~ one of t.o .a7S~ Mutual exclusio~. 

a ~echa~ism vhle~ forces a ti~e ordering on the execution ot, 

critical r~gio~s. forces concurre5t ¥rocesses into a total 

order execution sequence. ihis is counterproductive to the 

~urpose of a proc~5s str~ct~re. which inherently alloys 

concurrent executio~ of processes. 

and the use 

eventcon~ts and seauencer to control aCCess to 

critical regicns. This method preserves the idea 

CC~current processing to a ~uch extent. 

eventcdunt is a object that keeps co~nt of the nu~ber of 

events (in th~ case of t~e FSS. 5e~~~nt ~eai/vrit~ a~cesses) 

that have occ~r:d 50 far in the execution of the 57stea 

procedures. th~se eventcou~ts are assDciatea with 

Su;~rvisor seg~~nts. rhey are accessed cnlF via Ierne! calls 

and can be thcu~ht of as nc~-decreasing 1nteger ~alues. Each 

Supervisor se~~nt bas tva eventco~~ts asso~lated with it. 

cne to keep trae~ ~r the read ace~ses a~d one t~ keep t~~ck 

of tbe write ae~esses. 

! Ierne! pri~iti.e !Di!MCE sIgnals the uccurrence of 

an event (read/write se~nt access) associated witb a 

particular segment eve~tCGunt. The value of aD evegtCQunt is 

the number of ~DY~NCB operations that ha~~ been ~~fo~d O~ 

i 

i 



reaches the specific value t. 

seQllf!!lcer is also necessar7 to solve the 

confinement readers/vriters pl"oblens. 

sYDchronizat!on ~roblews require arbitration (e.~.. t.o 

write accesses to the se~e se~Dt); eventcounts alone do 

not have tbe ability to discri~inate bet.eeD two events that 

happen in an uncontrolled {i.e •• concurrent} ~annet. A 

seOb~ncer. like eventccunts. can be thou~ht of as a 

non-decreasing 1nteger variable that is initiall~ zerO. Each 

Supervisor se~~~nt has associated vith one secuencer. Tbe 

only 

Rettin~ a ticket and vaiting to be ser.ed at a ba~ber shOp.) 

Tvo useS of Tlct~(Se~_~.S) viII return two different values 
... . - .. corresponding to the re~ative ti~ of call. 

with these 

synchronization ~rimiti~es lnfo~s the Ierne! of which 

seouencer can be illnstrated by exa~lnin2 tbe followin2 tvo 

procedures {read 0 as Dct equal). the FSS 1.pl~e1'lts these 

process. 

51 



PROCEDURE reader 
:BEG I N I NT!G!'R w; 

abort: w:= READ!Seg_#,S); .get reader eventco~ntr 
AWAIT(SPR #tC.~'; Iwait until write co~plete! 
'f read file"; 

END 
if READ{Se~ #,5) <> w THEN GOTO abortt~Ead a~aint 

PROC'EDURF wri ter 
BEGIN INTEGER t; 

E~D 

ADV~~CE(Se~ #,5); !increment reader eve~tcount! 
t :~ TICl{,ETTSeg #.T); !get sequencer! 
~WAIT(Se~_#.c,t); !wa\t for write to complete! 
read and. update file' ; 
~~VA~C~(Seg_#,C); 'increm~nt writer eventcount! 

The Kernel will enforce the confinement property and 

prevent the application of the AD7~NCE and TICKET primitives 

to se~ments with a~ access class less ~han the gost access 

class. Not to do so, would allow a communication path to be 

created betWeen two different access levels. The two 

eventcounts a Supervisor se~mert will have associated with 

it (in the Kernel) are a write eventcount, C, and. a read 

eventcount. S. Each segment will also have a seouencer. T. 

associated with it. Eventcounts and sequencer are initially 

zero. 

Thes~ eventcounts and seouencers t with their 

associated Kernel primitives. are used by the FSS to perform 

the synchronization fun~tions of ]lock and Wakeup fColeman] , 

described in tte original Kernel design. Eventcour.ts and 

seouencers provide a r.!earer picture of the process 

interaction as well as expl iCi t control of the 

rtreaders/wrlters' problem. Even more importantly, they 

52 



permit the sync~ronization between processes of different 

access levels. This is essential in order to permit a high 

level Host to read files of a lower level. 

~here are two ~roups of Host reauests. They can be 

classified as read reouests ~e.e., ~~AD~rI1E, RE~D_AC1} and 

write requests (e.~., CREATE_FILE, STORE_FILE). These 

categories can be further s~bdivided into read data file, 

read directory file and write data file, write directory 

file subcategories. ~ach category type m~5t be haniled in a 

proper ~a~ner by the Supervisor to insure file inte~rity. 

Ea~h category will be discussed in turn be~innin~ with the 

reao file cate~cry. 

There two conditions which might develop over which 

a process has n~ control; file update by another precess, 

and f11~ deletion by another process. An example of file 

update might occur while a secret process is traversing a 

file hierarchy and 1s it the middle of searchin~ the 

directory fo~ ar Entry_Name when another process (at the 

directory access level) updates the directory. Since the 

secret process will READ '~e seg~ent "reader" eve~tcountt S, 

before and after the search. it will know that the data it 

had obtai~ed is possibly invalid. Although there does not 

appear to be a problem with allowin~ the ·readln?~ process 

to re-read the iirectory file until a "good
q 

read is 

aChieved, a Gloser examination of this condition should ce 

made at implementation ti~e, 

~writi~£' process to alter the 

53 

viz., is it possible for a 

pa thnarne of a • read in?'· 



process so that an inconsistant state is achieved f~r the 

reading process? A possible solution could reouire a process 

which su frers a "bad" read to begin the traversal over,! 

be~innin~ at the root directory. 

When a directory is being read to pass ~irectory 

data back to a Host. the directory data is put in a buffer 

and sent from there. 

A 5ingle segment buffer nay be to small to hold a 

data file (e.g •• maxi~~m file size of 25EK bytes). 

Therefore, to present the Eost with only valid data. a data 

file "buffer d is needed at the process level. Since this 

buffer will be at the process access level. it can be locked 

by the process to insure that no other process interfers 

dnrin~ the readine operation once the data file is in the 

buffer file. This COP1ing of the data file is done by the FM 

process and the IO 'Process will read the file from the 

buffer file when transfering the file to a Host syste:r.. The 

choice or makin~ a COpy of a data file is awkward but 

considered necessary in order to provide the Host with only 

atomic operations. ~.e .• to prevent the sit~ation from 

occuring where half of a ten segment msf is 'transmitted to 

the Host and the file is either up1ated or delete1. 

The other condition which may arise d~rin~ a file 

read is a file deletion. This situation occurs when one 

process is reading a file and another process deletes the 

same file. The first process, not knowing that the file 

(segment) has been deleted, will try to reference the file 

54 



again. A hardware segment fault will o~cur and cause Q 

transfer of control to the Kernel. Note that in this 

situation, it is the higher access class process which will 

suffer the fa~lt while it is readin~ a lower access class 

file. To handle this prable~, viz., the Supervisor segment 

fault, a fault handler must be part of the distributed 

Supervisor. A Kernel primitive also needs definirg. This 

is called in the i~itialization of the Supervisor process 

where it is possible for a se~ment fault t~ occur. A call to 

a Superi~sor condition establisher is also ~eces~ary. This 

will nlace a specific condition handler on a 'condition 

stack" • If a faul t occurs t the Kernel ret 1lrns to thE" 

Supervisor faul t handler wi th a .. segmer.t fa ul t" error 

condition. This fault handler in turn transfers control to 

tt:e condition handler at the top of the 'condition stack" 

which can make a normal return from all procedures. When the 

error condition 1s detected (from the returr. code) by t~e 

appropriate Supervisor level, action is taken. viz.. the 

Rost command in re-initiated. Sine the file (se~ment(s» 

has been deleted, this reinvocatlon May well result in a 

'segment not found" error condition bein~ returned from the 

Kernel and a "file not found" error coniition being relayed 
. .. 

to the Host. When the Supervisor eXlts the seg~ent fault a 

"revert" command is necessary to remove the condition 

handler from the co~nltion stack. 

Another side benefit of havin~ tte Supervisor do all 

55 



the actual file ~eading (atd therefcre take all the 5egmE~t 

faults) is that it prevents a hardware fault from occurin~ 

during the actual data transfer in the Kernel during Tn 
- " 

process execution; this condition would force the handling 

of the fault 1~ the Kernel domain--a difficult task. 

Writin~ a file is a more straight foreward task and 

presents fewer problems. This is because a writing process 

has the sa~e access class as the file a~d can prevent all 

other access to the file (segMent(s}) it is concerned with. 

To alter a directory (C?EATE_FILE, D£tETE_FILE. EtC.), a 

process .111 ~et a ticket to the directory and perform the 

necessary macipulation whet its number is ~alled. In order 

to store a file. more care must be taken. If a process were 

allowed to sto~e directly Intc the old file, the p0ssibility 

exists that a software or hardware error might result in a 

partially updated rile and loss of file integrity. To 

prevent this from occurring. a data rile is first storei 

into a temporary file set up by ~he FM process. This also 

alloys the original file to continuE to be read by other 

processes yhile the store ope~aticn is g0in~ on. a 

si~nificant advanta~e if the data file is long. ~fter the 

file 1s stc~ed by the 10 precess. the FM p~ocess gets a 

ticket to the file directory and when its turn comes. ~akes 

the ~ecessary directorY updates. viz •• the te~pnrary file 

name is subsituted for the old file !ntry_Name, Last_Update 

infcr~atio~ chan~ed. and the old file deleted. (If the file 

is a msf. each se~ment is. of course, deleted.) 

56 



2. File ManaRement Process 

The 1M process is composed of thp five modules 

depicted is fi~urp 8 {with associated Kernel calls}. The FM 

process is tte controller of the PSS e~d directs all 

interactiop between the FSS and a nost slstern. Rach module 

which makes up this process will be described alon~ with the 

procedures ~hich ~ake up the i~divi1ual mndules. 

a. File Mana~ement Command ~andler Module 

module ,see Appendix p. 1041 1s at the to~ 0: the FM 

process hierarchy. This is the level of abstraction at ~hich 

East co~mands are "know9". This module is responsitle for 

interprocess communication and synchror.ization (with the 10 

process) and Host com~and interpretation. Interprocess 

~ommunication is achieved by the Kernel pri~itives TICK=~, 

ADV!NCE and A~AIT which act en an eventccunt associated with 

the shared mail box seement. ~izure 9 shows th~ lo~ical 

cc~st~uction a~d ~h~ data base descriptic~ of the ~ail_box. 

~i~ure l~ is a list of the pr~ceiu~es contained ~ithin th~ 

module a~d their input and output 

parameters. 

The FM Croft_gnd procedure is the entry ?roceiure 

ir;to the FM_Command_Eandle~ ~Qeule. This is the control 

procedure of the module and is rp.sponsible for routin~ Host 

commands 

action. When notified by the 10 process that a comma~d 

57 



, 
.... 

Segfllent.Ha~dler 
Mod.ule -

Gatekeener. 
Make_Known 

Gatekeeper. 
Terminate 

Memory_Handler 
Module 

Gatekeeper. 
Swap_In 

Gatekeeper. 
Swap_Out 

.... ,. 

FM Command Handler Initj~lization 
Module -

Gatekeeper • 
L Ticket .... 

Ga tekeeper. 
Ad.vance 

Gatekeeper. 
Await 

J~ 

,II 
Directory Control 
Module -

Gatekeeper. 
P.ead 

Gatekeeper. 
Advance 

Ga t e ke e ne I' • 
Await -

Ga tekeeper. 
Ticket 

... 
-" 
~atekeeper. 

On_Fault 

Di5cretionary_ 
Security Module 

Gatekeeper. 
~--------~~ Create_Seg~ent 

Gateiteener. 
Delete~SegMent 

figure 8. v~ Process v,odules 
< . 
I ' 



Commc:.nd lluffer 
D1!' 3uffer 
ACL=Buf'fer 
MS~L 'Pufrer 

, 

Command - 'Buffer 

nir rata Buffer - -
AC!. Buffer -
Msg_ ~uffer 

~rray 
Array 
~rray 

Record 

(* bytes) 
[Max_Entryl Dlr_Data 
(Max ACt Size] ACt Entry 
(lnst - byte-
Pathname strin~ 
Tile size lword 
Success_code w~te] 



PRorFDUR"E 

FM_Cmi_End 

INPUT 

Host Cmd 

FM_Cmd_ Pathname 
Delete_File Useri1 

FM_Cmd_ Pathname 
Create_File File_Type 

Userid 

FM Cl1"d Pathnan'le 
c~eate_1ink Link 

iJserid 

FM Crrld 
Read_File 

'F:-1 Cmd - -Store_File 

v~ Cmd 
Read_AC!' 

FM end 
!dd ~ CT. 
EntrY 

Ft",_Cmd_ 
Delete ACl 
Ent!"y -

Pathname 
'File_Type 
Use rid 

Pathnal11e 
Filp Size 
Userid 

Pathname 
Usprid 

PathTlame 
~C!. :'ntry 
Userid 

Pathname 
ACl Entry 
Userid 

OUTPUT 

Mail_30x.Msg.Inst 
Mail_Box.Msg.Succ.Code 

Mail Box.Ms~.Inst 
Mail-Box.r:Sg.Succ Code - - -
Mail_Box.Ms~.Inst 
~ail_Box.Msg.Succ_Code 

Mail Box.Ms~.In5t 
Mail=Box.Ms~.Succ_Code 

Mail Box.~s~.Inst 
Mail=Box.M.sg.Succ_Coae 
Mail_Bax.Msg.File_Size 

Mal 1_ '3(\'1' .Ms,;. Ins t 
Mail_~ox.~Sg.Succ_Code 

Mail_30x.~s~.Inst 
Mail_~ox.Ms~.Succ_Ccie 

Fieure 10. Co~mand Handler Module 
Prf-cedu re IT! pu t lOut put Pi'! rame tel's 



packet is in the mail_box. thp FM process retrieves the 

com~and and be~ins a~propriate action. The host command 

procedure t~ take actio~. Each Ho~t cammer-a has associated 

with it. at this level. its ow~ procedure. 

Because the prcc~durps of the 7iodule "ire 

relatively stratzht forvari. th2Y will net be discusse~ In 

detail. The ~e~Fral functions pf all the procedures i~ thiS 

module are to pess instructions :0 the 10 process add to the 

Directn.,.y.~Co!'t~!:'l !!"o;1ule. the "\:orkhorse" of the PM process. 

Some explanation af gust coro~and parameters is 

in order, however. These parameters taescribed b~low) are: 

pathname 

link 

!!le type 

file size 

aCCe~o; le"el 

~~t entry. 

In all hnst cQ~~an~s. the patb~a~e passed by the 

~ost is the pathna~e {relative to the • roet directory of 

the H~st virtllal file SysteM) of the file ~f interest. 

v~ether a dlrecto~y or aata f11e. ~ram the pathna~et the FM 

process 1s able to extract the pathname of the parent 

directory which it must brine into the 1M process ~e~ory to 



for proper d1screticnary access. The ccmplete 

pathname t in terms of tne FSS file system. i' passed to the 

DirectorY_Control module for actual directory Manipulat1on. 

~ pa thname and f'1 Ie size (for the • buffer file") is returned 

the 

new path~ame and file size is passed to the TO pr~cess ~bere 

the actual data transfer takes place for these operations. 

5inr.e discretiona~y se~urity checks a~p made in the 1M 

process and all input/output "buffers" (e .E;., !-emporary data 

file, mail b~~ segment) are u~der positive PM process 

control. t~e IO process need not be concernei with 

dlscreticnary security or the possibility of a 
.. 
se~rr.ent 

fault'. 

A link is a 9athnamp which a Eost passes in the 

CRE~TF_1I~! command. 

~ile type is use~ for the CR~AT~_PI1~ Rost 

c~m~and ~'d is ~ecessary because ~f the differe~t file 

formats. 

Command type is usea in the ~EAD_?I1E East 

command to specify the type of "read" th.e FSS is to conduct, 

1.e.. to read a ~irectory file. a data file, or only a data 

file size. 

!ile size is passed by t!ie Host during 

STORE FILI ~eouests. This info~~ation is neCeSsdry for the 

FM pr~cess to create a te~pora~y file of suffIcient size to 

~tore a Host file. File size is relayed t~ the 10 process so 

62 



that the 10 process ca~ go directly to the data file witnQut 

having tc check the directory file for file size. File size 

is in bi ts. 

Access level is ~e~ied for the CREATE_FILE 

command. This allows fo~ uperaded directories (reroember, 

iata files cannot be up~raded). 

The identification Q~ t~e Rost syste~ user is 

necessary for the FSS to perfor~ iiscretionary Security 

checks. This is n~ovided by the E~st system t~rou~h tr.~ --
userid parametEr. 

to discretionary 

access to files. 

b. Directory Contr~l Module 

module. as the na~e 

implies. does the directory manipulation and Tlainte~ance. 

Fi~ure 11 lists t'he p~ocedure5 which make this :"!'Jodule 

along aitn their inputioutput para~eters. 

This is the level of tr.e FM precess at which 

files are knovn. The Directory_Contorl module ha~dles the 

recder5/~riters pro~lern ~i!h the a~propriate ll5e of the 

Kernel syncronization primitives ~E!D. ADi!~CE. A.AIT. and 

TICKBT. It handles the se~mert fault condition by ~ call to 

the c~ndition establisher when the possibility cf a s~gment 

fault exists. The 10 nrocess uses the sa~e p~imitives Ahile 

performing Its p~rtion of the data file re2d and store 



PROCEDURE 

nil' ~!ltrl 
Direct'll"Y 

1il!"_C!'trl 
Data 

I;iPU1 

Command ~yue 
Userid - -
Pathna~e 

Vile 'i'yue 
!c~e5s Le"1el 
Li!!k -

CO!!'Ma1!€!_1'Ype 
Userid 
Pathname 
File Size 

!; O!!'f1a !ld !Yl.'e 
Ose1"id - -
Pathname 

OUTPUT 

Dlr_SucC_co-J~ 
nil" Pathname 
Dir:F11e_Size 

Figure 11. Direct~rY Control Mo~ule 
Proceftures Inp~t/Output Para~eters 



operatioI;S. the tree traversal when data 

file read burfer file. !s 

v111 face the 

~rcble~ of file 

~ost r=c~sts basic 

a dire~t~TY file into ~rocess ~e~orY tor a rea~ ~nd!or write 

to COpy a cata file int~ a data file buffer. Al! ct~e~ iile 

s'UDcrdinated are three 

Is the 

r.cdule wbich 

tas~s .. 

~ 



sep,ment (whicl} co~tains the file branch/link entry) must be 

brou.I1:h t into process lTle:!1ory to check for proper 

di screti ona ry access. If' access is permitted, the 

Sesmen t_ Handle !' lTlodule is called with a pathname of a 

segment reauired to be brought into process ~emeory. 

i or act ion or. a DELETE FILE command, 

discretionary write access to the directory is reauired 

since the bra~ch/li~k ent~y of the f!le must be removed from 

the dir~ctory w~en t~e file is deleted. (Note that this 

raises the p~ssjbility cf a Host havi~g write acce~s to a 

file but not able to delete it because he does not have 

write access to the directory.) If the parent dir6ctory file 

is not found or found but write access to the directory not 

permitted an appror~iate error code is returned, viz., "file 

not fC'u!1d" or "write ae-cess not permitted". 

If an error condition does n)t arise, the 

direct~ry is br0u~~t into process ~em.ory atd a check of the 

file attributes is maie to determine file type (data, 

direct~ry, li~k). If it is a d~ta file or li!1k entry, it can 

be deleted because it is a terminal node in the file 

hierarchy. If it is a directorY, the (directory) file itself 

must be brought into process memory to see if the directory 

is empty (viz., cr.eck of EntrY_Count ar~ p~esence of a 

Supervisor tem~orary file). Tf it is nut empty, an error 

code of "not terminal file" is returned to the Host. If the 

directory is empty, it can be deleted. 

If no errcr condition occurs iurin~ the 

66 



precedin~ checks, the file may (sucject to check by the 

Iernel) be deleted. The Dir_C~trl_Directory procedure will 

calion Seg_Rnd_Make_Unaidressable procedure which will in 

turn call Me~ H~d_Swapcut procedure to remove the segment 

from process memory if it is in memory. (?e~e~ber thp. actual 

order: Swap_Out. Ter~inate, Delete.) Next, the Kernel 

primitive, GateKeeper.Delete_Se~me~t is called to delete the 

file froM the FSS. Nnte that in the case of msf's, thpse 

steps must te repeated until all seg~ents of the file are 

deleted. ~t !his time, the brar:ch entry is removed from the 

directorY by ze~oine all branch entry elements {to allow for 

Ker~el seccndary st0ra~e co~paction of disc pages of zeros). 

The 10 precess js then instructed to acknowledge the Host 

with "file deleted". This frees the entry fer future use. 

The deletio~ of a link reQuires the same 

discretionary wri~e access tr the directory. In this case, 

~o further checks are necessary and the link entry elements 

are zeroed it! thp directory. freein?, the entry for re-use. 

For the r.R~ATF_~IL~ command, analogous action is 

taken by the Dir_Cntrl_~i~ectory procedure, viz., to check 

dlscretlondry write access to the directory which will 

contain the file bra~ch e~try. 

0nce this check has been satisfactorily 

ccmpleted, ar.d ~00m py.ists iro the directory. the Kernel call 

Gatekeeper.rreate_Se~ment is maie to create the file. The 

l~~tlal file size is zero for data files since the 

Supervisor tas no ~rior knowledp.e of the size of the file 

e7 



that will be store~ in the branch entry. As explained 

earlier, a file size of 1!RaE (8K bytes) was selected for 

the fixed lirectory size. 

The CREATR_LI~K reQuest is a~ain analo~ous, the 

onll difference bei~g that ir;steaa of a branch entry being 

made in the directory. a lirk e~try is mede. 55 previously 

mentioned. the Supervisor will not allow a loop state. 

Checks wil! ~"t be made at link creatio~ time; however, the 

Supervisor will "abort
d 

a file search if lt encounters this 

error condition du~ir.? tree traversal. 

The RF~n_!I~~ (dir) command reaui~es read access 

tt a directcry file. If TIO error condition arises d~rin~ 

discretionarY security checks, selected directorY data 

(e.g., Entry_~ame~ File_SizE, etc.) is transfered to the 

Host syste~ vIa th~ mail box se~mer.t (viz., 

Dir_Data_Buffer). This selected directory data for each 

'occupied
d 

hranch/lirk entry is transfered duriTI~ the 

R!AD_FIL~ ldir) command. For the READ_FILE (size) reauest, 

only selected directory data for a specific iata file is 

transfered. The 10 and FM processes use approprlate Ker~el 

synchronization primitives to assu~e that the information in 

the mail_box se~ment is valid. 

The last thr~e East reauests handl~1 by the 

procedure are related. 

anpropriate dlscretior.ary access checks must be made in the 

parent directory. If no error condition arises, the action 

taken is straiRtt foreward. In the case of the aE;n ACL 

68 

r 



command. th~ file !CL is transfered to the 

the procdure returns to the 

module. In the case of the 

the appropriate 

Dir_Succ_Codp returqed. 

~he ni~ Cntrl_Data procedure is responsible for 

transfering to!~r~m a Rest a r~Que~~ed data file if 

necessary nreconditi~rs are met (viz., discretionary and 

~on-discretiona~y security), In order to read or store a 

file. a ~ost ~ust h~ve the proper discretionary access to 

the f11e. To check this, the parent directory which coctai~s 

the file branch e~try must be brou~ht into ~emory. Ttis is 

done by the Se~~e~t_Handler ~odule. If the proper access is 

~ot allowed, error code is returned to the 

FM_Command_Handler wodule for relay to the Host system. If 

the prorer access 15 allowed, a copy of the file is made in 

the case cf th~ RE~D_FI1E co~mand. or a temporary file Is 

created in the case of the STORR ~ILE command. The pathname 

and file size of the data files to be transfered are passed 

to the 10 process which will perform the actual data 

transfe~. Upon a successful transmission cf the data by the 

to ~rocess. the ~v process instructs the TO process to 

acknowledge the Best with a "rea~ co~plete" or flsto~e 

complete', as appropriate. 

The procedure will make 

appropriate us~ of ~ernel synchronization primitives (e.~.t 



A_AIT, R~!Dt etc.) when copying a data file into the data 

file read buffer or s~tting up a teMporary file for the 

store operation. !fter the file transfer bas taken place i' 

the 10 process, th~ 10 process returns a s~ccess code to the 

~~ process. The 10 process will retur~ to the FM process 

~hen c~e of three co~ditions ey.ist: 1) either the read or 

store operation is successful an~ co~plete. or 2) a command 

packet is recel veo (viz.. an abort command). or 3) a 

qtime-o
ut

' occurs and the 10 process was not able tD 

co~plete the co~~a~d. 
~or a store operation. the DiT_cntrl_updat

e 

pre.edure is called t. apdat. the directory data (viz •• 

excha,ge the temporarY file ~ntry_Name with the old file 

l.tr,_la~el a-I leletes the old file. (Tbe temporar, file 

should be deleted bY thiS procedure if •• pen attempting to 

update the file. the cla file can~ot be found.) 

Since each directorY se?ment has only one 

tewporarY file for file up~ate. sr.~e delay ~ay be 

~ost Systems if 5eve~al trY to store la~~e 

experienced bY 
files in~o ~be ~aMe dirEctorY. This does r.ot appear to be a 

~ajor problem since most users are anticipated to be 

operatin~ fro~ their cwn directorY files. 

Tr.e 'ir_r.ntrl_U~date pr~ceiure is alse used to 

free the te~pr."a'Y storage file in the case of a Hest abort 

com~and. 

c. Discreticnary Security Module 

?Z 



The ~iscretionery_security module is ~esponsitlE 

for checki~g East user discretionary access to a specific 

fiJe and addlnz and deletin~ AC1_entries. ~ll file ~CL's are 

logically lccated i~ this ~odule. This is the only other 

module besides the nirectory_Co~trol module _here a segment 

fault occur. Appropriate use of the conditioc 

establisher ~Jst be ~cde before any atte~pt to read an ACL 

module l~ the event of a fault. T~ere are four procedures 

which ~ake up this M0nule c5 depi~ted i~ fiRurE 12. 

implies. chec~s f~r c specific user discretionary access to 

a specific file. a suc~ess code returr.s, indicatir.~ the 

result of thp check. This ~t5cretionary ~hr-ck is ~~ly nade 

on the s~e\ific file which is reQLirec if; a Enst co~~andt 

i.e., a ~esl~~ chr.ice was made ~~t ~o make disc:eticnary 

access chec~s durip~ t~e t-eP t.raversal searc~ for t~e 

specified file. This makes explicit in one AC1 who has 

access ta a file. which cOf;trlb~tes to ~1 o~~ Sec~rity v~_~~ 

sE~antics. (This also eli~inate~ the Question of .~at to do 

if an intermediate di~e\to~y was e~countered curioR a file 

search to whic~ the precess did not have rea1 access.) 

AC1_entry to a file A~L and returns a SUCCeSS code to 

indicate the action taken. as ~oted DTeviously, a directory 

only Ruarantees o~e JeL_entry element per branch entrY {for 

71 



?RO~EDUR"!:' 

nisc~Sec_ 
Check_Access 

DisC" Sec 
telete_ACL_Entry 

Diose_Sec 
Ge!~RntrY 

I~PUT 

ACt 
~CI. En t ry 
Userid 

foCI. 
~C1_~ntry 

Userld 

~ct 
A.~l Entry 
~serid 

Act_Entry 
Userid 

OUTPUT 

ri~~re 12. DiscretionarY Security Module 
Prncpdure I~nut/Cutput Para~~ters 

72 



the file c~eatcr). !f another AC1_entry is reQuired and the 

be explicitly freed fro;T! a file by the Host before a file 

~CL can be added to. 

file ACl. This Pl'!lC:lllre return5 a SUCC~5S code "he!} deletion 

is complete. 

The last procedure uf this T.odule is the 

Disc Sec Get ~r.l pr~~edur~. It is used during the lnttel 

creation of a file by t~e ~irectory_~c3trol mo1ule to ~et an 

1. Se~e~t ~andler Mo1ule 

The Se~mer.t_F.ar.dle~ module is the abstraction 

le~el at which Supervisor 5e~ments are ~no.n. This module 

werks In conjunction ~ith the module 

'describei later) to either brin~ 2 segmEnt into process 

(viz •• S~ap_Out. Terminatel. This mod~le IS responsible for 

base. The data base elp~ents of the FM_KST are the pathname 

the process. 

the ter~lnal file in this patbname, Tode {i.e •• 
l-- .-

read or vrit~'. and the usp bit ~ecessary for a L~U re~oval • 

alzorltt~ (annrQ~imation). ~o prevent the situation .here a 



Pathname Se.g 

PP.OCEDURE I~PUT 

Seg_ tfnd Fa t hname 
Make_Ad~Te~sab1e 

SeE! 't!nd '?a t hname 
Make_U~addTPssable 

:t - Mode Use 

OUTPUT 

Se~L# 
SeE;_Su:::c_Ccde 

?i~ure 14. Se~ent Eandler ~odule 
PTr.~edur? I~yut/OutPut Para~eters 

'74 



indicated as "in meT!"c"!'y by another process. each new Host 

command will initiate a trernel 

Base_F.ddr). to confi~~ the existen~e of a segment. A 

Kernel return of riseg~p.nt ~ut four.d" ~111 indicate that the 

segment has been ~eleted. The ~SS ~ust then clear its data 

structures i~valid data a~d traverse the 7irtual 

hierarchy fro~ t'h", "'."''''- root directo!']' t 0 insure that the seement 

is truely gO~E ani that it has not been renamed 'h~ an:lthEr -J 

process situatio~ where a 

path~ame has ceen deleted and then re-created wit~ the sa~e 

filenames. Thi~ ¥oul~ asscciate aifferer:t se~ent numbers 

.:tt, the same pathname. 

Fir.~rp 14 is a list of the procdures 0: this 
1 

~~dule alon~ .ith their 1~?ut/nutput parameters. This modu~~ i 

r~ceives 2 file segMent pathna~e anc returns .hen it has 

been brought into p~OCeSS ~emory or an er~or coniition 

arises. 1t.e pnssibl~ er~~r co~~ition that Mi~ht re r~turnei 

from this ~odule is '·file ~ct fOUEi· _ This ~odule has two 

2ddressa 1:1e by the ~ost process br1n~ it into 

~viz •• to remove t3? S~~ent from proc~ss me~ory). The 

procedu.res .,hieh these taSKS the 

# • 

ll.E. • rer-:ove a 



I 
! 

I 
if 
i 
~ 

i 

"known'· and that Makir.g a segment una!dressable requires 

"terl'!inating" the seF-"lp'nt.) 'Both tasks are accomplishe:1. by 

approp~iate use of Kernel primitives and a~~ompanied by 

segment. 

This no~ul~ is also responsible for se~ment 

mana~eMent. Se~ment nanaFement is necessary ~ecause each MMU 

alloys the addr~ssi~~ of o~lY €~ se~e~ts. ~ith one ~MMU in 

the initial ~SS imple~e~tation and several segments taken by 

the Super~is~r a~~ ~ernel seg~ents. the nu~ber available to 

the Supervisor ~l"ocesses ",111 be somevhat 

This ~uMber ~ust be ~a~a~ed ir. a 

aynamic manner wit~out interfering with process ey.ecut1un. 

~ore involvea of the two module ?rocedures. If a reQ~est to 

see it is alrea17 known. If it is. tne ~RU ~1t is set 

segment is in process ~~ory. If it is uot already known to 

the prOCeS5. it ~ust be made known by the Kernel call. 

'But this 

can only be done if process segment li~it is ~ct exceeded. 

If the addition ~f a se27.ent ~ill cause an overflov. a 

procedure. Once tbis is doue. the ~esire1- sezment ca~ be 

~odule called to brin~ it into pr~cess ~emory. 

76 



procedure 

straieht forewar~. This urocedure may be ~alled to either 

delete a specific segment or to dalete the L~U 5e~ment. If 

called + .. 
"V ref!love a specific se~ment. action is taken to 

remove the 5e~~ent (lescribed telow;. If to remove 

the tRC se~~ent~ a LPU re~oval alzcri!hm !approxi~ation) is 

used to determin~ wbich se~ent .111 be re~o7ea. ~~en this 

has done. is called t!) 

to terr.1irate the selected see~ent_ T~e Ke~nel call. 

seFment to be delete~ frQ~ the Kernel !ST. ~e~ovin~ the 

taken by this pr~c~jure. 

This Module o~erates in a -slave~ ~ode to the 

;;roced ul'es are listed in rig~re 15 ~long with their 

iEput/output paraMeter~. The jo~ of this ~odule is to 

as reauirei. 



?ROC~DUR? INPUT 

Seg It 

Seg:SizE 

OUTPUT 

YiFUre 15. Memory_Handler Hodu!e 
Pr~cpdur~ Input/Outpnt Parameters 

Size 

'Fi~re 16. 

:Base ~ddr 

'18 

I 
j 



spp if it is is, its bit is set 

and is called 

i~su:e that the se~ent has delete~ another 

nroceS5 since last ~se_ !t tbe se~e~t is cot in ~~orY. the 

data 

for 

[Shaw] ~ first-fit sc~~e is chosen for tte ~SS d~e to 

si:npler 

If cannot be called 

iteratively 

I leTnel ~?i'ftrDCC Ts ..... ~~~~ 

I 
be call~ I 

i . 
the reQ~est 

tasK Is straizht rcrevaT~: a call 

is 

preli~!nar,. anal.1siS 

this calc~latlc!! 

is the that bytes each) 



may be reauired in proce~s ~emory during the copyine of a 

data file into the data file ·'buffer». A 24K byte memory 

would allow for the worst rase, viz., one 5K byte se~ment 

pcsitioned in th~ middle of lin~ar memory; room would still 

exist for the two 3K byte seemer.ts. 

3. Input/Output Process 

The 10 nrocess is the second of the two pro~esses 

which act 0~ behalf of a H0st syste~ to provide a reQuested 

file management se~vice. The 10 process acts in a slave w.ode 

tc the F~ prncess; it receives its co~ma~ds f~om the F~ 

process via t.he shared mail_box segment described in 

connection wit~ the FM process. 

The 10 process is responsible, as the name implies, 

for all input and output between the Supervisor and the Host 

systems. The 10 process is compose1 of five modules as 

depicted in fiRure 18 (along with Kar·~l calls). Two of 

these modules, Se2rnent_~andler and Memory_RandIer, are the 

sane mo~ule5 as ~pscribe~ i~ the FM pr~cess and will not be 

1iscuss~1 fcrther. Their task is to brinR into the virtual 

me~r.~y of the 10 process the data segments 

which ~ost files are stored or read. 

into 

Note 

and fro~ 

that since 

discrptionary security ch~c~s are done i~ the 1M process, 

the 10 nrocess does not have to repeat these checks. 

Direct invocation 0f the Packet_Handler ~o~ul~ from 

the IO_CJmm~ d_Bandler module is possible to send Sost 

"acknowled~enents". !f a file is to be read or stored. the 

80 



[...-.. 

Segmen.t t::andler 
Module -

Gateiteeper. 
Make K~(\wn 

Gatekeeper. 
Ter:ninate 

,II 
Memory Ear.dler 
Module-

Cia ti?Keeper. 
S .... ap_I!'! 

Gatekeeper. 
Swap_Out 

.... -, 

10 Command Handler 
Module -

Gatekeeper. 
Ticket 

G-atekeeper. 
Adva"1ce 

Gatekeeper. 
~,wai t 

11\ 
,II 

File Ia",dler 
Module 

Gatek'eejJer. 
Read 

Gatekeeper. 
Awai t 

Packet !Ia~d.ler 
Module-

Gatekeeper. 
Setun 

",atekeeper. 
Send Packet 

Gatekeeper. 
Store_Packet 

Gatekeeper. 
Change_5yte_ 
Counter 

Fi~ure lA. 10 Process Module 

81 



File_Handler module is first called to perform the read or 

I store operation. 

1he 10 process is also responsible for FSS-Hcst 1 
I 

protocol. Data is transfered between Host and FSS via fixed 

size "pacl{ets". There are t!:!ree for!'!ats for these packets: 

1) a synchronizatlon pac~et format, 2) a commani pac~et 

forf"lat and, ~\ a data packet format. Firure 19 gives the 

logical construction of the data a~d command packets. The 

sY'!1chrorizatiol1 packe": is left for later desi~n in 

conr:ection ~ith the design for a Rost interface. The packet 

size 0f 521 bytp~ for data an1 cOMmand packets was chosen to 

rnaxillize iata transfer efficiency at the expense of 

increasing the ~c~man~ packet size. Because 512 bytes 1s the 

size of the 'mallest Supervisor segment, this was chosen as 

the "urit" !)f da1:a trar.sfer. 

protocol 1'11'1 S t exis~ that insures relidble 

traTI5miS5ic~ and recp.pti~~ ~f pac~ets by both the se~~er and 

receiver in the PSS-~ost packet exchange. The Simplest 

pro~oc01 that will handle packet trarsmission is to tra~s~it 

packets one at a time an~ wait for packet acknowled~ement 

before se~din~ the next packet. The followi~~ dia~ram 

illustrates this simple protocol. 

Pac~et (n) --) 

------------------------------<::-;~~-- 1 
--~------------~---.-------------------
Packet (r..+1) --) 

-- --------------------- ------~ .. ------..-.----



DAr~ PACKET 

Packet_Type 
Packet ~.JuJTIbE'!' 
Data -
Check_Sum 

Packet_Type 
Packet_Number 
tiost rmd 
Path~a!Tle 
'F1 Ie ~~arne 
Lick 
Access Level 
File_Type 
ACL '!;'ntrv 
Userid . 
Check_Sum 
Padding 

~.yte 

lword 
512 Bytes 
lword 

I3yte 
!'word 
Byte 
128 Byte 
18 Byte 
128 ~yte 
Byte 
Byte 
:3 'F;;te 
3yte 
lword 
231 ~yte 

Packet Constructio~ 



Overatir.g ir. thi~ fashion is extre~ely inefficient, 

especially in the transmission of large data files; it does 

not allow the sender to send nackets before an 

ack~owled?ement is received nor does it allow the receiver 

to accept ~ore that one packet at a time {i.e •• read ahead 

and write tehind). A multi-packet protocol is necessary to 

take adva~~age of a !ead ar,ead and write behind scheme. 

specifine a multi-pac~et protocol, so~e ~eans of 

distinguisti~~ :~divldual packets r.ust be established. This 

is done by ~ivin~ each pac~et a seauence number carried in 

the packpt .ea1pr. The receiver retur~s ackn~wle~~ements 

indicatir.z the seo~ence nu~ber of the pack~t(s) received and 

accepted {i.e., no errors detected). The number of packpts 

that may be trans~ittod ~efore an ackr.owled~er,ent is 

received is called the pa:ket "window width". Packet 

transmission is controlled by ap aleo~ittm which 11ses packet 

sea~ence numbers a~d wind ow \l.'i~ th. At S;rstE~ 

initialization and anyti~E a co~~an1 packet is 

received. the SPQuence number of th~ FSS is reset tv zero. 

Thus the first seauence number expected by tte FSS upon 

system initiation :a~d afterwards ~po~ co~mand cam?letion) 

is zero. 

~or an explanati~n of how the packet winiGw works. 

let N(t) de~ote t~e tra~s~itted seouencp ~umber the 

:'lrrent packet and let ~Ht+l) denote the !lext expected 

5£cue~ce ~u~ber. The vjndcv width is denot~d by W. ~t thp 

start of communic&tin!l, e.~ •• when a ~ost s€!lds a com~and to 



the FSS. the Ecst is allowed to transmit packets bearing 

seausnce numbers in the ranee 0'N(t)<W. The re~eiver expects 

the packets to arrive 1~ correct seaue~tial or1er. As they 

arrive. packets a~e ch€~ked for correctness 'at both the 

hariware (USAR"n and software level); an incorrect packet is 

discarded anc may ce considered -., t t "rot-.. os,. ....J_ ;.. the seauence 

nu~ber ~f a particular c0rrectly receive~ packet be S. If 

S=N(t~l) (i.e •• tte expected packet), then the parket is 

received in the :orrect sr-oue~ce and it sr.ould be accepted 

by the receiver and ar acknowle1~ement sent witt the proper 

seouence number {in this case. S) to the sender. If 

S(N(t~l), then the packet is a repetition of a pacE.et 

previously received by the receiver; the second transmission 

~ay be due ~~ eit~er a lest or delayed a~kr.owledze~ent. T~e 

receiver should generate another ac~nowledFe~ent ani send it 

to the sen~er ara r.ther~ise ignor~ the packet. If S)~(t+l). 

then the packet is ahea~ of seouence. lndicatin~ that an 

ea~ily pac:,~ ~5 bee~ In~t: sqch a packet should be i~nored 

a~d an error ac~nowled£ement sent so the packet can be 

retransrni tteL 

fh~ arrival of ackno~led~ements at the sender also 

~epds tn be dts~ucse~. As each ack~owledge"e~t arrives. tbe 

sender car: delete the copy it has retained of the 

ccrresyond:ng pac~et. As packets are acknowledeed, fres~ 

parkets ca~ ~p tra~sp.ltted. i.e., wr.e~ packet 0 has been 

ac~nowledgec. packet W can be sent. ACkn~~le~Fements can get 

lost in tr~r.s~ission as w~ll as packets. If a received 



ackno¥led~ement does not refer to the earliest transfflltted 

packet a¥aiting acknovle1~eme~t. the~f i~ this protocol. th~ 

sender m.ay safely delete all packets up to aod incl~ding 

that refere~ced by ~he ac~n~wledgement. A~ainst each cOpy of 

a transmittei packet will be noted a time (i.e., the 

time-ont) by .... hi eh ti me packet r"'ust be ack"'~wle1ge1. 

Failing such an ack~owledgement, t~e pac!et ~ust be 

ret~a~s~itted with its ori~i,al seGuence number. A packet 

.ill only te received i~ seauential order, 50 it ~ill be 

packet. but also all later packets. The follo~ln~ flzure 

illustrates this protocol. The Queues sh1uld be co~sidered 

as circular wi tl- aut:>matic .rap-around. 

1 f ------------------------------------------- 3 

Packet ==-. --) - <-- Ac~ 3,4 

~ ~ 4: ~~ ~ k 5 ? 

In t~is fi~ure. the se~der is node A and the 

t'eceiver is node E. Node A has sent out ?ackets and 5, 

the last of vhicn is still in transit to B. No~e B has 

received all packets up to an1 includin~ 4. It has just 

aCYnovled~ed 3 a~~ 4 an~ is ready to accept 5.6. an1? when 

they arrive in ord~r. Whe~ node A receives ac~nowledgement 

for 3 and~. it will be able to tr3nsmit successfull] 

packets 5 and. 7. 

Thi~ prctnc~l irsures that pa:k?ts ar~ handle~ :n 

86 



seauential order which will insure that the data is r:ceived 

and stcred correctly. It also assures positive controi over 

the recei~t and transmission of packets; a necessary 

reoqire~ent to prevent bu!fer overflow and loss of 1ata. 

The !er~el controls all the hard~are assets. as 

e~pl~ined i, Chapte~ 1. Ker~el calls are t~erefore necessary 

to transfer packets between the FSS and the ?ost systems. 

The fcr~at of these Y.ernel ~alls are: 

Gatekeeper.Store_Packet {Offset. Status} 

!acb har~~ar~ port is virtuali2p~ into a~ input ana 

an outp~t port. tach virtual pori has associated with it a 

unit control bloc~ (UC3) at the Kprnel level. The elements 

of t~ese UC~·s ar~: 

3yte_Counter: This element is used to kee~ track of 

the number of bytes that have been transmitted or receive1. 

Thi~ CQur-ter is m{\tlul0 "packet size" S!: tbat !"!?jce pack~ts 

are synchronize1. they sh~uld remain so. It can be altered 

~ast ba~k into ~acket synchronization. 

3uffer_A1dress: ?his 1s the sterti~~ address in the 

input/~ut buffer w~e~e vackets will be p!ared (in~o=mln£) or 

tak~n fro1'i (outf!oinc;d. It j 5 i':11 tiaU led b:; t!l~ Setup f.ernel 

call .. 



1=uffer_Length: This ele~ent is t~e length (in 

packets) of the !~put!output buffer. This allows the Kernel 

to ~erform automatic wrap around at the e~d of t~e tuffer. 

nCB to prevent buffer over flo.. Each invocation of 

Store_Packet will advance the wir-dow and allow anotter 

packet to be stored i~to the Ie tuffer. If a Host system 

violates protocol by sendin~ too ~a~l packe+s. the Kernel 

viii dunp them to d -tit bucket". ltj~ ~i~~ent 1s used by 

the outuut port to cont~ol the nu~~e~ ~f packets ttat the 

FSS is able to send d Host !lefore receiving an 

th.is ;:c!'d:neter window 

width) ~ay te different for the various Host systems. it 

should net c~an~e after, an1 can therefore be set at system 

in1 tiali zation. 

:C~ a stnre ope~atior (FSS to receive ~ackets). a 

Setup call is ~sed to set the input UtE base address to the 

initial stora~e location in the 10 buffer. A SetuD call is 

also reauired to set the output UCB with the base address in 

t~e 10 ~uffer frore whicb acknovlea~.ents will be sent. It 

s~ould be Doted here thet the 10 buffer i~ the Ie process is 

t~e location that pa~kets are checkei for errors and 

rtenpacketed" or Mdepackete~". It is j~st a intermaiate stop 

for data and neither t~e final destination ~O~ ori~in of 

data. 

the locatlon of the next pac!et in the to tuffer to be 

S8 



precessed. The Ker~el will store ahead into the 10 buffer 

dUrine tbe store o~e~ation but will not over write the 

buffer. That is. eacb call to the Iernel will i~dicate th.t 

a new packet location is open. The 10 process will control 

which packets tand h~v ma~yj are se~t to the FSS by proper 

use of acknovledp-ements ~for both correct and incorrect 

packets) • 

1'wo Setup calls also necessary fer a send 

operation. Ther again set the virtual input/output ports for 

the tra~sfer 0f packets from th~ ~SS to a 30st. Subseoue~t 

calls to Send_Pac~et indicate t~at a Packet is ready to 

trar-s!!'i t te:l. The whe~ it can discard a 

packet by the acknowledgments it receives froy. the Host 

sy~ter§ 

is used by the 

s1~chrc~izati~~ ?~OCe1Urp tr- shift a OCB byte cou~ter i~ 

order to br!n~ parket tranS"lission back into 

tem~orar1 cOM~unicat!on irterruptlon Dr system start up.} 

7he fol1nvir,~ i~ a ~escriptio~ t-f the three DPY 

modules ¥hict make U~ t~e !O process. 

a. I., pu t 1011 t pu t C c"'m'Iaml Ha ntller Module 

~t the to~ of the 10 process ~~dule hi~rarchy is 

module is res~onsible for the interface .ith the ry; ?rocess. 



shared segment a~d synch~or.ization is through the use of an 

eventcount ar.d the !er~el pri~itlves TICKET. ~D1!~CE an1 

AVAIT. The procedures of this module alone with their 

Input/outy~t para~eters ar~ liste1 1~ fipur? cr. 

procedure a case state~eTt. routes ?~ process instructIons 

~he pr~cednrp involved when the Host command is 

not a RVHl ~! !-1:' or STOR'" "'11.? reo'!lest 1s the Tn C'lJd :!nd ~Ck .Lv - - -
prccedur~. Thi~ prOCedUT? is ~)"'g to invoke +' 

........... '= t,ne 

the F~ preces~) Bast ac~~ov!edee~e~t a~d/~r data tra~sfer 

The ane 

procedcres are relatively straizht forward. They provide the 

IC-FM process i~tertace reouired fer a or 

STOEF "F!1! ':lost reouest. procedures call the 

File_Har-dler ~odu1~ to ~rfnr~ tbe actual file ~~nipulaticr:. 

t. File ttandler Moqule 

~anlpulatlon in thp TO process and is the level in the 10 

process at which fIles a~e kro~~. The procedur~s which make 

up this module along ~ith their ir.~ut!output parameters are 

lIsted 1~ ri~lro 21. ~s rnp~tior.e~ above. t~~re are only tvo 

Rest recuests that reQuire the 10 ~rocess to bring data 

files int~ process r.emory. These ~!!D "FILE and 

90 



I 

PPOC!DtRE 

IO_CJT!d_ 
'!fn !l __ Ser.d 

l(: CJ":d 
Br:d_StOTe 

I,.PUT 

Mail 30~.MsR.?ath~a~e 
Mail=~ox.~s~.~ile_Size 

Mail_3~~.Ms~.Path~a~e 
~aiI_~ox.Ms~.Pile_Size 

OUT P1.i T 

Output returned 

rro~ s~bo~dinate 
modnles. 

F!~ur~ 2!l'. 10 Cc~mand Ear.dIer ~odule 
Inuu~/Output parameters 

??OCEDU?£ 

Flie_End 
Send_File 

~ile ~n1 
5t~re_¥ile 

P'!"oced.ure 

!liPUT 

~ail_50x.Ms??athname 
~ail_~o~.MS?Yile_Size 

OUT?UT 

?ilE_Succ_Cod.e 

Figure 21. File Handler Module 
p,!"ncedure I~put/Output Para~eters 



yr~cess. and ~ce the access to the data files lnvolv~1 is 

("ontroll ed the data file se~~r:\s can be v""' . -. in 'Process • 

b~cugbt directly l~to 10 process memory a~d any reQ~iTement 

for the 10 process to access directory files (otner than 

tree traversal) is pli~inatea. ~ecause th~ ternlnal n~des in 

the treE trave~sal are controlled by the ~ process. t~e 

~tbs to thesp ter~inal ~odes will not be alterable until 

control is relecsed by the ~x process. 

COT!sist two 

procedures ouerate in a similar manner. npon receiYi~~ a 

pcthname and file site fr~M the FM process, these procedures 

the 

~~de to the ?acket_~andler ~odule to transfer data from/to 

specIfied se~ent5. 

The order of events in the rea~i~~ a5d sto~in~ 

nf data flIes follows the following SEqUences. For a 

II ~iscretionary and non-discretionary checks 

are made in '-he y~ precess. .. 

2l ~ copy is made of the data file into a r 

per-process data file buffer. 

3) The ~athnaMe of the data file to be read 

92 



{re~e~ber, directory lata is read by the FM proce~s} is 

passed to the 10 process alore yith the rile size. Tn: 10 

process can de~er~i~e the file size fro~ the file directory 

but by ~~ssic£ rile size to the 10 process, tbis sten is 

eli~inated f~~ t~e 10 process. 

4} The read takes place in the 10 pr~cess. 

?he 10 process retur~s to thp PH process with 

a success code or -read co~plete- or an a~propriate error 

process is the receipt of an abort co~~~d rr~ the Host or 

for SO~ unexplained reaso~. 

10 process to 

error co~e. ?be data ftle Tead bnffer is the~ free for 

further ilse. 

rcllowin~ steps are taken b~ the Supervisor: 

cheCKS are ~ade by the '" process. 

21 I t~porarY ~ile 1s ereate~ ~7 the Supervisor 

lar~e enough to store \~e file in. ~p~r~priate use or the 

syncbronltati~r. p~i~itl?es pre~nts this t~~orary file from 

bein~ used by ~crp than one pr~cess at a ti~. 

3) The pathDa~p of the te~porary ftle is 5e~t to 

tbe 10 process and tne 10 process stores the file inte the 

temporary file. 



The 10 process returns a success ~ode to the 

~M process and tre FM process updates the directorY to 

reflect the new file (viz •• Entry Na~e of teMporary fl!e is 

changed to the old file Fntry_Name). The ol~ file is tben 

delete" by the PM process. 

5) The PM precess then instructs the 10 process 

to acknowled?~ the "store complete~. There is no reason a 

store operation should fail other than an explicit abort 

reauest by the Host system or har1~are failure. 

c. Packet Handler ~odule 

the actual 

transfer of 1ata between the ~SS and the Host system and is 

the 10 process level at which the ccncept of "packet" is 

known. The procedures of this module along with their 

input/output para~etprs are listed in fi2ure 22. The tasks 

that this module must perform are: 1) synchronization of 

packets. 2) error detection. 3) packet acknowledgeMent, and 

4) transfer of data to/from Supervisor segments. Fi.;;;ure 23 

is a fi~ite state dia~ra~ of packet transfer. 

The synchronization task is performed on the 

system 1PL and whenever packet synchronization is lost 

thereafter. 'Frror Ile~ection and reauest for retransmission 

upon error detectic~ are co~pli~entcry funct1or.s which are 

perfor~ea on every packet received from a ~ost. 

Packet tra~sfer synch rani ~a ti on 

procedures is in erouns of three. This allows the 

94 



PROC'SDUP.~ INPUT OUTPUT 

Pk End Sync Sy~c tmd Packet Sync 

Pk Hnd 
Ack 

Pk Hnd 
Send 

Pk Hnd 
Store 

Packet Pk Suce Code 
Mai1~Eox.MSR.SUcc_Code 

Data Packet 

Paclret Data 

7i~ure 22. Packet gandler Modele 
Procedure Input/Output Parameters 

95 



Error 

c:nd c!T'pl1: 
abort 

Write 
Packets 

> 

read 

reply 

~<~ _______ cmd pac~~t 
t 0 F~ process 

F!~ure 23. ?inite State Diaeram of Packet Transfer 

96 



synchronization procedure to be~in synchronizat!on in the 

middle of the first packet and still have t.o vackets to 

confirm synchronization when it is achieved. 

Packet transfer of command packets occurs one at 

a time. The reason for this is that each command packet must 

be acted uvon in a synchronous ~anner. Data packet read 

ahead and write behind is per~itted to increase the transfrr 

rate of data packets. The nUMber of packets that are allowed 

to be sent or stored depends on the Ie buffer size. T~e 

P3cket_Handler module is also responsible for data 

~enpacketing" and "depacketing" for the F55. 

The Pk_End_Sync procedure is used to synchronize 

packet transmission. It is explicitly called at I?L and 

whenever the packet synchronization is lost by the Host 

SysteM. It is invoked implicit!y by the FSS whe~ever a 

paeke: is not able to be decoded {viz •• the packet type and 

packet check-sum are incorrect). 

procedure is ~sed to ser.d 

acknowledgements to the ~ost systems. This procedure will 

always be callen fro~ the IO_Command_Ha~dler ~odule which 

will reQuire the PaCket_Handler module to either acknowled~e 

the Eost with a syecific ~essa~e or to send some data 

located in a mail_box segment buffer to the Bost. 

The Pk_Rnd_5end procedure is used to transfer 

data segments fpom the FSS to a Host syste~. This procedu~e 

is called from the File_Handler module which makes sure that 

the correct data s~gment is i!l process memory for the 

97 

. , .. 



t!'ans fer. The seg!'len t number along with the number of b1ts 

that are reQuired to be transfered are passed to this 

procedure from the File _Handler module. This procedure then 

transfers the seernent until the specified number of bits 

have been transmitted. A success code is returned when 

action is co~plete. 

The Pk_~nd_Store procedure .crks in a manner 

c~mpletelY analo~ous to the Pk_Hnd Read prcce1ure. 

98 



II!. CONCLUSIONS 

This des1~n aDp11es state of the art software a9d 

hardware to solve the 5~~~re multilevel computer problem in 

a file st0r~Ge System. It presents an inexpensive but highly 

nowerful desi~n for a system based on a ~icro-computer tut 

not restrlcte~ to a ~icrr-co~puter enviro9~ent. i.e., there 

is r.o restictior o!!. the 
-

type 0 :> 
• .I. Host computer systeM 

serviced by the FSS. I~ple~entation of this desi~n en Z8e0e 

hardware alon£ with t.he analysis of YSS design parameters 

!~ppendiT A) are ~as~s left to be done. 

There ar~ two major classes of applications fer the rss. 
One applicati~r. uses the !SS as a syste~ file system (e.~ •• 

for iistributed micros'. This implies that the total syste~ 
/ 

is ~ultilevel secure vit~ r~ly oce secure component (vi~ •• 

the Kernel). It must be noted. ho~ever. that in this 

ca~figuratio~. the distributed Hosts (i.e .• the mic~os) have 

no autcnomocs life. 

The ~ther cla~s of appiicaticns. involvps usine the ISS 

as one elemer.t of a ~et of 2utonow:ous Eost systeMs. In this 

ccr;figuratio~. thp FS5 pr0vi1es facilities for controlled 

data starine and co~mu~i~ation. 

An or,v1o~s direct appii~ation of the FSS. is for 

Shipboard use (e.~ •• for t!1e SN~P-II system [S'1'lithl) or for 

use at ot~er installations «here Q?ta ~oul~ be more 

efficiently ~se~ if cont~olled data sharinp- v.e~e ~ll~.ed. 

9£ 

- -- -=='" -= --



A major desi~n choice of the FSS which allowed t~e 

Kernel to be kept small (and t~~refore more easily 

verifiable~. vas the eli~ination of the discretionary 

security from the Kernel domai~ to the Supervisor 1oroain. 

The implication of this choice is that each Host syste~ is 

responsible for its own iiscretionary security; not an 

nnreasonable ~ecuest or desi~n choice. 

The next maj~r task to be accomplished i~ this pr~ject 

is FSS i~ple~Fntation. This yill net be a trival task. tut 

it is felt that the desi~~s presejted in this thesis and tne 

companio~ work done by Cole~an p~ovide a solid basis. 

P. ~Ot10~ ON WORK 

This desi~;. is a specific iwple~e~tati~n of one me~ber 

of a family of Qperatin~ systems basec on the Security 

!err.el co~cept discusse~ ty O'C~r.;.ell a .,d ?ichard sor. 

[O'Conr.elI1. There are obvious areas that this desi~n could 

be expar.~c~ 3~d ~e~era~ized; areas that snou11 be exa~i~ed 

after a surcessfrl first imple~entaticn. Some of these areas 

are: 

• t"+' "+ Lo ~ • opera or uer~lTIa_ In~errace !UnCIOns 

mav of different use~ na~es in ~iffcrer.t Eosts to a 
co~~on "user" in the TSS 

m~ltilevel Uosts 

movin~ dis~retionary sec~rity into the Kernel domai~ 



These are just a fe~ of the ma~y possible areas fa: 

e~pa~5ic~ that rnuld be pTpl~re~. O~e area ~pt wpntioned ir 

the list tut a~ area that should be loo~ed at ~uring th~ 

initial is for c ~a1 to pr£vent t~e 

-S~pervisor from s~fferir,~ a se~~ent fau~t·. The Dr~sent 

arra~~e~e~'. vi~h a !aul+ ~and!er. is not efficient or 

·ele~ant·. Since the delet!~r of a se~rnent is controlled by 

'o~phan' cOpy ir. process ~e~ory would eliminate faul t " 

ccn~itin~. 1be orly operation t~at would bp defined on this 

orphan would ~e a nelete Se~nent cc~man1 by a orocess to 

re~cve it fror. ~rocess ~e~~ry. ~fter it hac tee~ deleted by 

all processes. the co~y could be destroyed. ~ variation of 

this sche~p ¥~uld. upn~ a Kernel Swap_In call. swap into 

precess ~emory a pe~-proces5 COpy of the desired segment. 

1~1 



S~ALl 

MPDIUM 

LARGE 

Pathle"lgth 

~ -

Segrre~t size 

Seg;r.ent size 

"'ax file size 

~~a:r diT' entries 

'~3X ~ c1 !'n tries 
per directory 

Max 

Size 

512 bytes 

2! bytes 

5! bytes 

25e~ bytes 

1024 

128 bytE's 

1e 'b:,-tes 

. -



AP7rY -SUCCESS ANr :ERC-4. CC-1S

V.- ULOCAT ION

Vi 1 c C rea

S t n.ro Cci--p" ete

o r'

n 7 -el nir~ trectr'-y C-troi

la -a~s tnt el--

"n lV..

0- rm Tr

VrC-~ tr-r

19



~ALS'2 := 0 

~U11 : = ? 

JI~ CNT51 JIFFC?C?Y ~?Or~Jc=~ 

R?TU~'S '~rR sr~p rr~~ 

!f('\~ hrs~ ;:"rt1s. 
1elete- :ile. 
cr-eate-file. 
c:reate 11..,1:-. 
read eel. 

- -

::ond ;;0,., "'.., ... _ .. 
- - _ - ___ ...... 1 II. ;f. .Y • 

1ele~e_acl_e~t~v! 

?ArE~A~E S?~Il~ 
?i~~ !Y?~ 3:iE 
!r~~~s :~V~: ~YT= 

US~;l!n l:!TY 
P~!H~AMF Sr~I1G) 
~!L! S!ZF 1&O:~) 

!fo~ host ~TCS t~a· 3~C?55 ~~ta fiIp: 
read fi Ie. 
st('\"'e file! 

BIT? 
US~TJ 

ST311\S} 
~!TUP~S :DI; sure co~~ ~YT=) 

!tn update di~e~t~ry after 20 ~rQCPSS 
acts f''' tr.s~ c-~j~: -~=d fil~. s.t"rp fi1 Q • 

ailor!! 



DO 

or: 

5 ta terrie-c t 

~~!l :Ol.~S~.!HST := ~~!~_CM~ 

M~!L 3C!.~SG.?AT3N!~~ := ~ULI 
~~I! 3QI.~SG.YIL: S!Z! .- ~UL~ 
v;IL -P3!.~s~.sr~~-~o~~ := ~UI; 
t :=-;!T~!~EP~~.TICK3T :~AI1 ?01. 
G!TErE~p~F.~Y;~~C~ (rAIL EOX~ 51 

13EK 
I'P !:(lS! !'~~ 

CASE D~LE!~ ~!!.E 
~;S! C?E~T:-FI!~E 
r~s~ r:l~!T~ II~?:' 

TE?'= 
~=~ . .,! ... .. 

CAS~ ~E!n ?I~~ T~E~ ?~ r~r 2~r ~~~~ FILE 
CiSE STOE!_ ~!1E rp::~ :R_rw~_H~j_5TOF?~FI~~ 
c~s~ R~!~_~~l T~~~ ~M_rMr_~~D_a=!J~!CL 

rASE ~~r ACl ~~T?T ?E£~ ~~ r~~ B~r Afr A:1 E~~~Y 
r:s:; !):L!:!:~ :~~!,;._:r~T~! ?E~'1-~;_C~J ..... E~J~D!:L¥f: ~rL :~~_-! 
~!5P !~O~T T=~~ ~~_r~n_=s~ ~~Onr 

--~.. - i ....... iiE-

-~""-
rA!L_5CI_~S~.I~ST := ~C!_FfSr 
~~!L ?OI.~S~.?!~N!V~ :: KUil 
~!Il 3rI.~SG.:IL~ SI7~ := 'ULl 

if;~~~;~:-~;;?:~:i;~~*f !:'?ii=;bx:o~i 
G!?E~~~?~~.~~V~~C! i~~!L 3CX. C} 
~~I!~E¥P~F~~~~!T fV~It 30X. C. it+2:) 

~~II ~C!~~s~.r~ST := ~r7 ~C~T 
V!!I-:OI.~S~.?~Y=K!~~ := Nut~ 
~A!; 3rI.~SS.¥IL= SIZ~ := ~ULI 
~~!l~BC!~~SG.SUCC=CCDF := E:~O? rOJ: ~CrJ ?!_:!?~C!EDi 
t := ~~T~!~~p~~.?!rT.~l t~!I: ~ci, ~l 

GAT~~~~p!~_Ari;'C~ ~X~!1 =~X~ ~) 
G~T~!f:P~F~~Y!!~ i~~!L ~Ol. c. ;~~2j) 



I~TERNAL 
~~SG ;:: 'FY T"' 

FM CMD.RND DELET!_FIL~ ?~OC~D0RE 
ENTBY 

MS~ := D~1~T~ P!L~ 
DIR_C~rRL_~I~EC~CRY (~SG 

USFPID 
PAT:rNAM~ 

~ULI !file_t:lpel 
~ULL !acress le~pl! 
NULL flink! -
~U L L) ! a e 1 _ e !l try! 

!returfts dir sure cod~! 
I~ DI~ src~ ~O~~ ; TRUF 

THEN -. -
MAIL BOX.MSG.INST := ACK SCST 
M~IL-POX.MSG.PATBNPMF :=-NJLL 
MAIL:Brx.MSG.FILF_SIZE := ~ULL 
MAIL BOX.~SG.SUCC COD! := FILE DELETED 
t :=-GAT~K~~pTK.TfrY?T (M~Il ~6x. C) 
GATEKEEPEq.ArVA~C! ~MAIL BCX: C) 
GATEKEEPER.AiiAI'r (t-1AIL_130X. C. (t+2)) 

"E'lSE 
~AIL_3CX.MSG.I~ST := ACY_HOST 
~AIL BCX.MSG.P~THNAME := NULL 
MAIL-]OX.MSG.FIL~ SIZ~ := ~ULL 
MAIL=BCX.MS~.SUCC:COtE := ERROR_CODE (rIi_SUeC_CODE) 
!file r.ot found; write access to directr.rv 
not oermi tted r 

t := GATEKEFPE~.TICKFT 'MAIL BOX. C) 
GPTEF.FEPF?"Di~NCF (~AIL 50X~ C) 
G~T!':K?~P~R.~W~IT (MAIL llQX. C, 't+2)) 

FI --
END FM_CMD_E~D_DFLFTF_FIL~ 



--==--~----~:C~~- ~-~-~- ~-~~-:~~~--~~~~ =::: =:-_-'E=-~~_=cc~ __ ;;:..: __ --=!:§~,.-~=~~-;=-~---J!i§i~~~~~~~~~:=~=e~=~~~}~ __ 7--

- ~~- .... ------~ --~~"--~~- ----- "<-~~- --~~~~--="------..-=------ ~~---

FI" ,t~D ;::JD C~E?TF t'I!.F P?OrE;)l;FE - - _. 
'E' "y 

~5G := CSEATE FILE 
DIS .. C~TRL_DI PEeTOR Y (MSt} 

US~R!D 
PATHNAi1E 
FILE_TYPE 
Arr1i'SS L"TJ;'t 
)lUL1- !li!1k! 
NULL' !acl_entry! 

treturns dir succ code! 
IF DIR SuCC f0~E ; T?UE 

THEN- -
MAIL FOX.MSr..INS~ := Ar.~ ~OST 
MAIL-BOX.MSG.PATHNA~E ::-NULL 
MAIL=BOX.MS~.FIL~~SIzt ~= ~UL~ 
MAIL ~0X.MSr..SU~~ ~O~1i' := t'IL~ CP.~A7FD 
t :::-GATEK'EFPF.~.'rfcKET (~1AIL 30X, C) 
GATEKFFPEF.~DV~~CE (MAIL FOX~ C) 
GPTFT{FFP'EH .flWQT (r-;6Jl '1lQx. C. (t+2)) 

ELS~ -
MAIL BOX.MSG.INST := ~C~ neST _. -
Mf.IL ~OX.MSG.pnT~NAM~ != ~UlL 
M t. I L .. B (' X • M S G • F I L"€ S I Z E : :: \lJ L L 
~JIL=~OX.~Sr..SUCC=CO~F := RFROF_CODE (DIH_SUeC_COnE) 
Idirpctory not found: ~rite access to directo~y 
foot perm1:ted; 1irect0fY Pull! 

t := G~T£KE~PFR.TICKFT (MAI1 30X. C) 
GATF~1i'1i'prR.~nVANrt' (~~Il ~OX: C) 
GAT~KEEPER.AWAI·r (MAIL BCX, C. :t-r2)) 

FI -
~~D 'M_C~D_HN~_CFFATt'_~Itt' 

107 



'M_CMD_CR?ATV_1!~V ?ROC~DUR~ 
~NTRY 

MSG :~ CRE~TF: LINK 
DI~ eNTRl ~TR~rTORY (MS~ 

US~i{ID 
PA TP~HME 
NUl.!. ! f i1 e type' 
NULL taccess l~v~l! 
LINK 
NU I L) J a cl _ e n trY! 

!ret~rns dir suce co1e! 
IF DIP. SUCC COD! ; TFUr 

TP."".j- -
MAIL BOX.~SG.I~ST := ACK HOST 
MAIL-BOX.~S1.P~T~N!~~ :=-NULL 
MAIL-~OX.MS1."IL~ SIZ~ := ~ULL 
MAIL-BCX.~SG.SUCC-CCDB :~ lI~K C3EATE~ 
t :=~G~TEK!~PL?TfcKIT (~~IL BOX, C~ 
GAT~K?EPFp'.a~V~Nr~ (M~!l POX~ c: 
GATEKE!P!R.A~~If ~MAIL BBx, C ~t+2)) 

ELSE -
~A!L ]OX.~S~.I~ST :~ ~~K ~OST 
MAIL-BOX.MS~.PAT5NAV:E :=-~ULL 
M~IL-BOX.MS~.lIL~ SIZr := ~ULL 
~~AIL=~OX . ...,S~ .SUr~=COD" :::: 1i'RRO:l_COJF (:JIR_I)UCC_CODE) 
!dir~ctorY ~ot f~u~~; write access to directory 
not ~er~itted; direct~ry full! 

t := G'T~!~~p~R.TIrK1i'T (M~IL ~OX. ~) 
CATE!E~P33.A~VA~CF (~AIL BOX: C) 
G~>TFKE:P'ER.~"i.qT (t.'!!\IL BOX, C. (t+2») 

fI -
E~D FM_CMD_H~D_CRRATF_LTNK 



FM CMD_?EAD_FIL~ ?~O~ErU~E 
ENTEY 

IF FILv TYPF ~ n~TA 
THEN 
MSG := EEAJ FIL! 
D!R .. r.NTRL_l)~-T~ (~SI} 

USE;~I !) 

PATHN n t-'F 
NU!.L) rfile cize! 

!returns dir_suec_code, dir:nathname. 1ir_file_size! 
IF DIH suec CODE = T?UE - -T!1,;'N 
MAIL_BOX.~SG.I~ST := READ_FIL! 
~AIL BOX.~SG.PATH~~~! := DIE P~THN;~E 
~ftIL·~OX.MSGoFIL~ SIZ~ ~~ ~IR FIL~ SIZE 
MAIL-~OX.MSG.succ-r0t~ :: ~ulI -
t :=-GATEvr.FPl'?Tle~!T (,.HIL 130X, r.) 
GftT!K,;'VPvR.~~V~Nr~ !~AIL ~ox; C) 
GATEKE~?ERoA~AIT {MAlt_30X. C. ~t+2)) 
IF M~IL 30X.~SG.SUCC CODr = T?UE - ~ TU"!i'N 

MSG := Upr!T~ REA? 
DIE eNTRL UP~ATE (~S~ 

US'r:UD 
PAT!!\!AME) 

!update will ~o~ fail! 
~aJL ~OX.~SGoINST :~ AC¥ HOST 
MAIL~BOX.MSGoPATP.~AME :=-~ULL 
MAIL BOX.~SG.FIL! SIZ} := ~ULL 
MlIL-~OX.~SG.surr-r~~~ 0= R~~D COMPL!T~ 
t :=-GAT!K~EPE~.TlcrvT ~~AIL ~CX. ~) 
GATEK!FPFF.ftDV~~C~ 'rAIL BOX~ c) 
G~T~y'~vpvR.ftW~IT f~~I1 ~ox. c) 

ELSE -
MAIL 30X.~SG.INST := ACK gOST 
MA!L-~CJoMSG.PPT~~~MV :=-~UIL 
MAIL=30X.~Sg.FIL~~SIZE := ~ULL 
~~IL BOX.rSG.succ CODE := ~~IL 3CX.MSG.SUfC conE 
!errar code retur~ei from io p~ocess' 
!filc rrt ¥ruad ~y j0 prncess; 
file read aborted by write; 
file read acorted by file jeletion; 
c~~ pac~pt receive~! 

t := G~TEV.!~PEF.TIC~ET (M~I1 30X. C) 
nAT~rv~~~~ anv~~rv !~AI~ ~cy- r) ,~!t .~ .A ~... _F •• 10 ." -.. _ I., 'J 

~ATEKFr?F.?~WAIT !~AIl_BOX. C. (t+2») 
~J 

ELSE 
MAIL_BOX.MSG.I~ST := aCK_ReST 
~~TL rOX.MS~.P!THNA~~ := NULL 
MAIL=BOX.~SG.FI1E_SIZ~ := ~ULL 
~AIL BOX.~S~.SUCC rODF :: ERROR CODE (~IR_SUCC_CO~!) 
lfil~ not found: -
read arce~~ tn filp ~ct per~itte".! 

J 

I 



t := G~T~vFFPE?TICKE~ (~AIl 30X. C) 
G~T~Kr~p~~.&rvaNC~ '~all ~OX: c) 
"AmWKP~~7D A~ATT 'MAIL ~Rv ~ rt+2» u __ *~ ... ± J. ~~'". I"f .. ~.- \ • .a_ __\.I.i\.1 V t \ 

FI ~ 

~lS: 
IF FILE ~YP~ = rIRECTC~Y 

TRI~ 
MS'i := R".:'ft;1 :'IR 
rI~ C~TRl ~lq~CTO~Y :~SG 

CS!FI~ 
P~T~N~~F) 
NULL !fil~ t'lee! 
~ULL !access' level! 
~ULL ! li r:k ! 
'JULL) !ac1 entry! 

!retu~~3 di~ suee c01 c ! 
IF ~IR sur~ ~O~~ ; TRU~ 

TEEN 
~A!L ;OX.~s~.INST := ftCy' ReST - -
v~:L ~ox.~S~.?ATRNAMF := NULL 
~AIL-3CX.VS~.FIL~ SIZE := ~GL1 
M~IL-~ox.rs~.s~CC-CODF := ~IE 2£~J corpLE~E - -'" - ~ 
!dir iata transfered fr0~ ii~ buffer: 
ack~0wle~~eT.ert se~t! 

t := ~~TE~~RPEP..~IC~ET '~aIL SOX. r) 
GAT~K~~?~R.~~V~~~~ I~Pll ~CX~ C) 
}ATF~!~P~~.AwAIT (MAIL BeX. c. (t+2}) 

ELSE 
~alL ~OX"MS~.INST := ~CV ~OST 
MAIL-BOX.V.SG"?AT3~A~E :=-~ULL 
rAI1-]OX.~SG.JILE SIZE .- ~Ult - -~~:l ~OX.~S~.SUC~ ~0D~ != ~?ROR ~OD~ ()!~ suce cc~~) 
Idi~ectn~y ~~t fn~rd. 
~ead access to iirec:orY ~ot per~itted! 

t "= ~~T~~~~?~R"TIr:'F~ 'v,n!L ~OX. ~) 
~ATE!~~?~~.'rVA~C~ '~A!: 501: C} 
;~TI!!!P!7.~W~IT !~!1: BOX. C. (~+2» 

!lSE 
rSG := F!t~ !~TfY D~T~ 
~I~ rNTR: r!?~~TORY f~S; 

USE'iID 
Pp.TH:-J!of'1E 
~:ULl ! fi le type! 
~U1L !access lpvel! 
"lULL !li:-'{! -
NULL \ !acl_er.t!'y! 

!returns lir Slice C01e! 
IF DIP suce COD! ~ T?UE - ~ 

'l'tr~o.! 
~ _ :'i 

MAIL BCX"MSG.I~ST := Aey. BeST 
~AIL-!OX.MSG"P~TH~AME :~ NULL 
~AT1 ~OX.Ms~.~ILF S!Z~ := NULL 
~AIL-BOX"~S~"succ-crD! := ENT~Y READ_CC~?L!TE 

110 

1 

I 
I , 
I 
I 
~ 

I 

~I 
- ~ 



'e~try 1ata tra~sfered fro~ dir buffer; 
acknowle1~ement sent! -

t := GAT~KEE?E~.TIC~~T (MAIL TIOX, C) 
G~TEKF.~PEF.4Dva~CF 'rAIL BOX~ Cj 
GATEr.E~PER.AWAIT (~AI:_~OX, r., (t+2)) 

~LSE 

FI 
FI 

M~!L_~OX.MSG.INST := ArK_HOST 
MAIL 30X.~SG.PATH~AME := NULL 
MAIL-BOX.~S9.FIL! SIZE := ~ULL 
M_IL-FOX.MSG.surr-ron~ ~= !RROR COD! (tI~_SucC_COrF) 
!file ~f't fOlll1d; rE'a~ access to-fl1e not permitted! 
t != G~T?r??PE~.TIC~FT (M~IL BOX, C) 
~AT~K~~?~R.6nVANr.~ [M~IL_~OX: C) 
GATEK~EPT!R •. ~WAIT '~All SOX, C. ~t+2) 

111 



=---====-=-.:::- --~-§===--=--~--- ~- ~----~------~ -~--

FM_CMD_HND_STOR~_FILE P~CCEr.U?E 

ENTRY 
MSG := STO~~ vIl~ 
DIR_CNTRL_DATA (MSG 

VS E:R ID 
?AT~NAIv!~ 
FILE_S IZE) 

!returns dir nathna~e; dir succ cede! 
IF nIR_SUrc_~b~~ = TRU! -

THEN 
MAIL BOX.MS~.I~ST := S~O~E FILE 
MAIL-POX.MS~.P!T~N~MV"= ~ ?ftTEN~~! 
MAIL=B0X.MSG.FILE_SIZE: Ir~ SIZE 
MAIL BOX.MS~.SUCC COD~ ~r1~ 
t :=-GAT"K"~P~R.Tlcr.~T IM~Il rOX. ~) 
GATEKEE~E~.ADVA~CF (~AIL 3CX: C) 
GATEK!EPEP'.A~lq,!, (MAIL BOX, C. (~+2)) 
If M,AIL FOX.MSG.SUCC r6D~ = TRU~ 

TE~~ - -
~SG := UPDATE STOEE 
DI~ CNTRL UPD~T~ ~~SG 

- USE~ID 
PATENAf"171 

!update will not fail! 
MAIL BOA.MSG.I~sr := ACK ROST - -
r.AIL BOX.MSG.PATHNftME := ~ULl 
M~IL-~OX.~Sr..FT1F SJZ~ := ~U1L 
MAIL-BOX.MSG.SUCC-CCDF := STC?E C0~PL~TE 
t :=-GATF~F.FPE~.TICKET (r~IL BOX, C) 
GAT~KvFPFR.ft~V~Ncr '~8IL ~OX: C) 
GATEKE~?E~"AWAIT (MAIL_3CX. C, (t+2» 

ELSY 
M~IL ]OX.~~G.l~ST := ~~~ vOST 
MAIL-BOX.Msg.PATE~~ri :=-~ULL 
M,~IL-~CX.Ms~.FILr SIZ~ := NULL 
:1AI1-BCX.MSG.SUCC-CO!~ :: MAIL 3CX.MS;;.SUCC COD! 
terror returr.ed fra~ io ~r0cess; -

cmd packet received: improper ~u~ber of data pacE.ets! 
t := GATEf.EEPE~.TICrET (~AI; BOX, C) 
GATEKF.FPER.!DVANCE '~;IL BOX: C) 
GATEy'v~pvR.awaIT (MAIL ~OX. r. (t+2») 

F1 -
~LSE 

M,~IL ~OX.MS~.I~ST := ~CK QCST 
MAIL-BOX.MSG.PATP.~AME :=-~U1L 
MAIL-BOX.~SG.FILE SIZE := ~ULL 
M,AIL-POY..MSr..sur.c-rcn~ := ~~ROR CO~! (JIR suce CO~~) 
!fil~ not f~qnd; ~rite access t~ file not-ner~Itted! 
t :~ G~TF.KEFPEP..TIC~fT (~~IL EOX, C) . 
GATFK~FP~R.6~VftNr~ (~aIL FOY~ r) 
GATEKEEPE~.AWAIT (~AIl prX. C. {t+2i) 

FI -
~ND FM_CMD_P.ND_STOR~_FILF 

112 



I 

F~_C~~_~~D_RF~D_arL PRO~~:'Un? 
E~JTRY 

MSG := READ ACI.. 
DIR CNTRI rfR~rTORY (MSG 

USE~ ID 
PATH'JAMF 
NULL !file type! 
~ULL !access level! 
NULL '11 ~k! 
NU L L' ! a C' 1 _ e J: t r .v f 

!retllrns dir succ rode! 
IF DIH suee CODE ; TRUE 

T!lFN- -
MAIL BrX.MSG.INST := ACK HOST 
t-1AIL··BOX .f'1SG. P~TF.NH~F := -NULL 
~AIL=POX.MS~.~IL~_SIZ~ := NULL 
MAIL BrX.MSG.SUCC COD? := ACL ~EAr CCM?LETE 
!acl-~ata transfered froT; ael-buffer: 
host acknowledRement sent! -

t :=- GAT!:KBli'PE'-'.TICKFT {;-tAIl. 30X, (') 
~~TFKEFPEF.t~VA~CE (~~JL BOX~ C) 
G.6TT"rli'FP~R •. q1!!T (r·-!uL_'OOX, {'. (t+2)} 

ELSE 
~AI1 BOX.MS~.INS? := 'r~ FOST 
~ftrL-'OoX.Ms~.paT~Nft~Y :=-NULL 
~AIL 30X.MSG.FILE SIZE := ~ULL 
MAIL-ECX.~S~.SUCC-CODF := F?~O~ rO~F (JIR suee CODE) 
!fil~ not foun~; ~ea1 acce~s to-directorY file 
ret pe~""ltt£'d! 

t := ;}I'TEKEFPE?TICKFT (NH!. BOX. C) 
G~T~Yli'~pli'R.apV~Nrli' [~AIL POX~ C) 
"AT .. v ...... plC" A" A l m (MAIL ~·(l·X C (t+2)) U1\ ~~_ .. _~.~.j .. ~ 1 \01 _'., 

FI -
li'~~ FM_rMD_PNJ_??AD_ftrL 

113 



'P''1 C~D ::'H) !>.n!) H'I. "'NT:tY ?RO,.FI'UR'" 
E~JTRY - -

MSG := A~D 'Cl ~~T?Y 
DIR C~TR1_~I~~rTO~Y (MSG 

uStR.lTI 
PA'!'Et~Ar-'E 
~U:L ! file type! 
~UL1 !access level! 
~ULL !2i~ir! 
ArT 't't.;,?~y' 

~_ " .. _ ... ;. I 

GATE~iFP~R.AW!IT {KAIL 30X, C, 
ELSE -

M~TL_~0X.~S~.!~ST := ~~r_~05T 
MAIL 30X.MSG.?'I?NAME :~ NULL 
MAIL-!OX.~SG.!IL! S!Z~ := ~ULt M~IL=~('''i. .~·S~ .SU~C=COl'1;' ~= "t'p.?"OR_rQ!-1:" ~!)IR_SUCC COD!} 
!file ~0~ ~~und; ~Tite access to ~irpct~r1 10t 

'FI 

permitted; arl entrY ~nool" e~nty! 
t' := r,.~T';-I{'t;'~P~-q~Tlr.f.1i',!, f~n:_ ~Ox. C) 
GATEY.!EPE!L~!'V~.~C~ (~~_Il POX: C) 
G~TEKE~PEP.!WqT (~H~ 30:(. C. f~~2)) 



1'," _ CMD _!:'JD_DEL t.:T::_ P.CL __ E'JT!i Y p~OC ::!'U ~~ 
~NTF.Y 

vS~ != D~L~T~ ~rl ~~TRY 
D T~ CUT~l nIAiCT05v !~~G ... :t_ ..... ...: '_. ....... . .... \1 . ..., r 

USE":ID 
P~T!!Nftt'A .. 
NULL !:ile_typp! 
~ULl !ac~pss Ipvpl! 
NU:'l Ilirkf -
ACL ~NTRY) 

!returns dir 5UCC ~nde! 
IF nIR_SUCC_~on~ ; TRU~ 

TEEN 
M~IL BOX.MSG.I~ST := ~rK ~OST 
~~!l-~OX.MS~.P~TqNP~~ :=-NU11 
~AIl-30X.MSG.!ILE_SIZ~ := ~DLl 
r~I: EOX.~SG.SUCC rODE := ~Cl E~TPY D?~ET~~ 
t !=-G~T~Kr~p~~.!fcK?r 'Mal! iOX, rJ 
GA!?\~~PER.ADV~~CF !MAIL ~0X: C) 
r~T~~.rp~~ fthlAIT (MAlT ~OX C (t+2}"., J .... - .. -. _.... ~,,_ J_ ... r ~. t 

YLS't' 
~All_ErX.MSG.I'JST := acr_HOST 
~!-I~ 30X.MS~.P~TF.~~Mf := NULL 
v~Il-~OX.MS~.~IL~ SIZ~ ~= NUL! 
MAIl:30X.~S~.SUCC:CO~F := E;~0~_~O:F :rla_SUC~_COrE) 
!fil~ not !ouci; ¥ri~~ ~rces~ t~ directnry ~ot 
permi t ted t 

t := G_~TEKEF?E~ .1'ICK~T 'tvlAIL ~OX. n 
G~TF!EEP!?ADva~c~ (raIL HeX: c) 
G~T~v~~P"~.!\iqT (MAIL "OX, r, (t4-2)) 

FT -
E~D F~_C~~_~~D_D~LETF_ftCL_E~T~Y 

J 
1 



F~_CMD_END_~~OR! P?OCEDURr 
"':'1'RV _ow .. ~;o • 

MSG := !''COHT 
DIF_C~T~l_uPD~T~ (~S~ 

US~!H'" 
'?ATHNA~E) 

!st~~e c~d ~~p~~ tn f~ee ~p~prr~ry 
~~IL ~OX.MS~.I~ST := ~CK ~OST 

::: ~UL!: 

file! 

~.Il POX.~SG.surr ro~~ != CM~ !~OR7?n 

t :=-GATE~~E?~~.TYCKET \~AIL ?OX. C} 
G~TEK~~PE~.~D~!~C? f~AI1 ~OX~ Cl 
~ATy~~~~~~ !~aI~ (~!?T ~0Y r ft+?\' J ~ ,. ~ ~_ _~.... II .. ~ 1 _ ~ .- • • • _, J 

E~D F~ C~D E1r A~r~T 

l1F 

i 
I 
j 

I 



!:XTERN n 

l~C~r} !nuntlr cf bits! 
?ETUE~S (P:' seec COD? 

I.*,,03D ?~ ~ND S~ND ?Ror~rUR~ (S~~ = 
SIZE 

R~TURNS '?~_surr_ftO~F 
Li\O~D) !;uT-b~~ c: bi ts! 

~""T~\ 
--. - ~ I 

FIlE_q~r_s?~n_F!L~ ?Roc~nu~~ '?tT~NPM~ 

R~TUR~S :~IL£_~urc_co~~ 

?IL~_E~D_STO~E_:!1~ ?ECCF~UFE (?lT2N!~E 
?!lU3~S IFIL!_SUCC_~orE 

10 r~D ~~n ?ROr~~~R~ 
E'JTRY -

t := ?ICK~T (r-!IL =OX. c' 
~ ~! IT"" AT r ~O y (i ( 't ~., 1 , _ __ iI." .. - "'" &-

DC' 
IF ~sIl t~X.~~3.!~Sr 

C!S~ ?~!~ rvn rtt~~ ?~ ~N~ R~~D r~~ 
rAS~ AC~ ~csr r~~~ ?~-HN~=~:~_~CS? 

S7EI~~ 
-~.t!'t..." \ 
:)!!:;j 

S?EI~~) 

3!TE} 

!~!IL ~ox-rs~.succ COD~) 

!~~lL~30X.~SG.F!L~_S!ZE) 
r~sr 5TC~~ ~Tl~ T~~~ ~ILr ~~n STORT FILt 

~ '"~A IL=BCX :!r-~SG. ?AT=:SAMF 

t := TIC~!T 'vATl ?OX. C) 
~D~!~C~ IU!'L ~nv- C' .. • .... '\.. ,- ~ 1 _ _ ~...-., ~ ~ ~ 

~'~TT {"~!!1 bOX. r. ! (t4?l 
CD -

117 
~.-;;. ~ 

=---- =~~-~ -~~-

~~ --- ~-- - -- - - --



C01=~~~:;t !. f •• S~cl1rity !;=:~nEl Desi!7r: :or a 
~lcropr~ce5~nr-~ased ~ultilevel. ~rchi7al Stcraze S1ste~. ~S 
r~esis. Sa~al ?~~t~raduat~ S=~~~l. Dece~ber 1979. 

COURTCIS. P. J •• nQ7~a£S9 v •• a~~ Parnas. ~. ~., Co~:ur~ent 
Ct'r-t!'ol l4ith "~!?c~e~~" 2n~ "'i\ri'!"~!'s~·.~" r~rw:ru!!catiC',:s 0;- the 
~C~. v.!4 no.5 n.~E7-6~3. O~tober 1971. 

and others? 
Protocols. John ~ilev ~ Sc~s. 1979. 

Nlr 71l~. ~roa~et Protocol 
C~rte~. Jaru=ry 1~7~. 

,!)~NN!~~:ifl). "!l. ~ •• ! Lattice !"o1~1 o~ Secnre ! !! !5 0 r~c t ion 
2~5-242. "·a:; Flow.- Co~rg~i~2tio-~ nf t~D ACM. 1 -..;. i~ p. 

1975. 

Denni!'!S:. ? J •• 
.. 
Data DE~NING~2}. !. ~. and 

Co~~Uti~2 S~r~~Ys. v. 11 !~. ~. p. 22~-242~ 
Sec":lri ty. 

r--aY 1976. 

~IJ~5T?~'1'. E. ~ .• T~e S~~g~9ure 
System." rDR~uni~atiDDS ~f t~2 ~r~. 
~ay 1ge5. 

'The' ~ul~i~~Q£~~~in2 
11 ~O. ~. ~_ 341-~~~. 

'DIJlST!!~ -2'. ~ V •• ·The e1:~t:e P!"'ozrar;rre;-. 
ur the ~CM. 7. 15 nn. 10. p. 259-25F, Cct~te~ 

}!:-Mf-t'lNG. ;). 
5a 11. I !! ~ • ~ 

B~~SO'i. 
~ :.l?' ._;; 'f.,.~. 

~ .. 

! .• C~1inz 
19:;'1. 

~:T!~se~~;r~;ai!~~eie~~~tt~~~:r?=~r~i~~-,~!~~~~~~,~~i~:~;~~_.~~~~~:c~' __ ~~r~~e~[~§~~~~:~~~~~i~-:~~~!~~~-~ 
~c y 19'7=. 

). S •• ani Ric~~rdSDn. ~. 

l1r.:. 



\ 

':>~i:'~ ~ . ;,. ..... ~.~ .. ~ .. 

__ T~~ __ #_'" 

.:>\..n=~!.?-~ 

15?-!7~ .. 

! .. Tte ~ulti~s 

!a.nodia • 

-. .. . . 

.'" ... 

~~-En~'!: ~ =-~ 
""~ -;;~~ '"" _ .. 

of Its 

57s t em SeC~r:t7. ~S~ ?e~hniccl ?apers ~Sprinz 
19~9\ pj 2~5 2~7. ~~!~~ 1~7? 

!'ca-ical 
1974. 

~C?:.-__ E = • 

ZILC:;~2l. !!ir 
SDecific~ti~~. Vc!C~ 

Z~~~1 
.. AHA 
!:::#~. 



INITIAL DISTRI!UT!O~ LIS? 

1. Defense Technical Information Center 
Cameron Station 
Alexandria, Virginia 22314 

2. Library, Code 0142 
Naval Post~raduate School 
Monterey, California 93940 

3. Depart~ent Chairma~. Code 52 
Denartment of r.omnuter Science 
Naval Postgraduate Schcnl 
Monterey. California 93940 

4. Lt.Col. R. R. Schell, USA~. Co:ie52Sj 
Department of Computer Science 
Naval Postgraduate School 
Monterey. California 93940 

5. Asst Profe~50r Lyle A. Cox. Code 52Cl 
Department of r,omputer Science 
Naval Post~raeuate Schocl 
Monterey. dalifornia 9~9§0 

6. Mr. Joel Trimble, Code 221 
Office of Naval Research 
800 North Quincy 
Arlington, Virginia 22217 

7. CPT A. P.. Coleman t US ft 
Box 426 
U.S. ArMY War Colle~e 
Carlisle, Pennsylvania 17e13 

8. Lt. E. J. Parks, USN 
NAVSPEr.WARGRU TWv 
N.A.~. Little ~reek 
Norfolk, Virginia 23521 

9. Lt. C. A. Davis, USN 
NARDAC San Francisco 
NAS Alameda 
Alameda. California 94501 

122 

No. Copies 
2 

2 

2 

5 

3 

1 

1 

2 

1 


