
'.>:1 
a.. 
o 
u 

I I 
I LJ.J 

1= L..!.... 
! 

( 

, f.', 
I' 

THESIS 
THE DESIGN AND IMPLEMENTATION 
~ ~ . -

OF THE ~IEMORY MA'JAGER FOR A 
SECURE ARCHIVAL STORAGE SYSTEM 

by 

Edmund E. Moore 
Alan V. Gary 

June 1980 

J / ' 

Ii ' 

Thesis Advisor: L. A. Cox, Jr. 

---------------------------------Approved for public release: distribution unlimited 

. t\ 7 .J V 



, 

.t 
t 
I 

-

SICIJ"ITY CL.AS""'IC"T'O" a" T141' .. an. , ...... Oaf .... ,.,.." 

P.F.PORT DOCUMENTATION PAGE READ INSTRU-:-TlON:> 
aaFOIIIE COMPL.E'MNG FOR,.. 

I IIIII"O"T .. 1J ..... JIr r' GOYT AC:~&"'OM .. 0 a. ".C:''''.NT', CAT AI.OG HIJ ... I" 

f:..D -AOtf 0 j)3 

• 'rITL.1 ( ... tI s..."".) t. T.,,,,; 0' "'''O''T • ""lttOO COIII"eo 

The Design and Implementation Master's Thesis: 
of the Memory Manager for a June. 1980 

Secure Archival Storage System t. -1""0" .. , .. 0 e"o. """O"T NIJ".'" 

7. AIJ'·"'O",.) "To ~O"TltAC:T O. OIllA .. T "U"""") 

Alan V. Gary 
Edmund E. Moore 

t. "'''''0''''1"0 O"OANIlATIO" NAWIt AND "DO"." 10. ""OOltA .. IL.It ... N T. ""OJ ICT. T A," 

Naval Postgraduate Scheol 
AltIA •• O"te UNIT NU:II."S 

Monterey, California 93940 

" CnNTltOL.LINO ~""'CI NAWol aNa AOO.tlEII 12. "'''O''T OAT. 

Naval Postgraduate School June 1980 

Monterey,California 93940 u. NU .... " 0' ""Oil 

165 ,. WONITOPIING AGENCY H .... I , .. oDii.~·I' Ifllf ..... ,,,.. CIIft'NUU" 0", .. , II. IICU"ITY CL.AII. (.t 'II' • .... tt) 

Naval Postgraduate School Unclassified 
~tonterey , California 93940 

.... O~CiA''''\C:AT\OIol/OO.NOItAOI''G 
, M DUL.l 

I,. OIITIt'I..,TION STAT.:1;i;'T r.' ,III. 1t.".,1j 

Approved for public release: distribution unlimited 

11. O"T"'I\,ITIO" .TAT"; ... ' ,., ,,, ....... " .. , _,-..4,,, .t ••• 2., "tlfl,.,.,.,· _ It ..... ) 

~iU .. "I.' ... I{ .. T."., .. o~u 
. 

I, KEY .0"01 fe_u ..... ... , ...... •• tIt u ... coo •• .,. ... , ...... " .., ..... ,,_-.., 

Memory Hannger, Security Kernel, Operating System Security, 
Distributed Process~ Segmentation, Prot;:ess Switching, File System, 

i', Non-Distributed Process, Protection Domain, Aliasing 
~o ~~T""'CY (c .... ,,;;... _ •• " ••• • ,tIe /I " ..... ., ..., ' .... 11" ., ., ... ___ , 

implementation of his the!i! presents a detailed design and a 
memory mallager for a kernel technology based secure an:hival 
storage system (SASS) . The memory manager is a pal t of the non-
distributed portion of the Security Kernel, and is solely 
responsible for the proper management of both the main memory 
(r ar:.'lom access) and the secondary storage (dirlZct access) of the 
sy.,tem. The memory manager is designed for implementation on the ........ 

.) 
~l •• ql ,. mr 7_. • 

DO 1 ~~=~, U11 tOtTIo.., 0/1 , uov U II Oe'OI..ITI 
(Page 1) $/'10101-014·1\/10\ 



~? ZILOG Z8000 microprocessor in a multi-processor environment. The 
loop free design structure, based upon levels of abstraction, and 
a segment aliasing scheme for information confinement are 
essential elements of the overall system security provided by the 
SASS. . 

I f\ 

--- - -- - ---
-- -------

! 

i " '.: 1'):'/01' 

,II i' ~ :')~'.: i ': 1 

l.B_l __ L_J 

I 

DO Forro 1473 
1 Jan ,:) 

SIN Ol02·014-G60l 
2 



, 

Approv~d for public reledse; distribution unlimitpo. 

Au tho rs 

The Desi~n and Implementation 
of the Memory Manager for a 
S~cure Archival Storage System 

C;l 

Edmund ::. ,:ocre 
lieutenant Commander, United States Navy 
].5., United States Naval Academy, 19?e 

Alan"'. Gary 
Lieutenant, United States Navy 

B.A., University of Louisville, 1974 

Submitted in partial fulfill~ent of the 
requirements fo~ the degree of 

MASTER OF SCIENCE IN COMPtTTER SCIE~JCE 

from the 

NAVAL POSTGRADuATE SCHOOL 
June 1960 

Approved by: 

Scien::e 

-------------------
Dean of Informati and ~ollcy Scier.ces 

3 



~: 
<;~ -, . 

. " 

: ~-.. --- - ---

AESTRACT 

This thesis presents a detailed desigr. and 

implementation of a me~ory manager for a kernel technolo~y 

based secure archiva~ storage system (SASS). The memory 

~ana~er is part of the non-distributed portion of the 

Seccrity r.ernel, and is solely responsible for the proper 

~dn!~ement of both the main memory (random access) a~1 t~e 

seconda~y storape (direct access) of the ~ystem. The memory 

~anager is designed for implementation on the ZILOG Zeee0 
~icroproCE~sor in a multi-processor environment. The loop 

fre~ desi~n structure. based upon levels of abstracti~:. and 

a se~Ment al1asin~ sche~e for information confinement are 

essential elements of the overall system security proviced 

by the SASS. 



TABLE OF CONTENTS 

I. I NTROrUCTION •••••••••••••••••••••••••••••••••••••. ie 

I A. Bl\C !GROUN D ••.••••••••••••••••••••••••••••••••• 12 

P. IASle CONcEPTs/rEFINITIONS •••••••••••••••••••• 14 

1. Process .•.•........................ '" .... 14 

2. Process SwltchlnR ••••••••••••••••••••••••• 15 

3. Protection Domalns •••••••••••••••••••••••• 16 

f. SeRmentation •••••••••••••••••••••••••••••• 1E 

E. Infor~ation Security ••••••••.••••••••••••• 19 

C. TF.~SIS STRUCTUR~ •••••••••••••••••••••••••••••• 23 

II. SECURE ARCHIVAL STORAGE SYSTE~ DESIG~ ••••••••••••• 25 

A. EASIC OVERVIE~ •••••••••••••••••••••••••••••••• 25 

~. ~U?!FVISOR •••••••••••••••••••••••••••••••••••• 3~ 

1. File Manar.emen t Process ••••••••••••••••••• 3~ 

2. Input/Output Frocess •••••••••••••••••••••• 3~ 

c. DIS TR I~~JT:O:D r. ERNEl •••••••• '. • •••••••••••••••• 39 

1. Gate Keeper ••••••••••••••• , ••••••••••••••• 3q 

2. Ser~ent ~anager ••••••••••••••••••••••••••• '? 

3. Poven t Manai!er ••••••••••••••••••••••••••••• 4:5 

4. Traffic Controller •••.••••••.••••••••••••• 4? 

5. Inner Traffic Controller •••••••••••••••••• 5r. 

r. NON-DISTRI:EUT'ED KERNF.L •••••••••••••••.••••.••• ~2 

III. ~~~ORY ~ANA~ER P~OCESS rETAILED DFSIGN •••••••••••• ~4 

A. INTRCDUCTION •••••••••••••••••••••••••••••••••• 54 

B. D~SIGN PARA~ETE?S A~D ~EClSIONS •.••••••....••• 55 



c. DiTlEAS!S ••••••••••••••••••••••••••••••••••••• 62 

1. Global Active Segment Table ••••••••••••••• se 

2. local Active Segment Table •••••••••••••••• 65 

3. Alias Table ••••••••••••••••••••••••••••••• 65 

4. Memory Management 1~it Image •••••••••••••• S8 

I 

I 
5. ~emory Allocation/Deallocation ~lt Maps ••• 7t 

D. EASIC FU~CTIONS ••••••••••••••••••••••••••••••• 71 

1. Create an Alias Entry ..................... "4 

2. Delete an Alias Entry ..................... ?7 

3. Activate a Ser.lTlent •••••••••••••••••••••••• 79 

~. Deactivate a Se~ment ...................... 63 

5. Swap a Segment In ••••••••••••••••••••••••• €-5 

6. Swap a Segment Out •••••••••••••••••••••••• 9r 

7. Deactivate All Se~ments ................... :;l 

5. ~ove a Segment to Global Me~ory ••••••••••• 94 

9. ~ove a Serment to Local ~elTlory .••••••••••• 96 

le. Upda te the M~U Ima~e ...................... 96 

F. SU~~A!! ••••••••••••••••••••••.•••••.•••..••. ~.99 

IV. STATryS OF R~SEARCH ••••••••••••••••••••••••••••••• 121 

1 
A. CO~.ClUS IONS •••••••••••••••••••••••••••••••••• lel 

:B. FOttO'1t' ON WOEK ••••••••••••••••••••••••••••••• le~ 

I APPENDIX A--PLZ/SYS SOry~CE lISTINGS ••••••••••••••••••• 104 

APFENDIX E--FlZ/ASM lISTINGS •••••••••••••••••••••••••• 13E 

APPENtIX C--S~AP_IN PlZ/AS~ COCE •••••••••••••••••••••• 15~ 

lIST OF ~EFERENCSS ••••••••••••••••••••••••••••••••.••• 1~2 

I~ITIAl DISTRIEUTIO~ ••••••••••••••••••••••••.••••••.•• lti' 

" 6 



------.----~ .. 

lIST Of FIGURES 

1. SASS ~ystem •••••••••••••••••••••••••••••••••••••••• 26 

2. SASS Abstract System Overvlew •••••••.•••••••••••••• 30 

3. Virtual File Eierarchy ••••••••••••••••••••••••••••• ~4 

4. File Mana~er Known Se~ment Table ••••••••••••••••••• 36 

5. Security Kernel re5ir.n ••••••••••••••••••••••••••••• 4?-

6. Known Se~!'!ent Ta~le •••••••••••••••••••••••••••••••• 43 

7. ~ctive Process Table ••••••••••••••••••••••••••••••• 4E 

S. Virtll.al Frocessor Table •••••••••••••••••••••••••••• 51 

9. SA~S Pardware System Cverview •••••••••••••••••••••• ~S 

leo Global Active Sep-rnent Table •••••••••••••••••••••••• 61 

11. Alias Tatle Creation ••••••••••••••••••••••••••••••• 64 

12. local .~ctive Sel!rr.ent Table ••••••••••••••••••••••••• 6G 

13. A 11 a s Ta b-l e •••••••••••••••••••••••••••••••••••••••• 67 

14. ~emory Mana~ereent Unit 1~a~e •••••• M •••••••••••••••• 7r 
15. ~e~ory Allocation/reallocation ~ap ••••••••••••••••• 7? 

16. ~e~ory Mana~er Mainline Code ••••••••••••••••••••••• 75 

17. Create_EntrY Pseudo-Code ••••••• _ ••••••••••••••••••• 76 

lE. De Ie te_En try F seudo-Cod-: ••••••••••••••••••••••••••• O~ 

19. Activate Pseudo-Code ••••••••••••••••••.•••••••••••• 62 

20. Dear t i va te Pseudo-Code •••••••••••••.••••••••••••••• E6 

21. s wa p _ In P s eu d 0 - Cod e •••••••••••••••••••••••••••• 4 ••• c 9 

22. Swap_Out Fseudo-Code ••••• ~ ••••••••••••••••••••••••• Q2 

23. react i va te_AIl Pseudo-Coc.e ••••••••••.•.•••••••••••• ~3 

? 



24. ~ovEl_To_Global Psp.udo-Code .•....••.•.....•.• •··•·· .95 

25. Move_To_local Pseudo-Code ••••••.•.•••••••••••••• ••• 97 
-

26. Updatp Pseudo-Code ••.•••.••••.••••••..•••••.••• •··• ge 

~7. Success Codes •••••••••••••••••••••••••••••••••••• • 1~~ 

,! 
.. 
,r~ 

'1 
lo' · l • · ;j · 

1 · l 
lt~ I ~,J 

'I 
~{l 

• -1\ 
" -'\ 

I~ ,./ : ~ 
-! ' i 

i q', 
." (. :~ 

• '!i1 S 
· ~! 

~ 

t j :.' ,~ 

i ' II 
II' 



ACKNOWLttGE'1ENTS 

This research 1s sponsored 1n part by the Office of 

Naval Research Project Number NR 337-e~5. monitored by ~r. 

Joel Tr1J'11ble. 

The support and assistance of Lt.Col Ro~er Schell, 

Professor lyle Cox, lcdr. St~ve Reitz, and lab t~chnlcians 

~r. Eob ~cronnell and Mr. ~ike ~ll11ams ~ere ~reatly 

appreciated. Special thanks ~o to Barbara Gary for her 

undivided support. assistance, and patien~e. 

9 



1,-------
i 
" 

i 
I A 

, I 

~ 
\ 
, 

I. INTRODUCTION . 

This thesis addresses the design and partial 

imple~entation of a memory manager for a member of the 

family of secure. distributed. multi-~icroprocp.ssor 

operatinp!' Sy~tems designed by Richardson and O'Connell [1]. 

The me~ory mana~er is responsible for the secure ~ar.a~ement 

of the main ~emory and secondary storage. The me~ory manager 

desivn was approached and conducted witt distributed 

processin~. multi-processln€. confl~uratlon independence, 

ease of char.~e. and internal computer security as primary 

poals. The pro~lems faced in the design were: 

1) Developin~ a process which would securely manaRe 

file~ in a multi-processor environMent. 

2} Ensuring that if secondary storaRe was inadvertantly 

damap!'ed. it could usually ce recreated. 

3) Mini~lzin~ secondary storage accesses. 

4) Proper parameter passin~ durin~ interprocess 

communicaticn. 

5) tevelopin? a process with a loop-free structure 

which is confi~uration independent. 

6} Designing data~ases which optimlze th~ ne~ory 

mana?e~ent functions. 

The proper design and implementation of a !1"emor~! 

~ar.a?e~ent ~rocess is vital because it serves as the 

1iJ 



interface between the physical storage of files in a stora~e 

system and the logical hierarchical file structur~ as viewed 

by the user (viz., the file system supervisor desipn by 

Parks (?] '. If the me~ory mana~er process does not fur.ctton 

properly, the security of that system cannot be ~uaranteed. 

The secure family of operating systems desigr.ed by 

Richardson an~ O'Connell is composed of two primary mcduJes, 

the supervisor and the security kernel. A subset of that 

syste~ was utilized in the design or the Secure Arc~ival 

Stora,e ~ystem (SASS). The design of the SASS supervisor was 

addressed ~y Parks [2], while the security kernel was 

addressed concurrently by ColeMan f~]. The SASS security 

lternel design 1s composed ot' two parts, the d1stributE'd 

kernel and the non-distributed kernel. The deslp.n of the 

r!istri~uted kernel was 

processor mana~ement was 

conducted by Cole~an 

impleMented by Reitz 

and 

This 

t~e s1 ~ pr~ser.ts the design an~ tm~le~er.tattcn of t~e 

non-distributed kernel. In the SASS the 

non-distrt l',ute~ kernel consists sol~ly of the memory 

The design of the me~ory mana?er and its data bases was 

co~pleted. The initial code was written in FLZ/SYS, rut 

could not te compiled due to the lack of a P1Z/SYS compiler • . 
A thread of tte hi?h level code was selected, hand co~piled 

into PIZ/A~~, and run on the Z80e0 develo~mental module. 

11 



I 

The P1M/AS~ ttread listing is ~resented as a co~puter 

pro2ram appended to this thesis. 

A. DACKGRO'JND 

Operatin~ syStems were lnitally developed durin? an era 

when hardware wa~ d scarce and elpp.nslve resource, while 

s,ftware was relatively inexpp.nsive. The initial system 

technique was to be~in with the hardware 

~cnriguratio~ and to build th~ operatin~ system upcn it. The 

"bottom up" desl,n technique was practical, but it made the 

operatln~ systeM extremely hardware dependent. ~arQwar~ 

confl,uratlon chan~es ~ould o~ten force 6 Major software 

redesl~~, but as lo~g as hardware costs were do~inant, 

software modification was the lcrical altern~tive. As the 

~ur.ctions r~quired of the operating syster increased, new 

procedures were ha?cazardly added to the operatin~ syste~. 

o~ten IntroducinR new proble~s. Maintenarce and detug~ing o~ 

the operatinp, syste~ becam~ extre~ely cumberso~e and ti~e 

consumin~. 

The in~rease1 usape of computers in such fiel~s as 

finance and sensitive informatlon handlin~ uncovered a 

seriou~ protlem with ~ost operatinr systems. Information 

s to ted ~ithin a ~o~puter syste~ ~as penerally q~ite 

accessible to anyone who had a working knowled~e of 

opera t1n~ systeM design and structure. rp~ardless of a~y 

12 



" , ' 

I': 
t 

t
f 

I 
I 

! 
ad-hoc atter.pts to provide internal computer security. Data 

stored in information systems. with security added in, could 

not be certified as bein~ totally secure[14}. 

Recent technological develo~~~nts have reversed the 

econolT'ics of the computer design enviroDr.'lent. 

Microprocessors have become abundant, powerful. and 

inexpensive. Th~ relative cost of software, on the 

otherhand. has steadily increased until it now domitates the 

overall cost of a romputer system. This reversal has two 

basic implications. First. software IT'ust be treated as the 

exp~nsive eOlT'modlty. ~ortware developed should therer~re be 

lo~lcal, easy to read. relatively ~aintenance free, and e~sy 

to debu,. Second, more powerful hardware can ~e u~ed to 

perform functions previously performed with software. ae! 

thus har~ware (Multiproc~ssors) can ~e utilized to achieve 

overall syste~ speed poals. 

The was developed 

technique, with information security as a ~rilT'ary desi~n 

issue. Securlt? was cesigned into the system tased upon the 

security kernel cor.cept (5]. The security kernel prcvides a 

secure environment by ensurin~ that Just one ele~ent o~ the 

system (the security kernel) Is sufficient to provide the 

internal system security. All accesses of data stored within 

the computer system m~st be v~lidated by the sec~rity 

~ernel. 

13 



__ UI¢",,41"'C __ r. ~oIWlIlIII'" .. I _ .... _~_.~_ 

E. ~ASlr. CONC~PTS/DEFINITIO~S 

1. Process . 
Or~anick [6] defines a pr~cess as a set of related 

procedures and data underRo1nr execution and man1pulat1~n, 

respect1v~ly, by one of possibly several processors of a 

computer. The process 1s a lo~lcal rather than a physical 

entity, and can be viewed as a set of related pro~edures and 

~ato (rpferr~d to as the process' address space) and a ~oint 

of execution within that addr~ss space. Each ?fOCeSS may 

~ave associated with it SUch logical attr1butps as a 

security class authorization and a unique 1dentlfl~r. In 

order to ex~cute, the process must ~e ~ap~ed onto :bound to) 

a physical processor ~ith1n the computer syste~. 

A process ~ay exist in oOP of three states: blo~ked, 

ready, or runnln~. ~hen 1n a tlocked state, the process ~ust 

wait for the o~curre~ce of so~e event before execution can 

ront1nue (for exa~~le. an accesS of seconiary stofdRe'. Whe~ 

the event for which a blocked process is waiting occurs. the 

process is placeQ into the ready state which indicates that 

the process can ren when a processor is availatle to be 

assigned to it. The proress is in thp running state when it 

is executin? on a processor. 

14 



~ I 

,J ,j 
'1 "f .; 
I 
i 

iJ 
'{ . , 

I' , 

• , • 
'~ 
~\ 

,.} 

f,;i 

'I " I., 
~~ ~. 

--.------

2. Process Switchinp, 

When a proc~ss is blocked. the physical ?rocessor 

upon which it is scheduled is idle. For efficiency recsons, 

it makes se~Se to freeze that process, save t~e exe~ution 

point (prorram status registers, profrarn counter, execution 

stack) ar.o the address space, and then 5ch~dule another 

process to run on that processor. This is referred to as 

process switching (or multiprc,r~mmlng), and is an import~nt 

aspect of a distributed operatinp. syste~. The overall 

syste~, such as SASS, can be viewed as a s~t or cooperating 

processes that int~ract to perform the intended fun~tions. 

~rfi~i~nt proces~ switchin~ can ~nly t~ arhleved 

with the support of sor.e hardware switchin~ mec~ar.ls~ that 

will unload tht blocked process' address ~pace, and load the 

address spare o! the schedul~d process. Some systems have a 

DFR (descriptor base re~ister) which is used to point to a 

I1st ~f ~ultiple a~dress spaces (one per process) which 

exists In we~ory. Thus to chanRe an address space, tte tPR 

need only be changed. The SA~S utilizes a Z-8000 suppDrtir~ 

hardware device entitled a ~eMory ~anaiement rynit (~~U) to 

allow e~ficlent process switching. The MMJ consists of a set 

of re~isters (64 or 12E in the 5ASS design) which contain 

the process' address space. Thus precess switchirg wo~ld 

involve the switchin~ of control to another hardware MPU (tf 

a hardware ~M~ were available for ear~ process), or 

15 



·1 
J . 

----_ ....... _----

alternately loadinr a software MMU i~a~e (whirh is always 

kept current) into the MMU whenever a proce~s switch is 

required. The SASS currently maintains a software ~~U i~a~e 

for each process. 

3. Protp.ctlon Do~ains -
A user's process executin, on a computer 5ystem has 

an address space which includes the user providpd procedures 

dod data. and also those portions of the distributed 

operating system which are required to support execution of 

his pro~ram. !o ~aintain system intep.rlty and security. it 

beco~es mandatory to protect the operatin€ syste~ fro~ beir.~ 

alter~~ or ~anipulated ~y the user's procedures. To achip.ve 

this. the process' address s~ace is divided int.o a set or 
hierarchical do~ains which ensure that the seg~ents of t~e 

operatin~ system are protected fro~ the USer. Since the top 

down dp.sl~n cf the operating system provi~ps a st~irt 

hierarchal structure. the domains of the o~eratin~ system 

are also hierarchical in structure (viz •• are protection 

rin~s). In the desi~n of the securp operating syste~ fa~ily. 

three do~ains were defined: the user, the supervisor, and 

the kerr.el. 

Operatin~ system se~~ent~ which mana~e the actual 

share~ physical resources reside in the kernel. Th~ kernel 

is the ~ost privilefed domain of the address space. It can 

be er.visioned as a mini-operatin~ system that does all the 

16 



~ 
if 

r ,$\ 

it 
ii 
'! 
f 

";1 
" 

i , '. 
:t 
~ 

~ 
It 

l f . 
. " 
I '; 
I 1 

I 

1 
:, 
.tl " I'~' 

.;'j 
" J )} 

t~· 

.J~ 

~----.----.. -.-.-.-~~--~~----- ,:",;, - -... ""',---~ 

resource 'Ilana~emen t. The securi ty kernel se~ments 

(executable) can only ~e accessed within the kernel. Global 

(system wide) data bases are restricted to access by only 

the security kernel to prevent the possibility of an 

unauthorized inter-precess leaka~e of information [?]. 

Th~ supervisor domain resides between the most 

privile~ed kernel domain and the least privile~ed USer 

domain. The supervisor contains those segments of the 

operating syst~m which are required to provide such co~~nn 

services as creatlnp. a hierarchical tile system. The 

~upervisor deals with the logical entities (seg~ents' as 

viewed by the user. and mana~es these se~ments by calls to 

the kernel. To preserve the inte,rity of the tile syste~t 

the user is placed in the least prlvile~ed domain, and can 

communicate directly with the supervisor onl,. 

Multiple protection domains may be i~plprner.tec vta 

ei ther a harc ... are and/or a software ring 5tr\·ctur~. A 

hardware i~plementa~ion is more efficient, ho~ev€r the VLSI 

microprocessor~ currently bein, manufactured provide for 

only two protection do~ains. !he present deSign or thp SASS 

requires t~o domains, separatin~ the su,ervisor and the 

security ~~rnel. The ZE0~0 microprocessor provieps the SASS 

vith the hardware ricr structure ty prov\din~ two Ete:ution 

~odes, the system modp and the normal mode. The kern~l 

executes in the ~ystem mode and thus has access to all 

seg~ents, machin~ instructions, ar.d hardware fa~ilities. T~e 

17 



l 
1 
f 

<, . , 

------

supervisor executes in t~e nor~al ~ode, and ttus only has 

access to a subset of the instruction set and sefments. The 

supervisor does not have acceSs to those instructions whicr. 

manipulate the system hardware, such as special 1/0 and 

execution ~ode control instructions. 

4 • S e ~m en tat ion 

Seg~er.tation is the key element of a secure syste~. 

A se~ment 1s a lo~ical ~rouping of information such as a 

procedure, array, or data area (8). The address spare or a 

process consists of t~ose se~ments that ~ay be acdressed ty 

t~at procpss. Segmentation is the mana~E=llIlent of tnose 

se2ments within the address space. In order to addresS a 

spe~ific location within a seg~ent two dimensions are 

required, an Id~ntification of the se~~ent (p..~., ~e~~ent 

number) and an offset from the base or the S€gM~nt. 

~ach se~men~ may have several lo~ical attri~utp.s 

as~cclated with it. These attributes can incl~de segMect 

size, classification, and access perl~1tted (r,·ad, write, 

execute). ~he phys1cal attributes of a segment include tr-e 

current base address, and whether or not the segment is "in 

cGre". The se~ment's attributes and its physiral location In 

~e(T10ry are contained in a se~mpnt descriptor. The se~~ent 

descriptors for a process are often contalr.e( in a 

dpscriptor list (viz., an ~MO image ~or the SASS) to 

facilitdte the memory ~ana~ement of its address space. 

1b 



, -.------------------t 
\ , 

t{ 
t 
• 

Seg~entation permit~ multiple processes to s~are a 

sin~le se~ment and to avoid the requirement of ~aintainin~ 

duplicate copies in memory. This eliminates the possibility 

ot having conflictin~ data w~en multiple copies o! thp same 

se~~ent are ~aintained. Sepmentation also enables the 

enforcement of cc~trolled access to a particular segment, 

since each process can have different access (read/write) to 

stored se~ments. This capability of enforcinr controlled 

access is crucial to sp.curity. 

Se~rnentatlon provides a mechanism r~r the 

vlrtuallzatlon ot memory (although not provided in t~e 

SASS). If a user requests accesS to ~ se~~ent to ~hlch he 

has acress rirhts, an~ that se~ment Is not in main m~~or7, a 

memory fault will occur which will cause that se~ment to be 

loaded into main memory (another se~ment may have to be 

~oved to s~condary storage to ~dke room). Thus tc the user, 

the size nf ~ain memory is virtuallze~ into the size of the 

process~ address space. 

5. In~ormatlon Serurity 

As previously stated, t~ere is an ever increasing 

demand for a co~puter system to provide for the secure 

storap.e of information. This security cannot be added to an 

existing operating syste~ with a large ~egree of confidence 

that the resultin~ security syste~ cannot be aVOided or 

bypassed. In order to be demonstratly adeqcate, security 

19 



I 
I 

'. 

I 
! 

:~f : . ~ 
]! .. • , l.a 

tli~ 'I 

'll .. ~ , {I I t:y ~ 
1·1 
I • 
r , . 
~ .. ..... ( 

4 ~ 
·r : 
,~ r 
''; , 

1,. r 
t 
f· 

'\ l' . , , 
.I ' \ /'.... t. 

~. 'I. /'-ff , 
t • (/~, 

~ust be desi~Led into the operating system, and must ~e part 

of the cornerstone upon which the operatin~ syste~ is built. 

Thpre are two basic aspects of lnformation security, 

external security and internal security. External security 
I 

prevents an infiltrator from getting to the object in which 

the desired information is stc~ed. This can be of such form 

as a fence, a safe, a sentry, or a ~uard dog. If an 

infiltrator ~dna~eS to penetrate these external se~urity 

measures, he then has access to the des.re~ Infor~ation. 

Internal cnntrols would consist of tr.ose se~urlty measures 

internal to the computer ~hi~b impede and if effective, 

prevent a co~promlse of information. If the internal 

controls f\lnctlon properly, information is l1l"ovided and 

exc~an~e~ only with thp users ~nC are explicitly aut~orize~ 

accesS to t~at information. Ma~y in~orm~tion s1ste~s are 

requirp~ tc store and access ir.rcr~ation or ~iffFr~nt 

seen ri ty levels {e'~'t secret files intersgersed w!t~ 

confldfntial and unclassified). The internal security of 

s\!ch a "multilevel" s:-,'stem must !1errr.it users a:ld. lnforrraticn 

to elist simultaneou!ly at different security levels. a~d 

als{' ensure tha t no unauthorized accesses (eithpr 

intenttonal or unintentional) are permitted. Tr.e SASS W6S 

desi~ned to provide a multilevel secure storaRe enviroD~eLt. 

The data to be stored in a secure information system 

can be loo~ed upon as a set of logical obj~cts such as fll~s 

or records. Associated with each of these obje~ts 1s a set 

ze 



'j 
.11' .! 

t 
• ! 

• I 
, , 

'.II 
" f i { f., 

.'H 

I ~~ , 
" 

'I 
.. ,: , 
11 

: i . 'J ' 
! I 

J4 , 

t.i 1 
" 

.\ ': .' I 4' • 

~/f ; t' 

~~ 

------~=%=-~--------

of subjects which have access ri~hts to that object. ~hese 

access rights may include read access, write access, or a 

combination thereof. The non-discretionary security policy 

involves ch~ckin~ the object's access class (oac) with the 

subject's accesS class (sac) to ensure that they are 

~c~patible. Th~ access per~itted is defined 1n a lattice 

model of secure information flow (9) as follows: 

sa~ = ~ac, read and write access per~1tted 

sac) oac, read accesS permitted 

sac < oac, no access permitted 

The governrnen t security classification systrm 

provides an example of a non-discretionary security policy. 

A user with a ~ecurity clearance ot confidential is 

authorized read and \rite access to a confidential file (sac 

= oac), and he has read access (but not writ~) to an 

u~class1fied file (sac > oac). ThiS restriction o~ write 

access is to prevent the inadvertant writing ot confidential 

~ata into an unclaSSified file to which the subject ~ay have 

si'TIl'ltaneous access (this p!'opeJ:t~· is often referred to as 

t~e *-property [10]). Finally, the con!i~ential sutJ~rt dc~s 

not have access to any secret !iles (sac < oac). 

The discretionary security policy ir.volves c~e~kir.g 

the subject a~alnst an object's ac~~SS control list (ACt'. 

T~p SU~jp~t ~nly has access to an o~ject it he is i~rluded 

1" its ACl. This policy is anala~ouS with the ?overn~ent's 

"need to know" pCllicy, ~lnicn precludes a ~u~ject wit!'! a 

21 



• 
I 

:~( 
·1 

" 

• • 

t i{ 
. ':1 

I'~ 
I 

11 
~! ! 

J 
t 'l " ,. ; 

.. ~~, /r.1 

secret clearance from having access ri~hts to all secret 

information within the system. He may access only that for 

which he has a 
.t. I. 

neea. to know • The discretionary security 

policy th~s allows the users of the system to specify who 

has access to their tiles. It is noted that the 

discretionary security policy is a refinement O '~ .. the 

security policy. and never permits a violation of t~~ 

non-discretionary security policy in effer.t. 

The SASS was designed with the internal 

non-discretionary security to b~ provided by the security 

kernel. Discretionary security is pr~vided by the supervisor 

file syst'!m. The security kernel is based u~on a 

~athematlcal model which has teen proven correct. ~hls 

,"a th el'1a t1 ca.l model lm!llements the systeM's security 

policies. 

The security kernel desl~~ has t~re~ prerequisites 

in order to provide a secure environ~ent: l' the ~ernel ~ust 

~e i~olatp~ to ensure that it cannot be mo~iflpd either 

intentionally or lnadvertantly. This is to ensure tha.t the 

behavior of the kernel cannot be modified. 2) Each ano every 

atte~pt to accesS data within the system must invoke the 

kernel. 3) ~he kernel's correctness ~ust be ~~ :fiatle. This 

implies that the ~athemo1tlcal model mu~t be preved and 

demonstrated as secure, and that the kernel implements this 

!TIode!. 

22 



. , 

I 
.. 

.. . 
-------~.:.....:..---

c. THESIS STP.UCTUR~ 

This thesis presents the detailed desi~n of a memory 

~ana~e~~nt ~rocess for the SASS. ~he top ~own ~esign 

technique was utilized. with levels of cbstractlor. used to 

reduce the d~sign complexity. The high levp.l lan6uc~p. 

utilized was PLZ/SYS. ~hich was designed to be compatible 

with the ZSe€l microprocessor. PIZ/S!S is a ~lock structured 

lan~ua~e similar to PASCAL. The compiler which complles fro~ 

PIZ/STS tc the Zae€l instruction code is still in the 

develop~ental sta~e at ZItOG. INC. 1he PIZ/SYS code had to 

therefore be "hand compiled" (viz •• translated to the PIZ/ASM 

asse~bly lan~ua~e) in order to run. tp.st. and debu~ the 

eode. ~ome ot the procedures in the lo~er levels of deslrn 

(those which use privile~ed instructions to directly 

~Anipulate the system hardware) must be directly ~oded usin~ 

the assembly cod? ttZ/A5M. These procedures were declare~ 

Chapter II of the thesis ~re5ents dn overvie~ of the 

SASS at its current stage of development. The design of the 

memory mana?ement process. and the concurrent implenentQtion 

of th~ ~lstrlbuted ~ernel processor ~a~a~emEtt by ?@itz L41 

re~ir.ed tr.e ori~i~Ql desi;r. o~ Parks and Colemo~. Future 

wrrk In t~e SASS will vost li~ely require so~e r!!!ce~ert of 

23 

.' ... 



if 
! 
; 

. ~ . 

. . 
l i~ 
. '!I 

\' 

------------.-.~----
. =~~ ---_ ....... _---_. 

Chapt~r III pr~spnts t~e detailed d~slgn of th~ ~~mory 

mana?p.r ~odule. This ch~pter emphasizes why cert~in desl~n 

r~atur~s w~rp rhos!n, and how they were implemente~ ir. this 

deslr.n. 

The ~lnal chapter presents the status of re~earch to 

eat~, and atte~pts to identity what tollow-on work 1s 

required. Tnp. PLZ/SYS code module and the PtZ/AS~ code 

~odule are prpsentpd as a~pendlces • 

?4 



, . 

I . 

I I 
,jfl 
• t 
'j 

'Ii : ~ . ,\ 

1(1 
'~I . '\ 

1'1J 
, fl 

I, .. 
' . . 

,.' ! 1: 
f 

j • 

lj j 
t.1 . 

II. S!C1RE ARCHIVAl STORAG! S!ST!M rESIGN 

This chapter presents an overview of the SASS in its 

current state of development. It ie a summation of the 

orl~lnal desl~r. efforts, ~r.d refle~ts reflne~ents of those 

orieinal de~ir.ns. This overview is necessary in order to 

fully understan1 the interrelationship betveen the mE~ory 

~anaeer dnd the ovprall system desi~n. It also pro~11Es a 

current base fer furth~r SASS deve!opment. 

The pur~ose c~ t~e S\~S Is tc prcvlde a secure ar~:'ival 

!11e storaRe medium for a vari~ble nnm~er of host ~omput~rs. 

~he k~v desl~n ~cal~ of tr.e SAS2 Nere ~ultl-1ev~1 ir.ternal 

computer sp~urity and ~ottrolle~ sharinR of dat~ ~~onp 

useu. In this e'tdmplE. there are four host <:orrlpt:ters "hleh 

r~slde In rour separat~ rooms (~onslder e~rh of these 

~o~puters to be ~icroco~puters, althou~h any co~?uter could 

b~ utl11zee). Each o! the four ho~ts are used t~ create and 

,-anipulate f'! le 5 of !1xed predetermi"ed 

classi~icatlon. !or e!a~ple, all fl1~s cr~ate~ ty h05t ~2 

are cl~~st~ied secret. ~ost #2 cannot create top se~ret. 

25 



i': 1 r~ 

, :' 

f
': 
" 

~ 
l: 
l 

, 
.j 
I . 
I 

I( .. 

TOP SECttET SECRET 

SASS 

SUPERVISOR 
- f.!R'NE! -- - -

CONFIDENTIAL UNCIASSIFI!.DI 

~AIN 
MEMORY 

CQNFI!'ENTIAl 

Fipure 1. SASS System 

26 



· ! 

confidential, or unclassified files (nor can he access top 

secret in t~is example). Acce5s to each of these rc~ms is 

phlstcally controlled to ensure that only personnel with the 

proper serurity cl~arance are authorized access. No~e of t~~ 

host syste~s have a permanent local file storuRe device. and 

all ar~ hard-wired to an I/O port of the SASS. 

~ach host controls the dccess to its IIO ports (host #4 

tllustrates the m~lti-level host ronnection rU r r e n t 1 ~I 

required by the SASS). The phySical protection of the 

hard-wirp. is dssu~med to be adequate to mir.i~iz~ tee 

posSibility of such ~alicious activities as wire tapp1n? or 

e~anations ~onit~rin~. Once a user of the ho!t systen 

completes his ~ork, he can vermanently store his file on tho 

~ASS, whic~ i~ contained 1n the fifth room of firure 1 (vie~ 

the SASS as an ZS(Cl Mlcr~computer with lccess to serondary 

~tora~e devices). To fain dcce~s to ~ file, the user or O/~ 

o! the host syst~m must request the SASS to provid~ him wlt~ 

that file. !his i~plies that if i Maliciou, u~er ~air.s 

~rcpss or thp confidential ~ost syste~, he still ca~tot 

d~cess files c~ a hleher classification. 

~he SA~S must te capable of per~ormin, three basir 

functions in thiS environment. These functlon~ are: 1\ store 

a rile ror a cost system, 2} retrievp a file f~r a host 

s1ste~, and 3) ensure that t~e the files are ~ide available 

only to authorized users. The required cepabilitv of file 

storaee a~d retrieval i~plies t~at precesses ~ust exist fer 

27 



i ., 
, 

! 
~! 

I 
! 

I 
<·1 

1, 

·1 ',1 
"I 

t· '-

I 

. , 
'Jf . , 
'J 

I' . , 
l (; ., 
.'~I 

I" 

, . 
,1 

.~: 

J! I 
(,1 • ,.\ 

1 
'.~ I 

4 J. 
!'/r~ 

each host 5yste~ to perform file mana,ement and data 

trar.sf~r on ~e~alf of that host. To ensure the security of 

the stored information, the SASS must ensure that the user 

~! a specific host system may only address the files to 

w~ich he has acce5S. The SAS~ a~~ieves the desired 

environmpnt through a distributed operatin~ systpm desi~n 

~rich consists of t~o prl~ary modules, the supervisor and 

the security ~ernel {the se:urity kernel actuall~ consists 

o~ !lstrl~uted and non-di~tributed portiocs). !ach host 

system, which is hardwired to the SASS, communicates wltr 

its own IIO ~rocess an~ file mana~er nrocess ir. the SASS 

itself. 

The sup~rvlsor is responsible fer the SASS-hest system 

ir.terface. It constructs and mana~es a hierarchical file 

syste~ for its host, based uyon thQ files which the host has 

sub~itte1, ~ni controls the actual IIO (both data and 

sUPQrvisor is built upon the security kernel ar.1. per~or!l"s 

the ho~t's reqvests (file st,~age, file retrieval, I/O) ~v 

calls to tre security ~ernel. These c~lls must be validated 

(ry a fate Keeper module in the SASS desi~n) before the 

security kertel function Is invoked. 

~h? ~ASS securitv kernel consists Jf a distrib~ted and 

non-distri~uted kerr.el. ThE' distributed lterr.el is 

distributed to (viz., is In the address space of\ every 

proce~s, and is recpor~iole for tre Multiple~ing of t~e 

2E 



J I . ' 
l · ,f. 

'( .. 
I ~ 

I , 
J 

A 

11 ;! 
r.n 

rL :' J. t/ ~... ~f;l 
~ i·~ i.~ 

. "--_._- -~-----.....:-..::.,~ .... - . 

s~veral pro~esses onto the actual har1ware processor(s', 

pnforcin? the non-discretionary security policy. a=td 

providin~ the synchronization primitives for inter-~ro~ess 

communication. The non-distributed kernel consists or t~e 

~emorl manaeer procesS which 1s res~onsible for the Secure 

mana~ement of both main memory and ~econdary storage. Each 

hardware processor must have its own ~e~ory mana?er (erv.o, 

non-distributed kernel) in the SASS desirr.. 

An abstract system overview ,r the SASS is presented in 

figure ? -. Four levels of abstraction were utilizec to 

si~pliry t~~ design and understandability of the syste~. 

Level e c~nslsts of the system hardware whicr. includes 

the 7.erel micrnprocessor, the local and global ~emori~s, anrl 

seconda~y stora~e. The ~ASS is desiFned to oterate ir. a 

~ulti-~ir.roprocessor environ~ent, therefor~ e"rh CPU is 

ac.si~ned its o'*,n lo~al ~er!lor:, (to · .. hich it alone has access' 

!r. which it rat st~re proress local sep,~ents. T~~ system 

contains a flobal me~ory, which every CPU ~ay access. 

Sp.~~ent5 to which a user process has write access mu~t ~e 

:'-red in ,lobal meMory if more than one ,roce~s has 

simultanp.ous access to that se~ment. This 1s to ensur~ that 

all processes a~cess the currpnt copy of that shared 

writ~bl~ seg~ent. The baSic storage policy is to stor~ every 

se~~ent within local ~e~ory i~ at all possible. This is to 

~~ep bus contention betwpen processors, which access gl~bal 

~e~ory, to a ~ini~um. 

?'"' •• :1 



Secret I 
Level 3 Host--------~==H=O=S~t==l==:~--------------------, .... --.... 

r;1 FM 
~ --- Module 

Level 2 superv1sor--1 G~e ... 1----------
~'L Ke2er 

I 
I 

I 
I 
\ 
\ 

\ , 

....... ... ... ... -... - .... 
Segment !vent 

Mana~er 

, 
T ra f f 1 c "'" _ ...... ... -- _... '~ ...... -."..
Controller~ 

..... ___ --.1 Memory 
r--__ ---~ , Ma ncH~e r 

Inner 
Traffic 

Contrtl1er 
-.... 

I \ I 
level 1 r.p.rnel~/--~\--------------~I---------\~---------

/ \ I , 
I 

Level 0 Hardware--------------------------------------

Da ta -------
Control- - - - --

Fi~ure 2. S~SS Abstract System Overvie~ 

30 



I 

I 

I 'Jf! • i 
, I 
'\ 

'il .! I' ~ . , 
l f~:' .1 

"1 ' , 
\ I t~ 

I 'y 
1 

Level 1 consists of the distributed and non-distrltuted 

kerneL The K:E'rnel is placed in (executes in) the rrost 

privile?ed do~ain (syste~ mode) of the ZEe~l to e~sure that 

it is proterted from any manipulation (either malicious or 

inadvertanti. The kernel controls all ac~ess to tr.e syste~ 

hardware by maintaining all privileged machir.e instructions 

within its do~ain. Only the kernel may acceSS these 

instrurtions. Th~ distributed kernel is rpspor.sible for 

creatinp. a virtual processor environ~ent and enforcin~ the 

non-discretionary security policy. It multiplexes processes 

onto virtual processors and then multiplexes these virtual 

processor(s) onto the actual hardware p!oce~sors. The 

non-distributed kernel ~onsi5ts of t~e ~emory ~ar.a~~r ar.1 is 

responsible r,r the secure m6narement of toth main mem~ry 

and secondary stora~e. 

Level 2 consists of the supervisor. which resi1es in t:'e 

l~s~ p~ivile~ed domain (normal mode) of 

r.icroprocessor. It has acc~SS to all the rra~hine 

instructiots with the exception of those whi:h Mcnipulate 

t~~ syst~~ r.~rdware. T~e supervisor must requ~st tte kernpl 

to move se~ments into and out of ~emory and serocdary 

s to ra~e the rate £eeper fa softwa~e as~1sted 

rine-crosslr.~ ~echcnis~}. ~he superviscr consists of two 

surropate proce~ses for e~ch h~st. the I/O (input/output' 

Drocess an~ th~ F~ (file management) process. By utilizl~g 

the I/O and ~~ processes the supervisor is atle t~ ~rovide 

31 



and ~ana~e a virtual file hierarchy for eac~ hest system. 

!ach ~ost system has I/O and F~ processes created and 

Jssi~ned at system generation. They are not dynamically 

created or deleted. The supervisor ensures that each 

seg~ent's discretionary security is enforced. 

Level ~ consists or the h~st comput~r systems. These 

systems are hardwirec to the I/O ports of t~e ZSee0. The 

hosts rommunicate with the SASS via Syste~ ~rotorols over a 

co~munication link. Any computp.r system could serve as a 

host, with each host supportinR multiple users. 

3. SUPERV IS OR 

Bach host systp.m is aSsi2ned the dedi=ated servicp.s of a 

pair of supervisor processes at sy~tem ~eneratior.. These 

nrocp.sses ar~ the I/C and !~ precesses. The F~ proce~s and 

the I/C process co~municate with each other yia a shared 

se~!fl~nt pntitlpi the "~ailbox". T~is commurication is 

synchronize1 via the kernel synchronization ~ri~itives w~i~h 

act upon eventcoun ts and sequencers [lZ]. A Yirtllal file 

syste~ is created and ~aintained for each host by its F~ ar.d 

110 processes. 

1. File Manap'elT'ent Process 
• t 

The FM process is responsitle for the ma~agement of 

the hostl~ virtual file system -,,1 t~!r. the SASS. The 10M . . 

32 



:~ 
'i! ,;1 
~l '/ 
" 

! ',., , 
./ t ;1 

'J 

~j 
:" 

I •• 1 

Id II .;t.:: 

I: 
~ l' 

I ':I I
j
"! "-,4 . 

f' l' 

,~ 'i J' 

f,l . 
~ . 

rt>' . ~ 

I 
~ '\ ,~ 

<, ,itl "" ~ , . 
• f119 . . l~ . ·S. 

process interprets all the host commands and acts upon them 

in conjunction with t~e 1/0 process. 

The user of the h~st SysteM views his stored data 

(within thp. SASS) as a hierarchy of files. Figur~ 3 prcvid~s 

an example of such a hierarchical file structure. To speci~y 

~ part.lcular file, a 9athna~e is require~. The pathna~e is 

s1mply a concatenation of the file names (given to each file 

by thp user at its creation) starting at the tt " roct 

directory ind procedln~ sequentially to the deSired file. 

The user Is required to sutm!t a pathna~e with pach co~mand 

~ent to the SASS. The five baSic actions to be per~or~ed 

upon files at this level are: 1) to ('reate a file (~ata or 

1ir~ctory). 2' to delete a file. 3) to read a ~ile (data or 

directory). 4) t~ initiate or modi!y file attributes (size. 

classification. acc~ss per~itted'. and 5) to store (writ~l a 

fi le. 

The 1M procesS is required to convert the pathna~e 

provided ty the user, into one or Mo:e se~ment numters. This 

is necessary because the notion o! a file 1s not kto~r. 

~ithin the kernel. ~ll files are composed o~ se?~ents. end 

~ust be referenced as seg~ents withi~ the kernel fnr 

manipulation and ~anageMent. The F~ process ~ust alsn 

~rovide ~ppropriate co~mand ~andlers to ensure that the 

user's requested act~on is properly carried ~ot. 

Th~ SASS pEr~its a host tc read or write the files 

o~ another host, at the same security level, if 

33 



" 

1 
I 

(' ~~ ~ 

~.: 

(' 
~ .~ 

I (. , 
~ 

L 

" , j 
, ' 

i 
?t 
·t I: ' 

, I,. 

l 'I> ;\ 
',r 

~ 'H 

if ... 1'1' 
'41 

'{I 
;~ ~ 
/,,~, 
~ 
t 

>~ 

.\ ~ 
"l{ oj 

J./ '{j 
'l!i t~l!l 

• 
• 

Fi~ure 3. Virtual File Hierarchy 

34 

File G 1 
File G2 
File ~ 



discretionary acc~ss is permitted. Files of ~ lower 

classi!ication may be read ot1y (if discretionary arceSS is 

permitted). ~his file sharin~ is achieved by creatin~ a link 

~~twP.~r. t~e two ~ile hierarchies. This link is entered into 

a directory file of the host, and is constructed in the sa~e 

manner as a pathname (viz •• it is a concatenation of 

!ilena~es). The kernel enforces a read only acc~ss to the 

lower classified file~, which prevents the possibility o! 

writln~ data (throug~ a llnk) o~ a higher classification 

ltto a file of lowar classification. 

The datahase utl1i~ed by the:~ process to ma~a~e 

t~e host's files is t~a !~ Ktown Se~~ent Table (FM_KST'. The 

F~ EST is a li~t of t~ose segMents w~lch are ~nown to (vl1 •• 

within the address space of) the FM process. !i~ure 4 

provides an example of the l~_KST structure. 

Whenever a uSer of a host syster requests arceSS to 

a specific file, the i~_!ST i! searched to determine if that 

pathname (se~ment) is already known. If it is ~to~n, the 

request is passed to the kernel, via the ~ate_keeper, with 
~ 

the appropriate ~ot number, for t~e desired action. If 

the path~ame is not known, the segment number of the cesired 

~ile's directory (parent) rl1~ and an entry number are ser.t 

to the kernel with the request to ~ake that Sep~ent kno~n. 

If thp r~quest is authorized ~y t~e kernel, a seg~~nt nu~ter 

ani access ~ode authorized ~re returned. T~e returned 

5eg~ent ct~ter and ~ode are then ente~ed int~ the iM_!ST 

35 



.' 

Path Seg_M Access Use 
Name Mode 

Host_l)Adams)Fl1e_C 5~ R N 

Host_2)Green>Dlr_l 44 'Ii Y 

Host 1)Smlth)Fl1e_l 22 W N 

P.ost_l>Smlth>tlnk_l 44 R T 

• 

• 

• 

• 
,I 
~ ~ 
• t • 

~f :~ Ii I 
I .. _. 

,I 
I 

I 
l i 

'/ .. 
I I. 

I 

l 
-'.\ 1 . ' 
'; i . 
:"1 

• 'II 

f.:i 

Fl~ure 4. File Manager Known Se~~ent Table • 

.';: 

-~ 
'.~J 

;/.f)J 
Jol ~i 
I j 

f. •• t.~ 
t~ 

36 



, . 
1\ 

I' 

I '~ 

.ith ttat se~ment's pathna~e. Once the sep-ment is knowL t the 

desired user action can be carried out. 

The us~r requests to create or delete files are 

simply passed to the appropriate kernel procedure, via the 

~ate keeper, by the 

security check). No 

r '.,I I, process (after a discretionary 

entries are added or deleted trom the 

PM IST during create ~r delete requ~sts (they invoke kernel 

pri~it1ves ~hich add or delete entries from a kernel data 

llase). 

Should the :~ pro=ess request that a Se~~ent ~p. 

~wappp~ into memory and memory is full, an error roee will 

be retcrned to the FM process from the kernel (it 1s noted 

t~at tbis 1s a per process me~orv allocation, t~us the 

Me~or, 5tate cannot be affected by its use ~y otr.er 

processes). The F~ process ~ill then select a se~ment to be 

r~moved 'r~~ cor~ to make roo~ for the desired se~~ent. The 

eurrent de~ifn calls for the invocation of a least recentlv 

use~ algorith~ (IRU) which ma~es use of the F~_KS! ~use!" 

field to ceternine the least recently used sep.ment for swap 

out. 

secul'l ty 1s enfIJrced in the 

discretlota~ securit, module of the F~ process. An arce~s 

~ontrol list (ACI' is ~aintainei for earh file ~ithin the 

~ile hierarchy. The ACt is si~ply a li~t of authorized u~ers 

{a refir.ement of non-dis~ret1onary security\ whi~r. 1s 

checkee for each access to that file. The discretionary 

37 



I 

I 
l I 
ij' , 
'" 

'i 
i 

,J 
'. 
<{ 
,I 
I 

~l 

~ I 'I 

I 
1 

.~ 

"·1 .' 
'I 
I : .J ~I J I,f. 

, ,I • 

'. t .. 
',I 
~I I' 

I 
J 

.~ 
Ji J', 

"1'''' 
"'i" 
~ 
~ 

.~ . \ .: 

1.hj 
~~. {~ 

h:2 

security ~odule also perfor~s the housekeepinR £unrticns for 

the file'~ ACt. These functions include the addition of a 

Act er.try, the deletion of an ACt 

initialization of an Act for a new file. 

entry, and the 

It is noted that the ori2inal desi2n of the !M 

process contained a MemOry manager procedure. This was 

necessary becaus~ the oriclinal SASS desl~n called for the 

partit10nlnr of lTI!!rnory StIch that each supervisor fTlaintained 

his own core. The F~ ~emory manager managed this virtudl 

core by calls to the kernel via the ~ate keeper (swap_ir., 

swap_out). The current design ot the non-distributed kernel 

Includes ~emory ~llocatlon and thus has removed the need for 

t~e supervisor to maca~e its own virtual core. ]ecause of 

thi~, a F~ ~emor7 lTIanafer 1s ~ot required. 

2. Input/Output Proc~ss 

Tbe I/O process 1s r~sponsltle tor all the input and 

output betwee~ th~ supervisor and t~e nost ro~puter syste~. 

The I/O process receives its commands frofTI the FM process 

via t,e sharec mailbol segment. 

Data Is transfered bet~een the hOSL systems and the 

S'SS in flxed s1ze upacketsu. There are three basic types of 

packets, a synchronization packet. a co~m~nd packet, ani a 

data packet. Protocols exist for the reliable trans~ission 

and re~eipt ot the pa~kets by both t~e SASS and the host 

T:e curren t calls for the use rf 

3E 



~ 

~ 

f 
$ 

i 

I " 

: i 

~, 

I 

, . 
I I 

:1 h 1 .~{ 

t: 

-I 

t! 

II i ill 

i 
"! 
.1 ,( '.' " j 

I 
.. 

;\ I l 

! 
I . 

I 

-~ 
J:t 

~ulti-?acket ~rotocolSt which allows the sender to send 

several packets before he receives a receipt. 

The original ~es1gn cf the I/O process ccr.tained a 

Memory ~ana~er procedure for the same reasons as the FM 

process. This proce~ure Is no lon~er required due to the 

desi~n of the non-distributed ternel. 

c. DISTRI~UT~D !ERNEl 

The initial desirn of the security kernel as presented 

by Col~~an [3] t has be~n developed by Reitz (4] an~ the work 

l'resented here. The primary refinemcnts have teen the 

replaC'eMent of' blockh,akeup (:3] by eventcounts. t~e 

inclusion o! an event rnana;,er which contai ns the 

syn C'~ r{'ni za t ien prirr1i t1 v~s t and t~p. trarsf~r o'!' ~"'TJ 

!"1anapp.!f1ent to the rrernory rnana?,er. Fl~ure 5 ?rcvi1es an 

~vprvlpw o~ thp sp.curlty ~ernp.l desi~n. 

1. C-a l.~ !(.::eoe r - . 

ThQ ~atp. keep~r 15 a soft~are ring crosslr.g 

~echanlsm whl~t 15 utilized to ~nsure tt!t the se~utlt1 

~ernel is Is~lated dnd tanperproof. The mcjor 15sue~ of the 

~atekeeper desi~n arp: 1) to provide a ~o1e sw1t~hin~ 

mechanis~ for ~witchin, irem normal ~supervisor) mode to 

syst,=r.l t"e .. nnl) \ ... ,,- mode 2) tc ~ask ~ardwcre p~ee~pt 

Inte~~upts in ~he kernel, anf 3) t~ check fo~ "virtual" 

39 



" 
, 

t i 
I 

I 

\ i .J 

1 
. 

If 
'/ .. 

Supervlsor 

---

Gate 
Keeper 

Segment 
- - - Mana~er 

Tra ttl e 
Controller 

Inner 
Trafflc 

Controller 

-- --.. 

Event 
Mana~er 

Fi~ure 5. Security Kernel tesi~n. 

40 



, 
f. 

I 
.Jl! .. 't . " 

sc~tware nreem~t interrupts when leaving the k~rn:l. T:e 

~~tp. ke~per provides tte sole ent~y ~oint into t~e kernel 

domain, validates the request and its arrunents, and 

tra~sfers the r~quest to the ap~ropriate kernel proc~durp. 

If the rate keeper encounters an error, it returns an 

appropriat~ error code without irvoking the kernel. 

The ~ate keeper uses a para~eter table to validate 

the us~r's request (call ~y value only). :his tabl~ contains 

t~e nc~ber o~ Pdra~~ters required by each kern~l function 

(creat~_se~mp.r.ttdelete_seRment, ~tc.), the typ~ o~ eac~ 

parameter, an~ the type of e~ch return para~eter. If an 

~rror is discovere1 during t~e validation process, i~ sets 

t~e return ~essape to an error code. I~ t~e request is 

val!~, the ~ate ~pep~r calls t~e appropriate ~err.el ~cdule. 

The ~ute ~eeper is d trap handler. ~he s~pervis~r 

?~ts an ar~umprt list and space for a return ~pssa~e in a 

Sp.R~ent (or procp.ssor re~ist~rs' within the supervisor's 

~Qmain. ~hen the ,ate ~eeper is ir.v~ked, it must rir~t save 

the supervisor processor re?lsters an1 then retrieve the 

arfu~ent lict (via a~ ar,ument list pointer rerister'. The 

areuments are v~liddtei and if correct. passe1 to t~e 

appropriate lternel mod"le. 

~~p~ th~ kernel ro~pletes action ta~En up~n thp user 

request, it returns to the gate keeger. The eate keeper th~n 

cop~es a r~turn messa?,e intc t~~ return ar6u~ent (that is 

returned to the ~uperviscr's d oma in ) , restores t~e 



;, 

r 

, 
" 

l ;~ 
" . :i 

I '., 

supervisor's environmpnt, unmasks t~e interrupts; and ~akes 

a trap return ba~k t~ the supervisor (viz., chan~es the mode 

tack to norfTlal). 

2. Spgment Manager 

is 'responsible for the 

~ana~e~ent of the segmented virtual memory. There are sir 

functions whi:h the se?ment Mana~er Is call~d vpon to 

perfor~. T~ese functions are: 1) to create a seg~ent, 2; to 

delete a ser~ent. 3) to make a seg~ent known, 4' to make a 

seg~ent un~nown (terminate), 5) to s~ap a segm~nt intc core, 

and 6) to swap a segment out of core. 

~h~ s~~ment ~a~ager uses the ~nown Se~~ent Table 

(?ST) as its d~td base to mana~e seR~er.ts. ~he KST is a 

proc~ss Icedl ~~rnel data base w~ich contains entrtes fer 

~ll the se~ments which the process has "ade known. ri~ure 6 

provides an pxam~le o~ the ~ST structure. The E~~ size is 

!ixed at systpm ?eneration. It is indexed by Se~~ett nt"~ers 

which are assi~ned by the s€~ment ma~a~er. ~hen a seg~ent is 

!l"dde known, a "~~ndle" (the CO:1catenation of the Global 

Activp Seg~ent Table (G_AST) index ane the seg~pnt's unique 

identlficatioc' is returned to the se~~ent ~a~a~er by the 

:f!ana~er. The handle is a system wide unique 

identification th~t is aSsipned to ea~h ~rtive sp.p.~ent 

(viz., active in the G_AST). The EST provides the ~appinf 

~ec~anis~ for convertinp the sepment num~er itto t~e 

42 



Access In 
MM_Eandle Size Mode Core Class 

Fl~ure B. Known Segment Table. 

43 



,1 

i 
~, 

~ 
:.;; 

~ • ~, 

I 

.~ { 

J 

i;1 
/' 
; 

I 
J 

~ ' . • 'l~ , 'w 
I, ... /~. 

f!; 

II, • 1, 

-! ~ 
/ I 

:.,..' . 
, Itg 
l ~~ 

I"'" ,;""-' 

5egMent's urique handle. The use of the cnique handle ty the 

~emory managt. is what per~its the cor.trcllee sharing of 

se~~ents by ~oncurrent processes. Any pro~ess whicr. requests 

to ~a~e a speci!ic segment active will always be returned 

tha t se~ment's unique handle. Thus any one sel~ll1ent may exist 

within the address space of several processes (with a 

eifferent segmpnt nu~ber in each pr~cess) while residin~ in 

one location in me~ory. 

Th~ SIZB field of the KST represents that segment's 

size. ~e~~ents elist in multiples of 256 bytes due to z-eeee 
~MU hardware c~nstraints. An upper bcund upcn the segmpnt 

size is fixed at syste~ ~eneratior. by th~ desi~n para~eter 

Max_se~~prt_size. This is lirltee to 65K ~yt~s by hardwar~. 

~he ACC!~S ~or~ field states the access authori1et to the 

see~ent (rpad, write) ~y this process. The I~_COR! fiel~ i~ 

~et when a process successfully requests the se~me~t to be 

swapp~d irto corp. Ttp. CLASS !ield is used to tive the 

~ccess clas5 (e.p., secret, confidential' of the sefme~t. 

T~~ usual sequ~nce of invClkinr, the SeCfl'€Ir.t rn~,naF';er 

functions (~y t~e supervisor) would te as fellows: l' 

Create_~eg~~nt (ttis will invoke the menory nanager to 

assiRn a unique identification to the created sepment', ~) 

Makp_Known, w~i~h will place t~e segment irte the KST, and 

0) Swap_In, wr.ich will ~ove the sep.ment fro~ se~cndary 

~tora,e to main me~orY. To reMOV~ a segment from main neMO~Y 



{ 
\ 

.J1: 
• .f ! 
.t 

:11 

i J1' .'it 
V 

"1 I 
I 
; 

, > 

to secondar, storaee, the order would be l~ Swap_Out, 2) 

~c!e_Unk~own, and Z) Delete_Segment. 

3. Event Ma~ap,er 

The event mana~er prov~.des the ke!'uel 

synch roni za t i en primitives t~a t are used i'or the 

synchronization of concurrent processes in the supervisor of 

tte present SASS design. The synchronization mechanism u~ed 

is that of eventcounts an~ se~uencers, first proposed by 

P.eed and ~anodia [1~]. The use of eventcounts and sequencers 

allows thp ordering of ev~nts to ~e rontrolled dir~rtly ry 

the proceSSes involved. rather than to depend upon ~utual 

e~clusion merhdnisMs ~uch as seMaphores. The actual 

evectcounts dre ~aintained in the memor] mana~er vo1ule as 

they are a cystem wide entity and are not pro:ess local. 

!eed and Kancdia define an eventcount as an cbjert 

that keeps a count Q~ the number of events in a particula~ 

class t~at ~ave o~curred sc far in the execution of tte 

s,stem. The event cbs~rved can be anythlnr fro~ the input of 

data ~o the system, to writing a parti~ular ~egment. Tr.e 

eventcount ~an be vle~ed as an inteRer value, ~hich is 

incremented with each occurrence of the observed ever-to The 

primitive ArVANC~(X\ 15 used to Sip.r.al the oc:urrer.ce of a 

particular ev~nt, an~ causes th! eventcou~t Xt associated 

~1th t~at event, to be in~remented. T'n e prirnl' +ive -.~.~_·,~.~_'\·l·.\ • _ . ~. l! 

will return th~ value of the eventcount X. T~E pri~itive 



r 
~l 
lit r ~, 

il ~ 
~ 

it 
~I i?il 
~I , 'I II 'I 
qi 
1$ 

II 
~ 

II ~'i 
~ 
~l 
rf' 
~: 
J< 
l~, ) 
~. II 
~~ 
~, 
II 
~. 

i, 
~ 
~ 
~ t, 
~. 

~, 

I 

1t: 
:.'\ 
" · " l .; ;1, 

>" 

'i · . 

'f:, 
u 

I .,.. 
'4 
f 
A 

t,; 

· i 
" ~ 
" 

/~ 
J 

ftNAIT(X,n) will suspend the calling process until the val~e 

of eventcQunt X is rreate~ than o~ equal to the integer 

value n. 

A se~~eucer can ce defined as an abstract object 

that can be utilized to totally order the events of a 

particular class. ~he basic purpuse of the sequencer is to 

provide a ~eans to determine an orderin~ of a set of 

occurences o~ a particular event. li~e the eventcou~t, the 

sequencer can be viewed a~ an inte~er value whi~h is 

incre~Qnted each time the primitive ~ICrET(S) Is called. The 

TIC,ET pri~itive is tased upon the ticket m~chines often 

use~ in bar~ersh~ps an~ ice crpaw stores. ~hen a custo~er 

er.ters, he takes a tic~et, from wrich the order of w~o 

nrrivec. fi rs t and who~ will be served ~eJt can te 

c.etermined. 

Tte use of eve~tco~nt~ and sequencers the 

supervisor r~n be illustrated ~s follows. Suppose that 

~ef~ent A is currently tei~€ updated by prOCESS onE. 

Event~our.t A curre~tly has the value o~ 9 (the eve~t~ount 

associatef with the readin, o! se~ment A). Proces5 two 

deSires to read se~~ent A, so he obtai~s a ticket cy 

utilizin~ the TICr.ET primitive ass~ciated .ith sef~ent A. 

T~e v~lue returned ~y ~!CK~T is lr. Process t~o no~ calls 

upon the primitive, A«AIT(A,10), which will suspend process 

two until event~ount A is valued at le. 1hen process one 

completes his updatE, he will e~ecute ADVh~C~(A), which will 

4:6 



,: 
" 

,I 

'i .. 

I' 

incr~rnent eventcou:.t A to the value r,f 10. This will cllew 

the A~AIT(A.1r) to retcrn to process two, which will then te 

allowe~ to read segrnfnt A. 

4. Traf~ic Control~~ 

The traffic controller performs toe function ~f 

scheduline procesSes to run on virtual proc~ssors. The 

tra'!lr controller cculd te desl~ned to schedule processes 

to run directly Oil ihe l'ardware proc~ssors. bllt in this 

desir-n, Reed'5 [111 notion of a two level traffir controller 

was utilized. Thus the processes are first ~ultiplexed onto 

virtual processors by the traffic controller. The virtual 

pro:essors ar~ then multiple~ed onto the actral hardware 

processors by the inner traffic controller. 

ft virtual processor is an abstr~~t data structure 

which pre~erves all the attricutes o~ a process in elec~tion 

on a proc~ssor (i.e., an executic~ peint and ar address 

space). Multiple virtual proc~ssors ~ay ~xist for a sicv,le 

p~Y5ical procpssor. The Active Process Table (APT) is th€ 

data base utilized by the traffic controller to contol and 

the multiplexing of pro~esses onto virtual 

processors. Fi~ure ? provides an Example of the the AF~. 

The APT is a fixed sized tatle which r.ontain~ an 

prtry !or eac~ process of the ~ASS (t~e ~rocesses are 

~reatee at system Feneration). Because of the 

dectsio~ pot to create or destroy pro esses after syst~m 

47 



. , 

" 
'1 i . 

I . : 
" 

D~R Priori ty State Next Ready 
Active:Process 

, 

.-

Fi?ure 7. Active Process Table. 

48 



.J 

p.eneration, the initial entries into the AP~ will be a~tive 

for the life of the system. The index into the AFT is the 

PROCESS _ID. 

~he traffic controller uses the PRIOEITY field of 

the APT to determine which process to schedule f~r ~xerution 

on each virtual ~roressor. The STATE field contains that 

~rocp.ss' current state (running, blocked, or ready). the D?R 

(descriptor base re~ister) field of the APT provides the 

a~dress of the MMU image for that process. The Next_Rp.ady_AF 

field is a pointer which contains the index of the ne~t 

proce~~ which is in the ready ~tate. 

T~~ d~si~n si~plificdtion ch~ice of always havinp, a 

proce~s runninf on the virtual pr~cessors. introduced the 

~~tion of ~n i~le pror~ss ror eac~ virtual proressor. T~~ 

idle proce~s is loaded onto a virtual processor and placed 

i~to the ru~nlrR state whenever t~p nu~ber of available 

virtual processors exceeds the nu~ber of ready or runnin~ 

processe! (excludini the idle process). The idle p~oce5s is 

o~ t~p l~wpst priority, and will only run if no othpr 

process can be loaded. It 15 incapable of blockin? its~lf, 

and t~us ~U5t always be in either the runnir.g or rpa~y 

s ta te • 

~hen a virtual processor cecomes aVdilab~e. the 

traf~ir cor.tr0ller will be invokei to schedUle t~e hi~hest 

p~iority ready process which may run o~ that particular 

virtual processor. If no process is ready, the Idl~ nrccpss 



I 

., 

, II. 

I I I . .. J }I 
~! 
t.~ i 

r 
. i 
'\ t 

1>11 J.,I f" • f' 

• 

is scheduled. Thp. Idle process provides a means to ~uarantee 

that a ready p~ocess will always be fotnd, and that the 

Traffic Controller cannot be exited without sctedulir.~ a 

process. 

5. Inner Traffic Cor.troll~r 

The purpose of the inner traffic controller is to 

prcvid~ the multiplexing of the virtual processcrs onte t~e 

actual system processor(s), and to provide the rernel 

p~iMitives for ~nter-proce~s communication within the kernel 

(Signal an~ ~~lt). tn 

processor has a fixed 

the SASS design, each physical 

set of virtual CPU'! that it 

data base utilizpd ~y the i~cer 

traffic controller is the Virtual Processor Table (VPT'. 

Fl~ure S provi4~s an eza~?le of t~e VPT. 

Th~ 1~T is in~exed by the Virtual_Processor_I!. T~e 

D~R, ?RI, and the STATE fields ~re us~~ ir. t~e sa~e ~ar.ner 

as thos~ fields in the APT. ~Le Idle_Flap simply indic~tes 

t~at thp idl Q process Is loaded on that virtual nrocesscr. 

The Preempt fla~ indicates thit a virtual preempt intprrupt 

has been directed to that virtual pro ce~sor. The 

is a fixed field that tndicat~s ~hic~ 

hardware processor that virtual processo: is sched~led to 

run on. The NeJt_~eady_VP is a pointer to the icdex c~ t~e 

next ready virtual processor in the VPT for this C?". 

In!: is', rig ina 1 des i 5 n, Col e (T·a n ( 31 t ask edt h e inn j:: r 



4 

" ~I 

nEE Pr1 State Idle Preempt Phi'S Next to'Sg 
Flag Flag Proe Rdy_VP list 

I· 
~t !I 
I 4 -, 

t1 

r ;1 
Ii 'Jt: ! 

~~ 
" I . ; 

It )~ 
I '/ , I 

I l1~ ,I 'II ~. , ·v 
:1 

111 ~; 

i~ 
"*' 'I 
~: 

I . 
Ii It 

'j i 
, ' ~I , 

(if.! I 
, 

~: d i t 
. , 

• 
i ~~ 

., . f tri· 

~ 
( .. .' t 

.# t ~ 
/ ,I" ~ 

~, I- t 1\ , ! t . ({ 
It ., 

i 
, ~ 

" . I " . 

F1gure S. V1rtu~1 Processor Table. 

51 



" J: 

t' .I-

" c' 

~: , 
k' 

I 
I 
~ I 
:r 1. 

:1 , 
a 
r 

f 
'. 'I , 
~ 

·1 

! , 
A 
, ~I 
II 
. '~I 

f 

traffic controller ~lth the manape~ent of t~e hardware 

~emory Manapement Units (which contain the process' addre~s 

spacE and its attributes) and the MMU software imares. In 

the present de~if.n, this function has been assi~ned to the 

~~mory mara~er. When the inner traffic coctrol'~r unloads a 

processor, it simply writes the ~MU into the ~MU i~a~e in 

cr1~r to s~vP the seg~ent usage information. To l~ad a 

nrocess, it writes the ~MU ima~e into tte M~U. The re~ory 

~ana~er insures that th~ ~MU ima~e is kept currer.t ~y 

llpdatinp, the im<lges whenever a Se~Ment is Swappp.d in or 

~wapped out of memory. 

Th~ kernel synchronization priMltiv~s of SIGNAl an~ 

~AIT are ~aintained within the ir.ner traffic controller. 

~tese pri~itives are used by virtual processors within the 

kernel dOMain to synchronize with other virtu&l proces~or~ 

within th~ kp.rnel domain. 

.. 
J,. • 

~h~ SA~S non-1istri~uted ker~~l is cOMposed solely c! 

the me~ory ~anager process. Fach phYSical processor has 

assoclate~ with it, its cwn dedicated r.e~ory ~anager 

process. Thp. purpose of the ~rocess is the proper ar.d secure 

~ana~ement of the main me~ory (both lOCal and ~lobal), and 

secondary stora~e. T~p. actual transf!r of se~ments fro~ ~aln 

memory to secondary stcra?e and vice-versa, is controlled by 

52 



the ~PMory ~anager process. The primary data base utilize1 

by the process is the Active ~e~ment Table. Chapter 3 

provides a detailee description of 

and data bases. 

53 

the fun C'ti ons 



III. ~EMORY MANAGE~ PROCESS DETAILED D~SIG~ 

A. INTRODUCTION 

The ~emory ~ana~~r is responsible for the ~ana~e~ent of 

both main memory (local and ~lo~al) a~d ~econdar~ storage. 

It is a non-distributed portion of the kernel with one 

memory mana~er proces! existin~ per physical proce5~or. Tte 

me~ory mana£er is tasked (via si~nal and wait} to nerform 

MemOry ~anare~ent functions on behalf of other processe5 in 

the sY5tem. The ~ajor tasks or the m~~ory man~ger ar~ : 1) 

the allocatlo~ and deall~cation of secondarv stora~e, 2' the 

allocaticn ar.~ deallocation of ~lobal and lccal ",~rr.ory , 'It , 
.. I 

se~ment transfer fr~'" loc~l t~ Flotal ~emory (ane vice 

ve~sa), ar.d 4) segmer.t transfer ~rc~ secondary storaR~ to 

~ain memory (and vice versa). There are ten service calls 

(via si~nal) ~hich tdS~ t~~ me~ory manager Process to 

~erforrr. these functior.s. The ten servicp. ~a!ls ~re: 

Cit EAT'£ !NTP~ 
!'El::T~-ENTEY 
A(,TIV ~.TE 
DEACTIVATE 
S"lAP IN 
S'iAP-OUT 
DEACTIVlTE AL! 
MO'n' TO ClOrAL 
"'OV:;--TO -LOCAL 
',TPDA ~E -

Upon completion of t~e service request, the memory ~anager 

return~ The result~ o~ the operation to the waitinf process 



,I 

, :1 

I': . ~ 
" 
, 

-:. ."-'1 

(via si~nal). It then blocks itself uttil it is tasked to 

perfor~ another service. The hardware confip.uratiot mana~ed 

by the memory ~anager process is depicted in firure 9. The 

shared data bases used by all memory mana~er processes are 

the Global Active ~egment Table (G_AST', the Alias Tatle, 

the Disk Bit Map, and the Global MeMory ~it Map. The 

processor local data bases used by each proress are the 

local A~tive Se~~ent Table (L_AST). the Me~ory Yana~ement 

1n1t I~~~es and the Local ~e~ory Bit ~ap. 

F. D!SI~N PARA~~T!RS AND DECISIONS 

S~v~ral far tors wer! identified durine t~e design ~f th~ 

~p.~ory Mana~er process that refined the initial kertel 

design of C~leman(31. The two areas that were m?dified, were 

the mand~e~ent o~ the ~MU ima~es and the man~~eMe~t of core 

~emorY. ~oth of these functions were ~anared outside o! the 

~~mory ~anap,er 1~ the initial desi~r.. ~he inclusion ~f t~ese 

~unctions in the me~ory manafer process sir!iif1cantly 

iTprov~~ th~ lo~ical structur~ of t~e averall syste~ design. 

Additional desl~n parameters were established to facilitate 

t~e initial !r.pl~mentatlon. These ~pslgn para~eters re~~ to 

be addressed before the detailed desi~c of the r.e~ory 

manafer process is presented. 

It ~as dQ cl1pd to ~ak~ th~ block/page size of b~th ma1~ 

~emory an1 secondary stor6~e eq~al i~ size. T~i5 was to 

55 



r~~~~~~~~~~_~~~.~_~ g ~" •• "_ •• ~~.~~ ••• p,_.~~,_ '.-1~ ~" ~&~ •. _~ 

"~"~~=:·:·~"S~~~------':"----·---------------~~=~ 

I 

1 
"' 
1 • 

--,...... . , 
.... _-...- ~,.-

>, --:-~-::; . ..:.. .. . 
- .--c~~;":;' ... i:"'~< - :;.-" -- . ~.~ i;' #" ;: 

u .... ;" 

"T.I ..... 
OQ 
~ 
t1 
(l) 

~ 

(fl 

» 
(fl 
(fl 

til ::c 
(j\ '-

::€ 
(fl 

'< 
III 
rt 
(l) 

s 
0 
< 
(l) 

t1 
< ..... 
(l) 
:( 

, .. --., .... .,., .. ___ ..... _~lP'- ... _<_.... .~ 

....... 
'- -- -

ILAST 
MMU 
MMU 

Z8000 

MMU 

LOCAL 
MEMORY 

CONTROL,--
SYNCHRONIZATION- - --

...... -.-

CPU lOICPU II 

". - /' ....... 
....... --. ----

---- Z8000 

./ 

LAST 
MMU 
MMU 
MMU 

LOCAL 
MEMORY 



• I 

l ;~l' -.f IiI' . .. ~., 
Iff 

, ! 

,'t 

'~ 
" 

si~plify the ~apping algorith~ f~om secondary storaee to 

~ain memory (and vice versa). In the i~itial desi~n tre 

~lork/pa~e size was set to 512 bytes. 

The sizp of the pape table for a se~~ent waS set at one 

page ( non-pared page 

implementation, and hae a 

table). This was 

direct bearing on 

to simplifY 

the maxlrrum 

segment size supported in the merrory mdnap.er. For example, a 

page 5izp of 256 bytes will address a ~axi~um segrer.t size 

of 32,76~ bytes, while a pa~e size of 512 bytes will address 

a se~ment si7e of 131,e72 bytes. 

The size o~ the alias table was set to one pa~e 

(non-pa~ed alias table). The number of entries that the 

alias tabl~ will support is limited by t.he size of the pa~e 

table (viz •• a ~a~e size of 512 bytes will support up to 46 

er.tries in the Alias Table). 

In the ori~inal desl~n. the main memory allocation was 

external to the memo~y lTlana5er. This Was e~e to the 

~artitioned rrerrory manaRement sch~rre outlined by Pa rits [2] 

and. Coler"la n (~) • Ir. the current design. addrec;s 

assi~n~ent and se~ment transfer are manaped by the re"ory 

manarer. This desifn ch01ce enhanced the ~enerality of the 

dpsign, and provided support for any mp.rrory ~anagerrent 

scheme (either in the ~emory mana~p.r or at a hi~~er level of 

abstraction'. HowevEr, the current design still has a 

~axlmu" core constraint for each process. 

57 



';: 
:; 
~ , 
~ 
; 

~ 
~ 

II 
ft 

! 

~I 

t 
-~i 

:} 

'I 
I 

.1 ;1 

II 
II '! ,I 
~ 

I $1 I; 
~I 

~~ 

:Jf 
".l-,1 

i ~\i 
"1 1 

.. V! 
I t~l I " I 

" ," 

. , ." . 
~ , 
f ' 

,I 
"j , ., I,. ~ 

'} 
.' 

",. rT 1- (I 

l < 

-, 

Dvnamic memory management is not implemented in this 

d~sign. Each ~rocess is allocated a fixed sizp. of physical 

core. Fowever. it is not a linear allocation of physical 

mefl'l 0 ry • 

in local 

sha ree • 

The 

and. 

or 

design supports the maximum sharing of seg~ents 

p.lobal m~mory. All se~ments that are not 

stared and do not violate the reader~/wrlters 

problem will reside in loral ~emory to eliminate the ~lobal 

bus contention. The need to compact the meMory (tecause of 

rra~me~tatlon) should be minimal in this ~esign dup. tc the 

~aximum sharing of segment~. If conti,uous memory is not 

available, the ~emory manager will co~pact ~ain nerory. 

~fter compaction, the ~emory can be allocated. 

decision to re,resent ~emory as one 

conti~uous blo~k (not partitioned) waS made to s~pport a 

dynamic ~~~ory mana~e~ent sche~e. ~ithout dynamic ne~ory 

~ana~ement. the process' total phySical mer-ory ~an not 

exceed the s~stems main meMory. The supervisor knows the 

sizp. of the se~r-ents ~nd. the size of the process' virtual 

core, there~ore it can manage the swap in and swap out to 

ensure t~at thp. proc~ss' virtual ~ore has not been exceeded. 

In the original dp.~ignt t~e user's process inner-traffic 

controller ~aintalned the software ima~es of the ~e~ory 

management unit. This desi?n require~ the Memory ~ana~er to 

return the appropriate memory manape~ent da~a (viz.tse~~e~t 

location) t~ the kernel of the u~er's proce~s. In the 

rurrect desi~ct the software i~a~es o! the are 



~~ 
$, 

t 
. ~ 

( , 
", 
] 
: 

t 

l~ r r r 
~ 
p. 
~f' 
~l 

'1 
:1 
'l 

~t 
" 
'I 
• 
I ,.1 

'I 

;1 I 
~'l II , I 
I; 

,I 

- ~. 

I ~. 

~' 
~~ 
~I 

i~ 
ri" 
Iff. 
~ 
~ : .. 
~ 
~ 
~ 

I '" , . 
1. 

[?< 

'Jf • I 
• I 

" 

':I! 
I !"I III 
. ':I~ 

~ 

I ~~t 
II ,I 
, ..... 1: . , 

11 
I,i I 

i 
~ 

.~ t 
.1 ( 

.11 , ~ 

/." ! 
~.' ~. I' 'f,' 

f. r{ 

I 
. 
~ 

M~intained ty the memory manaler. A descriptor base pointer 

is provided for the inner-traffic controller to Multipl~! 

the process addr~ss spaces. The rMn ima~e data base does not 

need to ~e locked (to ~revent race conditions) due to the 

fact that process interrupts are maSked in tr.e kernel. Thus. 

if th~ ~e~ory manager (a kernel process) is running then no 

other process can accesS the ~MU i~ap.e. 

The system initialization precess has not be~n addr@.ssed 

to date. However. this aesi~n has mane SOme assu~ptlons 

a~out the initial state of the s?sten. Since t~e me~ory 

mana~er handles tte transfer of seRments from secondary 

stora?e to main memory, it is likely to be one of the tirst 

processes cr~ated. T~e ~e~~ry mana~er's cor~ i~ae~ will 

consist of its pure code dnd datd sections. The miti~al 

initialization of t~e memory manager's data b~ses are 

entries for tr.e syste~ root and the su~ervlsor's sep.ments 1n 

the G_AST ard 1_~ST(5', and the icltializaton ~f the ~~ij 

ima~es with the kernel seR~ents. The current dp.st~n does not 

call for an entry in the G_AST or l_AST for the kernel 

segments. P.owever, when system ~eneratlon is desi~ne1 thiS 

will have to be readdressed. 

Th~ orlginal(3] ~emory mdna~er data bas~s have b~en 

re~ined ~y this thesis to facilitate the memory mcnar.ement 

fur.ctions. Thp ~ajor refir.eMerts of t~e elobal and loral 

active sepment t~bles are o~tllned in the follcwin~ section. 

53 



11 
~1 
~! 

~1 
" '! I 

c. DATA EASES 

1. Global Active ~egment Table 

The Glo~al Active Se6ment Table (see figure le' is a 

syste~ wide, shared data base used by memory ~anager 

processes to ~ana~e all active se~ments. A lock/unlock 

~echanism is utilized to prevent any race conditions from 

occurrin~. The sifnallin~ process locks the G_AST before it 

signals th~ memory manager. T~ls 1s done to prevent a deadly 

embrace ~rom occurrin~ between memory ~anap.er processes, and 

also to simplify synchronization between memory managers. 

The entire G_AST is locked in t~is desi~n to Si~plify the 

l~plementation (vice lockinr each individual entry\. 

Th~ ~_AST size IS fixed at ~~mpile time. The Size of 

the G_AS~ is the product of the G_AS~ record ~ize, the 

tnaximurn nu~ber of processes and the number of aunorized 

~nown SegMents per pr~cess. Althou~h the G_AST is of fixed 

size, it is plaUSible to dy~amically ~anap.e the entries as 

proposed ~v Flchardson and Q'C,nnell[l]. The ccrrett memory 

manager deslltu could be extended to l!'lclllde thiS dyna~ic 

mana~ement. 

Thp field. is a unique segrr.ent 

icentification number in the G_AST. This field is four tytes 

wide and ~lll provi~e over four billiot ldp~tlficatlcn 

nu~bers. A deslRn choice was made not to manaee the 



* Fla~ :BIts 
, 

UnIque Global Processors G ASTE # 
ID Addr L_ASTE_# tiri t ten Writable Parent 

:Bit :Bit 
#e #1 

* Fip.ld indicates a two processor environment 

, 
# Active No. Page Alias Seq- Inst- Inst-
In Merrory Active Size Table Table uencer ancel ance2 

Depend. Loc Loc 

I ~: 

Figure le. Global Active Segment Table. 

61 



l' 
I 

I 
'. 

reallocation of the unique_ia's. Thvs "hen a seFMent is 

deletp.c rro~ the system, the unique_id is not reused. 

The Global_Address field is used to indicate if a 

seg~ent resides in global or local ~emory. If not tull, it 

contains the ~lobal memory base address of a se~me~t. A null 

E'ntry indicates that the segment ~1~ht bE' in local 

rnemory( s) • 

The Processor~_l_ASTE_# field is used as a connected 

processors list. The field is an array stru~ture, indexed by 

Processor_Ide It identifies which I_AS! the sef~ent is 

active in, and provides the index into each of these tables. 

The desig~ choice of maintainir.h an entry in the t_AST fer 

all locally active SeR~ents i~plies that if all entries in 

the Procr:ssors_t_ASTE_# field are null, the seinert is not 

active an~ can be removed from the G_AST (viz., no 

processors are connected). 

Th~ rla~_~its fipld consists of the written bit, and 

the writable tit. The written bit is set when a ser~ent is 

swapp-=d out: of rne:T'l0 r:I, and thE' y.~rT irr.a.~e indicates that it 

has been written into. The writacle bit ie ~et durinr 

seg~pnt loadin~ to indicate that so~e pro~p.ss ~as write 

access to that sepment. 

If an active ~e~ment is a leaf, the G_AST~_#_Farer.t 

field provi1es a back pOinter to the G_AST index of its 

parent. ~hi5 back pointer to the parent is important duriPF 

t~e crp atlon of a segment. If a request is received to 



I 

create a Se~ment _hich has a leaf Se~~ent as its parent, 

then an alias table has to be created for that parent. Also, 

the alias table of the parent's parent needs to be updated 

to refl~ct the etistence of the newly created alias table 

(see figure 11). The indirect pOinter shown is the back 

pOinter to the ~!rent via the G_A~T. 

The No_Active_In_~emory field is a count of the 

number of processes that have the sep.ment in eloJal ~e~ory. 

It is usee during swap out to determine if the se~me~t can 

be removed from elobal memory. 

The No_Active_Dependents field is a count of the 

number of active leaf se~mer.ts tha~ are dependent on this 

entry (viz., require that thi~ Sep.Ment remain 1n the G_AST). 

~ach time a process activates or deactivates d dependent 

~eement this fteld is incremented or decremented. 

T~e Size field is the size of the se~ment in bytes. 

~he Pape_Table_locotion field is the disk l~cation of tre 

oage table for a segment, atd the Alias_Table_locatlor field 

is the disk location of the alias table for the sef~er.t. The 

Allas_Tabl~ ~ield car. be null tc indicate that no alias 

table exists for the Se~Mett. 

The last three fields are used in the manarement of 

ever.t~cunts and sequencers [4]. The Sequencer field is used 

to iss~e a service numcer for a segment. The Ir.stance_l 

field and Inst~nce_2 field are event~ounts (i.e., are used 

to indicate the next n~mb~r of occurances of some event). 

63 



,11 

.t 
" 

,,;; 
/ ~ 

J" . 

Mentor 
Segrnent • , 

. , . 
• • , , 

, , 

, , . 

Mentor 
Segmen t 

•• 

, . . ' . 

, . . ... '. 

Alias 
Table 

• , 
• • 

leat ", \ leat 
", Se~rnen t '" . . . , 

, , 

Direct Pointer -----
Ind.irect Pointer'" . , ••.•• 
Crea ted - - - - - - - -

" Segrnta n t , 
" 

Figure 11. Alias Table Creation. 

64 



2. Local Active Se~ment Table 
• 

The local Active Segment Table (see f1fure 12) is a 

processor local data base. The l_AST contains t~e 

characteristics (viz., segment number. acces~) of each 

l~cally active segment. An entry exists for each seg~ent 

that is active in a process "loaded" on this CPU and In 

local memo~y. The first fie11 of the l_AST contains the 

memor1 address of the segMent. If the segMent t~ not in 

~em~ry, this field is use~ to indicate whether tre I_1ST 

er.try is available or active. The Se~ment_No/Access field i~ 

a combination of se~~ent nu~ber and authorized i~~P.SS. It is 

an array o~ record~ data structure that is IndeIed ty D:R_=. 
The first re~or~ element (viz •• most si~nifl=ar.t bit' is use1 

to In~lcate the access (read or read/write) Pernltted to 

t~at se~~ent. The second rerori element (viz., the next 

~~ven ~lts) is uspd t~ indicate the seg~ent ~umber. A null 

se£~ent number tndic~tes that the pro~ess does not have the 

sef!"en tact 1 ve. 

3 • .alias Tat-le 

The alias table (see flgure 13' is Q memory manager 

data base whirh is associate1 with each non Ip3~ s~g~cnt in 

the kernel. A~ allasln~ s~heme is used to prevent passln~ 

~ystemwlde In~ormatlon (uniqu~_ld.) out of the kernel. 

See~ents can only be created throue~ a ~entcr se~~ect and 

65 



Memory Segment_N/AccesS_Auth 

Addr Dl!R-'~ tl!R_l Dl!R_2 Dl!R_3 Dl!R_' DER_5 . 

l 

Figure 12. Loeal Active Segment Table. 

66 



Uni~ue_ID Size Class Page Table Alias Table 
Location Location 

I 
, 

Figure l~. Alias Table. 

67 



, I 
I 

entry number into the mentor's alias table. When a 5e~Ment 

1s created, an entry ~ust be made in its m~ntor seg~er.t's 

alias table. Thus the mentor ser.ment ~ust be known before 

that se~~ent ~an be created. 

The alias tablp. consists of a header and an array 

s tructur~ or .. " entries. The header has two pointers (Vi7., 

disk addresses), one t~at links the alias tablp. to its 

associated se~Ment and one that links the alias tatle to the 

Mentor seg~Dnt's alias table. T~e header 1s provided to 

support th~ re-coastruct1on of the file system after a 

~:'stem crash due to device r '0 errors. It is not t1~ed at all 

durin? normal operatlon~ E~ch entry 1n the array structure 

nf ~ ... '" .. ., .. field!) f~r identifyln~ the cre.at~d 

Thp :1nloue Id . - fie :d ~ontalns t~e ur.ique 

idl..'ntiflcaU·Jn num'ter for the Sf, ·'nt. Tr.e Size field 1s 

used to rpcord the size ~f tt~ se~~er.t. The Class field 

rontalns the appropriate securltv access cla~s o~ the 

sp~~ent. T~p. Pd?p._Table_locatior. fi~ld has the disk e~dres~ 

of the pa~e table. A null entry indicates a zero-ler.rth 

s~g~pn~. The Alias_Ta~le_locatlon field has the ~isk address 

~f the alia~ table !or the se~ment. ! null entr~ indicates 

that thp s~p,~~nt 1s a leaf segment. 

4. ~e~ory ~ana~ement Unit I~afe 

The Me~vry Mar.agement ijcit IMa~e (MMU_I~~ee) is a 

processor local data base. It is an array structure that is 

68 



:Jf 
. 
',I 
, ; 

lit 
~;tj 

~'! 

I IT ' I 
t,1 
! ' 

I 
! 

}' 
,! 
" 
'" ! 

. \ 

irdexed ~y tte n!R_~. !ach MMU_IMag~ (see fi~are 14) 

Includes a software representation of the sef.~ent desc~iptor 

registers (SDR) :'or the hardware MMU [121. T!':is Is in 

exactly the format used by the special I/O instructior.s !or 

loadin~/unloadine the ~M0 hardwar~. The SDR ~or.tair.s the, 

r.ase_Aedre~s, liMit and Attribute fields for each loaded 

seg~ent in the prtcess' address snace. The Fase_Address 

fiel~ contains the ~ase address of the se~mer.ts in meMOry 

(local or ~loba]). Tte Limit field is th~ number of bloc~s 

of conti,uous storapE for each se~ment (zero indicates one 

bl"ck). The Attribute field contains el~ht flags. Five flags 

are u~@d for protect1n~ the segment a~ainst certain tvpe, of 

~~c~ss. two ~ncode the type of accesses ~ade to tte spg~ent 

(read/wr1t~). and one indicates the special stru:ture of the 

ser""ent rl~). Five of the eif;ht fla~s in the attrlcl!te f}elC 

are us~d the The "system only" and 

"execute onlv" flafS are l!sed to protect the c~de of the 

~~rn~l rro~ ~allclous or unintentional rno~iflcatlons. T~~ 

"read only" rIa, is used to control the read or write access 

II' .. '" .. f 1 ~ t d1 h \. tc a s~p,ment. 4':1e c,.cinp,e lag s use_ to n .cate t .. at t..e 
.. .., .. 

se~ment has been written into. and the C.U-lnhlblt flap Is 

uSpd to indlcat~ that the segMent is not in ~e~ory. 

The l~st two fieldS of the MMU_I~ap.e are t~e 

!lock_rysed field and the ~axi~um_Available_~lc~ks !lfld. 

~hese two fields are used in the man~em~nt of ea~h pro~ess' 

virtual ~ore and are not associated with tne ':1ar~war~ ~~U. 

69 



I 
~ 

A 
-.I 

, , 

'1 r', : -, . 
lit .. 

. . ~. i 

I '.~ t 
I ' 

t. ~ , ~ 
. .. , 
~ 
f 

,I 
.j 
'.t 

~ 
. , 

.# 
/' .~ 

I~' I," I 

l. II . 

, 
;, .... 

Seolrment 
No. 

Blocks Used 

Max Avail Blocks 

Ease_Addr lim1t Attributes 

l 

Figur~ 14. MeMory ~dnagement Unit Image 



, . 

'If; .. ;, 

. , , 
, .. ~ 

.~ ~ 
! 

.'; >I. 
.. ( l 

: 

. \' 
. \ !; 
.' I 

1./ ~~ 

t' ". : 
f. 'i" 
I '" 
i . 

5. ~emOTj Allocation/Deallocation Bit Ma?s 

All of the memory allocation/deallocatior ~it maps 

(see figurp 15' are basically the same structure. Secondary 

stora~e, p.lobal ~emory and local memory are ~anaged ty 

~e~ory bit ~aps. The Disk_Bit_Map is a ~lobal resour~e that 

is protected from race conditions via the lockinr convettion 

for th~ G_A~T. ~ach bit in the bit map is associated with a 

~lock of secondary stora~e. A zero indicates a free block of 

storaRP whil~ a on~ indicates an allocated block of storag~. 

1he Global_~emory_!it_~ap is used to manare ~lo~al ~e~ory. 

It is a shared resource that is prcte~ted from rare 

~onditions by the lorkin? of thp. GAS'!' • 

is salTlp. structure as the 

Global_~e~ory_~it_Map an1 is used to mana~e local me~ory. 

T~e tocal_~emorY_Eit_~ap is not lor~ed since it is not a 

shared resource between lTle~ory mana2p.rs. 

D. BASIC FU~C~IONS 

The detailed sour~e code for t'e baSic fu~ctlots and 

Main li~e of the memory Manarer are presented in appendices 

A and P. Apupndix A lists the uroc~dures which are coded in 

PIZ/~Y~. wr.ile Appendi~ F lists the lower level hardware 

~ppend~rt proce1ures which ar~ codp~ in P1Z/!S~ . 

PtZ/~YS is a high level modular ~tructvred latFua~e 

which nroeuces a mar.hine-independ~nt Z-code si~ilar to 

"1 



" 

" 

;! 

I .' -J 

~I 
I 

j 

J 
.~, 

:Jf 

] 
,I 

, " . 
I;~ " . 
,':1' 

~. : 

1ft t 
I ' 

I f 

I 

'1 
I \ 

,I 

" '1 
." 

.\ 
" 

,4' i ,.-
~~. ~" J • f 

t. f/ . 

I 

Page 

Memory Bit Map 

o 1 2 3 4: 5 6 7 e 9 1 1 111 
o 1 234: 

•••• 

•••• 

22222 2 222 
4: 4: 4: 555 555 
7 e 9 0 1 234: 5 

Figure 15. Memory Allocation/Deallocat1on Map. 

72 



~, 

.J 

.\ 

, 

. , 

I 
, .. 
1 
I 

J} 
" I,. 

1"': 
J. t. J I f 

• (I 

I 

PASCAL'S P-code. The translator fro~ Z-~ode to Z-6000 

~achine code is currently under developnent at ZI10G Inc., 

thus the P1Z/SYS module could not be compiled on the Zee00 

[131. PLZ/A~M is a symbolic assembly langua~e that is used 

to progra~ the Z-800e. The assembler supports Structured 

prorrammin~ and produces a relocatable Z-600~ object module. 

In the dis~ussion of the ~emory manaRer design, a 

pseudo-code similar to PLZ/SYS is utilized. The rationale 

!or using this pseudo-code was to provide a sU~Mary of the 

memory manager source code, and to faei11 ta te the 

presentation of this design. 

It IS aSSumed that the memory ~ana~er is initialized 

int~ the ready state at system generation (as previously 

mentioned). ~hen the memory manaRer 1S initially placed into 

the runninp. state, it will block itself (via a call to the 

kernel pri~itive Wait). Wait will return a message from a 

signalling process. This message is interpreted ry the 

me~ory manap,er to det~rmine th~ requestec ~unction and its 

required ar~uments. The function code is used to enter a 

case statement, which di!ects the request to the appropriate 

~~mory mar.ager procedure. 

~hen the requested action is ro~pletedt the ~emory 

mana~er ret~rns a success code (and any additional required 

data) "J the siE'!la111ntl! !)roceSS via a call to the kernel 

primitive Sirnal. This call will awaken the process which 

requested the action to be taken, and !)lace the returr.ed 

73 



, " 

~ ., 

~. 
~ 
&: 
f" 
~ 
~ 
~ 

~i 
~, 

!J 
If 
I: .~! 

'" .1 ,. 
: 

" " 

I 
" 

~.i 
.1 .. 

\ 

I: 
I' ~, 

Pj 

~! 
~' ·r 
Ii !'j t; ;' 
~ 
I 
f:11 
:it'\ 
~, 
;;;;:1 
'" 
f ,t 
~ 
~ 
~ 

i , I, 
r. 

ti 

A, 
'.I 
, , 

ti\r " ' 

'I ~ , '~! 

I'~ f 
I j 

d 

I 
,~, , 

t ; . 
l 

;,1 
" . , " 

, 
, ' 

J 
/ ,-

~, ~ ! f~ J 

f. II, 

I ~ 

~. 

meSSa~e into that process' messaRe queue. ~hen that action 

1s completed. the memory manager will return to the top of 

the loo~ structure a~d blork itself to wait for the the n~xt 

request. The main line pseudo-code of the memory mana~er 

process is displayed ir. figure 16. 

1. [reate an Alias Table Entry 

Create_Entry is invoked when a user d~sires to 

create a segment. A se~ment is created by allocatinp. 

secon~ary stora,e. and by making an entry (~nique_idt 

secondary stora~e location. size. classification) into it's 

mentor serment's alias table. This implies that the ~entor 

segment ~ust have an alias table associated with it. and 

that thp mentor segment must be active in order to obtain 

the secondary storap,e location of the alias table. 

The mentor se~ment can be in one of twn ~tates. It 

may have children (viz •• have an alias table'. or it may be 

a leaf se~ment (viz., not have an alias table). If the 

mentor se~~ent hds children, it has an alias table and this 

alias table can be read into core. secondary storage can be 

allocated, and the data can be entered irto the alias table. 

If the rr.entor se~ment 1s a ledf. an alias table Must "ce 

created for that segment before it (the alias table) can be 

read into core and data entered into it (see fi~ure 11). 

The pseudo-cede for CREAT~_ENTRY FR0CEtUR~ is 

presented in figure 17., The ar~uments passed to Creatp_Er.try 

74 

.r1' T? 



l , 

ENTRY 
INITIAIIZE_PROCESSOR_LOCAL_VARIA]l~S 
DO 

cr 

! CHECK IF MSG QUEUE EMPTY 
VF ID, MiG i= WIlT -
FUNCTION. ARGU~ENTS := VALIDATE MSG (~SG) 
IF FUNCTION -

CASE CREATE ~NTRY THEN 
SUCCESS corE := CREATE ENTRY (ARGU~F~TS) 

CASE DELETE ENTRY THEN -
SUCCESS eODE := DELETE ENTRY (ARGUMENTS) 

CA~E ACTIVATE THEN 
SUCCESS CODE := ACTIVATE (ARGU~ENTS) 

CAS~ DEACTIvATE THEN 
SUCCESS corE := DEACTIVATE (ARGUMENTS\ 

CASE SWAP IN THEN 
SUCCES! CODE := SWAP IN (ARGU~ENTS) 

CASE S~AP OUT TEEN -
SUCCESS CODE := S~AP OUT (ARGUMENTS) 

CAS~ DEACTIVATE ALL TH~N 
SUCCESS COCE-:= D!ACTIVATF ALL (ARG~M!NTS' 

CASE ~OVE ¥o GLOBAL THiN -
SUCCES! CODE := MOVE TO GLOBAL (~RC~~E~TS) 

CAS! MOVE ¥O lOCAL THEN -
~UCCESS CODE := MOVE TO LOCAL (ARGUMENTS) 

CASE UPDAT~ THEN --
snCCESS_COCE := UPtATE (ARGU~ENTS' 

FI 
SIGNAL (VP_ID, SUCCESS_CODE, ARGU~ENTS) 

END MZMORY_MANAGER_PIZ/SYS MODULE 

Fifure 16. Memory Manager ~ainllne Code. 

75 

,-, 2'" 'R ""',:: ' ." -



. 
<! 
~l 

i 
! 

'1 
I 

I 

. ... , 
~I 
f 

:1 
If' 

0\ 

CREATE ENTRY FROCEtURE (PAR IND3X NORD, ENT~l # WORD, 
- SIZE WOFt, CLASS -tYTE) 

RETryRNS (SUCCESS COtE BYTE) 
LOCAL PLKS ~OR~, PAGE TABLE LOC ~ORt 
ENTRY - -
IF ALIAS TA;lE DO~S NOT EXIST THEN 

snCCESS CODE := CREATE ALIAS TABL~ 
IF SvCCESS CODE () VALID TF~N RETURN 
Ft -

!I 
~lKS := CALCULATE NO ELKS REO (SIZE) 
SUCCESS COD~ := READ-ALIAS TAEl~ ( 

- G AST(PAR-INtEX] .ALIAS TAtl! IOC) 
IF S1CCESS CODE l> VALIn TH~N HETUiN -
FI -
SUCCESS cor~ := CHF.CK tUP !NTRr ! ie alias table 
IF SUCCESS CODE <) -VALID THEN ~ETUBN 
FI -
SUCCESS COtE, FAGR TAELr 10e := AlLOC S~C STORA~E (~LKS' 
IF !1CE!SS CODE ?> VArID THEN ~1TU~N 
FI -
~PDATE ALIAS TAELE(ENTRY #, SIZE. CLASS. FAG! TAEL~ IOC' 
SUCCESS COtE-:= ~RITE ALiAS TADIE ( --

- -G A~TtPAR IND3X] .AIIA~ TA:IE lOC} 
IF SUCCESS CODE <> VALIt TEE~ RETUR~ - -
1LSE S~CCESS CODE := SEG CREAT~D 
FI - -

ri~ure 17. Create Entry Pseudo-code • 

76 



I 
\ 

are the index into the G_AST for the mentor se~ment, the 

entry number into its alias table, the size of the se~ment 

to be created, and the security access class of that 

segment. Th~ return parameter is a success code, which would 

be "se~_created" for a successful se~ment creation. 

When invoked, Create_Entry will dp.termine which 

state the mentor se~ment is in (viz., if it has an alias 

table). If an alias table does not exist for the ~entor 

segment, o~e is created and the alias table of the ~entor 

seg~ent's parent is updated. The alias table is read into 

c~re and a duplicate entry nheck is made. It no dUplicate 

entry exists, the segment size is converted fro~ tytes to 

blocks, and the secondary storage is allocated for non-zero 

sized se~~ents. The appropriate data is entered into the 

alias table and the alias table is then wrltten back to 

secondary stora~e. 

2. Delete an Alias Table Entry 

Delete_Entry is invoked when a user desires to 

delete a se~ment. A seement is deleted by deallocatir.f 

secondary storage, and by removin~ the appropriate entry 

from the alias table of its mentor segment (the reverse 

logic of Create_~ntry). This implies that the mentor segment 

must be active at the time of deletion. There are three 

conditions that can be encountered during the deletion of a 

77 



, 
i' 

I ' " 

~ ~ 
U 
'I 
} 
J , , , 
II 
, i 

~I li , I 

il 
(' 
-" 

'I 
I; 
, , . 

! 
it 

~ 

:~ 

I i 
~, 

I 
I 

t 
f 
• 

1-

I 
I 

I 
~, 

.J . 
.: 

l ;, , . 
• 4 

i .. 
, I 

I , 
! 
I 
I 

J~ 
~ l ... 

,!j 
'I 
I.,~ 

~ 
Ii;~ 
~, 

'If ~ '/' • "'t 

1.~ f~' {,'( 

f~ 
j~ 

segment: the segment to be deleted may be an inactive leaf 

segment, an active leaf segment, or a m~ntor segment. 

If the segment to be deleted is an inactive leaf 

seg~ent (viz., has been swapped out of core, and does not 

have an entry in the G_AST), the secondary storage can ~e 

deallocated and the entry deleted trom the ~entor seg~ent's 

alias table. If the sepment is an active leaf sefment, the 

segment Must first be swapped out of core and deactivated 

before it can be deleted. This entails sipnallin~ the ~emory 

manager of ~ach processor, in which the segment is active, 

to swap out and deactivate the se~ment. 

It the se~ment to be d~leted is a mentor se,ment, an 

alias table exists for that sl'~ment • If the alias table is 

empty, the secondary storage for the alias table and the 

seg~ent ra~ be deallocated, and the entry tor the deleted 

segment can be removed from it. mentor's alias table. If the 

alias table contains any entri~s, the segment rannct be 

deleted because these entries would be lost. If this 

condi ti on is encour. te red success code 

requested to delete the entry. Due to a confinement problem 

in »up~raded" segments, this Success_code cannot always be 

passed outside of the kernel. This implies that the se~ment. 

~dnager ~ust strictly prohibit del~tion of a s~gment with an 

acceSs class not equal to that ot the pror.ess. 

78 

··'n 



I 

. , 

The pseudo-code for 

presented in figure 16. The parameters that are passed to 

thiS procedure are the parent's index into the G_A~T and the 

entry nu~~er into the parent's alias table of the segment to 

d.eleted. The alias_table_loc field is checked to 

determine the state of the mentor sepment (either a leaf or 

~ node). and tte appropriate artion 1s then taken. A success 

code is returned to indicate tte re~ults of this procedure. 

3. Activate a Seg~ent 

Activate is invoked when a u~er desires to ~ake a 

seg~ent ~nown by addinp, a segment to hi~ address space. A 

se~ment is activated by making an entry into the L_AST for 

that processor. and th~ G_AST. The activated segment could 

be in one of three states; it could have previously teen 

~rtivated ~y another process and have a ~urrent entry in 

beth the G_AST and L_AST, it could have previously been 

activated ~y another process on a dltfprent processor and 

have an en~ry in the G_AST bet not the I_1ST, or it ~ould be 

inactive an~ have dn entry in neither the G_AST nor the 

If the se~ment to be activat~d already ha~ entries 

in both the L_AST and G_AST. these entries need only be 

updated to indicate that another process has activated t~e 

se~lT1ent. The s e~[r.en t nUCilber is en te red into 



I'~ 'I' " • ',' 

~:~ I 
7" , . 

il 

f 

! 

f 
I 
i 

t 
'(-

Ii 
1 
;1 

l\ 
I 

I , 
II 

I 
II 
ti 

.J 

i'l 
t r~ !I 

!i 
., 

. :1 
/t 

I'~ Ii 
f.' 
1 r r 
" 

',I ,1 t . 
J! l .:: t 

ft 
-I f; 

f .. ~ 

r 
J 'f 1'/ It" , 'B 

DIL~TE F~TRY PROCEDURE ( PAR INDEX ~ORD. F,NTRY_# WORt ) 
RETURNS (SUCCES~ COrE EiT3) 
LOCAL ~AR INDEX- ~C.RD 
ENTR! -
Check if the passe1 mentor segment tas an alias table. 
IF G_AST(PAF_INtEXl .AtIAS_TAEt!_LOC <) NULL 

SUCCESS CODE := READ ALIAS TAbtE ( 
- G_AST[FAR_INDEX).AlIAS_TA]l£_lOC) 

ElSF. 
SUCCESS_CODE := NO_CHltD_TO_DELETE 

FI 
IF SUCCBSS CODE <> VALID 
il -

TF.!N ~ETC!W 

neter~ine if segment has children in alias ta~le 
Ii ALIAS TA~tE ~OT EMFTY TEEN 

S~CCESS CODE !=-tEAF SEGMENT EXI5TS 
R~TURN - ! Delption-w111 delete children ! 

~tSE 
Search G AST with U~IOUE ID to verify segment inactive 

IF -ACTIV~ IN r. AST- TEEN 
, Check if active in AST t 
IF ACTIVE IN 1 AST THEN 

DEACTIVATE_Alt (G_AST_!NDEX, L_AST_I~D~X) 
Ft 

Chec~ G AS! to verify ser.ment inactive in otr.e~ !_AST's 
- IF ACTIVE IN OTEE~ L AS! TF.~N 

SIGNAt:TO:DEACTIVATE_ALL (G_AST_INrrX) 
FI 

FI 
tF.l~T~ AlIAS TAEL~ !NTRY 
SJCCESS COD~-:= .RITE ALIA~ TABI~ ( 

- G A!T(FAR-I~DEX1.ALIAS T'iL! tOe) 
IF snccrss CODZ = VAtIt TfEN -

~ueCEss_corE := SEG_DELETEt 
!I 

rND DE!ET!_~NTRY 

Figur~ lEo Delete Entry Pseudo-code. 

ee 

t 
{. g 

~ .. j.\----



' . . . 

seg~ent is a l~af, its mentor's No_Active_Dependents field 

in the G_AST is incremented. In this desiRn. the G_AST is 

always searched to determine if the segment has been 

previously activated by another procesS. 

If the segment to be activated has an entry in the 

G_AST but not the L_AST, an entry must be made in the l_AST 

and the G_AST must he updated. The L_AST is searched to 

deter~ine an available index. The segment nu~ber is ent~red 

into the l_AST, and the index number is entered into the 

G_AST ?rocessors_l_ASTE_# field. If the sep~ent to ce 

activated is a leaf segment, 1 ts mentor's 

No_Active_Dependents field in the G_AST is incre~ent~d. 

If the ~ctivated sefment does not have an entry in 

~ither the G_AST or L_AST, an entry must be made in both. 

The G_AST is searched to find an available index. and the 

entry is ~ade. The l_AST is then searched to fir.d an 

available index, and the entry is made. The l_AST ir.aet is 

then entered into the C_AST Frocessors_l_ASTE_# field. If 

the activated segment 1s a leaf. the No Active renendents - _. 
field of its ~entor's G_AST entry 1s incr~mented. 

The pseudo-code for ACTIVAT~ PRCcrtuFE is presentEd 

1n figure 19. The parameters that are passed are the DFR # 

of the signallin~ process, the mentor segment's index into 

the G_AST, the alias table entry nu~ber, and the seg"e~t 

number of the activated seg~ent. The mentor seement is 

always che~~ec to determine if it has an associated alias 

81 



ACTIVATE P!OC!Dry!E (DER_# EYTE, PAR_INDEX WORr, 
ENTRY # WORD, SEGr.ENT NO EYTE) 

HETURNS (SUCCESS CeDE lYTE, RET G AST P.A~DLE P.ANDIE. 
- CLASS !YTE, SIZE iOED) 

lOCAL 
ENTRY 

G_INDEX WORD, L_INDEX WORn 

Verify that passed seg~ent is a mentor SegMent ! 
IF G AST[PAR !NrEX] .ALIAS TAELE LOe <> 0 THEN 

SUCCES~ CODE := READ ALIAS TA~tE ( 
- Q_AST[PA2_INDEXj.ALIAS_TA~LE_LOC) 

ELSE 
SUCCESS_COtE := ALIAS_DOES_NOT_EXIST 

II 
IF SUCCESS COtE <> VALID TEEN ~ETURN 
1'1 -
Check G ~ST to determine if active ! 
SUCCESS-CODE. INDEX := SEARCH G AST (UNIOUE_ID) 
IJ ~ntcfss CODE 3 FOUND TEEN- -

'€lSE 

IF SE~~ENT IN I AST THEN 
UPDATE I AST-(SEGMENT NO) 

ELSE - - -

FI 

MAKE LAST ENTRY (D~F. p. ~~GMENT NO) 
UPDATE-G AST (L !NDEX) -
IF G_ASTlINnEX]:ALIAS_TA~LF_10C = Nrytt TFFN 

G_AST(PAR_INPEX] .NO_~EPENnEN!S_ACTIV2 ~= 1 
FI 

MA~£ G AST B~TEY (~NTRY #) 
~AKE:I:A~T:l~TFY (pAR_Iir~x. ENTRY_#\ 

FI 
SUCCESS cor~ := SEG_ACTIVATEQ 

END ACTIVA'!E 

Fi?ure 19. Activate Pseudo-code. 



f 

I 
:Jf 

'.I , 
I ~:l 

,~:( 
. I 

I V 

f 
I '.1 . 
i V 

t i ! 

I 
! 

I 
i 

.j 
. 

,;-t" 

1 
~I 
'1 .,' 

" 

" .; , . " , ' . 
~ .1-, , 

1- r rr 
f· !I ! -

table. If it does not, the SucceSS code of 

"aliaS_does_not_exist" is returned. I!' the alias table does 

exist, it is read into core and the entrJ uumber is used as 

an index to obtain the activated segment's unique_ide The 

G_AST is then searched to determine if the se?~ent ~ 

already been activated. If the unique_id is found, the G_AST 

is updated and the t_AST is eltrer updated or an entry is 

made (dependin~ on whether an entry etisted or not). If the 

unique_id of the segment was not found duriop, the search of 

the G_~ST, an entry ~ust be made in both the G_AST and 

Activate retu rns the actil!a ted se~ment's 

classification, size, and handle to the sl~nallin6 pro:ess. 

~. Deactivate a Se~me~ 

Deactivate is invoked when a user desires to remove 

~ seg~ent rro~ his address space. To deactivate a s~gmentt 

the memory ~anager either reMoves or updates an entry in 

~oth th~ l_AST and G_AST. Deactivate uses the reversp logic 

of activate. Once a se~ment is deactivated, it can only te 

reactivated via its Mentor's alias table as dlscuss~d in 

activate. :r a process requests to deactivate a seRroect 

which has not ~een swapped out of the process' virtual cere, 

the memory mana~er s~aps the se~ment out and updates th~ ~MU 

ima~e ~ef~re the segment is deactivated. The segment to be 

ceactlvat~d could be ir. one of thrp.e states; more than on~ 

proces! could concurrently hold the se~ment active in the 

83 



I 
I 
I 

,f 
1.\ 
~, 

r.! 

~i 

r 
" 
I 

'; 

! 

" 

, 
i! 

i' [I 

i~ 
~ ; 
, 
If 
r 
t I 
I, 
t 
~ 
~ 
!' 

J 

1 

I 

:Jf 

J 
• 

I;~ ., 
i I ~ , . 
~'. 

I I'J: 
I \ I 

l i 
I ~ 

I 

. ' •. 
i : 
I 

• 
" " 

'" 

, \ 
, 

I.,· ; ,- I. ' ,. , 
t 

f "t 
\ -

L_AST, the se~me~t could be held active by one process in 

the l_AST and more than one in the G_AST, the se~ment could 

be hel~ active by onlv one process in ~oth the L_AST and the 

G_AST. 

Deactivation of leaf se?ments and mentor segments 

are handled differently. If the segment is a mentor se6ment 

and has active dependents, it cannot be removed fro~ the 

G_AST (even though 00 process currently has that segment 

active). This is based on the desi~n decIsion which req~lres 

that the ~entor of all active leaf seg~ents remain in the 

G_AST to allow access to Its alias table. The mentor's alias 

table must ~e acceSSible when an alias tablp. is created fer 

a dependent leaf se~~ent. If a le~f se~ment is deactivated, 

the No_Aetive_Dependents field of its ~entor's G_AST &ntry 

is decre~ented. A mentor segment can only be removed fro~ 

the ~_AST if no process holds it active, and it has no 

active dependents. 

If more than one process concurrently hold a seimer.t 

activ~ in the l_AST, and one of them si~nals to deactivate 

that se~mentt the entry in the L_AST is update~. ~his is 

accomplished by nulllnv out the Se~ment_No/Access_Auth field 

of the L_AST for the appropriate process. If required, the 

No_ActIve_Dependents field of its mentor se~~ent's ~_A£T 

entry is decremented. 

E4 



I 

:~f. 
'\ 
" 

• I 

,\ 

'" 

. \ 
" 

f ' . 
• ,J" l 

)~ "f,. 
, i. 

If only one process holds the segment active in tte 

t_AST, and that Process signals to deactivate the sep~ent, 

the l_AST entrY for that ser,rne nt is re~oved. The 

Processors_l_ASTE_# is updated dnd checked to determine if 

there are other connected processors. If there are n~ other 

connected processors and the se~ment has no active 

dependents, the sef,ment is removed from the G_AST. If there 

are other connected processors, the G_AST is updated. If the 

deactivated segment is a leaf, the mentor segment's 

Thp p5eu~0-code for DEACTI7AT3 PROC~DURE is 

presented in fi~ure 2e. The para~eters tnat are passed to 

the memory manager are the DBR_# of the si~nallin~ pr nces5, 

and the index into the G_AST for the seg~ent to be 

deactivated. The procedure first updates the L_AST, and then 

removes the entry if no local proress holds the se~~ent 

active. The G_AST is then updated, and its mentor se~ment is 

checked (if the deartivated serment was a leaf:, to 

determine if it can be removed. If no processe~ currently 

hol~ th~ sp.p,ment active, and it has no active dppendents, 

the se,~ent is ~emoved frg~ the GAS! • .. 
5. §wa"O a Seg~ent In 

SWAP_IN 1s invoked when a user deSires to svap a 

seg~pr.t into main ~e~ory (global or local) rro~ seconcary 

storap.e. A se~ment is swapped into main wemory by obtalnln~ 

85 



I 
I
) 
:f 
d 

. , 
0

1 :>, I 

f I 
~ i 

I ! 

f .1 

., 
.I . . " 

o i 
I 

D~ACTIVATE 
RETURNS 
lOCAL 
ENTRY 

PROCEDURE (DBR # BYTE, PAR_I~DEX nORD) 
(SVCCESS CODE -BYTE) 
I~DEX WORD 

Check if se?ment is in core ! 
IF G AST[INDEX).N0 ACTIVE IN r-EMORY <> 0 THEN 

I-Check ~MU iwa~e to determir.e if in local 
IF IN LOCAL r'F~ORY THEN 

FI 
Fr 

SUCC~SS_CODE := OUT (DER_#, INDEX) 

memory ! 

Remove process se,~ent no entry in LAST ! 
L AST[l INrrX].SEGMENT-NO/ACCESS AUTF.(DBR #] = e 
C~ECK If ACTIVE IN LAST (1 AS~ IN~EX' -
IF NOT ACTIVE IN fAST THEN -

l_AST[l_INDEXr.ME~ORY_ADDR := AVAIlAELE 
FI 
Check if deleted segment was a leaf ! 
IF G AS~[INDEX1.G ASTE # PAR <> e, THEN 

G AST[PAR INtEX].NO tF.PENDENTS ACTIVr -: 1 
Deter~lne ir parent can-be removed-! 

CHEC!_FOR_REMOVAl (PAR_INDEX) 
rI 
Deter~ine if deactivated segMent can be removed ! 
CHECK Fep. RE~OVAL (INDEX) 
S"CC!!~ C6DE = S!G t!ACTIVATED 

END DEACTIVA'n~ -

Figure 2e. reactivate Pseudo-code. 

66 



, \ 
Ii 

I: \ 
t~ 

< 
! 

. \ i 

. ,! 
tl" f 

~. ~. i 
t· ~ , L 

the secondary storage location of its page tabl~ fro~ the 

G_AST, allocatin~ the required amount of main memory, and 

readin~ the segment into the allocated main memory. T~e 

se~ment must be active before it can b~ swapped into core, 

and the required main memory space ~ust be available. Three 

cond1tions can be encountered durin~ the invocation of 

S~AP_IN. The segment can already be located in glotal 

me~ory, the segment can already be located in one or more 

local memories, or the segment may only reside in secondary 

storage. 

If the se~ment 1S not in local or p:lobal merrory, 

local memory is allocated, the segment is read into the 

allocated me~ory, and the appropriate entries are made 1n 

the ~~u ima,e, the I_AST and the G_AST. If the se,ment is 

already in ~lobal memory, it can be aSsumed that the seR~ent 

Is shared and writable. In this case the only required 

actions are to update the 

No_Active_In_~emory field of the G_AST entry is incremente'. 

and the ~MU ima~e 1s updated to reflect thp s~app~d in 

seg~ent's core address and attributes. 

If t~e segment already resides in o~e or ~or~ local 

memories, it must be determined if the se~ment is "shared" 

and "writable". A spg~ent is "shared" if it exists in ~ore 

than one local MemOry. A segment is "writatle
h 

if one 

process has write access to that seRment. I~ the seR~ent is 

not shared or not writatle and in local ~eMory, the 

8? 



~' 
~ ,. 
1 
l 
? 
~ 

, , 

. 
'<, 

I, 

1 

1 

, 
t 
I 

, 

I 

:Jf 

';j 

i !l ., 
. :1 

I I, 
I t 

I 
I 
t 

~ 
.. I 
4l 

;;1 
" . 
, ! 
.' f 
1.,~ ,... " 

f9fif 
ft.f , 

appropriate entries are updated in the MM~ 1~age, the l_!ST, 

and the G_AST. If the seRment doeS not reside in local 

memory, th~ required amount of local memory is allocat.ed, 

the se~ment is read into the allocated memory, and the 

appropriate entries are made in the MMU i~age, the L_AST, 

and the G_AST. 

If the se~ment is shared, writable, and in local 

memory, the segment must be moved to ~lobal ~emory. If the 

segment 1s not in the memory ~ana~er's local Memory. it 

si~nals another memory manager to move the se~ment to ~lobal 

memory. After the seb~ent is moved to flobal memory, the 

~emory manap,er Signals all of the connected memory manager's 

to update their L_A~T and MMP data base~. ~hen all local 

data bases are current, the meMory mana~er updates th~ G_AST 

and returns a success code of se~_activated. 

The pseu1o-cod~ for S~AP_IN P!OCECUaZ is presented 

in firure 21. The arr:uments passed to S~AF_I~ are the 

be moved in, the proceSs 
, 

r?R_#, and the access authorized. S~AP_IN will convert the 

se~~ent size fro~ bytes to blocks, and verify that tr.e 

process' core will not be exceeded. If the virtual core will 

be exceeded, a success code of "core_space_exceeded" will be 

returned. If write access is permitted, the writable tit 15 

set. C~ecks are then performed to deter~ine the se?~ent's 

stora,e location (local or 61otal), and the appr0priate 

a (' t 1 0 n i s take n • 



SWAP IN PROCEDURE (INtEX WORD, DER # B!TE, 
- ~CCESS AUTH BYTE) -
RETryRNS (S~CCEss_c6DE BYTE) 
lOCAL L INDEX ~O~D. ~LKS ~ORD 
EI~T?Y -
BLY.S := CAIC:JLATE_NO,_OF_BLKS (G_AST[INtEX] .SIZE) 
SUCCESS CODE := CF.~CK MAX LINEAR CORE (BLKS) 
IF SUCCESS cor~ = VIRTUAL LINFAP CORE FULL TEEN 

RETryR~ - - - -
F1 
G AST[INtEX],NO_SEG~ENTS_IN_MEMORY += 1 
Ir ACC~SS AUTH = WRITE THEN 

G_AST (INDEX] .FIAG_BITS : = \~RITABLE_:EIT_S~T 
rI 
DeterMine 1f segment can be put 1n local meM~ry ! 
IF G A~T(INDEX),ilAG BITS AND WRITABLE vASK = e 
ORIF- G_AST[INDEX],NO_AC!IVE_IN_~EMOR! <; 1 THFN 

! DeterMine if already in local memory! 
CP.ECK LOCA! Mt~ORY (L AST INDEX) 
IF NOT IN LOCAL MF.MORY TEEN 

AllOCATE LOCAL ~EMORY (aLKS) 
READ SE~MF.NT TPAGE TA~LE LOC, ~ASR_ADrR) 
I._AST[I_Ir.JN~X] := EAS~_ADrp. 

FI 
ELSE 

IF NOT IN G~OEAL ~EMOnY THEN 
UPDATE-r-:~:U -

Et~~ 

UPDATE-I. AST 
P.FTUP.N- -

ALLOCATE GLOBAL MEMORY (ELKS) 
IF IN LOCAL ~EMCRY TEEN 

VOVE-TO Gl~DAl (L INDEX. B~~E ADDR. SIZE) 
~LS~ - - - -
'" .;> 

SIr-NAL OTHER ~E~ORY ~A~AG~RS(INtEX,IASE ADDR' 
:1 - - - -

FI 
UPDATE VMU I~AG~ (rEB #,S£G #,IASE ADrR.ACC!~S,FLKS) 
UPDATE-L AST ACCESS (I I~rzX,AccES!.DER_#) 
snCCES! ~orF-:= SWAPPE~ IN 

!~D SWAP::N -

Jipure 21, Swap_In Fseudo-code. 



6. Swap a Se~ment Out 

SWA?_OUT is invoked _hen a user desires to move a 

seg~ent out of core. A segment is swapped out ~f core ty 

ottaining its secondary storage location, writinr. the 

seg~ent to that location (if required), and deallocating the 

main memory used. The decision to write the segment is 

1etermined ~y the G_AST written bit. This bit 15 ~~t 

whenever the se~ment has been modified. The sef~ent to te 

swappe1 out can be in one of t~o states: the segment can ~e 

1n local ~emory, or the se~ment can be in global memor,. 

If one process has the se~mer.t in loc"l m~~cry and 

the written bit is set, the se~~ent is written into 

se:ondary storafe and the local memory is deallocated. If 

the written bit is uot set, the lo~al memory need only be 

deallocated. If more than one pro:ess has the se~ment in the 

same local ",emory, the SeR[nent remains in core. The 

appropriate t'I~T' ima~e is updated to reflect the S€flllEnts 

t!eleticn t!1e 

decremented. 

All seg~ects 1n glcb~l ~emory are shared and 

writable. If a process requests the se~ment to be s~a~ped 

out, the ~egment remains in memory. The ~~U ima~e is updated 

to reflee t the sepoment's deletion. and 
. 

~o_Actlve_In_Memory field is deerernentpc. If the 

92 



I 

, 

~ 
0' 

segment in core, its memory manager is signalled to move the 

sp.gm~nt to local mew.ory. 

The pseudo-code for SWAP_OUT PROCEDURE is presented 

i~ flgure 22. The argu~ents passed to SWAP_OUT are the t~E_# 

of the si~nallin~ procesS, and the G_AST_INDEX of the 

seg~ent to be removed. Tne return parameter is a success 

code. ~~AP_OUT removeS the se~~ent !rom the process's 

virtual core, deletes the segment from its MMU image, and 

decrements the No_Actlve_In_~emorl field. If the se~~ent ~an 

be removed from memory, it is cetprmined which mpmory can ~e 

deallocated. If the se~ment has been modified, it is ~ritten 

back to secondary storage and t~e appropriate 

deallocated. If the sepmeut has not been m011fled, the 

appropriate memory 15 deallocated. If afte~ the deletio~ one 

process has the segment in Rlobal ,emory, its memory manaRer 

need only be signalled to move the segment to local memory. 

''ihen S'..r.a.F _OUT successf\llly ~ompletes, it returns d Sl.4.::cess 

code of "swapped out". 

7. Deactivate All Se~~ents 

DEACTIVATE_ALL is invoked when it becomes r.eCEssary 

to re~ove a segment from every process' adQress space. Earh 

process is checked to determine if the SEiment is active. If 

a process has t~e segment active, it is deactivatee frem its 

addres~ space. The p~eudo code for Deactivate_all is 

i 11 is t >1 ted in figure 23. The parameters passed t.o 

91 



SWAP_onT PR0CiDryRE (D]!_# BYTE, INDSX ~ORD) 
RETURNS (SUCCESS CODE BYTE) 
ENTRY -
BlY.S := G AST(INDEX] .SIZE / ELK SIZE 
FREE PROCESS LINEAR CORE (BLKS)
DELl'! MMU EiTEY (riE #, SEG #) 
G AST[YNDEi).NO SEGM!iTS IN ~ZMORY -: 1 
Determine if segment has-beer. written into! 
IF ~~U_I~AGErD]R_#].SDF.[S~G_#] .ATTRI~UTEg=WRITTEN TEEN 

t If spg~ent has been written into, update G AST 
G AST[INrEX].FlAG BITS := WRITTEN -

FI - -
Determine if segment is in global memory l 
IF G AST[IND~Xl.GIO~AL ADDR <) ~ULl THEN 

IF G_AST(INDFX).~O_SEG~FNTS_IN_MEMORY = ~ 
ANDIF G AST(INDEX] .FtAG ~ITS = WRITTEN TPEN 

WRIT! SEG (PAGE TABL~ lOC, MEMORY ADVR) 
FRE! LOCAL EIT FAP (MEMOEY ArtR,PLKS\ 

FI 

ELSE - - - -

iI 

1'1 

IF G AST(INDEX].~O ACTIVE IN ~~MORY = Vt THEN 
FREE lOCAL ]IT-MAP (~EMOR! AtDR,~lKS' - - - -iI 

SUCCESS CODE :: SWAPPEr_OUT 
E~D S'.UP-OUT 

Figure 22. Swap_Out Pseudo-~ode. 

92 



, -

I 
t 

\1 

~f 
,I 
.. 1 
:1 

i , 
--

-1 
ott 

""l!!; 

:Jf 

oj 

I ,~ 
If, 

, :, 

! t 
I 
f 

~ 
;1' " ,.{ 

0\, 
l< 

'.' f 
l f//~ " ~. 

DEACTIVATE AIL FROCED~!! (INDEX JO!D. L_INDEX 10RD) 
RETURN~ (SUCCESS cor! bYTE) 
ENTRT -
LOCAL I EY'iE 

I :- e 
DO 

OD 

IF I ~ MAX_~BR_# THEN 
'£X IT 

FI 
IF 1 AST[L I~DRXl .SEG~E~T N1/ACCESS AUTH[I] - <> zfpO TF.EN - -

SUCCESS corE := DEleTIVAT! (It INDEr) 
IF SUC~!SS CODE <) SEG D~ACTIVATED TEEN 

R!TU!N - -
FI 

FI 
I += 1 

SUCCESS CODE := VALID 
~ND DEACTIVAT~:ALL 

Fi~ure 23. Deactivate All Pseudo-~ode. 

93 



.' J . , i.- . 
:-. J. •• 
. f', 

Deactivate_all are the deactivated se~~ent's G_AST index and 

the L_AST inde~. The I_AST is searched b1 DBR_# to determine 

which process has the se~ment active. If the check reveals 

that the segment is active, it is deactivated by call1n~ 

Deact1vate. If the seg~ent was surcessfully deactivated from 

all processes, a success_code of val1d is returned. 

8. Move a Segment to elobal Memory 

~OV!_TO_r.tO~At 1~ invoked when it tecome~ neces~aIt 

to move a segment fr~m local to ~l~bal ~emory. If a s~gment 

resides 1n one or more local memories. and a process w1th 

write access swaps that segment into core, or 1f d segment 

res1des in 1n local memory (with write a~cess) an~ anotter 

process with read access re~uests t~e segment swapppd in, 

the se~~ent is moved fro~ a local to global memory to avoid 

a serondary storage access. If the segment resides in the 

runn1n, memory mana~er's local Memory. it will affect the 

seg~ent transfer. otherwise it will sigr.al another re~ory 

~ana~er of a connected processor to affert the transfer. 

Fi~ur~ 24 illistrates the pseudo-code for ~OV!_TO_GIO~AI. 

Once the seRment has been move1 to ~lobal me~ory. the 

signalled memory manager will upeate the ~~1 images for all 

connected proce~ses. and deallocate the freed local ~enory. 

A success code of co~pleted will be r~turned to tte 

si~nallin~ me~ory mana?er. The parameters passed to tre 

memory ma~a~er are the SEiment's I_AST index. the ~lobal 

94 



.. 

, ' 
, .... i 

j 

MOVE TO GIOEAI FROCEtURE (1 INDEX IORt. GLO~AL_ADDP WORD, 
- - SIZE ,Opr) 
RETURNS (SUCCESS CODE ~YTE) 
~NTR! -
~ove seement fro~ local memory to ~lobal memory 
DO ~E~O~T ~OVE (~EMORY ADD~, GLO~AL ADDR) 
L ASTrINr!X].M!MORY ADnR := AVAILABLE 
U;date the ~MV imagi to reflect new address ! 
DO FnR AtI DBR'S 

IF L_AST rI_INDEX] .SEGMENT_NO/ACCESS_AUTP. <> e !~t'IF 

Ot 

~t"Tl_I~Ar.E [DE~ _It] • S DF [SEG _#] • ATTR UTJTES:IN_l OCAL TEEN 
MMU I~AGE[DBR #] .SDR[S!G #] .BASE AD~P:=CLOEAl ADDR 

F! - - - - -

SUCCESS CODE := VALID 
!ND MOVr._TO:GlOBAL 

Flpure 24. Move To Global Fseudo-code. 

95 



I 
I . 

Memory address of the move, and the size of the segment. 

This information 1s passed because the G_AST is locked 

durln~ this request. 

9. Move a Segment to Local Me~ory 
• 

MOVE TO LOCAL is invoked when it becomes necessary - -
to move a Se~ment from global to local memory. This occurs 

wher. on~ 0' two processes which hold a segment in global 

memory swaps the se~ment out. The se~ment 1s ~oved from 

global memory to the local memory of the remaining process. 

Figure 25 illustrates the pseudo-code ~or MOVE_TO_lOCAl. T~e 

parameters passed to the memory manager are the 5eg~ent's 

L_AST Indpx, the global address of the se~mentt and the size 

of the :egment. The return parameter 1s a success code. The 

MMU iMa~es of the signalled proee~s are updatJd aft!t tha 

~ove has been Made, and the ,;lobal memory is deallocated. 

le. Update the MMU Ima~e 

UPDAT! is invoked followin, 

operation. After a SeP-ment has been ~oved from local memory 

to ,lo~al memory, it 1s necessary to sl?nal the memory 

~ana~ers of all connected ~rocessors to update their MMU 

i~a~es ani L_AST with the current loca~ion of the se?ment. 

They ~ust also deallocate the moved se~ment's local ~emory. 

Figure 26 illustrates the pseudo-code of UP~ATE. The 

parameters passed to the memory m~na~er are tr.e sep.~ent's 

96 



I ' , , 

'\, . 

MOVE_TO_lOCAl PROCEDUR! (L I~DEX WORD, GIOBAL_ADDP 
SIZ~ WORn' 

(SUCCESS_CODE ~!Ti) R~TTJRNS 
ENTRY 
ELKS :& SIZE / ELK SIZE 
~ASE aDD?F.SS := AlrOCATE LOCAL M!~OR! (~lKS) 
~ove-fro~ ~lob~l to local ~emory t 
~E~OR! ~ovr (GLO~Al AtDR. ]ASE ADDRESS, SIl!.) 
t AST(t INDEX).MEMORT ADDP. :~ BASB ADD~~SS 

I~OR! t 

DO rOR-AlL D~R'S - -
IF lAST [l-INrE!l .SEG~ENT NO/ACCESS AUTH <> V AN!I! 
~MU l~AG~tDBR #].SDR(S~G-#l.ATTRI~UTES=IN tOCAL TEEN 

MMV_IMAGE[DBR_#) .SDR[S!G_#].BASE_ADDR:=lASE_ADDRF.SS 
FI 

OD 
SUCCESS COD3 := vAtID 

MOVE T~ LOCAL - -

fi?ure 25. Move To Local Pseudo-code. 

97 



" 
I 

, 
\ .~ 

! 

"PDATE PROCErUR! (L INDEX WORD. GLOPAl_ADtR WOEr. 
SIZ E ~~ORD) 

RSTURNS (S~CC!5S CODE BYTF.) 
ENT?Y -
DO FOR ALL D!R'S 

IF l-AST1L INDF.X].SEGM~NT NO/ACCESS AUTH <> ~ ANrIF 
~~U_IPAG![r~R_#) .snE[SEG_#r.ATTRI~JTis=IN_IOCAl TfEN 

M~U I~AGE(D!R #].SDR(SEG #] .!ASE !DtH := 
- - - G10EA1_ADLR 

:1 
OD 
!LKS := SIZE / !LK SIZE 
FREE lOCAL BIT MAP-(M~MOF.Y ADtR.P1KS) 
1 AST[L INDEX]7MEMORT A~DR-:= ACTIVE 
SUCCESS-CODE := VA1ID-

FoND tTPDATE -

!1~ure 2€. Update Pseudo-code. 

98 



, 
~i 

I • 

I ~'i 
• t 
I 

! I 

L_AST index, the new plobal address for the segment, and the 

size cf the segment. The retu:n paraMeter Is a succ~ss code. 

E. SUMt-AARY 

In this chapter the detailed design of the memory 

mana~er p~ocess has be~n prese~t~1. The purpose of the 

me~ory manager was outlined, followed by a 

discussion of the memory manager's data bases. The desi2n 

presented has identified ten basic functions for the memory 

mana~er. The implementation details of these functions are 

• pre~~nted In Appendix A. The success codes returned the 

memory manarer are presented in fl~ure 27. 

This design has assumed that the kernel l~vel 

inter-process synctronization pri~itives will be Seltzer's 

~ignal and wait prl~itives[15]. This fact dominated the 

design decision to lock the ~_AST in the user's pr~cess 

~efore it si~nal! tte memory man~ger. In a mul l-prnce~sor 

envlron~ent, the possibility of a deadly e~bra~~ exists it 

the memory mana~er processes lo~k the G_AST. Should follow 

cn work l~ple~ent eventcounts and sequencers ~s k~rnel level 

synchronization primitives, the lockin~ of th~ 

~emory manager synchronization will need to te rpaddressed. 

99 



t 
I 
r 

I • 
'( 

, \ 
" 

1 

t-
~ 

:.-
~';. 

't 
/ .. ' , 
ti 

SYS'!E~ tUDE 

INVAlID 
SW\PPED IN 
SWAPP!D-OUT 
SEG ACT!VATED 
~EG-DEACTIVATED 
SEG-CREATED 
SE:G-L]LETED 
VIRTUAL CORE !IfI,L 
DUPLICATE !NTR'" 
READ ERROR 
WPITE ERROl! 
DRIVE:NOT J?EAD! 

MEMORY MANM~ER LOCAL 

VALID 
INVALID 
FOUND 
NCT rOUND 
IN iOCAL ~E~ORY 
NOT IN LOCAL MEMORY 

1 + DISK ERRORS ! 

KERNEL LOCAL 

LEAF SECMENT EXISTS 
NO L!AF EXISTS 
ALIAS nOES NOT EXIST 
NO CH!LD T~ DEtETE 
G_AST_fULL -
LAST FUL! 
LOCAL-MEMORY FULL 
GLO!AL M!~ORY FULL 
SECONDARY_STORAGE_FULI 

F1~ure 27. SUCCp.ss Codes 

100 



IV. STATUS OF RESEARCE 

A. CONCLUSIONS 

The memory manager deslp.n utilized state of the art 

software techniq~es and hardware d~vices. The design was 

developed based upon ZILCG'g zSetl sixteen bit se~mented 

~1croprocessor used ill conjunction wtth the Ze£l~ Me~ory 

Unit[12] • A microprocessor which supports 

segmentation is r~quired to provide access control ot the 

stored data. The actual impl~~entation of the selected 

'thread was conducted upon the non-segmented 

~icroprccess~r without the ZB€10 ~MU. 

While information security requires that the 

Microprocessor support segmentation, the ~emory manager was 

developed to be conri~uratlon in~ependent. The desi~n ~1ll 

support a multi-processor environment, ~:d can be ~aslly 

i~plemented upon any ~icroprocessor or secondary storape 

device. The loop free mouular desi~n facilitates any 

required expansion or ~odirlcatlon. 

Global bus contention is mini~ized by the ~emory 

mana,er. Se~ments are stor~d in ilobal memory only if they 

are shared and writable. ·Secon·iary stor~p.e is accessed only 

if the se~ment does not currently reside in global me~ory O~ 

SOM~ local ~emory. The controlled sharins of se~ments 



, 
I 

, . 

'~~i .. 1., 

I .{ ·f 
It 
I t 

. 
1: 
J 

J' ., 
I .. 

. \ , 
., . ,. .. 

~. , 
? II 

__________ .. ____ ' ___ H _ 
~ ... _ ... I I ... _ ........ , _____ • __ , • __ ,, ___ ....... ' ...... _ ..... 111._'.,. ____ _ 

The storage of t~e alias tables in seconeary storage 

suppcrts the recreation of user file hierarchies fOllowin~ a 

system crash. ~he aliasing scheme used to address seiments 

supports system security by not allowing the seg~ent's 

memory location or unique identification to leave the memory 

l'1anage r. 

The desi~n of the distributed kernel was clarified by 

assi~ninp. the MMU imaie management to the memory manarer. 

Tte transfer of responsibility for me~ory allocat1or. and 

deallocation frol'1 the supervisor to the me~~ry mana~er 

provides su~port for dynaMic memory management. 

In conclusion, the me~ory mana~er precess will securely 

",an age se~~ents it a ~ulti-processor environ~ent. T~e 

process is eff1~ient, and is confi~uration independent. The 

prl~itivps provided ~y the mel'1ory ~anager will support the 

construction of any desired supervisor/user proress built 

upon the kernel. 

!. FOllOW ON ~O!K 

There are several possible areas in the SASS desi~n that 

can be lo~ked i~to for continued research. The c~~~l~te 

imple~entation of the memory mana~er desipn (refine and 

opti~ize the current FIZ/SYS code) is one possibility. Other 

possibilities include the l~pleme~tatlo~ of dynanl= ~emory 

102 



1 , 
I , 

~ 
I 
1 

_____ . _____ ._' __ ,_. ____ ~ __ 

~anagem~nt, and modifying the interfare of the Memory 

mana~er with the ~istributed kernel using eventcounts and 

sequencers for inter-process communication. 

TIle i!T1plelT'entaUor. of the supervisor has not been 

addressed to date. Areas of resear:h include the 

i!T1plmentatlon of the file I!lana~er and Input/outPUt 

processes, and the complete desirn and impleMentation of the 

user-host protocols. The implerneantatlo'n of the ~atp.keeper, 

and syste~ initialization are other posSible research areas. 

DynaMi~ proces~ creation and deletion, and t~e Introductinn 

of ~ulti-leyel hosts could also prove Interestin~. 

1~3 



1 

I 
I 

t :'f I 

\ 
'.1 
I 

\ 
u't ., , 

.':1 
! ' 
.~ , 

\ 
I f., . 
. 'f 

! I 
,'\ 

I 

. 
· t· l 4 . 
I 

· · , I., 
l 

t . \ 
1,·: 

,~ f, :,~ , 

• f( 

APPENDIX A - P1Z/S!S SOURCE LISTINGS 

* * * * VERSo 1.0 * * * * 

CONSTANT 
FALSE 
TRU~ 
'.VA ILA~Lr. 
ACT Ivt 
ZrRO 
NULL 
NUll_PAGE 

Su CC!S S CODES 
I'~VA! I D 
VAI. ID 
rOUNt' 
NOT !'OttND 
S',iAPP'ED IN 
StUPPED-OUT 
SEG ACT!VAT!D 
SEG-D:"!ACTIVAT~D 
SEG-'CREATEr 
~F.r.-DrLFTrr 
LEAF SEGM!NT f.X!STS 
NO LEAF EXISTS 
GAS! rtfl! 
L-I.ST-FUL! 
IN lO'CAt M!MO~Y 
NO'_IN_L6CAt_~rMO~! 
leCAl rE~OP! FUll 
GIO~AI ME~ORf FUll 
VI?~1Ar_CORF_'CII 
DUPIICATE FNTR'" 
NO_CFIID_TC_DEIET~ 

~ TTP nt:'!'~ t'AS!(S 
READ ~ASr: 
·.HiIT~ (I.," c.-
CHJl.NGED ~ASK 
IN MEMORY i'ASi: 
C!~AREr -

AUTHORIZED ACCESS 
RE.·~ D -

:= 0 
:= 1 
:= e ! AST ENTRY AVAIL. 
:= l! AST ENTFY 'CTIV! 
:= 0 
:= ,;eeee 
:: 0 

0-. - e 
:= 1 
:= 2 
:= 3 
:= ~ 
:= 5 .- 0 .-
:= 7 
::r. e 
:= 9 
:= lZ 
::: 11 
:= 12 
:= 1~ 
::r. 14 
: = 15 
:= le 
:= 17 
:= It: 
:= t 9 
:: 2£ 

:= %(2)11111110 
::: %(2)r0~eefle'1 
:= :;{~)01~Z0€ce 
:= %(2)e~~'H'10v 
:= ? ! CLEAR A~~?I~UT~S ' 

: = ~I 



I 

TY?! 

",iR! T"; 
EX~C~TTE 

G ~S~ FLAG BITS MASKS 
- W!ITAELE ~ASI 

'!JR I TT!NJ-iASK 

DESIGN PA~A~ETE~S 

, 
::: 1 
:= G 

• := ';(2)~e0eeQ!lv 
: = ~H2 )eeeeelee 

El! SIZE = 2:6 
~Ar.-PAGE ~IZE = ELK SIZ~ / 2 
~Al-MSG SIZE = 16-
C ~E~ SIZ! = ? t SIZEor GIOEAi ~EM ! 
L-~E~-5IZE = ? !SIZEO! 10CAt ~!MCRY! 
NO ~F-PROC!SSORS = 1 

- - t MAX NUM3ER OF D~~_#'S 
~Ar. t.PP. NO := 4: 

- -I MAX ENT~IES IN G AST 
G AST lI~IT := 1~0 

- - ! ~Ar FN~RIES I~ LAST 
1 AST LIMIT := 1~0 

- - ! SIZB or AtlAS TA]LE 
~AY. ~NT?Y NO := 32 

- !-# or SEGMENTS PEP. P~OCE5S 
NO S~G DESC REG : = 64 
FIEST POSS FREE EIOCK:= 1 

P~OCESSOR IOCAI-DATA- ! 
PROC~SSO~_ID := 0 

A!)D?r.~s 

All AS 

WORt 

F!COFt ( UNIOUE ID lONG 
SIZ:: -
CLASS 
PAG'F TA&!.! toe: 
.UIAS_TA:nE_LOC 

'.\CFr 
i'iORD 
odOR!) 
'.CFt 
'HO?t ) 

S~G_D~SC_aEG RECORD r EASE APD~ 
lI~'llT 
ATTRIBUTES 

ADDRBSS 
BYTE 
=YT~ 1 

FECOFD [ ~NIOU! IDl LONG ~O!D 
GIOBAl-~Dt~ ADrpE~S 
PR0C!SSORS_l_AST~ ~o ARRA! 



I 

:.;.f 

<1 :~f; . , 
~J l 
,~ 

" 
I ! ! 

tr~1 
. ':'1 ~ 
"~f ! yt 

~f 
, , . : 

I 
..... 
4~ r 7 
.! f . 

~ 
~ 

~: : 
~, 

~ . , . 
l 1." 

t~ ~ ,-' , f' 

[NO OF P:'OC!SSOFS 
FlAG 3ITS 
G .\ST~ NO 'FAR 
NO ACTlv~-IN M!~OFY 
NO-ACTIVE-Dl~ENDENTS 
SIl~l -
PAG~ TA~LF lOCl 
AlIAS TABLE IOr.l 
SECtTFNCER -
INSTANCEl 
INSTANCE2 

'jeRr] 
3!TE 
',tiORD 
~cp.r 

WO?D 
'."ORD 
'iOF.r 
'NORD 
',iO~D 
'~CRr 
WORD ] 

RECORD r MEMORY ADDR AtDP.ESS 
SEG~!.Nf NO ACCESS ArTp. 

!~RAY-[~K!_t:R_NO ~vTE) 1 

R~CORD r U~ICU~ ID2 lO~G ~OR~ 
H_INDE! - wORt 1 

!*o****o**o**o*o*oo*o*o*o~*oo*****ooo****oo**********o***** 
~ * * VAP!!P!5 tECLAFATICNS 0 
~ 0 

************************0*******************************OO! 

r.lOPAl G ~ST ARRAY rG_AST_lI~IT G_AST_REC) 
GrOE~L ME~_IIT_MAP ARi.~!rG_r~~or.1_SrZ!/1€ ~~rrJ 

~S~t:'TIO~ I)~AT.~ 

Mi.,U I~t.G!: A~RA! [MAX t'R NO ~Mn) 
ARRAY (I_A~T_tY~IT t_)5T_F.FCl t t.ST 

ArIA~_TAr,t!: ~Eco~r r P.~ADER AIrAS EEArr.R 
'II~S ~~TP.Y h~E!Y 

lOCAl ~E~ EIT ~A? 
DIS~ BIT ~~F BUFF 
~Ar.r:TAILF_~ij:rER 

r~AX !NTR! NO AlIAS1 1 
~~!AV fL ;E~ SIJE/16 ~O~tl 
A'aRAY f???? - ?YT~] 
ARFAY ~l~ SIZ? ~YTrJ 

U'6 



:~f. . , 
): 

, > 

11 (t 1 >, 
'., ! 
'~'i 

! t~~ 
I • 
I .~ 

. ... 
4 • 
f 

~ 1 .. I,: 

I 

.\ ; , 
( 

t.-- , 
ff ~. f." I l' 
>'. 

~XT!;tN.H 

!*********************************************************** 
* * * The following proce!ures are coded in PLZ/AS~ ane are * * contained in a separat~ PLZ/ASM ~odule. * 
* * 
*****~**************************o*******************~******! 

RFA! PAGE pF.oc~~nRE (DISK 10C MORD. ~E~ORY AtrF. ArrEESS' 
~ETURNS (SUCCESS_rOD! EYTE ~ -

R~AD S~G~~NT FROCEDUR~ (PAGE TAB1~ laC - - - WO~D , MEMOF! ADDR 
ArDF.I~S) -

!ET~!~~ (S1CCESS_CODE ETTE) 

~RIT! FAG! ?!OCEDU~! (DISK IOC 10~D ,FRO~_ADDq ADD!~SS' 
R~T'!~~ ( ~UCCESS_CODE-]YT! ) 

~RIT! SEGM~NT PROCEDURE (PAGE TABLE loe WORD , J!OM AtD3 
- - - A:tRFSS) 

RET1RNS (SryCCESS_CODE ~YTE) 

R~AD DIS~ B!T ~AP FROCEDUR£ 
- ~!Tr;FNS-( StTCCES~ _cor:: ~YT!' 

~!ITE DISl !IT ~~p P~OCEDURE 
-RETUR~S T SUCCESS_CODE ~!T!) 

~!A?CR tIsr EIT ~AP PROCErURE (ST"T ~!CP LaC ~Of~) 
R~,!,Ul)~S (S~CCESS_CODt:; aYTE. rIK_lOC 'tiORr ) 

C!!Ap._rISK_FIT_~~P p?OCErTJp.E ( tt!_ lOt to?t ) 

.. ~~t' GlODA! ~IT t-IAP Pr:OCEtUR~ (ADt? ADDP.ESS, 3IKS ... --- - -
FFEr. lCCA! BIT -f'IoAP FFOCEttTR! (A~!P A"en. ES S t tH'S - -
~!IOC lOCAl ~~~~py PROC~DuRE (BIKS ~ORD) 

REf URNS 7 S"CCESS_COt! PYTE , EASE_Ant! A:DR!SS ' 

AtIOe GlOBAl WE~ORY PROCEDURE (ElKS ~ORD) 
i!TtTR~S-( srCCESS_CODE ~YTE, EAS!_ADDR AnDR~SS 

C!T ryNIQ Ir PPOCEDURF 
- PETij~N! (IL lONG W0RD. SUCCRSS_COD~ BYT~) 

liORD) 

V;Of.!) 

M!~ORY_~OV! FiOCEDua~ (TO ADDRESS, FqO~ ADDRESS. SIZ! ~ORr~ 

"ALIrA'j'~ tI~G PROC:£'DTTFF (MSG ARRAY (~1AX_t-1SG,_SIZE PYTE]) 
R~TURNS ( FUNCTION FTTE, AqGJMENTS AR~AY [6 wORrj ) 

11('7 



{ 

I 

I 
I 

I 

VALIDATE ~AIT ~SG FROCErURE !MSG 
RET~~~S (!UCCESS BYTE) 

It.!TF.RNAL 

ARRAY [MAX MSO SIZ~ - - ~Y"'~]' - .~ . 

!***********$*******************************$*************** 
* * * * * * 
* 

Th~ ~EAD ALrAS TAEIE Procedure is called from the 
Create_eitry p~ocedure and Delete_entry proc~dure. 
T: ~ oroC'~1ure will read the requested alias tar-le 
frolT' secondary stora~p. to main rrelT'cry. 

R!TUR~S ( S~CCESS CODE 
ENT~T -
S~CC!!S CeDE :z RFAt PAG!(ALIAS_tISK_IOC. MFMOEY_ADrR\ 
R~AD_AIY!~_~AEl! -

* * * ;:, 

* 

!*********************************o*o*********************** 
* * * T~~ WRIT! AlIAS TA~IZ Procedure is called troM the * 
* Create_~ntry ana ~elete_entry procp1ures. T~e pra- * 
* c~~ure vill write the appropriate alias tatle fro~ * 
* ~a!n me~ory to secondary storage. * 
* * ************************************************'****0*****! 

RFTryp~S ( S~CCES~ COD! 
rNT~1 -
~"CrE~S cor~ := ~FIT~ PAGE(A!IAS rISK_Loe, MFMORY_ArrR) 
W~ITE_AYIA!_TADIE - -

les 



"t ,.1 

t 

I 
j 

. , j., 

.\ , 

---------- ----_._."""-_. --

!************************************~I.********************* 
* 
* * * 
* 
* * 
* * 

The SEARCr: AlIAS T}bl~ Frocedure Is called fror. tre 
Create_allas_tabIe pr~cedure. The procedure will step 
through the alias table until It MAtches the passec 
unique_Id with a table entry. or the table has teen 
exhausted. The procedure retu~ns a success code of 
elt~er found or not_round, and the appropriate index 
into the alias table. 

* ***********************************************************! 
S!A~Cn AlIAS TA!I! PROCEDURE ( UNIOUE ID LO~G ~car 

~~Try~NS- ( SUCCr,5S CODE 3Y~E, INLEX EVTE ) 
!NTRY -

INt!! := e 
SryCC!SS CODE := NOT_F~UND 
1'0 -

IF INDEX > ~AX_ENTP.Y_NO TH!~ ~XIT 
Fl 
IF ALIAS TA~L!.AL!AS ENTR!(INDEX].UHICUE ID = 

- - UNI,U! It TP.E~ 
SUCCESS CODE := FOUND -
RXIT -

FI 
:NtE! += 1 

OD 
!ND SlAFCP_AIIAS_TAElI 

!**********************************************************~ 
* * * The ryPDA~E M~tJ I~AGE ?rocedure 15 called !rom tce In * 
* procedure.-The-procedure v~ll upeate the M~ry imaR~ of * 
* the appropriate procesS with the ~e~ory lor~tlon, ~ 
~ 11~tt, an~ a~cess authorization tor the passed ser~ent * * nll!TIbe r. ,;: 

* 
**************~************************************6*******! 

rprAT!_~MU I~AGE PROC!rCRE (DER NO ~YTr. S!G~!NT NO EYTF, 
ADDR ADD~ESS. ACCESS ~YTE, !I~IT BYT! ) 

~TT~ ~lTE L'iCAl 
FNTPY 
~MU I~AG3[DB~ NO] .~DRrSEG~ENT ~O] .EASE ADDE := ADPR 
MMu:r~ftG![tBR:~O] .SDR[SEG~EN~-~O] .lIMIT := l!MIT 
ATT! := ~M~ I~AGErrpR NO} .srRTsIG~ENT ~O) .AT!RIIU!!S 

, Cr"A" 'O~""'TIO"C: Af';; .... ~S ' -• :.. "\ ...... J V"- :L\J\;,t..,. • 

I! ACC;SS = ~~AD ORI! ACC~SS = Wq!TE TEEN 
ATTF := ATTR AND ~(2)1111111f 



• __ .... r.T:eII ... !I:\111"YMlP"CI!I<I,.O"...-

EL~E EXECUTE ONLY ACCESS 
AT~H := ~TTR AND %(2)11110111 

FI 
M~U I~AGErrER NO].SDR[~EG~ENT NO].ATTRI~qTES := 

- - - ATTR O~ ACCESS 
END UFDATE_~MU_I~AGE 

!***********************************~***************4******* 
* * * Thp rEt!T! ~~U ENTRY Procedur~ is called from the Out * * proredure. -The-procedure will null out the ~MV im~fe * 
* of the appropriate proc~ss for the p'ssed s~g~e~t * 
* number. * 
* * 
******************c****************~*******~************~**! 

!~Lr.TE ~MtT !NTF.Y 
E'J~~T -
~MU IMAGErDER NO).SDR[SEG~~NT NO] .EIS! ADD! := ~Ull 
~~U-I~AGEfDPR-NO] .SDR[S!G~~NT-NC] .lI~I¥ := ZEFO 
~~U-I~ACE r!n-NO] .stR[SEGM!NT-~O] .ATTRIPUTE!:= CLEAF!D 

!ND DEY!T!_~MU_ERThY -

!**~*****************************~************************** 
* * 

* 
... 
',' 

The FI~r SrCONrA~Y STORAGE Pro~edure 15 called fro, * 
the 'lln~_sec~stori~~ procedure. The procedure will * 
sparch the secondary storage bit ~ap to find a cor- * 
tiRuOUS storape location in secondary stora?e fer the * 
required number ~f blocks passed. The procedure will * 
r~turn a SUCC!SS r~de of pither valid or itvalld. * 

* 
**********o*****~******************************************! 

FIND SEC STORAG! FROCEDU~E ( ~lKS ~ORr ) 
RfTtTRN~ (~T'CCF.SS CCD~ FYTE.TA:3LE APEAY [ELK SIZE '~C'Rr] \ 
tOC!l INrEX W5RD -

I WORt 
!~TR,[ 
~UCC!~S CODE := ~EAu_tIsK_BrT_~AP 
IF srC~!SS_CODE'> VAlID TF!N 

FI 
:NDEX := FI~S~ PO~S FREE BLr. 
I := ~ - - -
DO 

lH 



• ! 

. , 

II": : 
J- 1 > 

~ f"~ , 

-... --~~~------

-

OD 

I! SUCCESS COD~ <> VALID TP.F.N 

F! 

ro -
CLEAR DI~K ~IT ~AF ( TA~tE[I] 
IF 1-: 0 - TEEN EXI~ 
rr 
I -= t 

on 
SUCCESS corr := SEC_STOR_FULl 
~ETtJP.N -

TA:EIE [I] := It\rEX 
I 01.= 1 
IF I: BLKS TR~N EXIT 
Fr 

SUCC~SS COD! := VALID 
?Nt FINn_S~C_STORAG! 

t*******************c*********************************o***co 
* * * The AIIOC ON~ PAGE Procedure Is called fro~ the Create * 
* allas_tabIe ~;ocedure. 1he ~rccedure will flrd one * * pare of secondary storage ~or tJe ~reatlon of an alias * 
~ table. This proce~ure will return a success c~de of * 
* ei ther vol1:i or invalid. * 
* * **********************.************************************! 
AILee C~! PlGr FROCErUR! 

~~!URijS ! ~UCCESS corE ~YTE, PAGE tOC~TIOH WOR!) 
lOCAL TA!lE ARRAyTJLK SIZI WORD] ~ 
EN!RY -

S1CCE~S CODE, ~'~LE := iIN~ SEC STORAG~ ( 1 ) 
IF srCc~ss cc~~ <> VALID -TF!~ 

11 !:'r'TP '1 -
!I 
FAGE lOCA~IO~:= TAB1ELe] 

END AILce_ONE_PAGE 

111 



I
i 

,<,-' 

:~ 
, ,

" 
~-

I I 

'1 
:1 
~; 
t; 
~; 

if 

I ~f . 
'.I ' 

, • 

I: 
Ur " . 

1 ' 

, :ft; 
Vi 

I t~ ~ 
I -Vi 

I, t I t 'f I 
I 

I .. . . 
~ 

i I 
. J' 

:~ i: t 

I J ,. 
~ -\ 

• g 4 

IJ I," " ,- f. -
~ : . 

, __ ._. ____ e"'""" __ _ 
.. __ ,. UIiI' ....... _. ___ _ 

!*********************************************************** 
* * * Thp AILce SEC STORAGE Procedure is called fro~ the * * Cr~atp_ectrJ ~rQc~dure. T~e procedure will create a * 
* pape table from the allocated secondary storap.~, and * 
o writp this pa~e to s~condary stora,e. This procedure * 
* will return a succpss code of valid or invalid. * 
***********************************************************! 
AILOC SEC STCRAG~ FROCrrURE (~LKS ~ORt' 

RfTURNS ( PAGE TABlE IOC WO~D, SUCC~SS_CODE 
LOCAL TABLE iaRAI TBLK_SIZE YORD] 
!i;NTEY 
sneCESS CODE, TA~I! := FIND SEC STOFAGE 
IF S~CC~SS CODE <> VAlID THEN-

P.!'!'·TPN-
11 
PAG~ TABIF. LOe := TA~~~ (0] 
I :=-1 -
DO 

or 
DO 

PAGF TA~IE !CFFER (t-~l := TAPI~ (1) 
IF ! = BI!S TF.E~ EXIT 
FI 
I += 1 

!F ! = MAX PAGE SIZE TEEN 
FlIT - -

!'I 
PAG? TAB!! ]UFFER [1-1] := NUll PAGE 
I +:-1 -

:: LK ~ ... 1 ) 

'*********************************************************** 
* * * The CREAT! ALIAS TlEt! Pr~ceeure is called by th~ * 
* Crp.ate_entry proce~ure. T~e procedure will allocate * 
* s~condary ~torale for the creation of an alias tatle * 
* and update the mettor se~~ent's alias ta~le to TPflpct * 
* the crea~ed alias table's secondary storage location. * 
* Th~ pro~e~ure returns a success co~~ c~ either valid * 
* or lnv~lld. * 
* * ********************************************************a**! 

112 



l ," 

--------

CREATl ALIAS TABLE FROC!DURE ( PAR INDEX WORD) 
RFT~P.N~ r SUCCESS CODE BYTE)-
lOCAL PARENT BYTE 

ENTRY 

ALIAS TABLE LOC 10RD 
ENTPY:NC ;YT~ 

SUCCESS CODr , ALIAS TABl! toe := ALIOC ONE PAGE 
PAP.~NT := G AST[PAF. INtE1]:G AS!E NO PAP -
SUCC~SS C0DE := rtEAD ALIAS TABIE(G AST[PAPEN~]. 

- AIIAS-TA~LE-lOC1, #AlIAS TABLE) 
IF ~UCCESq CO~! () ViLID Tf!N -

PETURN-
FI 
SUCCESS_CODE, r~Tp.y NO :: S~ARCH ALIAS TA~IE( 

- G_A~TrpAR_fNDEX]:UNIOPZ_Irl } 
IF SUCC!SS Cor! = ~OT FOUND TFEN 

RiT"E~ - -
FI 
Al!~S TABIE.AIIAS ENTRV[EN!R! NO).AIIAS TA~lE ~OC ~= 

- - - AtIAS-TAEIF.-1CC 
G A!T[PAR INDEX' .AtIAt TAB!Y lOCl := AlIA! TA~tt lee 
S~CCESS C5DE :='~RI!E JtIAS fAEL! ( ALIAS fftEL! f~c. 

- - - #A1IAS_TftEl£ , 
END C~!'~!_AIIA!_TAElE 

!*****~***************************************************** 
* * 
* Th~ cp:~v. MAX VIR~~AL CORE Procedure is called * 

by the In-proced~re. The procedure will verify that * 
t~o a~~!tion ~f the sefment requested to be ~wapp€d in * 
will not cause the nrccess' all~rated virtual rcrp tc ~ 
~e exceed~d. If tr.e·virtual core is ~ot exceeded. a * 
succ~ss code ot vall~ is rpturned, ot~erwlse a succes~ * 
code o!' nO_Il'p.ll'iory 1s returned. ~I 

* 

CEEC! MAX VIRTUAL COR~ PR0CErURE ( tPR NO EYT~, 
- - - P!r.-~O REO ~OEt) 

RETURNS (S UCCESS _CODE EYT~) - -

E'JTFY 
MVU IMAG~[DER NO] .~lr.S USED .= 3rr. ~O FtO 
IF ~MU !~~GE[EYR NO].EfIS "SEt> 

- ~MU_!~AGr[tfR_ijOl .~A1_ElrS TP!~ 
~~"r; IV~GE[L:R ~10] .Pl!S :rSED -= Elr '.JO PEe 
srcc~SS_CO~E := VIRTUAI_cOR~_FUll -

'£l~F 

113 



, 

, 

I 
I :Jf I 

I "\ 
i 

It >f 
\ 

. :1 , 
~ l 

! I.~! 
I • 
f I 

.. .... \ 

.# ; 
f 
I . 

" 
'" 

, 

. \ 

~"CC!SS CO~! := VALID 
FI 

~~n Cf!CK_~AX_V!~TUAl_CO~E 

!*********************************************************** 
* * 
* 
* * * * 

The FFEE PROCESS VIRTUAL coa~ Procedure 1s ~alled from * 
the Out ~roceduri. The p~~cedure ~ill subtract the * 
size of the segment which has ~een swapped out fro~ * 
the virtual linear core allocated to that pro~ess. * 

* 
'iOP.! ) 

!*~**************************o**************************0*0* 
* * 
* The rRE~ S~Cry~DARY STORAGE Procedure is call~d from * 

the Dol~ie_spg pro~~eure. The pr~cedure will read t~e * 
pape table of the se~ment to be deleted and the * 
secondary stora,e bit ~ap into main Memory. The tit * 
~an will be cleare~ to reflect the deallocatlon of * 
s~~ondary stora~e. and the ~aee table lo~atlon will be * 
cleared. The prOCEdure retu~ns a success code of * 
valid C'r invalid. * 

~~E~ SEC ST~~AGE FROCEr~RE 
RE~~¥NS ( :UCC~SS COrE 
!OCAL I w5n~ 

T ft B1E 1 .A n RA Y [ 
!NTP.Y 
~ucc~SS CODE := READ PAGE ( P~GE TA3IE laC • pTA~IEl ) 
IF SUCfEss_COrE') ~ALID Tfi~h - -

RETt"FN 
FI 
S~CCE~S CO~~ := R~!D ~I~K BIT ~AP 
IF !nccfss CO~F () ViLI! ¥!iN

RE7TJ~N-
FI 
I : = e 
DO 

IF TAEIE1[I] = ~Ull ORIF I )= ELK_SIZE THEN 



I",·~ 
r:.' , 

l~~ 

! , 

:",,~ 
," 

·f 
! 
1 

1 

01' 

EXI1' 
FI 
C I EAR t I ~ r. :; IT ~ A P ( T A.31 E 1 [I) , 
I += r - -

Cl!~~ DISK BIT MA~ ( FAG! T!31E ~OC 
SCCCESS eOD~ :; VALID - -

END ::~E_~EC_STORAG! 

!*********************************************************** 
* * * The D!l~T~_SEG Procedure 1s called fram the !elete * 
* entry procedure. T~e procedurp will 'ree se~ontary * 
* storare for the deleted Sepment, and null out the * * entry ir. its mentor segment's alias table. The pro- * 
* cedure returns a succeSs code of either vdlid or in- * 
* va:id. * 
* * ***********************************************************! 
DEl~T~ S!G PF.OCEDUKE ( ENT~Y NO ~OP.t 

R!T~R~S ( S~CCESS COr! iYTE ) 
!'N':?y -
S1CC3SS cot~ :~ F~~E SEC STORAGE( 

llIAS Tlil!.A!IAS-rNT!Yr!~TRY NO] .PAG! TA~lE IOC) 
I! !rCCESS c5tr (> VALID- THEN - --

:'1 
IF 

11 

~!T!JRN -

AttAS TAEtE.AlIAS Eh~~Y[ENTRY hO) .A1IA5 TA~IE lee 
- - - <> NUL! 1P.~N 

CLEAR nrS! DIT ~AF( 
ALIAS ~A~L!.Al!AS !~TRY[!NTRY NC].AtIAS TAPl! IOC' - - - --

AtlAS TABl!.ALIAS ~N~~!(!~TRY NO].D~IC~! ID 
tEl!T!_~!G - - -

..- N'Tll 

!*oo*~*********************oo*********o*****u*o****o***u**u* 

* * * The CEECt IF ALIAS EMfTY Proceture is called by the * 
o Delpte_pnrry-proce~ure. T~e procedure will search th~ * 
* alias table to deter~ine if th~ tdcle is e~pty. I~ the * 
* alias tatle is e~pty, the variable Alias_table_e~;t? * * 1s set equal to true and returned. If the tabl~ is not * * empty, Alias_tatle_empty is set equal t~ false. * 
* * ***********************************************************! 

115 



, t 

~ 

I 

---.-, .... _-_ .... ----- .. .~_-_~ __ ...... 'WI---,, __ 

~HECK IF A!IA~ E~PTY PROCErURE 
1ET~~NS ( ALIAS TAEtE EMFTY B!TE) 
LOCAL I BYTE -
I := e 
DO 

OD 

IF I = AlIAS TAEl! LIMIT TE!N 
AIIAS TA~l!. ~MP~I := TRCF 
EXIT .• -

EIS! 
IF ALIAS TAIL!.AIIAS ENTRYrI].U~ICUE Itt), TEE~ 

ALIAS T~DLE ~Mpr! := FAlS~ -
~!1T - -

~ISE 
1 += 1 

:1 
:I 

'*********************************************************** ~ 0 

* ~he CE!Cr lOCAl ~T~ORY Froceiure 1s called !ro~ t~e In * 
* proeedure: The ~rocedure determines if the se~m&nt is 0 
* in t~~ processcr's l¢cal ~emory by ~xa~ining th~ M~1 * 
~ ima~e for ea~h conne~tpd process. If the se~~ent 1s in * 
* the local me~ory, the varla~le Test is set equal to * 
* true, ~ther~1se it 15 s~t equal to false. * 
* * 
***********~**********************~************************! 

Cf!C! lOCAL ~~V,~RY FROCEDtRE (IND~X ~ORD } 
RfT"?N~-( T~ST ~YT!' 
t~CAl I ~YTE 

S~G_NO F!'I E 
I := e 
DO 

FI 
S!G_NC := ( 1 AST(INtEX).SEG~E~T ~O ACC~SS ~UT:'[!] 

-AND %(2)01111111 r - -
IF SEn NO <> e TEEN 

FI 

IY- (~~U I~AG!rI] .SDK(SEG NO] .ATiEI~UTES AN: 
IN ~~MORY ~ASK' <~ 0 TEEN 

~EST :; IN_lvCAL_~EMORY 
R~TUF.~ 

FI 

116 



I 
i 

• , 
, I 
, f 

\ 

I += 1 
or 

!ND CH~Cr._tOC~t_M!MOrY 

!*********************************************************** 
* * .'. ',' The CH!Cr FOR REMOVAL Procedure is called by the Deact-* 

ivate procedure. The procedure will deter~tne if the * 
s~B~pnt is a~tive in any l_AST a~d if it hiS iny active* 
dependents. If the se~ment is tot active ~nd do~s not * 
~ave a~y dctive dependents, the G_AST entry is reMoved.* 

* 
~H~CK FOP. RE~OVAI P~OCEDURE ( INDEX 

l:YTE 
~Ol\D ) 

tOCAI.- I 
T!ST 

EN'!'~~ 
TEST := !AlS! 
I : = e-
DO 

~Y'I'! 

IF ! = NO 0: FPOC:';;SO~S ORIl TEST::o T;PE TEEN 
r:Z:I'!' - -

:'1 
Ii G AST[INDEX).PROCESSO!S I AST! ~0rI1 () i THEN 

T~ST = TRU! - - -
FI 
I += 1 or 

iI 
EN~ C~!Cr._iO~_RE~OVAl 

'*********************************************************~* 
* * * Tr.e CF.ECr._IF_O'I'TIF.RS_ACTIV! FrJ~edure is ~alled by t~e * 
* Delete_entry procedure. The procedure will check to * 
* deter~lne if a seem~nt is activ~ in any I_AST. I! t~~ * 
* s€rment 1s act!ve~ the var:able Others a~tlve 1s Set * 
~ ~qual to tl'ue. ct:-.erwise it 1s set eql'al t, false. * 
n * 
oJt.'i:**t.t"'*~l':l(o!:}~ ... ~*****mll*****"':**i.(******:~**:~***********::;~'t****~(*! 

~vc.~r~.·._I~_nml·.R.,FP~ ... _ACTTgrj ~~oc-~tJ~v ( I~~~X _ _ _ __ ~ __ • ~ _ • :'. !.JJ •• _ I\!O'::' • ',iORD ) 

117 



i I :Jf 
i; } ~, 

II , ·1 
'':;1 I ;'j r ~-! .. 
I: . :1 
. I d ~; 
:\' 

~ 

I i ~i , 
J I 

·1 
:!4:' 11 f' 
~ .! i 
I 1 ... 

I 
··j'r 

~ 
, , t 

I 
~ 

I." f J. ~, 
~ 

, 1 

~ 10 g 
I 

RE~~RN~ ( OT~!ES ACTIVE BYT! , 
lOCAL I BYTE 
'ENT~Y 
I := e 
DO 

OD 

IF I ~ NO OF PROCESSORS TEEN 
OTE~Rf A~TIVE := FALS! 
~ETURN-

F! 
IF G AST[INtEX] .PROCESSORS tASTE NO[!] <> ~ TE~N 

~TEE!S ACTIVE := TPU3 - - -
llET{j~N-

1'1 
I += 1 

:'ND CFECK_IF_OTP~RS_ACTIVr. 

!**o****o**o**o******oo**********~~***o**o**~o**o******~~ooo 
o * 
* The ACTIV! IN 1 AST ?rocedure is called ty the react- • * ivate prociduie: T~~ procedurp will search th~ Seg- * 
* ment_#/Acc!ss_auth field of a s~Rment to deter~1ne if * 
* the s~g~rrt Is artlv~ in the LAST. If th~ se,ment is * 
* active. the variable Che~k will be set equal to True * 
* and retufl"ed. * 

ACTIVE IN 1 AS~ PROCErnF.E (IN~E7 ~ORD' 
RETU?NS-( Cr.~CK EYT~) 
tCeAt I rYT! 
E'lT~V 

I : = ~ 
CHECK := iAlSr: 
DO 

IF I = MAX tPR_N1 oaIF CEEer = ~R1E TE!N 
R!TTTRN -

:'1 
IF 1 AST[I~~EX] .S!CMZ~~ NO ACC!SS AUTH () e TFE~ 

Ep!cr := TPry! - - -
FI 
I += 1 

OD 
E~D AC~IV!_IN_I_'ST 

!*****~******************~***********************~******~*** 
* * 

liE 



, 
" 

I 
A. 

, 

'I, , , 
,/ 

~ f 

"1' l." I '. "I ~ " 1 
lii 
" . , ~.~ f 
i t 
'.-

* * 
* 

Th~ ryPD'TE t AST ACCESS Frocedure is callpd by thp In * 
'procedure.-Tn€l procedure will set the read/write 1:it ,-'c 

of the appropriate se~ment_#/access_auth field of the * 
LAS! t.o a one if the nrocess has write acc~ss or to a * 
ziro if the process ha~ read accesS. * 

* 
pPOCErU~3(INDr7 ~ORr,ACCISS AU~E PYTE, 

DBP. NO ETTE) -
LOCAL 
ENTRY 

WORD -

SEG_NO := L_AST(INrEX] .SEGMENT_NO_ACC!SS_AUTF.(DER_NO] 
IF ACC~SS AUTH = WRIT! TEEN 

L 'S~TIND!XJ .SrGM~NT NO ACCESS AUTP.(~~R NO] := 
- - -SEG NO- O~ %(2rle€i0ee~ 

EI.S!! -
I._AST [I N!~X] • ~ r.GM!NT _N O_ACCESS _AUTH (rp.R NO] : = 

~rG_NO AND %r2)~11111111 
FI 

rND UPDATE_L_AST_!CC!SS 

,****t****************************************************** 
* * * The SEA~Cr G AST Procedure 1s called by the ActivatE * 
* pro~edure.-The procedure ~lll,search th€l G_A~T to * * dcter~1ne 1f a passed se~ment s un1que_ld exists in * 
* the G_A~T. If the unlque_ld 1s found, a ~uccess co~e * 
* or found drd the G AST index are returned. If the ~ 
$ se~~ett is not touid, a succesS cede of not found 1s * * returned. -,;, 
* * ***********************************************************! 

RE':'URNS (SUCCo.::~S 

lOCAL 

?t\'!'R! 
! ::: e 

I 

It OOF: t') 

:EYTE, HiDE! 

IF I =) G A~T lI~I~ TPE~ 
Sr.CC!SS :=-~CT FOUNt 
INDEX := ~Ul! -
RETtJ?N 

FI 

I ~NC \~Oit::' ) 

HO?!') 

IF Gj.S'![I] .rNICr";!_IDl :: SFG IL TErN 

119 



. 
-' 

,!i 

J 
I 

-;1 
il 
4 
.; , 

1 
, 

" 

I 
i 

" ., ·;f 
• i . ; 

, , 
,I 

d 'II 
I . , , ~ I ,j 

\ I;~ " , -I . :1 I 

i 
1'1 
,~ 

.~ 
,v, 

:( 

JI 
j, 'J 

t .-
i 

. , t. '" ~ 
JI ~/~, 

f· 

OD 

Fl 

~rrCCESS := rOUND 
!ND7X := 1 
BETtTRN 

I += 1 

t*********************************************************** 
* * o Th~ :E~ liST IND!X Proce1ure 1s call~d by th~ ~a~e * * l_A~T_entry procedure. The procedure will sear~h thr. * 
* t AS~ froM top dowt until an available lnde~ 1~ found. * 
o 11 an lndeJ 1s not four.d, a success c~de of 1 AST full * * is returned. If an index is found. the index.-atd-a * 
* success (,,,de of valid are re turned. * 
* * 0************.*********************************************! 
GtT LAST NO IND~X PROCEDUR! 

F.ETlf~N-( ~UCCr.SS CO::: ~YT!, t_IND!X 
tOCAt I ~oRB 
ENTRY 
~nCC!SS_COr~ :~ VAlID 
I : = 0 
IIOOF: DC 

IF I => ! 1St II~IT TEEN 
S~CCESS CODE := lAST rryll 
RP.TURN - --

FI 
I += 1 

OD 
!ND G~T_i_A~T_NO_IND!! 

120 



I f. , , ~ : , 

!*********************************************************** 
* * * The GET CAST INtEX Procedure is called fro~ the Make * * G AST entry procedure. The procedure will search the - * 
* G-AST-~rom the top down until an available index is * * found. If an index is not found, a succeSs code of * * G AST full is returned. If an index is found. the indel* * and a-success code of valid are returned. * 
* - * 
***********************************************************1 
G2T G AST I~rEX PROCEDURE 

P.ETU~N- ( SryCCESS CODE ~YTE, INDEl 
lOCAL I lORD-
!'NT!-:Y 
SryCCI 5_COr~ := VALID 
I ::; 'l 
ItOO1': to 

IF I .~ G ~ST lI~IT TnE~ 
srcc!si CC~! := ~ AST FULL 
EET~F~ - --

FI 
IF G AST(I1.UNICUID IDl = NryLl TE!N 

INDE1 :. I -
RETURN 

FI 
I .... 1 

WOPD) 

!t,I*******************~****************S:a:c******J'.z************* 
* * * ~hp MAKE G AST !NTRY Procedure is callp.d from the * 
* Actlvate-~rocedure. The pr~cedure ~ill obtai~ a~ * 
* index irto the G_AST ~nd enter t~e anpropriate data * 
* from the alla~ table. The fla~ bits ere set to not * 
* w~1ttpn an~ ~ot writable. Tne eventcounts and tlckpt * * f1elds are set to zero. The processor_l_AST!_# fields * * are set to null. If the entry 15 successfully ~aee, * 
* a succ~ss_code of valid will be retur~ed. * 
* 
~AK~ G ~S~ ENTRY FROC!DU~! (PAR I~DEX ~ORD,~N7P! ~O ~CP.D) 

P.~T~;NS-{ sacc!ss COrE ~YTS,-INrF.1. ~OP.D) -
lOCAL I -~ORD 

!i!~T?T 
StTc('~ss ':Ol'E. INryX := GET_G_AST_E!lJTRY 

121 



I 

"l· . ' 

\ "':' 

1(' .. 
. :1' 

I! SUCCESS corE = VALID THEN 
G_AST(IND~X].UNIOUID_IDl := AIIAJ 7A~rE.AlIA~ !NTP.Y[ 

ENT~Y_~O] .~NIOCID_ID 

7t 

G_AST(INDE7.].GIOBA1_ADDR := ACTIVE 
G AST(IND~1].rLAG ~ITS := G AST[INDEX].FLAG ]IT5 
- - AN~ (NOT 1RITTEN-M!SK 

G AST(IND!'1.] .rIAG EITS := G AST[IND~X] .rl.AG-:EITS 
- - ANB ( ~OT waITA3Ii-MA~K 
~_AST(IN~EX].G_!ST!_NO_FAR := PAR_rND~X -
G A~TrIND~X] .NO ACTIVE IN ~E~OP.Y := e 
G-I\S'!'(INDEX).NO-ACTIVE-DZPENDENTS := e 
G:AST[INDEX].sr!ll :~ iIIAS_TAEIE.A1IAS_ENT3Y[ 

ENTEY NO 1.SIZ! 
~ A~TrINDEx).P~GE TA=I~ LOC1:= -
- 1lYAS TA~1E.AIIAS ~N~R!rENT~Y NOJ.FAG~ TA~LE ICC 

G AS~(I~DfXl .AIIAS TAitE IOC1:: - --
- ALIAS T.lBIE •• UIAS ENT~Tr!NT~T NO) .ALIAS TA]IE loe 

G AST[Y~r~XJ.INSTANCEI := 0 - --
G- A~':' rrNr~1] • INSTANCE2 ::a e 
G-~ST[INDEX).SECUENCER := e 
Y-:= 0 
IL"~O": 1'0 

OD 

IF I = NO OF PPOCESSORS TF.!N 
!XtT - -

FI 
G_AST [INDEX] • PROCESSOPS_l_AST!_NC (Il : = ~HTll 
t += 1 

~ND ~AK!_G_AST_E~TRY 

!OO******************~************************************** 
* * * The ~AV! I AS~ E~T~Y Procedure is called froM tr.e * 
* activate-p~oce!ure. The procedure will obtain an * 
* inde: into the LAST and enter the apuroDriate data. * * The ne~ory_addr field is set to active. the sp~ment_ * 
* #/access aut~ fields are initialized to zero, and * 
* the passed se~~ent num~er is entered intc the ap- * 
* proprlate location. If the entrv is ~uccess!ully * 
* ~ad~. a success_code of valid is returr.ee. * 
* * ***********************************************************! 
~A!! liST FNTR! PROCEDURE (t!R ~O B!TI. SIG~~N! ~O ~0RD: 

~!fry!N~ ( SryCCFSS COD! EYTE: I_IN:Il ~OEt'-
Iv~AI I PYTE-

122 



I 
, 

I 

i 

.'1 
~ • 

. 
I 

I i. .: 
~1 

I ~ 

~ i, ~ 

i \{ 

." r; i 
.~ f 
.~ '! 

~, 
~ ...-
~ 
tel 
~. 

SEG NO \iORD 
ENTRY 
:UCCZS~ ~OrE, t INrE7 := GET LAST INtEX 
IF SUCCESS CODE () VALIL THEN -RETUR~ 
FI -
t AST[t INDEX] .MEMORY ADDR := ACTIVE 
I-:= e - -
DO 

I. AST [L INDEX] .S?GMENT NO ACCESS AUTF. [I] p: e 
1- += 1- - - -
Tr I >= ~AX D~R NO THEN EXtT 
FI --

100000000000000000000000000000000000*00000000*00000000000000 

* * The DEACTIVATE_Alt Procedure Is called ty the 
Det~tp._entry nroce~ure atd by the Yaln_llne 
procedure. The procedure will deactivate the 
delete~ seg~ent rro~ all connected proce~s' 
adlress spaee. The G AST index and the lAST 
index for the deletel SegMent ~re passed-to the 
procedure. If the ~egmpnt was succ~ssrully 
deact1vated from all connected nrocesses, a 
success_code of valid Is returned. 

D!ACTIV!TE ALI PRccEtrRZ ( INDEX ~'R~. l_I~DEX WOPI , 
RETU!N~ (SUCCESS_CODE iYTE) 
I (,c U ! PYT! 
ENTT?" 

I : = 0 
DO 

01' 

IF I = ~AX_1'3R_NC TH!N ~1IT 
FI 
IF t_AST(I_IN~!X) .SEGMFNT_NO_ACCESS_,UTF[r] 

() ZEPO TErN 
SUCCESS CO~E := DEACTIVAE ( I. INDEX) 
IF SUCCESS COtE <> S!G ~FACT1VAT!l' TErN 

RETUP~ -
FI 

:'1 
I .= 1 

SUCCESS corE := VALID 
~~t DEACTIVATE:AIl 

123 



I 

i :If 
.i 

'1 

l ;~ 
" 

. :i 

/' 
I 

I 
I • i! 

.• Ii 

~ ; I , .. ., 
j : t, 

~ 

f ., . 
. ~~ 

t .. ~ 
~. !~ 

t~ 

!*********************************************************** 
* * 
* 

* 

The SIGNAL OTHER ~EMORY MANAG~R Procedure is called 
by th~ In-procedure. The procedure will signal 
a memory mana~er to move a sep,ment from its local 
m~~ory to global memory. When the segment is moved 
to p.lobal memory the nrocedure will si~nal all ot~er 
connected memory managers to update their local 
databases. The global address tor the transfer 
1s passed. A success_code is returned to indicate 
the success ~r the operation. 

SIGNAL OTEEF ~E~ORY ~ANAG~P'S PR0CEDURE ( 
- - SEQ I~DE! WORD, ADDR ~ORD) 

~!Trp.NS ( SU~C!SS COn! iYT!) 
tOCAl -

PROCESSOR NO B!TE 
rIPST - EYTF 
L EN~~~ NO WO~D 
VALID MSG aYT! 
~~G - ARRAY [~AX_MSG_SIZ! ~YTE] 

ENTRY 
F1 RST : = T!WE 
p~~r.!~SOR NC := e 
DO -

IF PROCESSOR NO = P~OCES~O~ ID THEN 
PROCESSOP_NC += 1 

1'1 
IF PROCESSOR NO ); NO_OF PROC~SOP.S ~F.rN 

'EY IT -

* * 
* 

* 

FI 
l_~NTR!_NO := G AST[S~G INr~~) .PROC~SSOR 1 AST! ~~[ 

- - PROCFSSOR-I!' J'. 
IF I ~~TR! ~o <) N1Ll TH~N -

IF FIRST = TRU~ ~~EN 
FIRST := FALSE 
IF P~OC~SSOR NO 
CAS!: ~ TEEN 

SIGNAL ( VP ID. ~E~ORY ~ANAGr3 f. ~CV!, 
L ENTF.Y NO,-ADD~, G ASTrS!G_INrZX).~IZ~ , 
1~_ID, ~SG := WAIT -

**** CHECK IF VALID M~G *** 
VALIr_~SG := VAlIDAT!_WAIT M!S~AGE f~SG) 

FI 
B1S~ 

12~ 



I 

->-----,..;-* 1Ij--~ ...... -- " ______ ..... _~ ••• IJidIA1J!IUI 

rI 

IF PFOCESSCP, NO 
CASE e THEN-

SIGNAL( VP I~, MEMORY MANAGER f, UprATE, 
L_ENTPY_NO; AD~R, G_A~T[S!G_IHrEX].SIZ! ' 
VP_Ir, MSG := W\IT 

***** CE~cr IF VAlID MSG **** I 
VALID ~SG := VALIDAT~_~AIT_~ESSAGE(~SG) 

:'1 -
FI 

PPOCESSOR NO += 1 
OD -
IF VAIID ~sc ~FEN 

SUCCESS CODE := VALID 
ELS~ -

S~CCESS_CC~E := INVALID 
FI 

~ND SIC.NA1_0TF~~_MEMO?Y_MANAG!RS 

!*********************************************************** 
* * 

* 

The CRr.AT~ ENTRY Froced~re is called by the 
Main line pr~cedure. Tr.e procedure will create 
an entry irto the alias table and allocate spc
ondary 5tora~e for the created se?'~ent. If the 
alias table do~s not exist, the procedur~ will 
create an alias table on se~ondary stora~e. 
A unioue id is d5sirned to the sei'!1'Ient and tl"e 
appro~riite data 1s ~nter~d into the table. 
I~ the function is successfully ~o~plete1, a 
success_code or se~Ment_created 1s returned. 

~ :;'T'RNS 

LOC.n 

ENTFY 

P?,OCEt~~~ ( PAR INDEl wORD, 
SIZ£ WO?D, CLASS BYT~ 

(~ryCCFSS_COtE EYTE , 

PAC~ TABLE LOC 
El!{S - WOR:: 

~vORD 

BIKS := SIZE I ElK SIZ~ 

EN TR\' NO 

IF G AST[PAR IN~~X]:G AST~ ~C FA~ <> Z~~O TH~N 
gnCCFSS fOIF := C~EATE-A!iIS TABLIr PAE_IhrEY , 
IF SijCCE~S COD~ <> VALID ~F.~N 

RFTURN -
FI 

125 

* 

* 



I • 
! 

. \ 
.' 

t.,j : 
I'" l: ' , .r; ~ 

1 . 

• (I ' 

YI 
~tCCESS C0D~ := FIAD ALIAS TA]lE( 

G-AST[PAR INDEi].ALlis TABLE lOCi, #AIIAS_TABIE) 
IF ~r.ccrss CC~E-(> VAII~ TFFN -

R3:TURN-
1'1 
IF ALIAS TAEIE.AIIAS ENTRY[ENTRY NO).UNICUID ID (> e 
TH~N - - - -

S"CCESS CODE := DUFIICATE ENTRY 
F.ETTfP N - -

FI 
PAGF_TABL!_LOC, SUCCESS_CODE := ALLOC_~EC ~TORAGE( 

- ELKS 
IF !UCCESS CODE (> VALID THEN 

RETtTRN-
F1 
AIIAS_TABLE.ALIAS_ENTRY[ENTRY_NO] .UNICUE_I!, 

SUCCESS COD! := GET ryNIO IV 
IF SUCCF.S~ COD!. <> VAtlt TFEN --

RBTURN
FI 
ArIAS T!FL!.!LIAS lNTRyrENT!Y NO] .SIZ! := SIZE 
AtIAS-TASLE.AlIAS-E~TRY[ENTRY-NO] .ClASS := CLASS 
AIIAS-TABLE.AllAS-E~TRYrENT!Y-~O] .FAGE TAlLE 10C := 

- - - PAGE-TA!lE-LOC 
ALIAS TA~LE.ALlAS ENTRY[~NTR! Nr,).AIIAS T~BI~ LOC := e 
SUCCE!S COD~ := WIITE ALIAS TI~lE(G ASTtFAR IR~~x]. 

- ALIAS TA~LE LOC, NAIlAS TAI!!. \ 
IF SryCCESS CODE = VAliD THEN -

1'1 
sur.CF.SS_~ODE := 3EG_CREATED 

!o**o*o*************~**~***********************~************ 

* * 

* * * 
* 

The rE1ET~ ENTRY Procedure is called by the ~ain- * 
line proce~ure. The proceiure will re~ove a se~~ect * 
r~om s~conJarv storafe by deleting its entry in its * 
mentor s~?~ent's alias table ~nl ceallocatinR its * 
allotted secondary storage. Eefore the se~~ent is * 
deleted, the G AST is che~~ed to ensure that no ot~er * 
process tolds the se~ment active. acd that the sep~ent * 
is not a mentor se?ment. If the serment is a ~ento~ * 
segment. d=letion is not allowed. If the se~~er.t is * 
active, those pro~esses will bp si~naled to d~actlvate * 
the procedcre. When the segment i~ deactivated, it * 
will be eeleted. If thp deletion is successful. a * 
success_code of spp_celeted will be returned. * 

* 

126 



I"' , 
, . 

:, ,,< 
~~it.~t,. 

"> .. 

C>c' '. t 
'I 
i! 
t 

.j 

I 
f 

! t. 

. ---.. -----.. ~-- .... ----..-...~-

***********************************************************! 
tEtF~E ENTRY PROCEtUP.E ( PAP. INt!! WORD , EN~P.Y_NO NOPD' 
RETn~NS ( SUCCESS cotE BYT!) 
LOCAL I INn~x ~~Rn 

ENT~! 

INtEl 'iORr 
I BYTE 
AtlAS TABLE !MPTY EYT! 
OTPFES_ACT1vr ~YTF 

IF G AS~rFAR INDEX] ,ALIAS TABI~ 10Cl (} NULL ~HE~ 
~ijCCESS C0DF := REAr AIAIS TAPLE ( G AST[F}F. INr!X]. 

- AlIAS TABLE LOC1, #ALIAS TA~Ir.-) 
~ISE - - -

~UCCp.ss_corE := NO_CF.ltr_To_~EIETE 
FI 
IF snCCESS CODE <> VALID THEN 

RF'l':TEN
:'1 
~LIAS TA~IE ~MPTY := CHEe? IF ALIAS EMPT! 
IF A!IA~ TAPt! E~PTY = TRUE -THEN -

SUCC~SS CODE~ INDEX := SEARCH G AST ( 
-AIIAS_~'BL!.AIIAS_ENTiyt!hTiY_hO] .U~Icn!_ID 

IF snCCFSS COD! a FOUND TEIN 

FI 

I INDEX :; G AS~[PAR 1NDEX].P!OC3SS0RS I ASTE NOr 
- PROCEs~Oa-ID] - - -

IF I INt!X <> NUll -THEN 

FI 

SijCCESS CODE := DE\CTIVATE AlI(INDE!, I_INDEX) 
IF SUCCESS CODE <> VALIn -TPEN 

RETURN -
F1 

O~rEF.S ACTI~! :a CEECK IF OTr~RS ACTIVE 
IF OT~ERS ACTIVE : T!ftE - TH~N 

SIGNAl_5T~ERS_TO_DEACTIVAT~_A1L 
FI 

D~l~T~ s~c ( EN~~! ~o ) 
AtlAS TABl!.A!IAS ~NTR7r~NTR! NO].GNI'U~ Ir :: e 
SUCC~SS C~DE := WP.I~E ALIA~ TABlE ( G ASTrPAB ~Nr~y.l. 

- ALIAS TA~lE IOC1, iAlIAS T!rI~ ) 
IF SryCCESS carr = VAllt- TPEN- -

PI 
~nCC!SS:COnE := SEG_DEIETED 

l'!~~ 
SUCCESS_CODE := DE~ENDE~~~_E!IST 

FI 
END t!IET!_F~TRY 

127 

• 



oJI: .. , 

...-...-_------_.--__ ... '- - ~ .. --~~-... ---- . 

! ,,'c*************************~c*~c**",;*****~(***~t******)~********';c* 
* * * The ACTIVAT! Procedure 1s called by the ~ain_line * 
* proc~dure. The purpose of activate Is to a1d a * 
* se~ment to the user's address space. The procedure * * Is passed the segment_#, the parent's handle, and * 
* the entry number into the alias table for t~e * 
* se2ment. The ~ror.edure rp.turns the size. * * class., and the handle for the activated se~Ment * 
* The G '~T is searche1 to determine if th~ seg~e~t * * is already ictlve. If the se~ment is ~ctlve and * * not in the 1 AST. a~ entry 1~ made in the t AST * * and t~e G AS! Is up1ated. It the segmpnt Is-artlve * 
* in both the G AST ani the t AST. the entries are * 
* u~dated. If the ~egment was-not active, entries * 
* are ~a~e In both the G AS~ and the t AST. * * If the operation was successfully co~pleted. a * * !-ucce!-c;_code of se~_actl'!ated Is ret',rned. * 
* * 
**.********************.*****************~*****************! 

!CTI~AT~ P~OCEDURE (t!~ NO 
'ENT'R! NO 

~'ETn~N~ (S"CC!SS COfE 
CtASS i'!TE. 

lOCAl t IN~EX WORD 

BYT~, PAR INDZA WO~D, 
JO~~ S~-GMENT NO ~V,!~ \ 01 •• l t J:.. o' 0 ... _ I 

EYT~ • G AST HiNt!E FANfIE • 
SIZE WO~D ,-

IN!'!! ·iO~r. 
ENTlt! 
l' G AST[PAR INr!x1.AlIAS TAElE tOCl <> ZE~O TEE~ 

~FCCESS C~r! := !EAD Ar~AS ~iELE(~ ~ST[PAR I~rEX]. 
- AtlAS ~ASI! tJ~l. #AIIAS TABLE) - - -'Etsr. 

~nCCFSS_COrF := N~_tEAF !XISr 
:I 
IF SUCC!SS COD~ <> VALID THF.N 

r~Tfl!PJ-
:I 
S'TCC~SS COr.E , INDEX :: S~A!CF. G AST ( 

- AtlAS TA!LF.AtIAS !N~Rfr!~TRY ~O] .UNICU! It' 
IF SUCCESS cOt~ = FOryND THEN - -

1 !ND~X := G ASTrI~DEX) .~~OCESSORS 1 AST~ NO[ 
- - PROCESSOR Irr 

IF 1 I~DE! (~ NUtl ~p.~~ -
t_~!T[t_IhDYX) .SEGME~T_NO_ACCESS_AUTHrD!i_NO) := 

SEGt-'ENT_NO 
'EI.SE 

SUCCESS_CODE, t_H.j~~X := ""AK~ 1 AST ~N~'P.! ( 
rEP. NO. SEG~FNT ~o ) 

I: SjCCES~ CODE <) V.A!ID ~F.EN 
RETURN -. 

FI 

128 



I 

( 

I 

I " • 

~1 ., 
:. ~ " 

. , 
.' 

G A~TrINrE!l .PROCES~OP'S 1 ASTE NO[PP.CCF.SSOR ID] 
- . := t-IRDEX - -

1r .• 
IF G AST[INt!X].AIIAS TA~IE tOCl = NUll THEN 

G_rST[pAR_IND~X) .NO:DEPFN~ENT~_ACTIV~ += 1 
PI 

ElSE 
S~CC!SS CODE, INDEX := MAr.E G AST ENTR!(F~TRY NO) 
IF SUCCESS CODE & G AST FULI- TP!N 

RFTTYP.N - --
:'I 
SUCCES~ COD~, 1 INDEX := ~Ar.E lAST ENTP.! ( 

- - PAR INDEX, E~TRY_NO , 
IF SUCCESS COD! = lAST FULL -TEEN 

R~TUP.N - --
]i1 
~ _ ~ST fnm::x) • PP.OCESSORS_l_~.ST!_NO [P?OC!S SOP._I t] : = 

I_INDEX 
FI 
SUCC!SS CODE :z ~EG ACTIVAT!.D 
SIZ! :; ALIAS TA!L~.ALIAS F.NT~![F.N~~! N01.SIZE 
CtAS~ := AIIAS:T!~LE.AI1AS:ENTPY[ENTRY:NO) .CIASS 
G AST HANDIE.UN1CU! ID2 :=G AST[INDEX] .UNICUE IDt 
G-AST-PANDL!.INtEX i= IND!I- -

P'ND ACT!VAT!' 

!o**~*o************~**oooo***oo*o**o*o****oo**oo*ooooo000000 

* * * o 

* 

* ... 
',' 

* 

The S~AP OUT Procedure is calle~ by the ~ain line 
procedure or the reactivate procedur~. The
procedure will re~ove a seRment from main me~ory 
a~~ store it nn seronnarj stora~~. The procedure 
is ~a5s~d the pro~ess' D~R_# and the G_AST index 
for the se~ment to ba s~apped out of mem'r~. 
A SUCC~S5 ~ode is returned to indicate the success 
of th~ operation. The pro~edure re~oves the 
se?ment from the process' ~MU_Image and 1£ n~t 
s~ared, it is returned to secondary storage 
and me~ory deallocAted. Shared se~~ents remain in 
me~ory until all proce3ses have s~apped the sefme~t 
out of ~ain me~ory. 

* * * 

* o 

* * * * ***********************************************************! 
SNAP OTTT PROCEtTJRE ( L·;m NO BYTE t INDEX 't10~D ) 

RF~TfRN~ ( SUCCESS COl'~ ]YTE \ 
lOCAl !I~S ~oR5 

L IND~X ifCRD 
S~G_NO WORD 

129 



:z~ 
, . . . , 
" 

I I • 

IT . ( .. " . 
,II '. 

. i 
" , 

\ 
~ 

~ i I fl ~ . {, i 

i 4 "; 

I . ..... 
4 
J 

.:1 
'1 
'I' 

~ 
~ 

I 1.": 
.~' 1..' 
. I' 

t. 1<. 

ENTFY 
BltS := G AST[INDE1.1 .SIZEl / ElK SIZE 
t INDRX::ij AST[INDEX).PROCESSOR I AST~ NO[PROC!SSOR ID] 
SEG NO := 1 ~ST(L INDEr) .SEG~ENT NO ACCESS AUTP.(DPP-N01 
F~E! ~~OC]SS VIRTryAL CORE ( BtY.S-) - - -
DElETE MMU ENTRY ( DBR NO, SEG NO ) 
G AST[r~nEfl .NO ACTIVR-IN ME~ORY -= 1 
If (M~U IM~GE(DiR NO) .SDRtSEG NO).ATTRI3UTES AND 

- - WR1¥TEN MASK) <> 0 THEN 
G AST(I~DEX] .rrAG ]ITS := G AST[IN~E7.] .YIA~ PITS OR 

- - - WRITT~N_~ASK 

FI 
IF G AST(INDEX].GLOEAL ADDR = NULL TPE~ 

If G 'STrIND~7.] .NO-ACTIVE IN ME~ORY = 0 AND!: 
(G-AST[IhDEX).FLAG BITS-AND WRITTEN MASK) <> 0 

TP~N - - -
SUCCESS COD! := ~RITE SEGMENT ( G AST[IN~EX1. 

- PAGE TAElE tOC.-L AST(l IND!X] ~ 
MEMORY AD~R) - -

IF SUCCESS COD! <> VALID- TeEN 
RETURN -

FI FlEE LOCAL BIT ~AP ( t AST(1 INDEI).~EMO!Y ltD!. 
- - - - - EIK~ ) 

ElSE IF G !ST[INDEX) .NO ACTIVE IN MEMOPY = ~ TP.F.N 
r~EE LOCAL BIT MAP ( l-AST(t IND~xl. 

- - - -~EMOR!.ADDP.t iLKg ) 
FI 

1'1 
Et~F tF G_AS'T' (INDEXl .NO_ACTIVE_IN_~E!"ORY = e Ull'IF 

(G ~STrtNn3X).FLAG BITS ~ND WRITTEN MAS!) <) 0 TPEN 
- SDCC!SS corE :; WRITE SEG~!NT (-C AST[IND'X). 

PA~t TABLE LOC1.-G AST(INDEXT.GIOEAL ADrR 
IF SUCCESS CODE <> VALID TPEN -

Rf.TURN -
FI ~'REE GLOBAL IHT MAP ( G AST rIND::X) • GI0~AL .\DDR t 

- - - - ~I~S , 

ElSE IF G AST(INDEX].NO ACTIVE IN ~EMORY = € TH!N 
FREE GLCIAL ]IT MAPf G AST(INLEX) .GlOEAl ADDR. - - - - ~lfs ) 

FI 
Fr 

:'1 
S~CCESS CODE := SWAPPED_OUT 

'li'~''''' ~ • ..! ~ ~ OU-T _:1~ ....... _ 



!******************~***********o**********************.~***** 
* * * The DEACTIVATE Procedure 1s called by the * 
* the Main_line proredure, the Deactivate_all * 
* procedure, or the Delete_entry procedure. * * Th\'a purpose of deactivate 1s to rel110ve a setrlTlent * * fr~m a process' addresS space. The se~ment is * * rel110ved by deleting the segment number !rol11 the * * L_1ST. If no other processes have thp segment * 
~ active and no children are active, the entry * 
* i5 rel110ved from the LAST and the G AST. * * The process' DBR # and the deactivated seg~p.nt's * * G_AST index are passed to the procedure. A * * success_code is returned to indicate the success * 
* of the opera t ion. * 
* * ***********************************************************! 
rEACTI~ATE PROCEDURE ( D~R NO BTTE t 

RETURNS (SUCCESS CODE -~YTE ) 
LOCAL t INDEX WORD 

S~G NO BYTE \ 
CFECK BYTE 

ENTln 
PAl:_INDEX WORD 

INDEX WORD) 

PAR_INDEX := G_AST[INDEX].G_ASTE_NO_PAR 
t INDEX :- G AST(INDEX).PROCESSOR L ASTE NO[PROCESSOR ID) 
SEG NO := L IST[L INDEX] .SEG~ENT RO-ACCE!S AUTH[tBR ~~] 
IF -G AST(IND~X].NO ACTIVE IN ~EPORY <~ e -THEN -

IF-(M~U I~AGE[tB~ NO] .SfiR[i!G ~O].ATTR!2UTES AND 
- - IN MEMORY MASK) : Z~RO TFEN 

SUCCESS CODE := SWAP OUT T DER NO, INr~X , 
IF SUCCESS CODE <> SWAPPED OUT THEN 

RETURN - -
FI 

:1 
FI 
l_ASTrl_INDEX).S'b~LNt_NO_ACCESS_AOTE[D~R_NO] :~ ~ 
CHECK := ACTIVE_IN_L_AST( L_1NDEX ) 
IF CRECr = 0 TR~N 

t_AST£L_IND!Il ~MEMORY_ADrR := AVAIIAPLE 
1'1 
IF FAR INDEX <> 0 THEN 

FI 

G ASf[PA2 INDEX] .NO ACTIVE DEPENDENTS -= 1 
CHECK FOR-~EMOVAI (-PAR INDEX ) - - -

CRECK FOR REMOVAL ( INtEl ) 
SUCC~SS CODE := SEG DEACTIVATED 

END nEACTIVATE -

131 



I 

~I 

. ----""----"--

!************************~*****************~**************** 
* * 

* * 
* * * * 

The MOVE_TO_GlOrAL Procedure 1s called by the 
~a1n_11ne procedure. !he pro~p.dure is called to 
to ~ov~ a shared and writable segment to glotal 
memory. The procedure is passed the l_AST 1nd~x, 
the size, and the global address for the move. 
A success code is returned to indicate the 
succeSs 01 the operation. The procedure locates 
tne se~~ent in its local memor~, transfers the 
seg~ent to global memory. and deallocates the 
local memory. 

~'OVE_TO_GtOBAL PROCEfURE ( L I~tEX 'lORD, GLOEAt AtDF. 
ADD~ESS, SIzt WORD T 

R~TURNS ( SrCCESS COD~ bYTE) 
LOCAL S'C NO -PYTE 

I - BTTJi! 
BNTR! 
~!MORY_~OVE ( L_AST(L_INDEX) .MEMCRY_ADDR. GLOrAL ArLR, 

SIZE )-
t_ASTrL_IND~X].MEMORT_ADDR := ACTIV~ 
I :. r-
DO 

1: I a MAX_DLR_NO THEN EXIT 
FI 
SEG_NO :~ L_AST[L INDEX].SEGMENT_NO_ACCESS_AUTF[I] 

AND %T2)~1111111 
IF SEG NO <> ~ ANtIF (~~C I~AGr.rI].SrR(S!G ~O]. 

- ATT~I!UTES AN~ IN-~Er,ORY MASK) = 9- THEN 
MMU_IMAGE[I].SnR[SEr,_~O):P.ASE_ADDR := GLC~AL_Arr~ 

}"I 

I += 1 
on 
rFEr_lOCAI_~IT_MAF ( I_AST[LINt!X).MEM0RY_A~tRt ~lKS ) 
SUCCESS CODR :; VAlID 

END ~OV_TO_GIO~AL 

132 



,****************************~c****************):C*****~c***~:~,** 
* * * The SWAP_IN Procedure is call&d by the Main_line * 
~ procedure. The procedure will transfer a segment * * from secondary storage to main m~mory. The prvredure * 
* is passed the process' D~F_#, the se~ment's G_AST * * index, and the authorized access to the segment. * * A success code is returned to indicate th~ * * success of the operation. ( successful ~ swapped_in 0 
~ I! the seB~ent is not already in memory, tr.~ appro- * * priate ~e~ory is allocated and the se~ment 15 tra~s- * * ferpd to the alloc~ted memory. If the se~ment is * 
J!I .:ottobl'? and scared, the segrnent. is tratlsi'ered intCl * 
* ~lobal ~emory. * 
* * 
****************~o*****************************************! 

S~AP IN PROCErUR!(INrrX WORt.fER NO ~YT!.ACCESS_AUTH BYTFl 
RETOR~S ( SryCCESS COLE E!T~-) 
lOCAL BlKS WORD: 

T!S'!' EYTE 
SEG N~ B!TE 
1 IND~X '.lORD 
&iS~_ADrR ADDRESS 

Fr 

133 



. , 

ELSE 

FI 

I_AS T (L_I Ntn:] • tv:EMORY _ADt'R : = EAS E_AtrR 
El~E 

F1 
!ASY ADDR := L AST[L 1NDEX].MEMORY ADDR - _... -

IF G AST[INDEX].GLOBAL ADDR = NULL THEN 
SUCCESS CODE, rASE irDR := ALLOC GLOEAL MEMORY' 

- - - - ELKS ) 
IF SUCCESS CODE a GLOBAL MEMORY FULL TEEN 

R~TURN - --
1'1 
IF TEST = IN LOCAL TnEN 

SUCCESS COtE := MOV~ ~O GtJFAL ( LIND!!, 
- DASE:ADD~,G_AST[INt!1.].S!ZE1' 

IF SUCCESS CODE <> VALIr. ~F.E~ 
lRIr GI3EAt ~IT ~AP ( ~ASE ArrE. lL[S , 
RETU~N - - -

FI 
!!SE 

stJe CESS CODE ::1 
SIGNAL 5THEH MEMORY MANAGE!S(INDEX,!ASE !:DR~ 
IF SUCCESS cotE <>-VALID TH!N -

RETURN -
1r 

iI 
SIS! 

!ASE_ADDrt := G_AST(INDEX).GLO~AL_ADtR 
1'1 

UFrATE_MMa_IMAGE(~~~_NO, SEG_NO, !ASE_A~rR, ACC!SS lUTE, 
ELitS ) 

~H _ ~c ) 

! *;;I*****7,I*"';~ ... I~I:C::C**I,':*7,I*~:*::~*I,':I(U:C::II,'t*i.lt,.'**)::~***I,'l;;u;u:c*::U:CI:C**::C**~'Ir::*l(f::C* 
* * * The ~OV~ TO lOCAL Frocedure Is called by the ~ain * * line procedure. The procedure 1s called when - 1(1 

* a s~~~ent no longer needs to be 1~ ~lobal ~e~ory * 
* and can be moved to local memory. The procedvre * 
* Is passe~ the I_AST index, size, d~d ~lcbdl dddres~ 0 
* of the se~ment to be movec. A success code is ret~rned * 
* to lndlcdt~ thp success of the operdtIon. * 
* 
****************~*******************~**********************1 

PROCEDGPE ( L I~DEI W~RD, GlO?Al !rDR 
AtfRESS. SIZE iOar ~ 

134 



;: 
I t~ 

t./ .-
~~ ( . ~." if ' 

It. (I ~: 

~ETURNS ( SUCCCSS COLE BYTE) 
lOCAL EASE ADDR~SS ~DDRr.SS 

S~G NO :rYTE 
I - BYTB 
BIIS EYTE 

ENT?Y 
BtKS := SIZE / ELK_SIZE 
SUCC~SS COD!, ~ASE ADDRESS :: AIICC lOCAL MEMOFY(EIIS; 
Ii src~!SS COrE <5 VALID THEN - -

RETURN -
FI 
~EMCRY ~OV3 ( GtO~AL ADtR, EASE ADDR~SS, SIZE 
l_AST(L_INDEX] .~E~ORY_ADDR :~ =ASE_ADDR!SS 
I :s ~ 
ro 

OD 

i1 
SEG NO := I AST(l INDEX].SEGMENT NO ACCESS AUTPfI] 

- AND %(2T~1111111 - - -
IF SEG NO <> Q: ANl"IF (Mi-1u IMAGE(t) .snR[SEG NO] •. 

- ATTR1I~TFS AND I~ ~E~ORY MASK' = e TEEN 
~~~ IMAGZ[I).SLR[SEG NoT.BASZ iDDR:=!AeE ADD~~SS :1 - - - -

I",. 1 

SUCCESS COD~ = VALID 
END ~OVE_TC:tOCAL 

!*~****~**o*oo**o******o***o*********o*********oo***o*O*~*** 

* * * The UPDATE itoccuure is ~alled b~ the ~ain line * 
* procedure. Toe ~r~ce1ure is called to updaie the * 
* ~MU 1ma~es of process' conbect~d to a Sepment * 
* that was moved to global memory by the Move_to_~lobal * * pr~cedur~. The pr~cedure 1s passed the L_AST irdex, ~ 
* the size, ~nd ~he ~lo~al a4dress of the segment * 
t that was ~oved to global address. A success code * 
* is returned to indicate the success of the ;peratton. * 
* 
********o*~************************************************! 

UPDATE PROCE~URt ( L_INtEX 

RETURNS ( SnCCE~S CODE 
IOCll 5EG NC fYTE 

BN'fP.Y 
1 : = ~ 

arKS B'!'T! 
I ~YT!: 

135 



, , 

'I: 
'. 
, f 

l i~\! 
. :I~ 

I h 

I, ! '~I 
I 
( 

i" ' If 

j .. -

DO 

OD 

IF I = MAX DER NO TFEN EXIT 
FI --
SEG ~O := L A5T[L INDEX].SEGMENT NC ACCESS AUTE(I] 

- AND %(2)e1llllll - - -
IF SEG NO <> e ANtIF (MMU IMAG- !].StR[SEG NC]. 

ATTP13UTES AND IN MEMORY-MASK) = 0 THEN
MMU_IMAGE[I].SDR[SEG_NO]:EASE_ADDR := GlOEA1_ADDR 

FI 
I += 1 

ELK~ := SIZE / tlK SIZE 
F~EE LOCAL BIT MAPT 1 AST[L INDEX] .ME~ORY ADDE, BLKS ) 
1 A5'[l IND!X]7MEMORY-ADDR := ACTIVE -
STrCCESS-CODE := VAlIr-

~"~:r JPDA'!'E -

MAIt-t LINE COnE ***** 
$SECT!ON ~AIN 

MAIN LINE 
LOCAL 

ENT~Y 

PROCEDURE 
FU N CT ION 'E '{ T E 
ARGryMENTS ARRAY [??? 3YT!) 
~SG ARRAY [MAl ~SG SIZE 
VP ID FYT! --

liTTE] 

SUCCESS_COt! aTT3 

INITIALIZE pp.ocrSSOF. LOCAL VARIAltF.S 
DO - --

CHECK MSG CUEOE 
VF Ir: ~SG := iAIT 

T *** VALIDATE THE ~SG F?O~ ~AIT *** 
FUNCTION, AliGUMENTS := VALIDATE ~SG ( ~SG ) 

IF FUNC!ION -
CA~E CREATE_::~'rRY THEN SUCCESS COl)~ : = 

CREATE-ENTaY(ARC1~!~TS) 
CASE t~t~TE_F.NTRl Tn~N SUCCESS-CODE:= 

DELETE-EN TRY (A PG ·T~lEN T5 ) 
CAS~ tCTIVATR TH~N SUCCESS CODE,HANDlE.CIASS,SIZF. := 

ACTIVATF(ARGU~!NTS\ 
CASE DEACTIVATE Tri!~ SUCCESS CODE := 

DEACTIVATE(ARGUM~~TS} 
CAS! S~AP_IN TH~N SUCCFSS CODE := 

SWAP IN(ARGU~E~!S) 
CAS~ S~AP_OUT THEN SUCCESS COrF. := 

S~AP_OUT(ARGUMFNT~) 

136 



l <. 
(, 
" 

I · , 

CA~E ~OVE TO lOCAL THSN SUCCESS COD~ := - - MOVE TO LOCAL(ARG~MENTS) 
CASE MOV~ TO GLOBAL TEEN SUCCESS CODE := - - ~OVE TO GLO~AL(AFGU~ENTS} 
CASE UPDATE THEN SUCCESg CnDE := 

UPDATE(ARGUMENTS) 
CA~E DEACTIVAE_ALl THEN SUCCESS CODE := 

DEACTIVATE_ALL(ARGUM!NTS; 
fI 
SIGNA! ( VF ID, SUCCESS CODE, ARGn~ENTS ) 

OD - -
ENt ~AIN lINE 
END MEMQRT_~ANAG~R_PLZ_SYS ~ODULE 

137 



I 
I 
11 

I' ~} 
~I '1 
. :t 
"'; 
~I 

':! 
;;~ 
-l 

"t 
'\ 

~! ;! 
:It \~ 

~ 

I ',I ..tl 
,~~ , 
~' til ~' :'4' 
~ , :1 ~ 
~l ~' I' ", I ~~; 
~ . ' 

I 
I! 
i'l 

~ 
, : 4, 

q i i:'-
~, I 
if" 

~ 
, 

J' 

~ " 
" r;.-

I 
I,. 

~: 
~' 

~ '. , 
;;; tl · i .; " : " 
'! • r 
"" 

., ff' , 
~~ 

f ~'l ~ II . 
< ,. 

APPENDIX B - PLZ/ASM SOURCE LISTINGS 

1**********************************************************1 
1 THE PLZ/ASM MODULE WAS WRITTEN TO PROVIDE SUPPORT FOR ! 
! THE SWAP_IN THREAD [APPENDIX 3). THE VALIDITY OF THE ! 
1 CODE HAS NOT BEEN THOROUGHLY TESTED, NOR HAS IT BEEN t 
! OPTIMIZED. THE COD~ SIMULATES SECONDARY STORAGE IN 
! MAIN MEMORY, AND WAS NOT INTENDED TO BE USED IN AN 
! ACTUAL SYSTEM IMPLEMENTATION. 1 
!**********************************************************1 

* * * * VERSo 1.0 * * * * 

CONSTANT 
FALSE 
TRUE 
AVAILABLE 
ACTIVE 
ZERO 
NOLL 
NULL PAGE 
HBUG-
MONITOR 

:= e 
:- 1 
:= 0 1 AST ENTRY AVAILABLE 
:- 1 1 AST ENTRY ACTIVE 1 
:- 3 
:= %0000 
:- " 
:- %1900 
:= %059A 

I SUCCESS CODES 
INVALID :- 0 
VALID := 1 
FOUND := 2 
NOT_FOUND :- 3 
SWAPPED IN := 4 
SWAPPED-OUT := 5 
SiG_ACTIVATED :- 6 
SEG DEACTIVATED := 7 
SEG-CREATED := e 
SiG:DEL~TED :- 9 
LEAF SEG EXISTS := 10 
NO LEAF EXISTS :- 11 
G_IST_FULL := 12 
L_AST_1ULL := 13 
IN LOCAL MEMORY := 14 
NOT_IN_LOCAL_MEM := 15 
LOrAL_MEMORY_FULL:= 16 
GLOBAL i-lFM FOLl := 17 
VntTUAL CORE FULL:= 18 
DUPLICATE_ENTRY := 19 

138 

_h •• : 



?: 

~ 
.:;.; 

, , 
~ 

: 

:1 ., 

i 
.f 
'H 

{? 
.{ ., 

:~t. ,! 

I 
'j 

fl 
"J; 
, ~ 

~ I 

( I'r I' 
(, i " 

" " ' " it ( ~l I .. i\i 
I V' 

~; I'~ i 
, V ~ 

t & 
I ~ 

, , .... 
~ . I 
• " ., j 

'1 
I" t 

. \ 

f 
1 .. ·· ;' 

~. t . . ,J , 

i~ t .(~ 
!!. 

TYPE 

, 

NO CHILD TO DEL := 20 
SEC_STOR:FULL := 21 
DISK_ERROR := 22 
ALIAS_DOES_NOT_EXIST :- 23 

ATTRI]UTE M.\SKS I 
READ_MASK := %(2)11111110 
WRITE_MASK :a %(2)00000001 
CHANGED MASK := %{2)a1000000 
IN MEMORY MASK := %(2)3'3000100 
CLEARED := e I CLEAR ATTR ! 

AUTHORIZED ACCESS ! 
READ := 0 
WRITE ::1: 1 
EXECUTE := ~(2}00001000 

G AST FLAG ~ITS FIELD MASKS I 
WRITAPLE MASK :- %(2)00000010 
WRIT~EN_MASl := %(2)~00001a0 

DESIGN PARAMETERS ! 
BLl_SIZE := 128 
MAI_PAGE_SIZE :~ BLK_SIZE/2 
NO OF PROCESSORS := 1 
MAX DiR NO := 4 ! EVEN Ne. OF DBR #'5 I 

MAX ENTRIES IN-G AST G_AST_LiHIT :- 16 
L_AST_tIMIT := 16 
MAX_ENTRY_NO :- 10 

I MAl ENTRIES IN L-AST I 
I SIZE CF ALIAS TABLE I 

NQ_SEG_DESC_REG :- a 
1ST POSS FREE ~L[:~ 1 

1 NO. OF SEGMENT/PROCESS! 

n!s~ HEM-BASE- :- %90ee 
MAX_~OSS:D_BLKS := 96 
GLOBAl. HEM BAS E : = %8000 
MAX pass G-BLKS :- 32 
LOCAL MEM fi!SE := %6000 
MAX POSS L BLKS := 64 
DISK_BIT-MAP toc :- " 
ADDRESS 
ALlA:_BEADER 

WORD 
RECORD [ 

SEG PAGE TABLE LaC WORD 
PAR:ALIAS_TA~Li_LOC WORD] 

ALIAS 

RECOiD [ 
BASE AD DR 
LIMIT 
A'~TRIEUTE 

RECORD [ 
UNIQUE ID 
CLASS -
SIZE 

139 

ADDRESS 
'BY'I'E 
BYTE , 

WORD 
WORD 
WORD 



1 

£ 
i 

I 
I 

'lf~ • I 
• I .. 

; 

~ 
. \ E J 

/d 

PAGE TA~LE Loe WORD 
ALIA~_TADLE_LOC WORD] 

MMU RECORD [ 
SDR ABRAY 

3LIS_USED 
M4X_BLIS 

[NO SEG DESC REG 
SEG:DESC_REGJ 

WORD 
WOiD1 

GLOBAL 

I$SECTION G_DATA 1 

(tLOBAL MEM BIT MAP ARitAY [MAl POSS G BlKS/16 WORD1 
G_AST_LOCI- - B!TE - --

$SECTION L-.DATA 1 

MMU IMAGE ARRAY (MAX DBR NO MMU] 
LOCAL MEM BIT MAP ARRAY [MAX POSS L BLIS/16 WORD) 
ALIAS-TABL!. - RECORD [ REAtER - ALIAS BEADER 

- AtlAS ENTRY ARRAY 
[MAX iNTR! :l) AL lAS] ) 

DISK BIT MAP BUFi ARRAY La -BTTE1-
PAGE:TABiE_BUFFER ARRAY (Btl_SIZE BYTE] 

IHTERNAL 

COMPACT L PROCEDURE 
ENTRY 

END COMPACT_L 

COMPACT G PROCEDURE 
ENTRY 

END COMPACT_G 

GLOBAl: 

ALLOC LOCAL MEMORY PROCEDURE 
l*i***.***.*.*******~****·***********···l 
1 PA~SED PARAMETER I 
! R0. BLIS OF MEMORY I 
I RETURNED PARAMETERS I 
I R0 = SUCCESS CODE 1 
! R1. BASE_ADD! I 
I LOCAL VARIABLES 1 
I R0. BtIS 1 
! 110. BIT MAP INDEI I 
t Rl1 = COUNTER-rOR BIT J 
I R12 s BIT MAP WORD 1 
I R1~ = WORtING REGISTER I 

140 



. i 

i 
I 

.. ' 

i 

',' Ii:t 
J . 
/ ", 

~. f 
. ff ~ 

t· 6 
~ I! 

1-

1***************************************1 
LOCAL BLKS WORD 

IS COMPACTED BYTE 
FILLER2 BYTE 

ENTRY 
LD BLKS, R0 
tDB IS COMPACTED, #FALSE 
LD R10~ #lZERO 
DO 

CP Rle, N(MAX_POSS_L_BLKS/16) 
IF EO THEN 

CPB IS COMPACTED, #FALSE 
IF EO -THEN 

11 

CALL COMPACT L 
LD Rle, #ZERO 
LDB IS COMPACTED, #TRUE 

:tLSE -
LD Re, NLOCAL.MEMORT_FULL 
RET 

11 

LD Rll, #ZERO 
LD R12, LOCAL_MEM_BIT_MAP(R10} 
DO 

BIT R12, Rll 
IF Z TEEN 

DEC R0, #1 
ELSE 

LD Re, BLKS 
FI 
CP Re, #ZlRO 
IF EQ THEN 

LD Rl, R10 
MULT RRe, #16 
ADD Rl, Rll 
SUB Rt, BLIS 
MULT RR0, #~LI SIZE 
ADD Rl, #LOCAL:MEM_BASE 
LD Re, #VALID 
LD R13, BL'S 
DO 

LD R12, LOCAL_MEM_BIT_MAP(Rle) 
DO 

SET i12, Rll 
DEC R13, #1 
DEC Rll, "1 
CP R13, #ZERO 
IF EQ THEN 

LD LOC!L_MEM_~IT_MAP(Rl~), 
RET 

11 

141 

R12 



, 
[ 

{ 

OD 

CP Rll, #ZERO 
IF EQ THEN 

LD LOCAL MEM BIT MAP(R10). R12 
LD Rll, #15 - -
DEC R10, #1 
:EXIT 

11 
OD 

OD 
FI 
INC Bll, #1 
CP Rll, #16 
IF EQ THEN 

LD Rll, #ZERO 
EXIT 

FI 

INC R10, #1 

FREE LOCAL BIT MAP PROCEDURE 
I**·**·***·*··············~··*···*····**J 
I PASSED PARAMETERS 1 
! R0. BASE ADDR I 
! Rl -= BLIS- 1 
I LOCAL VARIA!LES I 
t R10. COUNTER FOR BIT RESET I 
I Rll = BIT_MAP INDEX I 
1 R12 -= !IT ~AP WORD I 
1*··*···***···***·***·**··**************1 

ENTRY 
CLR R10 
LD Rll, R0 
SU~ Rll, #LOCAL_MEM_BASE 
DIV RRle, #BLK.SIZE*16 
DO 

LD R12, LOCAL_MEM_BIT_MAP(Rl1} 
DO 

RES R12, :·ra 
DEC Rl"l 
CP Bl, 'ZERO 
IF LT THEN 

LD LOCAL_MEM_BIT_MAP(Rll), R12 
RET 

Fl 
INC R10, #1 
CP R10, #16 
IF EQ THEN 

LD LOCAL_MEM_BIT_MAP{Rll}, R12 

142 



I 

OD 

F1 
OD 

LD R10, #ZERO 
EXIT 

INC Rl1, #1 

END FREE_LOCAL_~lT_MAP 

FREE GLOBAL ~lT MAP ~ROCEDURE 
J***************************************I 
I PASSED PARAMETERS 1 
I B0 • BASE ADDR I 
I Hl = BLIS- I 
I LOCAL VARIA!LES I 
I R10 • COUNTER F~R :arT RESET I 
I Rll = BIT MAP INDEX I 
I R12 • ~IT-MAP WORD I 
1*************·*************************1 

ENTRY 
CLR R10 
I.D Rll, R0 
SUB Rll, NGLOBAL_MEM_BASE 
DIV RR10, NBLI SIZE*16 
DO -

OD 

tD R12, GLOBAL_MEM_BIT_MAP{Rl1) 
DO 

OD 

RES R12, RU, 
DEC Rl,'l 
CP lil, NZERO 
IF L'C THEN 

LD GLO~AL_MEM~BIT_MAP(nll). R12 
RET 

11 
INC R10, #1 
CP R10, #16 
IF EQ THEN 

LD GLOBAL_MEM_BIT_MAP(Rll}, R12 
LD ale, #ZERO 
EXIT 

11 

INC Rll, #1 

END FREE_GLO!AL_BIT_MAP 

14:3 



" 

" 

: i 
\. 

I 
" , 

" 

I t: 
, 

ALLOC GLOBAL MEMORY PROCEDURE 
1***************************************1 
! PASSED PARAMETER ! 
1 R0 = BLKS OF MEMORY ! 
I RETURNED PARAMETERS I 
! R0· SUCCESS CODE ! 
I Rl = BASE ADDR 1 
I LOCAL VARIABLES 1 
! R0· BL1S I 
I R10 = BIT MAP INDEX 1 
I Rll = COUNTER FOR BIT 1 
! P.12· BIT MAP WORD 1 
I R13 = WORKING REGISTER 1 
1***************************************1 
LOCAL BLIS WORD 

IS COMPACTED !YTE 
FILLER3 BYTE 

ENTRY 
LD BLIS, R0 
LDB IS_COMPACTED, .FALSE 
LD R10, #ZERO 
DO 

CP R10, .(MAX POSS G ELKS/1S) 
IF EQ THEN - - -

1'1 

CPB IS_COMPACTEt, #FALSE 
IF EO THEN 

CALL COtlPACT G 
LD R10. #zEii.o 
LDB IS COMPhCTED, NTRUE 

ELSE -

FI 

LD R0, #GLOBAL_MEM_FULL 
RET 

LD Rll, #ZERO 
LD R12, GLOBAL_MEM_BIT_MAP(R10} 
DO 

BIT B12, Rll 
II' Z THEN 

DEC R0. #1 
ELS~ 

LD B0. BLKS 
1'1 
CP Re, #ZERO 
IF EO THEN 

LD Rl. R10 
MULT RR0, #16 
ADD R1, Rl1 
SU:B R1, BLIS 
MULT RR0, #BLK SIZE 

144 



,j 

:~ 
~I 
" 

I.' ' 
10-' J • [to! , 

t· II~ 
I " I i., ' 

OD 

J'I 

ADD Rl, #GLOBAL MEM BASE 
LD R0. #VALID - -
LD R13. BLICS 
DO 

OD 

LD R12, GLOEAL_MEM_BIT_MAP(R10} 
DO 

OD 

SET R12, Rl1 
DEC R13.:l1 
DEC Rl1, Nl 
CP R13. #ZERO 
IF EQ THEN 

LD GLOBAL.MEM_EIT_M1P{R10}. R12 
RET 

FI 
CP Rl1. _ZERO 
IF EQ THEN 

LD GLOBAL MEM BIT MAP(R10). R12 
LD Rl1. _15 - -
DEC R10.,1 
EXIT 

FI 

INC Rll.,l 
CP Rl1. '16 
IF 10 THEN 

FI 

Ll) Bll, NZERO 
lIlT 

END ALLOC_GLOBAl_MEMORY 

READ PAGE PROCEDURE 
1***************************************1 
I PASSED PARAMETERS I 
I R0. BLI NO I 
! Rl Q BASE ADDR I 
I RETURNED PARAMETER I 
I R0. SUCCEss_conE I 
I LOCAL VARIABLES I 
I R10 = COUNTER lOR BLOCK MOVE I 
I Rll. SIMULATED DISK ADDRESS I 
!***************************************J 
ll~TRT 
LDL RR10. #~Lr._SIZE 
MULT RR10, R0 
ADD Rll, #DISK_MEM_BASE 

145 



"". 

I 

I 

I 

LD R10, 'MAX PAGE SIZE 
LDIR @R1, @Ri1, RI0 
LD R0, #VALID 

END READ_PAGE 

WRITE PAGE PROCEDURE 
l·*********************·*~··*********·*l 
1 PASSED PARAMETERS 1 
I R0· BLI NO 1 
I R1· !ROM BASE ADDR 1 
I RETURNED PAilMETi 1 
t R0· SUCCESS.CODE I 
f LOCAL VAR1A~LES I 
I R10. COUN~ER FOR BLOCK MOVE 1 
I 111. SIMULATED DISK ADDRESS t 
f***********·*************·*~*****~****t 
l:NTRY 
LDL RR10, #Btl_SIZE 
MULT RR10, R0 
ADD Rl1, ~~:~~ ~'M BASE 
LD R10, #MAX.PAGE_SIZE 
LDIR @Rl1, @Rl, R10 
LD R0, #VALID 

END WRITE_PAGI 

REAf.~::::~~**~~~~~~~~~********************1 
f PASSED PARAMETERS 1 
I R0'" PAGE TABLE LOC (BLI_#) I 
I R1 - MEMORY ADDR I 
I RETURNE~ PARAMETIR I 
1 Ra = SUCCESS. CODE I 
I LOCAL VARIABLES I 
I R2. INDEX FOR PAGE TABLE ,-:allAY 
I R10 = COUNT lOR BLOCt MOVE 
I 111. DISK Btl # CONV TO MI'/4i ADDR 
I R13. DISK-ADDRESS 1 
t·****************************~#********l 
ENTRY 
LDL RR10, #Btl SIZE 
MULT RR10, R0 -
ADD Rl1, 'DISI_HEM_BASE 
LD R2, 'ZERO 
DO 
LD R1e, NMAX PAGE SIZE 

LD R13. Rl1(R2) 
MUtT RR12, #BtI_SIZE 
ADD R13, #DISI_HEM_BASE 
tDIR @R1, @R13, R10 
INC R2, #1 

146 



OD 

CP 12, NMAX PAGE SIZE 
IF EQ THEN- -

EXIT 
FI 
LD R0, R11(R2) 
CP R0, #ZERO 
IF EQ THEN 

EXIT 
11 

LD R0, NVALID 
END READ_SEGMENT 

~RITE_SEGMINT PROCEDURE 
t··*****·**************·*·~~·*·*$*******t 
I PAS SID PARAMETERS I 
I 10. PAGE.TABLE.LOC (BLI.N) I 
t R1. MEMORY ADDR I 
I RETURNED PARAMETER 1 
I ae. SUCCESS CODE I 
I LOCAL VARIABLES t 
I R10. PAGE. TABLE AfiRAY INDEX I 
t Bl1. DISI BLI NO CONV TO MEM ADDa I 
t n13· DIS'-ADDR t 
I··****··*·***********·~**********·*$****I 
ENTRY 
LDL RR10, N!LI.S1ZE 
MULT IR10, R0 
ADD Rl1, .DlS1 MEM BASE 
LD R2, .ZERO - -
DO 
LD R10, .MAI_PAGE.SIZE 

LD 113. 111(R2) 
HULT IR12 •• ~L' SIZE 
ADD 113, .DISI HEM BASE 
LDIR @R13, @R1: 110 

OD 

INC R2,.1 
CP 12, .MAI.PAGE_SIZE 
IF EQ THEN 

EXIT 
FI 
LD Re. 1111(R2) 
CP Re, tZERO 
IF EQ THEN 

EXIT 
FI 

LD Re, NVALID 
END WRITE_SIGMENT 

147 



!(1' ., I , 
J ; 
~~ 

I I'll 
t , I . 
I 

READ DISK !IT MAP PROCEDURE 
I~****~***'*****************************I 
I RETURNED PARAMETERS 1 

R0 • SUCCESS CODE 1 
LOCAL VARIABLES I 

R10 = DISI !IT MAP !UFF ADDR ! 
Rll ~ COUNtER fOR iLK ~OVE I 

I R13 ~ !IT MAP DISI ADDR I 
1***************************************1 
EN'!R! 
LD R10, #DIS( BIT MAP 
LD R13, NDISI-BIT-MA? hO~ 
CLR R12 - - -
MULT RR12, #!LI_SIZE 
ADD R13, NDISI.MEH_!ASE 
LD Rl1, N(MAI_POSS_D_!LKS/16) 
LDIR @R13, ~R10, Rll 
LIl B0, #VALI» 

END itAD DISI BIt MAP . - -
WRfTE DISI !I! MAP PROCEDURE 

1***************************************1 
1 RETtJRliED P}.FoAMET!R 1 
I R0. SUCCESS.CODE f 
1 LOCAL VARIABLES 1 
I R10. DISl DIT MAP BUFF ADD! 1 
I Rl1. COU14TSR fOR BIT HAP ! 
I R13· HIT MAP ADDRESS 1 
I··**····*··*********·*·***·***·*·***·**l 
ENTR! 
LD R10, ~DIS[_DIT_MAP 
LD R13, NDISI_!IT_MAP_LOC 
CLR R12 
MULT RR12, NBLI_SIZE 
ADD R13, NDISK.MEM_!ASE 
LD Rll, #(MA4_POSS_D_BLtS/1S) 
LDIR GR10, GR13, R11 
LD R0, "VALID 

E~D WRITE DISI BIT MAP - - . 
S~ARCR DISI BIT HAP PROCEDURE 

l··**··*********··*·**·****~~******·***·l 
! PASSED PARAMETER 
1 R0 = START_SnCR_BLK_# 
l RETURNED PARAMETERS 
I R~· SUCCESS_CODE 
I Rl • FREE Btl N 
1 LOCAL VARIABLES -
I R10 • BIT COUNTER 
I Rl1 = ~IT MAP INDEX 
I R12 = BIT ~AP WORD 

148 

- ww- 7 znn: ---

1 
1 
l 
I 
I 
I 
I 
1 
I 



I 
~ 

I 
t 

I 

:J{ 
I 

I ':1 . ' . 
ti, 

t '" 
.':i 

I I I, I 

i 
t I 
! I 

j 

:: 
'! .~ ~ . t . , 

. ~ .... 

.' "J; 

~ !! . , 
J:~ . ~ 

\~ 
:~l 

1***************************************1 
ENTRY 
CLR R10 
LD Rll, R0 
DIV RRUJ, #16 
H10 = REM, Rll ~ QUOT 
DO 

LD R12, DlSI_!IT_MAP(Rll) 
DO 

OD 

OD 

!IT R12, R10 
IF Z THEN 

FI 

SET R12, R10 
~D DISI_!IT_MAP(Rl1), R12 
LD Rl, Rl1 
MULT RR0, #16 
ADD Rl, R10 
LD R0, _VALID 
RET 

INC Rl~f_l 
CP R10, N16 
IF EQ THEN 

FI 

LD R10. _ZERO 
EXIT 

INC Rll._l 
CP Rll, N(MAX ~OSS D !LIS/16) 
11 EQ THEN - --

FI 

LD Be, NSEC_S~0P._FULL 
RET 

LD R0, _VALID 
END S!ARCB_DISI_!IT MAP 

CLEAR DISK BIT MAP PROCEDURE 
1***************************************1 
: PASSED PARAMETER I 
I R0 • BLI NO TO CLEAR I 
1 LOCAL VARIABLES I 
I R10 = B1T COUNTER I 
I Bll • BIT MAP INDEX I 
I R12 z BIT MAP VORD 1 
I***************~**~********************! 

ENTRY 
CLR R10 
LD Rll, U3 
DIV RB10. #16 

B10 = REM, Rll = QUOT 

149 



I 

I 

. 
, .. 
4 
( 

.I 
" ., 

_ .L 

MEMORY MOVE PRCCEDURE 
r*·**·**·***··*·**·*·***·**·***····**··*1 
1 PASSED PARAMETERS I 
! R0 • TO ADDR I 
! 11 • FR~M AD DR I 
I R2 • SIZE-IN BYTES 1 
1·**···***·**·**··****·*****************1 

ENTRY 
CLR R12 
LD R13. R2 
RR R13, N1 
LD R12, R0 
LDI!! @R12, @R1. 113 

END MEMORY_MOVE 

GET UNIQ Iu PROCEDURE 
1*************·*************************1 
! RETURNED PARAMETERS 1 
1 R0 • SUCCESS_CODE 1 
1 a1. UNIQUE ID I 
1 NOTE: WILL !E STORED ON SEC STOR ! 
1************************************··*1 

LOCAL WORK S~ACE BLI ARRAY [MAX PAGE SIZE 
UNIQ:ID WORD -. 

ENTRY 
LD 10, NSYSTEM_DATA_LOC 
LD Rl, MWORt_SPACE_!LI 
CALL READ PAGE 
CP 10, NiALID 
IF NE THEN 

RET 
1'1 
LD R10, NZERO 1 UNIQ_ID INDEX 
LD R13, WORI_SPACE_BLI(R10) 
LD UNIQ_ID, R13 
INC R13, N1 
LD WORI_SPACE_BLI(R10), R13 
LD R0, #SYSTEM_DATA_LOC 
LD Rl, NWORI_SPACE_BLI 
CALL WRITE PAGE 
LD Rl, UNiQ_ID 

END GET_UNIQ_ID 

150 

WORD] 



II I' 

; 
, . , 

'.' 

• ~ . 
: 
:;1 

" , 

I 
~ 
~ 

" ~ 
! 
", 

J 

t 

t 

:JI 

'.I-
I I;r " . " . I 

:\ i 
I t~! 
. V l 

I ~ 
\ I., 

1 
' , • 4 f 

f ' 
i .' ~ .. 

I. : t 
, 

.\ t I 
I • . f 

1.- c 

~' If"! 
i· d l 
r ~ I , 

I -

MAIN LINE PROCEDURE 
ENTRY 
CALL ALLOC LOCAL MEMORY 
CALL BBUG - -

END MAIN_LINE 
END M_MGR_2 

151 

W>EttZEwsm 2 



APPENDIX C - SWAP_IN PLZ/ASM CODE 

MEM_MGR MODULE 

* * •• VERS. 1.0 • * * * I 

CONSTANT 
:= 0 
:= 1 

lALSE 
TRUE 
AVAILA!LE 
ACTIVE 
ZERO 

:-" ! AST ENtRY AVAILA!LE 
:= 1 I AST ENTRY ACTIVE I 
:- 0 

NULL 
NULL PAGE 
B:BUG
MONITOR 

;- %0000 
:= 0 
:- %A900 
:- %059A 

I SUCCESS CODES 
INVALID ;111 " 
VALID :- 1 
lOUND := 2 
NOT_IOUND :- 3 
SWAPPED_IN :- 4 
SWAPPED_OUT := 5 
SEG.ACTIVATED :- 6 ' 
SEG_DEACTIVATED :- 7 

~ ~~: ~~f~i~E := 8 
:- 9 

LEAF.SEG.EIISTS :- 10 
NO LEAl EXISTS :- 11 
G_lST.FULL =- 12 
L_AST_FULL :- 13 
IN LOCAL MEMORY := 14 
NOT_IN.LOCAL_MEM :- 15 
LOCAL_MEMORT_FULL:= 16 
GLOBAL MEM lULL := 17 
VIRTUAL_CORE.FULL:= 18 
DUPLICATE.INTRY := 19 
NO_CBILD.TO_DEL := 20 
SEC. STOR.FULL :- 21 
DISI IRROR ::a: 22 
ALIAS_DOES_NOT.EXIST .-.- 23 

ATTRI:BUTE MASKS 
READ.MA')K 
VRITE_MASI 

:-= %(2}11111110 
:= %(2)00000001 

152 



:~ 
'\ 
" , . 

"If 
'\ i., 

" :1 
.' 

TYPE 

CHANGED MASK 
I N MEMORY MJ.S I 
CLEARED -

:= %(2)01000000 
:= %(2)0"000100 
:a 0 I CLEAR ATTR I 

AUTHORIZED Ar.CESS 
READ 
WRITE 
EXECUTE 

I 
:= 0 
:- 1 
:- %(2)00001000 

G AST ILAG !I!S lIELD MASIS I 
~RITA!LE MASI := %(2}00000010 
WRITTEN_MASI :- %(2)00000100 

DESIGN PARAMETERS I 
BLI SIZE :- 128 
No_or_PROCESSORS :- 1 

I EVEN NO. or D!R_N'S I 
I MAX ENTRIES IN G AST 

HU DBR NO :- 4: 
G_AST_LiMIT :- 16 
L_AST_LIMIT :- 16 I MAX ENTRIES IN L:AST I 

I SIZE or ALIAS TA!LE I 
NO. or SEGMENT/PROCESS I 

MAl INTRY NO :: 21 
NO SEG DESC REG :- e I 
rST_POS~_lRiE_!LI:- 1 

ADDRESS 
ALI AS_BEADER 

ALIAS 

MHU 

WORD 
RECORD [ 

SIG PAGE TA!LE LOC WORD 
PAR-ALIAS TA!LE tOC WORD] - - -

RECORD [ 
BASE_ADDR 
LIMIT 
ATTRI!UTE 

RECORD r 

ADDRESS 
BYTE 
BYTI ) 

UNIQUE ID WORD 
CLASS - WORD 
SIZE WORD 
PAGE TABLE LOC WORD 
ALIAS_TABLE_LOC WORD] 

RECORD [ 
SDR ARRAY [NO SIG DESC REG 

SEG:DISC_REGJ 
WORD BLIS USED 

HAX_iLIS 

RECORD [ 
UNIQUE ID1 
GLOBAL-ADDR 

ONLY ONE PROCESSOR I 

153 

WORD] 

WORD 
ADDRESS 



• 
I "\i t' : 

" I 

", ! .l\f 
I,t 

! I~; 
it 
I, 

.. : .-
oj , 
I : 
• I' 

:; i 

PROCESSORS L ASTE NO WORD 
t WRITTEN !IT AND iRITA!LE !IT f 

HANDL! 

GLO!AL 

t$SECTION G_DATA I 

FLAG !ITS WORD 
G ASTE NO PAR WORD 
NO_ACTIVI:IN_MEMORY WORD 
NO_ACTIVE_DEPENDENTS WORD 
PAGE TABLE LOOl WORD 
SIZEl - WORD 
ALIAS TABLE LOCl WORD 
SEQUENCER - WORD 
INSTANCEl WORD 
INSTANCI2 WORD ) 

RECORD [ 
MEMORY ADDR ADDRESS 
SEGMENT NO ACCESS AUTH ARRAY 

[MAl_DEi_NO -BYTE1 1 
RECORD [ 

UNIQUE_ID2 WORD 
B_INDEI WORD ] 

G_AST ARRAY [G_AST_LIMIT G_AST_REC) 
G AST LOCI !YTE 
Disx_BIT_MAP_LOCI BYTE 

$SECTION L_DATA 

ARRAY [MAl DBR NO MMU] 
ARRAY [L_AST_LIMIT L_AST_RECl 
RECORD [BEADER ALIAS_BEADER 

ALIAS ENTRY ARRAY 

EXTERNAL 

DISI !IT MAP !UFl 
PAGE:TA!LE_BUFFER 

ALLOC LOCAL MEMORY PROCEDURE 
ENTRY -

END ALLOC_LOCAL_MEMORY 

READ SEGMENT PROCEDURE 
ENTRY 

END READ_SEGMENT 

[MAl iNT!Y NO ALIAS] ) 
ARRAY rt6 - ~YTEJ 
ARRAY BLl_SIZE BYTE] 

154 



FREE LOCAL BIT MAP PROCEDURE 
ENTR! - -

END FREE_LOCAL BIT_MAP 

ALLOC_GLOBAL_MEMOR! PROCEDURE 
ENTRY 

END ALLOC_GLO!AL_MEMORY 

MOVE TO GLOBAL PROCEDURE 
iNTRY 

END MOVI_TO_GLO!AL 

SIGNAL OTHER MEMORY MANAGERS PROCEDURE 
ENTB! - -

END SIGNAL OTHER MEMORY MANAGERS - - -
INTERNAL 

UPDATE MMU IMAGE PROCEDURE 
I*********~****************************I 
! PASSED PARAMEtERS ! 
I R0· DBR II 1 
! R1· SEGMENT ~ ! 
I R2· ADD! - 1 
1 R3 II ACCESS ! 
1 R4· LIMIT I 
t LOCAL VARIABLES I 
I Rle. WORIING REGISTER ! 
t R13 II WORIIN~ REGISTER t 
1**************************************1 

ENTRY 
LD R10, WMMU IMAGE 
LD 113, #slzior MMU 
MULT 1\R12, Ie 
ADD Rle, R13 
LD !13, IISIZEOF SEG_DESC_REG 
MULT RR12, Rl 
ADD p.le, R13 
LD @R10, R2 
INC R10, 112 
LD! (nue, RL~ 
INC RUI, III 
LDB RL4, @R10 
CP! Rt3, IIEIECUTE 
IF EQ TREN 

ANDB RL4, 11%(2)11110111 
ELSE 

AND! RL~, *%(2)11111110 
FI 

155 



I 

., ; 1 

OR» RL4, RL3 
LD! @R10, RL4 
RET 

END UPDATE_MMU_IMAGE 

UPDA~E_L_AST_ACCESS PROCEDURE 

1······································1 1 PASSED PARAMETERS 1 
I R0· INDEX I I R1. ACCESS_AUTS 1 
1 R2· D!R_N 1 
1 LOCAL V AR I A»LES 1 
1 RS. WORKING REGISTER 1 
1 R7. WORtING REGISTER ! 

1············*···············*·········1 ENTRY 
LD R5, NL_AST 
LD R7, #SIZEOF L_AST_REC 
MULT RRS, R0 
ADD R7, N2 
ADD 17, R2 
ADD R~, R7 
LDB llL3. @R5 
CPB ILl. NWRITE 
IF EQ TBEN 

OllB RL3. N%(2)10000000 
LDB @RS, RL3 

ELSE 

Fl 
RET 

AND» RL3, #%(2)01111111 
LDB GR5, RL3 

END UPDATE_L_AST_ACCESS 

CBECI LOCAL MEMORY PROCEDURE 
1··**··**·*···················*········1 I PASS~D PARAMETERS I 

Re = INDEX I 
1 RETURNED PARAMETER I 
1 R0 = TES~ 1 
I LOCAL VARIABLES 1 
I R2 • I 1 
1 R3 = SEG_NO I 
1 RB~ • ATTRI»UTES I 
I R10 = ADDR OF MHU IMAGE.SDR(SEG#] ! 
! Rl1 = ADDR OF L_A!T[R0] .SEG/ACC[I] 1 
1 n12,13 = WORKING REGISTERS 1 

1·***·*********····*****·····*********·1 ENTRY 

156 



I • 

.jl\ 

. " 

LD R2, #ZERO 
DO 

CP R2, #MAI_D:BR_NO 
IF EQ THEN 

LD R0, #NOT_IN_LOC!L_MEM 
RET 

FI 
LD Rll, #L_AST 
LD R13, #SIZEOF L_AST_kEC 
MULT RB12, R0 
ADD Rll, R13 
AhD Bll, #2 SEGMENT NO OF~SET 
ADD Rll, R2 
LD13 RL3, ORll 
CLR13 RH3 
AND13 BL3, %(2)0ll11l11 
CPB RL3, #ZERO 
IF NE THEN 

LD Bl0. #MMU IMAGE 
LD R13, #S!ZEOF MMU 
MULT RR12, R2 
ADD R10, R13 
ADD R10, R3 
ADD B10. #3 1 ATTRIBUTES OFFSET 1 
LD13 RB1. @Rle 
AND13 RB1. #IN_MEMORY_MASK 
CPB RB1, 'ZERO 
IF NE TBEN 

LD R0. #IN LOCAL MEMORY 
RET - -

iI 
iI 
tNC R2, #1 

OD 

END CHECK_LOCAL_MEMORY 

CHECI MAX VIRTUAL CORE PROCEDURE 
1**************************************1 
! PASSED PABA~ETERS 1 
I R0 = D~R 1# 1 
1 B1 :If 13LItS 1 
1 RETURNED PARAMETER 
1 R0 = SUCCESS CODE 
1 LOCAL VARIABLES 
! R10.R12 = WORIING REGISTERS ! 
1**************************************1 

ENTRY 
LD R10. #MMU I~AGE 
LD R13. #SIZEOF MMU 

157 



! -, 
'I 
, . 
! }f "\ 

, '1 
; ,I , 

"J " 
J , 

" I [1 I " ' 

'~I 
t . ~ 
'f • 

~. .I:i' : 
~I VI 
'. I ~~ i ! 

I 
., 

I 
I i. 

~l 
I 

.,-t. 

~. ~ .. . I' ~ 

t' 
:, .j 

'. 

r " /" 

, 

t 
" 

; I 

1.-' : r ~ .. 
~. t. (I, 
~ I t 

. 

MULT RR12, R0 
ADD R10, R13 
LD R13, 'SIZEOF SEG_DESC_REG 
MULT RR12, #NO_SEG_DESC_REG 
ADD R10, R13 
LD R12, @R10 
ADD R12, Rt 
INC R10, #2 
CP Rl" @R10 
IF GT THEN 

SUE 1i12. Rl 
LD R0, *VIRTUAL_CORE_FULL 

ELSE 
LD R0, 'VALID 

FI 
DEC B10, #2 
LD @R10, B12 
RET 

END CBECK_MAX_VIRTUAL_CORE 

SWAP IN PROCEDURE 
1**************************************1 
I PASSED PARAMETtRS 1 
1 R0. INDEX I 
I R1:11 D'SR , 1 
1 R2 III ACCESS I 
1 RETURNED PARAMETER 1 
I R~· 3UCCESS CODE I 
1************************************·*1 

LOCAL INDEX WORD 
DBR_NO WORD 
ACCESS WORD 
G.AST_EASE ADDRESS 

ENTRY 
LD INDEX, 80 
LD DBR_NO, Rl 
LD ACCESS, R2 
LD R5, #G AST 
LD R13, #SIZEOF G AST REC 
MULT RR12, R0 --
AliD R5, R13 
LD G_AST_EASE, R5 
ADD R5, *16 I SIZE OFFSET 
CLR R6 
LD R7, @85 
DIV RR6, #BLI SIZE 
LD RS, R7 -
DEC R5, #12 I L_AST INDEX OFFSET ! 
LD R7, @R5 
LD R0, Hl 
LD Rl, R6 

158 



I 

CALL CHECK MAX VIRTUAL CORE 
CP R0, NVIRTUAL_CORE_FULL 
IF EQ THEN 

RET 
FI 
INC RS, N4 I NO_~CTIVE_IN_MEMORY CFFSET I 
INC @R5, #1 
tD RS, @R5 
CP ACCESS, NWRITE 
11 EQ THEN 

FI 

DEC R5, #4 J OFFSET TO FLAG_EITS 
tD R4, @RS 
OR R4, NWRITABLE_MASK 
LD ~R5, R4 

tD R0, R7 
CALL CSECK LOCAL MEMORY 
AND R4. #WRITAELE_MASK 
CP R4'1 NO 
IF NE THEN 

CP RS, #1 
IF GT THEN 

CP R0, NIN LOCAL MEMORY 
IF NE THEN -

LD Ra, R6 
CALL ALLOC LOCAL MEMORY 
CP Ra, #LOCAL MEMORY FULL 
IF EQ THEN - -

RET 
FI 
LD R9. Rl 
INC R5, #S I PAGE_TABLE_LOC OFFSET I 
LD Ra, @R5 
CALL READ SEGMENT 
CP R0, #VALID 

ELSE 

IF NE THEN 

11 

LD Ra, R9 
LD Rl. RS 
CALL FREE_LOCAL_EIT_MAP 
,tET 

LD Rla, #L_AST 
LD R13, #SIZEOF L_AST_REC 
MULT RR12, R7 
ADD R10, R13 IMEMORY_ADDR Or;:ET INTO L_AST! 
LD @R1a. R9 

LD Rla, #L AST 
LD R13, .SIZEOF L_AST_REC 
MULT RR12, R7 
ADD R10. R13 

159 



ELSE 

LD 19, @R10 
FI 

FI 

LD BS, 10 
LD R5, G AST !ASE 
INC R5, #2 -1 GLO!AL_ADDR OFFSET 1 
LD R12, GR5 
CP R12, #NULL 
IF EQ THEN 

LD 110, R6 
CALL ALLOC GLO!!L MEMORY 
CP R0, *GLO!AL_HEM_FULL 
XF EQ TREN 

RET 
FI 
LD 119, Hl 
CP RS, *IN_LOCAL_HEHORY 
IF EQ THEN 

LD B0, R7 
INC R5, *14 1 SIZE OFFSET f 
!~D R2: @R5 
CALl HOVE TO GLO!AL 
C~ R0, .VALID 
IF N~ TREN 

IlEIi' 
}'I 

ELSE 
LD B0, Bt 
LD il, INDEX 
CALL SIGNAL OTHER MEMORY MA~AGERS 
CP i0, ~VALiD - -
IF NE THEN 

RET 
FI 

FI 
ELSE 

LD H5 ,G AST BASE 
ADD R5, #2 - GLOBAL.ADDR OFFSET 
LD R9, @R5 

Fl 
Fl 
tD R0, D!i.NO 
LD B10, *L.AST 
LD 113, .SIZEOF 
MULT RR12, R7 
ADD H10, R13 
ADD B10, B0 
INC H10, #2 
LDB BL1, @R10 
LD B2, 19 

LAST REC . -

160 



LD R3, ACCESS 
LD R4, R6 
CALL UPDATE MMU IMAGE 
LD R0, R7 - -
LD Ill. ACCESS 
LD R2. D:BR_NO 
CALL UPDATE LAST ACCESS 
LD Il0. NSWAPPED_IN 

END SWAP_IN 

MAIN_LINE PROCEDURE 
ENTRY 
CALL SWAP_IN 
CALL R!UG 

END MAIN_LINE 
END MEM_MGR 

161 



. ," 
~: 

~I ., ... 

. \ . , 
4' 

~Jt,·: 
t. f~ 
I ~ 

LIST OF REFERENCES 

1. O'Connel, J. S., and Richardson, L. D., Distri~uted 
S~cure Design for a Multi-microprocessor Operating 
System. MS Thesis, Naval Post,raduate Sehool, June 
1979. 

2. Parks. E. J., The Design of a Secure rile Storage 
SYstem, MS Thesis, Naval Postgr~duate School. 
De {'elT'ber, 1980. 

~. Col~man. A. R., Security ~ernel Desi~n for a 
~i{'roprocessor-Based, Multilevel, Archival Storare 
System. MS Thesis, Naval Postgraduate ~{'hool, 
December 1979. 

4. P.p.itz, S. L., The Implementation et the S@curi~! Kernel 
for a Multi-lT'icroprocessor Operating System. MS 
Thesis, Naval Postgraduate School, June 19Se. 

5. Schell, It.Col. R. R., "Securitl [ernels: A Methodical 
Desi~n of System Securitl' USE Technical Papers 
(Spring Conr~rence, 1979). pp 24~-2E0, March 1979. 

S. Or~anick.~. J., The Multlcs System: An Examination of 
Its Structure, MIT Press, 1972. 

7. ~illen, J. ,., "Security !ernel Validation In Practiee," 
Communications of the ACM, v. 19 no. S p. 243-250. 
~a~ 1976. 

E. Madnick. S. ~., and Donovan, J.: .. Operating Systems, 
~{'Graw Hill, 1974. 

9. Denning, D.E., "A Lattice Model of Secure InforlT'aUon 
Flow," Communications ot the ACM, v. 19 
p. 236-242, ~ay 1976 • 

10. Peed, P. D., and Kanoidia, R. I'A "Synchronization Wlt~ 
Eventcounts and Sequencers. Communications of the 
~CM, v. 22 n~. 2 p. 115-124, February 1979 • 



I 
'Jf· . \ 

} 
, I .,; I 

1 

I"'l 

~;t{ 
d 

I ' 'f .; I ' f 
III 

I I ~ 
! 

I , 
, . 

• ' < ., . 
f ~ 
! . 

i 
. 

'1 r ,,' 

~ .\ , 

I t J 

~i If, $-. (~ 

~ f • 1,* 
I 

.. 

11. 

12. 

1:5. 

14. 

15. 

.. 

or-

~~ed. P. D •• Processor M,,1t.1'P1exing In a Layered 
Operating System. MS ThesiS. Massachusetts 
Institute of Technology, ~IT LCS/TR-167, 1979. 

Zilo~, Inc •• Z8010 MMU Memory Management Unit, 
Preliminary Product Specification, October 1979. 

Riggins, C •• "When No Single Language Can Do the Job, 
~ake It a Langua~e-!amily ~atter." Electronics 
Design, February 15, 1979. 

Schell, Lt.Col. R. R., "Computer Securi5Y: the Achilles 
Heel of the Electronic Air Force?, Air "niver~ity 
Review. v. 3€ no. 2 p. 16-:53. January 1979. 

Salt%er, J. R., Traffic Control in a Multiplexed 
Computer System. P~.D.Thesls, ~assach~setts 
Institute of Technolc~y. 1966. 

163 

--:---::~~'4 ~t;'l1q:3::A "'-- ~". 



I , 

\ 

. 
" 
" 

.\ , 

r II' . ( 
, I' ' 
If. II 

1. 

2. 

" ..... 

4. 

5. 

INITI~t nISTRIBUTION lIST 

Defense Technical Information Center 
Cameron S tat i on 
Alexandrla. Vlrginia 22314 

Library. Code 0142 
Naval Postgraduate School 
Monterey. Callfornia 93940 

Depart~ent Chalrman. Code 52 
Depart~ent of Co~puter Science 
Navll Postgraduate School 
Monterey, California 93940 

Lyle A. Cox. Jr., Code 5?C~ 
Depart~!nt ot Computer '~;~lee 
Naval Post~raduate Sch~nl 
~onterey, Callfornia 9~~~e 

lTCOl ~oger R. Schell, Code :?~, 
Departm~nt of Computer Science 
~aval postgradu~te School 
.1onterey. California 93940 

6. Ioel Trimble, Cod! 221 
Ottlre ot N~val Research 
8~0 North Quincy 
Ar~i~tton. Virginia 2221? 

7. LT Alan V. Gary 
. 332r Y. !pler Ave. 

Indianapolis, Indiab~ 46217 

8. LCDR Edmund E. Moore 
NAVEtEXSYSCOM 
Pr--E 107 
Washlngton, D.C. 2e360 

9. CAPT John Lv P.oss 
107 R 'adon 5 t. 
Weather~A.~~ Texas 76056 

10. LT Hal P.. Powell 
1295 P.eatherstone Way 
Suncyvale. C~lifornia 94e87 

164 

No. Coples 
2 

2 

2 

5 

1 

2 

1 

1 

1 



I I .' I 
~l 

,-

• 
I ii"} : 

~ f ; 

:I.. : 
\ . IIr 

I( 
i i • , ~ 

I 

" ., 
,,' 

/,~ .. 
i I 

t • 1/ . 

I 

i 

11. Office of ~esearch Admlnistriat10n 
Code ~12A 
Naval Post~raduQte School 
~onterey, California 939~~ 

12. Uno R. !odres, Code 52Kr 
Department of Computer Science 
Naval postgraduate School 
Monterey, California 93940 

13. I. tarry Avrunln, Codele 
DTNSRDC 
Bethesda, Maryland 20084 

14. R. P. Crabb. code 9134 
Naval Oceans Systems Center 
San Die~o, California 92152 

1~. lathryn Reninger. Code 7503 
Naval Research ta~ 
va~h1n~ton. D.C. 2~375 

le. Dr. J. McGraw 
U .. C. - t. t • L • ( 1-794 ) 
P.O. lox S0S 
LlverMare, CalIfornia 94550 

17 Mark Underwood 
NPRDC 
San ~lego. California 92152 

le. ~alte! P. ~arner. code K7~ 
NSWC 
Dahl~ren. Virg1n1a 2244e 

19. M. George Michael 
U.C. - t.t.t. (1-76) 
P.O. Box e2'8 
Livermore, Californ1a 9455e. 

185 

1 

1 

1 

1 

1 

1 

1 

1 

1 


