Nuclear Energy Policy

Mark Holt
Specialist in Energy Policy

October 21, 2010
Summary

Nuclear energy issues facing Congress include federal incentives for new commercial reactors, radioactive waste management policy, research and development priorities, power plant safety and regulation, nuclear weapons proliferation, and security against terrorist attacks.

Significant incentives for new commercial reactors were included in the Energy Policy Act of 2005 (EPACT05, P.L. 109-58). These include production tax credits, loan guarantees, insurance against regulatory delays, and extension of the Price-Anderson Act nuclear liability system. Together with higher fossil fuel prices and the possibility of greenhouse gas controls, the federal incentives for nuclear power have helped spur renewed interest by utilities and other potential reactor developers. Plans for as many as 31 reactor license applications have been announced, although it is unclear how many of those projects will move forward under current economic conditions.

In his January 2010 State of the Union Address, President Obama called for “building a new generation of safe, clean nuclear power plants” as a key component of his “clean energy” program. Financing for new reactors is widely considered to depend on the loan guarantees authorized by EPACT05 Title XVII, administered by the Department of Energy (DOE). The total amount of loan guarantees to be provided to nuclear power projects has been a continuing congressional issue. Nuclear power plants are currently allocated $18.5 billion in loan guarantees, enough for three or four reactors. President Obama’s FY2011 budget request would nearly triple the loan guarantee ceiling for nuclear power plants, to $54.5 billion. However, opponents of nuclear power contend that the Administration’s proposed increases in nuclear loan guarantees would provide an unjustifiable subsidy to a mature industry and shift investment away from environmentally preferable and more cost-effective energy technologies.

DOE’s nuclear energy research and development program includes advanced reactors, fuel cycle technology and facilities, and infrastructure support. The Obama Administration’s FY2011 funding request for nuclear energy research and development totals $824.1 million—4.8% above the FY2010 appropriation. The Senate Appropriations Committee recommended $775.8 million for nuclear energy R&D, while the House Appropriations Committee’s Subcommittee on Energy and Water Development recommended the full request. FY2011 funding is currently being provided under a continuing resolution pending final congressional action.

Disposal of highly radioactive waste has been one of the most controversial aspects of nuclear power. The Nuclear Waste Policy Act of 1982 (P.L. 97-425), as amended in 1987, required DOE to conduct a detailed physical characterization of Yucca Mountain in Nevada as a permanent underground repository for high-level waste. DOE submitted a license application for the Yucca Mountain repository to the Nuclear Regulatory Commission (NRC) on June 3, 2008, with the repository to open by 2020 at the earliest.

The Obama Administration has decided to “terminate the Yucca Mountain program while developing nuclear waste disposal alternatives,” according to the DOE FY2010 budget justification. Alternatives to Yucca Mountain are to be evaluated by a “blue ribbon” panel of experts convened by the Administration. President Obama’s FY2011 budget request would provide no further funding for the Yucca Mountain project, and DOE filed a motion with NRC to withdraw the Yucca Mountain license application on March 3, 2010. However, the motion to withdraw has prompted substantial opposition, including lawsuits in federal court.
Contents

Most Recent Developments... 1

Nuclear Power Status and Outlook .. 2
 Possible New Reactors .. 3
 Federal Support .. 6
 Nuclear Production Tax Credit ... 7
 Standby Support .. 7
 Loan Guarantees .. 8
 Global Climate Change ... 12

Nuclear Power Research and Development .. 12

Nuclear Power Plant Safety and Regulation ... 17
 Safety .. 17
 Domestic Reactor Safety ... 17
 Reactor Safety in the Former Soviet Bloc ... 18
 Licensing and Regulation ... 19
 Reactor Security ... 20
 Decommissioning .. 21
 Nuclear Accident Liability ... 22

Nuclear Waste Management ... 24

Nuclear Weapons Proliferation .. 26

Federal Funding for Nuclear Energy Programs ... 27

Legislation in the 111th Congress ... 29

H.R. 513 (Forbes) ... 29
H.R. 1698 (Van Hollen) ... 29
H.R. 1812 (Bachmann) .. 29
H.R. 1936 (Lowey) .. 29
H.R. 1937 (Lowey) .. 30
H.R. 2454 (Waxman) ... 30
H.R. 2768 (Wamp) .. 30
H.R. 2828 (Bishop) .. 30
H.R. 2846 (Boehner) .. 30
H.R. 3009 (Ross) ... 30
H.R. 3183 (Pastor) ... 31
H.R. 3385 (Barton) .. 31
H.R. 3448 (Pitts) .. 31
H.R. 3505 (Gary Miller) ... 31
H.R. 4741 (Fattah) ... 31
S. 591 (Reid) .. 31
H.R. 5505 (Burgess) .. 32
H.R. 5866 (Gordon) .. 32
H.R. 5899 (Nunes) ... 32
H.R. 5910 (Lowey) .. 32
H.R. 6386 (Christopher H. Smith) ... 32
S. 807 (Nelson) ... 32
S. 861 (Graham) .. 32
S. 1333 (Barrasso) ... 33
S. 1462 (Bingaman) ... 33
S. 1733 (Kerry) .. 33
S. 2052 (Mark Udall)/H.R. 5163 (Altmire) .. 33
S. 2776 (Alexander) .. 33
S. 2812 (Bingaman)/H.R. 5164 (Altmire) .. 33
S. 3060 (Hatch) .. 34
S. 3322 (Voinovich)/H.R. 5979 (Upton) ... 34
S. 3535 (Burr) .. 34
S. 3618 (Voinovich) ... 34
S. 3635 (Dorgan) .. 34

Tables

Table 1. Announced Nuclear Plant License Applications ... 5
Table 2. Funding for the Nuclear Regulatory Commission .. 28
Table 3. DOE Funding for Nuclear Activities ... 28

Contacts

Author Contact Information ... 34
Most Recent Developments

The Obama Administration submitted an $824.1 million FY2011 funding request for Department of Energy (DOE) nuclear energy research and development on February 1, 2010. Including advanced reactors, fuel cycle technology, and infrastructure support, the total nuclear energy request is 4.8% above the FY2010 appropriation. An additional $88.2 million is being requested under Other Defense Activities for DOE’s Office of Nuclear Energy to pay for safeguards and security at the Department’s Idaho nuclear facilities. The Senate Appropriations Committee recommended $775.8 million for nuclear energy R&D, $48.3 million below the request, while the House Appropriations Committee’s Subcommittee on Energy and Water Development recommended the full request. FY2011 funding is currently being provided under a continuing resolution (P.L. 111-242) pending final congressional action.

President Obama’s State of the Union Address on January 27, 2010, called for “building a new generation of safe, clean nuclear power plants” as a key component of the Administration’s “clean energy” program. Obama’s FY2011 budget request would nearly triple the current ceiling on federal loan guarantees for nuclear power plants, to $54.5 billion. The Senate Appropriations Committee recommended that the nuclear loan guarantee ceiling be raised to $28.5 billion, while the House subcommittee recommended an increase to $43.5 billion. The House-passed version of the FY2010 supplemental appropriations bill had included an additional $9 billion in nuclear loan guarantees, for a total of $52.5 billion, but it was stripped out before final passage. The Administration announced the first conditional nuclear power plant loan guarantee on February 16, 2010, totaling $8.33 billion for two proposed new reactors at Georgia’s Vogtle nuclear plant site. However, negotiations on a loan guarantee for a new reactor at Maryland’s Calvert Cliffs plant came to a halt October 8, 2010, when project sponsor Constellation Energy rejected the federal government’s proposed terms.

Seventeen applications for combined construction permits and operating licenses (COLs) for 26 new nuclear power units have been submitted to the Nuclear Regulatory Commission (NRC), although work on several applications has been suspended (see Table 1). NRC is anticipating COL applications for as many as 31 new reactors through 2011. Federal incentives and other policy decisions are likely to be an important factor in determining how many of those proposed reactors are actually constructed.

The Administration’s FY2011 budget request would terminate DOE’s Office of Civilian Radioactive Waste Management (OCRWM), which was established by the Nuclear Waste Policy Act of 1982 (NWPA, 42 U.S.C. 10101 et seq.) to dispose of highly radioactive waste from nuclear power plants and defense facilities. OCRWM had been developing a permanent nuclear waste repository at Yucca Mountain, NV, as specified by an NWPA amendment in 1987. DOE filed a license application with NRC for the proposed Yucca Mountain repository in June 2008. The Obama Administration “has determined that developing the Yucca Mountain repository is not a workable option and the Nation needs a different solution for nuclear waste disposal,” according to the DOE FY2011 budget justification. As a result, no funding for Yucca Mountain or OCRWM is being requested for FY2011. DOE filed a motion with NRC to withdraw the Yucca Mountain license application on March 3, 2010. An NRC licensing panel rejected DOE’s withdrawal motion June 29, 2010, and it is now awaiting action before the NRC commissioners. Lawsuits opposing the license withdrawal have also been filed by states that have defense-related waste awaiting permanent disposal. NRC generated further controversy by initiating a shutdown
of the Yucca Mountain licensing process on October 4, 2010, without issuing a final decision on the DOE license withdrawal motion.

Alternatives to Yucca Mountain are being evaluated by the Blue Ribbon Commission on America’s Nuclear Future, which was formally established by DOE on March 1, 2010, and held its first meeting March 25-26. Congress provided $5 million for the Commission in the FY2010 Energy and Water Development Appropriations Act.

Nuclear Power Status and Outlook

The outlook for the U.S. nuclear power industry appears to have brightened after decades of uncertainty. No nuclear power plants have been ordered in the United States since 1978, and more than 100 reactors have been canceled, including all ordered after 1973. The most recent U.S. nuclear unit to be completed was TVA’s Watts Bar 1 reactor, ordered in 1970 and licensed to operate in 1996. But nuclear power is now receiving renewed interest, prompted by volatile fossil fuel prices, possible carbon dioxide controls, and new federal subsidies and incentives. Preliminary work on several proposed new U.S. reactors is currently underway, as discussed in the next section.

The U.S. nuclear power industry currently comprises 104 licensed reactors at 65 plant sites in 31 states and generates about 20% of the nation’s electricity.1 TVA’s board of directors voted August 1, 2007, to resume construction on Watts Bar 2, which had been suspended in 1985; the project is to cost about $2.5 billion and be completed in 2013. At TVA’s request, NRC in March 2009 reinstated the construction authorization for the two-unit Bellefonte (AL) nuclear plant, which had been deferred in 1988 and canceled in 2006.2 TVA is currently considering completion of Bellefonte unit 1 at a cost of $4.2 billion and signed a $248 million contract for engineering and development work on the project October 5, 2010.3

Annual electricity production from U.S. nuclear power plants is much greater than that from oil and hydropower and other renewable energy sources. Nuclear generation has been overtaken by natural gas in recent years, and it remains well behind coal, which accounts for about 45% of U.S. electricity generation.4 Nuclear plants generate more than half the electricity in six states. The near-record 834 billion kilowatt-hours of nuclear electricity generated in the United States during 20095 was more than the nation’s entire electrical output in the early 1960s, when the oldest of today’s operating U.S. commercial reactors were ordered.6

6 All of today’s 104 operating U.S. commercial reactors were ordered from 1963 through 1973; see “Historical Profile of U.S. Nuclear Power Development,” U.S. Council for Energy Awareness, 1992.
Reasons for the 30-year halt in U.S. nuclear plant orders include high capital costs, public concern about nuclear safety and waste disposal, and regulatory compliance issues.

High construction costs may pose the most serious obstacle to nuclear power expansion. Construction costs for reactors completed since the mid-1980s ranged from $2 to $6 billion, averaging more than $3,700 per kilowatt of electric generating capacity (in 2007 dollars). The nuclear industry predicts that new plant designs could be built for less than that if many identical plants were built in a series, but current estimates for new reactors show little if any reduction in cost.

Average U.S. nuclear plant operating costs, however, dropped substantially since 1990, and costly downtime has been steadily reduced. Licensed U.S. commercial reactors generated electricity at an average of 89% of their total capacity in 2009, according to industry statistics.

Fifty-nine commercial reactors have received 20-year license extensions from the Nuclear Regulatory Commission (NRC), giving them up to a total of 60 years of operation. License extensions for 21 additional reactors are currently under review, and more are anticipated, according to NRC. The FY2010 Energy and Water Development Appropriations Act provided $10 million for DOE to study further reactor life extension to 80 years, and DOE has requested $25.8 million for that program in FY2011.

Existing nuclear power plants appear to hold a strong position in electricity wholesale markets. In most cases, nuclear utilities have received favorable regulatory treatment of past construction costs, and average existing nuclear plant operating costs are estimated to be competitive with those of fossil fuel technologies. Although eight U.S. nuclear reactors were permanently shut down during the 1990s, none has been closed since 1998. Despite the shutdowns, annual U.S. nuclear electrical output increased by more than one-third from 1990 to 2006, according to the Energy Information Administration and industry statistics. The increase resulted primarily from reduced downtime at the remaining plants, the startup of five new units (most recently Watts Bar 1 in 1996), and reactor modifications to boost capacity.

Possible New Reactors

Recent interest in new U.S. nuclear power plants has been prompted by the improved performance of existing reactors, federal incentives, the possibility of carbon dioxide controls that could increase costs at fossil fuel plants, and volatile prices for natural gas—the favored fuel for new power plants for most of the past 15 years. Electric utilities and other firms have announced plans to apply for combined construction permits and operating licenses (COLs) for about 30 reactors (see Table 1).

No firm commitments have been made to build the proposed plants if the COLs are issued, but the sponsors of four nuclear projects have signed preliminary engineering, procurement, and construction (EPC) contracts. At the site of Southern Company’s planned Vogtle 3 and 4 reactors in Georgia, about 1,300 workers are currently preparing the foundation and conducting other pre-construction activities, according to the utility. Preliminary work is also taking place at other proposed nuclear plant sites.

However, poor economic conditions, rising supplies of domestic natural gas, increasing nuclear construction cost estimates, and political stalemate on carbon dioxide regulation have clouded the prospects for many proposed nuclear projects. Entergy suspended further license review of its planned GE ESBWR reactors at River Bend, LA, and Grand Gulf, MS, and Dominion switched from the ESBWR to the Mitsubishi US-APWR for its planned new reactor at North Anna, VA. AmerenUE suspended review of a COL for its proposed new Callaway unit in Missouri, and Exelon announced June 30, 2009, that it would no longer pursue a COL for a proposed two-unit plant in Victoria County, TX, but would seek an early site permit instead, laying the groundwork for possible future licensing. Several of the other proposed nuclear projects may require additional partners in order to proceed, according to recent company announcements.

TVA issued a final supplemental environmental impact statement (SEIS) on May 12, 2010, for the Bellefonte site. The preferred alternative in the SEIS is to complete the first of two unfinished Babcock & Wilcox reactors already at the site, rather than build two new Westinghouse AP1000 units. TVA had submitted a COL application for the AP1000s in October 2007 as part of the NuStart consortium. TVA asked NRC on September 29, 2010, to defer further review of the AP1000s until TVA’s board of directors chooses which option to pursue at Bellefonte, a decision expected in spring 2011.

Constellation Energy announced October 9, 2010, that it was abandoning negotiations with DOE for a loan guarantee for the planned Calvert Cliffs 3 reactor, which Constellation had been developing as part of its UniStar joint venture with the French national utility EDF. Constellation has offered to transfer its share of UniStar to EDF so that EDF could seek another U.S. partner to continue the Calvert Cliffs project. (For more discussion of Constellation’s decision, see the “Loan Guarantees” section below.)

Table 1. Announced Nuclear Plant License Applications

<table>
<thead>
<tr>
<th>Announced Applicant</th>
<th>Site</th>
<th>Planned Application</th>
<th>Reactor Type</th>
<th>Units</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternate Energy</td>
<td>Payett (ID)</td>
<td>2011</td>
<td>Not specified</td>
<td>1</td>
<td>Construction plans suspended 4/23/09; NRC license review suspended 6/23/09</td>
</tr>
<tr>
<td>AmerenUE</td>
<td>Callaway (MO)</td>
<td>Submitted 7/24/08</td>
<td>Areva EPR</td>
<td>1</td>
<td>Reactor selection announced 5/7/10</td>
</tr>
<tr>
<td>Blue Castle</td>
<td>Utah</td>
<td>2011</td>
<td>Not specified</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dominion</td>
<td>North Anna (VA)</td>
<td>Submitted 11/27/07</td>
<td>Mitsubishi US-APWR</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DTE Energy</td>
<td>Fermi (MI)</td>
<td>Submitted 9/18/08</td>
<td>GE ESBWR</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Duke Energy</td>
<td>William States Lee (SC)</td>
<td>Submitted 12/13/07</td>
<td>Westinghouse AP1000</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Entergy</td>
<td>River Bend (LA)</td>
<td>Submitted 9/25/08</td>
<td>Not specified</td>
<td>1</td>
<td>Licensing suspended 1/9/09</td>
</tr>
<tr>
<td>Luminant Power (formerly TXU)</td>
<td>Comanche Peak (TX)</td>
<td>Submitted 9/19/08</td>
<td>Mitsubishi US-APWR</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>FPL</td>
<td>Turkey Point (FL)</td>
<td>Submitted 6/30/09</td>
<td>Westinghouse AP1000</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NRG Energy</td>
<td>South Texas Project</td>
<td>Submitted 9/20/07</td>
<td>Toshiba ABWR</td>
<td>2</td>
<td>EPC contract signed with Toshiba 2/12/09</td>
</tr>
<tr>
<td>NuStart</td>
<td>Grand Gulf (MS), Entergy</td>
<td>Submitted 2/27/08</td>
<td>Not specified</td>
<td>1</td>
<td>Licensing suspended Jan. 9, 2009</td>
</tr>
<tr>
<td></td>
<td>Bellefonte (AL), TVA</td>
<td>Submitted 10/30/07</td>
<td>Westinghouse AP1000</td>
<td>2</td>
<td>NuStart shifted lead unit to Vogtle 4/30/09; licensing deferred 9/29/10.</td>
</tr>
<tr>
<td>PPL</td>
<td>Bell Bend (PA)</td>
<td>Submitted 10/10/08</td>
<td>Areva EPR</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Progress Energy</td>
<td>Harris (NC)</td>
<td>Submitted 2/19/08</td>
<td>Westinghouse AP1000</td>
<td>2</td>
<td>EPC contract signed 1/5/09</td>
</tr>
<tr>
<td></td>
<td>Levy County (FL)</td>
<td>Submitted 7/30/08</td>
<td>Westinghouse AP1000</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SCE&G</td>
<td>Summer (SC)</td>
<td>Submitted 3/31/08</td>
<td>Westinghouse AP1000</td>
<td>2</td>
<td>EPC contract signed 5/27/08</td>
</tr>
<tr>
<td>Southern</td>
<td>Vogtle (GA)</td>
<td>Submitted 3/31/08</td>
<td>Westinghouse AP1000</td>
<td>2</td>
<td>EPC contract signed 4/8/08; conditional DOE loan guarantee announced 2/16/10</td>
</tr>
<tr>
<td>UniStar (Constellation Energy and EDF)</td>
<td>Not specified</td>
<td>2011</td>
<td>Not specified</td>
<td>1</td>
<td>Constellation withdrew from project 10/8/10</td>
</tr>
<tr>
<td></td>
<td>Calvert Cliffs (MD)</td>
<td>Submitted 7/13/07 (Part 1), 3/13/08 (Part 2)</td>
<td>Areva EPR</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nine Mile Point (NY)</td>
<td>Submitted 9/30/08</td>
<td>Areva EPR</td>
<td>1</td>
<td>Licensing suspended 12/1/09</td>
</tr>
</tbody>
</table>

Total Units: 29
NRC’s current schedules indicate that the first COLs could be issued by 2011 or 2012, depending on the time required for hearings and other factors.\(^{19}\) Issuance of a COL allows construction to begin and also is a prerequisite for federal loan guarantees and “regulatory risk insurance” as described below. If full-scale construction were to begin soon after receipt of the COLs, the first new reactors could begin operating before 2020. Southern Company is projecting that its planned two new reactors at the Vogtle site, currently scheduled to get the first COLs, will begin commercial operation by 2016 and 2017.\(^{20}\)

The first group of new reactors, if they move forward to construction, is expected to be crucial for the future of U.S. nuclear power. Successful completion and operation of the first few reactors could encourage a larger wave of further construction, while failures could indicate that past problems with nuclear construction have not been resolved and dry up further investment. Recent projections of U.S. electric generating capacity show a wide variation in the amount of new nuclear generation that could be built by 2030—from none to 100 gigawatts (approximately double current capacity). (See Table 9 of CRS Report R40809, *Climate Change: Costs and Benefits of the Cap-and-Trade Provisions of H.R. 2454*, by Larry Parker and Brent D. Yacobucci.)

Federal Support

The nuclear power industry contends that support from the federal government would be needed for “a major expansion of nuclear energy generation.”\(^{21}\) Significant incentives for building new nuclear power plants were included in the Energy Policy Act of 2005 (EPACT05, P.L. 109-58), signed by President Bush on August 8, 2005. These include production tax credits, loan guarantees, insurance against regulatory delays, and extension of the Price-Anderson Act nuclear liability system (discussed in the “Nuclear Accident Liability” section of this report). Relatively low prices for natural gas—nuclear power’s chief competitor—and rising estimated nuclear plant construction costs have decreased the likelihood that new reactors would be built without federal support.

As a result, many draft proposals are currently circulating in Congress to strengthen or add to the EPACT05 incentives (see “Legislation in the 111th Congress” at the end of this report). On May 12, 2010, Senators Kerry and Lieberman released a discussion draft of greenhouse gas control legislation, the American Power Act, that would increase the nuclear loan guarantee ceiling, expand federal reimbursement for nuclear regulatory delays, expand nuclear tax credits, and modify nuclear licensing procedures.\(^{22}\) However, no further action on greenhouse gas legislation in the 111th Congress is currently scheduled. Nuclear power critics have denounced the federal support proposals.

\(^{22}\) Full text and summaries by the sponsors can be found at http://kerry.senate.gov/americanpoweract/intro.cfm.
support programs and proposals as a “bailout” of the nuclear industry, contending that federal efforts should focus instead on renewable energy and energy efficiency.23

Nuclear Production Tax Credit

EPACT05 provides a 1.8-cents/kilowatt-hour tax credit for up to 6,000 megawatts of new nuclear capacity for the first eight years of operation, up to $125 million annually per 1,000 megawatts.

The Treasury Department published interim guidance for the nuclear production tax credit on May 1, 2006.24 Under the guidance, the 6,000 megawatts of eligible capacity (enough for about four or five reactors) are to be allocated among reactors that filed license applications by the end of 2008. If more than 6,000 megawatts of nuclear capacity ultimately qualify for the production tax credit, then the credit is to be allocated proportionally among any of the qualifying reactors that begin operating before 2021.

By the end of 2008, license applications had been submitted to NRC for more than 34,000 megawatts of nuclear generating capacity,25 so if all those reactors were built before 2021 they would receive less than 20% of the maximum tax credit. The latest utility target dates for opening new reactors indicate that no more than 17,000 megawatts of new nuclear capacity is likely before 2021.26 The credit is not adjusted for inflation.

The Nuclear Energy Institute (NEI) is urging Congress to remove the 6,000 megawatt capacity limit for the production tax credit, index it for inflation, and extend the deadline for plants to begin operation to the start of 2025. NEI is also proposing that a 30% investment tax credit be available for new nuclear construction as an alternative to the production credit.27 The May 12 Kerry-Lieberman discussion draft would increase the production tax credit limit to 8,000 megawatts and allow public power entities to transfer their credits to private-sector partners. In addition, it would allow five-year accelerated depreciation of new nuclear plants, establish a 10% nuclear investment tax credit, and provide other tax benefits for new nuclear plants.

Standby Support

Because the nuclear industry has often blamed licensing delays for past nuclear reactor construction cost overruns, EPACT05 authorizes the Secretary of Energy to provide “standby support,” or regulatory risk insurance, to help pay the cost of regulatory delays at up to six new commercial nuclear reactors. For the first two reactors that begin construction, the DOE payments could cover all the eligible delay-related costs, such as additional interest, up to $500 million

each. For the next four reactors, half of the eligible costs could be paid by DOE, with a payment cap of $250 million per reactor. Delays caused by the failure of a reactor owner to comply with laws or regulations would not be covered. Project sponsors will be required to pay the “subsidy cost” of the program, consisting of the estimated present value of likely future government payments.

DOE published a final rule for the “standby support” program August 11, 2006. According to a DOE description of the final rule:

Events that would be covered by the risk insurance include delays associated with the Nuclear Regulatory Commission’s reviews of inspections, tests, analyses and acceptance criteria or other licensing schedule delays as well as certain delays associated with litigation in federal, state or tribal courts. Insurance coverage is not available for normal business risks such as employment strikes and weather delays. Covered losses would include principal and interest on debt and losses resulting from the purchase of replacement power to satisfy contractual obligations.

Under the program’s regulations, a project sponsor may enter into a conditional agreement for standby support before NRC issues a combined operating license. The first six conditional agreements to meet all the program requirements, including the issuance of a COL and payment of the estimated subsidy costs, can be converted to standby support contracts. No conditional agreements have yet been reached, according to DOE, primarily because the subsidy cost estimates have not been approved by the Office of Management and Budget (OMB).

The Nuclear Energy Institute has called for expanding the Standby Support program to $500 million for all six covered reactors, rather than just the first two. In addition, NEI proposed that if a reactor successfully begins operating without any delay payments, that plant’s Standby Support coverage, instead of expiring unused, be allowed to “roll over” to the next plant with a conditional agreement. The Kerry-Lieberman discussion draft would increase the number of covered reactors to 12 at a time, allowing for rollovers of unused coverage, for up to $500 million per reactor.

Loan Guarantees

Title XVII of EPACT05 authorizes federal loan guarantees for up to 80% of construction costs for advanced energy projects that reduce greenhouse gas emissions, including new nuclear power plants. Under such loan guarantee agreements, the federal government would repay all covered loans if the borrower defaulted. This would reduce the risk to lenders and allow them to provide financing at low interest rates. The Title XVII loan guarantees are widely considered crucial by the nuclear industry to obtain financing for new reactors. However, opponents contend that

31 Nuclear Energy Institute, op. cit.
nuclear loan guarantees would provide an unjustifiable subsidy to a mature industry and shift investment away from environmentally preferable energy technologies.32

The total amount of Title XVII loan guarantees to be made available for nuclear power has been the subject of considerable congressional debate. President Obama’s FY2011 budget request would nearly triple the current ceiling on federal loan guarantees for nuclear power plants, from $18.5 billion to $54.5 billion. That would increase the number of reactors that could receive loan guarantees from about three or four to about a dozen, depending on their size. The Senate Appropriations Committee recommended that the nuclear loan guarantee ceiling be raised to $28.5 billion (S.Rept. 111-228), while the House Appropriations Committee’s Subcommittee on Energy and Water Development recommended an increase to $43.5 billion.33 The Administration announced the first conditional nuclear power plant loan guarantee on February 16, 2010, totaling $8.33 billion for two proposed new reactors at Georgia’s Vogtle nuclear plant site.

The Administration asked Congress on May 21, 2010, to shift $9 billion of the proposed FY2011 increase in nuclear loan guarantees to FY2010, through the supplemental appropriations process. The change was intended to allow conditional loan guarantees to be offered this year to the other previously identified first-round finalists, comprising five reactors at three sites: Calvert Cliffs, the South Texas Plant, and Summer.34 The House-passed version of the FY2010 supplemental appropriations bill had included the Administration’s requested $9 billion in additional nuclear loan guarantees, but it was stripped out before final passage (P.L. 111-212).

DOE issued final rules for the program October 4, 2007,35 and finalized the first loan guarantee on September 4, 2009, totaling $535 million for a plant to produce photovoltaic panels.36 DOE’s proposed loan guarantee rules, published May 16, 2007, had been sharply criticized by the nuclear industry for limiting the guarantees to 90% of a project’s debt. The industry contended that EPACT05 allows all of a project’s debt to be covered, as long as debt does not exceed 80% of total construction costs. In its explanation of the proposed rules, DOE expressed concern that guaranteeing 100% of a project’s debt could reduce lenders’ incentive to perform adequate due diligence and therefore increase default risks. In the final rule, however, DOE agreed to guarantee up to 100% of debt, but only for loans issued by the Federal Financing Bank.

Title XVII requires the estimated future government costs resulting from defaults on guaranteed loans to be covered up-front by appropriations or by payments from project sponsors. These “subsidy costs” are calculated as the present value of the average possible future net costs to the government for each loan guarantee. If those calculations are accurate, the subsidy cost payments for all the guaranteed projects together should cover the future costs of the program. However, the

35 Published October 23, 2007 (72 \textit{Federal Register} 60116).

Congressional Budget Office has predicted that the up-front subsidy cost payments will prove too low by at least 1% and is scoring bills accordingly. For example, appropriations bills that provide loan guarantee authorizations include an adjustment totaling 1% of the loan guarantee ceiling.

DOE loan guarantees for renewable energy and electricity transmission projects under EPACT05 section 1705, added by the American Recovery and Reinvestment Act of 2009 (P.L. 111-5), do not require payments by project sponsors, because potential losses are covered by advance appropriations in the act. No such appropriations are currently available for nuclear power projects, so it is anticipated that nuclear loan guarantee subsidy costs would be paid by the project sponsors. As a result, the level of the subsidy costs could have a powerful effect on the viability of nuclear power projects, which are currently expected to cost between $5 billion and $10 billion per reactor. For example, a 10% subsidy cost for a $7 billion loan guarantee would require an up-front payment of $700 million.

No subsidy cost amount has yet been established for any nuclear loan guarantee, including the lead Vogtle project in Georgia. The Administration’s continuing internal deliberations over that question may reflect its importance and the amount of controversy being generated. Energy Secretary Steven Chu stated in March that the subsidy cost would probably be about 1%. The nuclear industry, contending that historical experience indicates defaults are likely to be minimal, agrees with Chu’s assessment that nuclear plant subsidy costs should be low. However, nuclear power critics contend that nuclear power plants are likely to experience delays and cost overruns that could lead to much larger losses under the loan guarantee program. The Center for American Progress concluded that nuclear subsidy costs “should be at least 10 percent and possibly much more.”

Constellation Energy informed DOE on October 8, 2010, that it was withdrawing from loan guarantee negotiations on Calvert Cliffs 3, blaming “the Office of Management and Budget’s inability to address significant problems with its methodology for determining the project’s credit subsidy cost.” Constellation’s letter to DOE said OMB’s “shockingly high” estimate of the subsidy cost for Calvert Cliffs 3 was 11.6%, or about $880 million. “Such a sum would clearly destroy the project’s economics (or the economics of any nuclear project for that matter), and was dramatically out of line with both our own and independent assessments of what the figure should reasonably be,” the letter stated. Although OMB has not released its subsidy cost methodology, it may consider the default risk for a “merchant plant” such as Calvert Cliffs to be significantly higher than that of a rate-regulated plant such as Vogtle. A plant under traditional rate regulation is allowed to pass all prudently incurred costs through to utility ratepayers, while a merchant plant charges market rates for its power. A merchant plant, therefore, could potentially earn higher

profits than a rate-regulated plant, but it also runs the risk of being unable to cover its debt payments if market rates drop too low or if its costs are higher than anticipated.

Under the Federal Credit Reform Act (FCRA), federal loan guarantees cannot be provided without an authorized level in an appropriations act. The Senate-passed version of omnibus energy legislation in the 110th Congress (H.R. 6) would have explicitly eliminated FCRA’s applicability to DOE’s planned loan guarantees under EPACT05 (Section 124(b)). That provision would have given DOE essentially unlimited loan guarantee authority for guarantees whose subsidy costs were paid by project sponsors, but it was dropped from the final legislation (P.L. 110-140). Similar language has been included in subsequent legislative proposals, such as energy legislation reported by the Senate Committee on Energy and Natural Resources July 16, 2009 (S. 1462).

Pursuant to FCRA, the FY2007 continuing resolution (P.L. 110-5) established an initial cap of $4 billion on loan guarantees under the program, without allocating that amount among the various eligible technologies. The explanatory statement for the FY2008 omnibus funding act (P.L. 110-161) increased the loan guarantee ceiling to $38.5 billion through FY2009, including $18.5 billion specifically for nuclear power plants and $2 billion for uranium enrichment plants.42

The FY2009 omnibus funding act increased DOE’s total loan guarantee authority to $47 billion, in addition to the $4 billion authorized in FY2007. Of the $47 billion, $18.5 billion continued to be reserved for nuclear power, $18.5 was for energy efficiency and renewables, $6 billion was for coal, $2 billion was for carbon capture and sequestration, and $2 billion was for uranium enrichment. The time limits on the loan guarantee authority were eliminated. The loan guarantee ceilings remain the same for FY2010, but, as noted above, the FY2011 budget request would allow an additional $36 billion in nuclear loan guarantees. The Kerry-Lieberman discussion draft would raise the nuclear loan guarantee ceiling to $54 billion, similar to the Administration request.

DOE issued a solicitation for up to $20.5 billion in nuclear power and uranium enrichment plant loan guarantees on June 30, 2008.43 According to the nuclear industry, 10 nuclear power projects are currently seeking $93.2 billion in loan guarantees, and two uranium enrichment projects are asking for $4.8 billion in guarantees, several times the amount available.44 Under the program’s regulations, a conditional loan guarantee commitment cannot become a binding loan guarantee agreement until the project receives a COL and all other regulatory requirements are met; as noted above, the first COLs are not expected until late 2011 at the earliest.

In the uranium enrichment solicitation, DOE in July 2009 informed USEC Inc., which plans to build a new plant in Ohio, that its technology needed further testing before a loan guarantee could be issued.45 DOE notified Congress in March 2010 that it would reprogram $2 billion of its unused FY2007 loan guarantee authority toward uranium enrichment, increasing the uranium

43 http://www.lgprogram.energy.gov/keydocs.html
enrichment total to $4 billion. The move would potentially allow guarantees to be provided to both USEC and the other applicant in the uranium enrichment solicitation, the French firm Areva, which is planning a plant in Idaho.46 DOE offered a $2 billion conditional loan guarantee to Areva on May 20, 2010.47

Global Climate Change

Global climate change that may be caused by carbon dioxide and other greenhouse gas emissions is cited by nuclear power supporters as an important reason to develop a new generation of reactors. Nuclear power plants emit relatively little carbon dioxide, mostly from nuclear fuel production and auxiliary plant equipment. This “green” nuclear power argument has received growing attention in think tanks and academia. As stated by the Massachusetts Institute of Technology in its major study *The Future of Nuclear Power*: “Our position is that the prospect of global climate change from greenhouse gas emissions and the adverse consequences that flow from these emissions is the principal justification for government support of the nuclear energy option.”48

However, environmental groups have contended that nuclear power’s potential greenhouse gas benefits are modest and must be weighed against the technology’s safety risks, its potential for nuclear weapons proliferation, and the hazards of radioactive waste.49 They also contend that energy efficiency and renewable energy would be far more productive investments for reducing greenhouse gas emissions.50

Congressional proposals to reduce carbon dioxide emissions, either through taxation or a cap-and-trade system, could significantly increase the cost of generating electricity with fossil fuels and improve the competitive position of nuclear power. Utilities that have applied for nuclear power plant licenses have often cited the possibility of federal greenhouse gas controls as one of the reasons for pursuing new reactors. (For more on federal incentives and the economics of nuclear power and other electricity generation technologies, see CRS Report RL34746, *Power Plants: Characteristics and Costs*, by Stan Mark Kaplan.)

Nuclear Power Research and Development

The Obama Administration’s FY2011 funding request for nuclear energy research and development totals $824.1 million—including advanced reactors, fuel cycle technology, and infrastructure support. The total nuclear energy request is 4.8% above the FY2010 appropriation. An additional $88.2 million was requested under Other Defense Activities for DOE’s Office of

According to DOE’s FY2011 budget justification, the nuclear energy R&D program includes “generation, safety, waste storage and management, and security technologies, to help meet energy and climate goals.” However, opponents have criticized DOE’s nuclear research program as providing wasteful subsidies to an industry that they believe should be phased out as unacceptably hazardous and economically uncompetitive.

Although total funding in the FY2011 nuclear energy request is similar to levels in previous years, the Obama Administration has significantly reorganized the budget request and established new priorities. The Nuclear Power 2010 Program, which assisted the near-term design and licensing of new nuclear power plants, was considered completed in FY2010 and is to receive no further funding. However, a newly established Reactor Concepts Research, Development and Demonstration Program would include new programs to develop small modular reactors and extend the lives and improve the operation of existing commercial nuclear power plants.

Fuel Cycle Research and Development would be boosted 47.8%, to $201 million, and continue last year’s shift away from the design and construction of nuclear fuel recycling facilities toward an emphasis on longer-term research. Much of the additional funding is to be used for research on spent nuclear fuel disposal and nuclear fuel cycle options, such as partial recycling.

The FY2011 budget request would also establish a new program area called Nuclear Energy Enabling Technologies (NEET), to be funded at $99.3 million. This program area would include research that would support a variety of nuclear technologies, advanced nuclear power concepts, and modeling and simulation. Generation IV Research and Development, previously funded as a separate program to develop advanced reactor technology, would be split between NEET and Reactor Concepts RD&D.

Funding for university nuclear education and research, previously provided under the Integrated University Program, is to be continued at the same level, $5 million, under the DOE-wide RE-ENERGYSE initiative.\footnote{Regaining our Energy Science and Engineering Edge.} The budget request also includes $3 million for International Nuclear Energy Cooperation, including ongoing international activities by the Global Nuclear Energy Partnership (GNEP), which have continued despite a major refocusing of the domestic portion of the program.

The Administration’s FY2011 nuclear R&D budget request is consistent with DOE’s \textit{Nuclear Energy Research and Development Roadmap} issued in April 2010.\footnote{Department of Energy, \textit{Nuclear Energy Research and Development Roadmap}, Report to Congress, Washington, DC, (continued...)} The Roadmap lays out the following four main goals for the program:

\begin{itemize}
\item Nuclear Energy Policy
\end{itemize}
Nuclear Energy Policy

- Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors;
- Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals;
- Develop sustainable nuclear fuel cycles; and
- Understand and minimize the risks of nuclear proliferation and terrorism.

Reactor Concepts

The Reactor Concepts RD&D program area proposed by the FY2011 budget request would include the existing Next Generation Nuclear Plant (NGNP) demonstration project and research on advanced reactors previously funded under the Generation IV program. New programs would also be established to develop small modular reactors and enhance the “sustainability” of existing commercial nuclear plants. The total funding request for Reactor Concepts RD&D is $195 million, which the Senate Appropriations Committee reduced to $188.5 million.

NGNP is a high-temperature gas-cooled reactor demonstration project authorized by the Energy Policy Act of 2005 (EPACT05). The reactor is intended to produce high-temperature heat that could be used to generate electricity, help separate hydrogen from water, or be used in other industrial processes. The Obama Administration’s first budget request (for FY2010) had not specifically mentioned the NGNP project, but the House Appropriations Committee called it a high priority, and Congress ultimately provided $169 million. The FY2011 budget request would provide $103 million for NGNP, including high-temperature fuel development, process heat applications, and materials testing. DOE on March 8, 2010, announced the selection of two industry teams to receive cost-shared awards totaling $40 million to develop NGNP conceptual designs. The conceptual design work was to be completed in FY2010, after which DOE is to make a decision on moving forward to final design and construction. If the project goes forward, a cost-shared contract for final design and construction is not expected to be awarded before FY2012, and therefore no design funds are being requested for FY2011. The Senate Appropriations Committee recommended $85 million for NGNP and called for greater cost sharing with industry.

The newly established Advanced Reactor Concepts program, with a funding request of $21.9 million, is described by the budget justification as “an expanded version” of the existing Generation IV Nuclear Energy Systems program. “The program will focus on reactors that could dramatically improve performance in sustainability, safety, economics, security, and proliferation resistance,” according to the justification. Nuclear technology development under this program is to include “fast reactors,” using high-energy neutrons, and reactors that would use a variety of heat-transfer fluids, such as liquid sodium. International research collaboration in this area would continue under the Generation IV International Forum (GIF).

(continued)

DOE’s proposed Light Water Reactor Sustainability Program, to receive $25.8 million, would conduct research on extending the life of existing commercial light water reactors beyond 60 years, the maximum operating period currently licensed by the Nuclear Regulatory Commission. The program is to study the aging of reactor materials and analyze safety margins of aging plants. Other research under this program is to focus on improving the efficiency of existing plants, through such measures as increasing plant capacity and upgrading instrumentation and control systems. The Senate Appropriations Committee “expects a high cost share from industry” for this program.

Small Modular Reactors

Rising cost estimates for large conventional nuclear reactors—widely projected to be $6 billion or more—have contributed to growing interest in proposals for small modular reactors (SMRs). Ranging from about 40 to 350 megawatts of electrical capacity, such reactors would be only a fraction of the size of current commercial reactors. Several modular reactors would be installed together to make up a power block with a single control room, under most concepts. Current SMR proposals would use a variety of technologies, including high-temperature gas technology in the NGNP program and the light water (LWR) technology used by today’s commercial reactors.

DOE is requesting $38.9 million for its proposed Small Modular Reactors Program for FY2011 as part of the Reactor Concepts RD&D program area. DOE plans to hold a competitive solicitation to award cost-shared financial assistance to as many as two SMR designs, according to the FY2011 budget justification. The program would be similar to DOE’s support for larger commercial reactor designs under the Nuclear Power 2010 Program, which is ending during FY2010. DOE would provide support for design certification, standards, and licensing. Legislation to authorize the program (S. 2812) was introduced by Senator Bingaman November 20, 2009. For FY2011, the Senate Appropriations Committee increased funding for the SMR program to $50 million, although noting that SMRs using standard light water reactor technology “are unlikely to lessen the nuclear waste issues facing the country.”

The Senate Appropriations Committee included instructions in its report on the FY2010 Energy and Water Appropriations Act that NRC use carryover funds to “support license application reviews of any new reactor designs, including modular reactors.” NRC held a two-day workshop on small modular reactor licensing in early October 2009.

Small modular reactors would go against the overall trend in nuclear power technology toward ever-larger reactors intended to spread construction costs over a greater output of electricity. Proponents of small reactors contend that they would be economically viable despite their far lower electrical output because modules could be assembled in factories and shipped to plant sites, and because their smaller size would allow for simpler safety systems. In addition, although modular plants might have similar or higher costs per kilowatt-hour than large conventional reactors, their ability to be constructed in smaller increments could reduce the financial commitment and risk to electric utilities.

Fuel Cycle Research and Development

The Fuel Cycle Research and Development Program conducts “long-term, science-based” research on a wide variety of technologies for improving the management of spent nuclear fuel,
Nuclear Energy Policy

according to the DOE budget justification. The total FY2011 funding request for this program is $201 million, $65 million above the FY2010 appropriation. The Senate Appropriations Committee recommended $191 million.

Under the George W. Bush Administration, when the program was called the Advanced Fuel Cycle Initiative (AFCI), it had focused on near-term development and deployment of a specific type of spent fuel reprocessing technology, UREX, which was intended to recycle plutonium, uranium, and other long-lived radioactive materials into new nuclear fuel. AFCI had constituted the domestic portion of the Bush Administration’s GNEP initiative, which had been intended to provide secure nuclear fuel services to discourage the international spread of nuclear fuel cycle technology.

Under the Obama Administration, the program will develop technology options for a wider range of nuclear fuel cycle approaches, including direct disposal of spent fuel (the “once through” cycle) and partial and full recycling, according to the justification. “The program will also conduct scientific research and technology development to enable storage, transportation, and disposal of used nuclear fuel and all radioactive wastes generated by existing and future nuclear fuel cycles,” according to the justification.

Much of the planned research on spent fuel management options will support the newly created Blue Ribbon Commission on America’s Nuclear Future, which is to develop alternatives to the planned Yucca Mountain, NV, spent fuel repository, which President Obama wants to terminate. In addition to researching potential waste treatment technologies and approaches that may be considered by the Blue Ribbon Commission, the program will study “a variety of geologic disposal media such as granite, tuff, deep boreholes, clay, shale, salt, and basalt,” according to the justification.

Other major research areas in the Fuel Cycle R&D Program include the development of advanced fuels for existing commercial reactors and advanced reactors, improvements in nuclear waste characteristics, and modeling and simulation of fuel cycle options. The Senate Appropriations Committee recommended $40 million for advanced fuels, including $7 million for high-burnup ceramic clad fuels to be 50% cost-shared with industry.

(For more information about nuclear reprocessing, see CRS Report RL34579, Advanced Nuclear Power and Fuel Cycle Technologies: Outlook and Policy Options, by Mark Holt.)

Nuclear Energy Enabling Technologies

The newly established NEET program is intended to conduct research on “the full range of nuclear energy technology issues,” according to the DOE budget justification. Total funding for the program in FY2011 would be $99.3 million. The Senate Appropriations Committee recommended cutting the Administration’s request for NEET from $99.3 million to $62 million.

Under the category of Crosscutting Technology Development, research is to be conducted on new types of reactor materials, weapons proliferation risks of fuel cycle options, advanced nuclear plant manufacturing methods, and advanced sensors and instrumentation. The Energy Innovation Hub for Modeling and Simulation, created in FY2010, would be moved from the Generation IV program to NEET with a slight increase in funding, to $24.3 million. The Modeling and Simulation Hub would create a computer model of an operating reactor to allow a better
understanding of nuclear technology, with the benefits of such modeling extending to other energy technologies in the future, according to the justification.

An initiative called Transformative Nuclear Concepts Research and Development would provide competitive support to “investigator-initiated projects that relate to any aspect of nuclear energy generation,” according to the budget justification. Awards would be available to national laboratories, universities, research institutions, and industry. The funding request for this initiative is $28.9 million. The Senate panel recommended zero funding for this activity, calling it redundant with other nuclear R&D programs in the budget.

Nuclear Power Plant Safety and Regulation

Safety

Safety has been a persistent concern about nuclear power, particularly following the March 1979 Three Mile Island accident in Pennsylvania and the April 1986 Chernobyl disaster in the former Soviet Union. In the United States, safety-related shortcomings have been identified in the construction quality of some plants, plant operation and maintenance, equipment reliability, emergency planning, and other areas. In one serious case, it was discovered in March 2002 that leaking boric acid had eaten a large cavity in the top of the reactor vessel in Ohio’s Davis-Besse nuclear plant. The corrosion left only the vessel’s quarter-inch-thick stainless steel inner liner to prevent a potentially catastrophic loss of reactor cooling water. Davis-Besse remained closed for repairs and other safety improvements until NRC allowed the reactor to restart in March 2004.

NRC’s oversight of the nuclear industry is an ongoing congressional issue; nuclear utilities often complain that they are subject to overly rigorous and inflexible regulation, but nuclear critics charge that NRC frequently relaxes safety standards when compliance may prove difficult or costly to the industry.

Domestic Reactor Safety

In terms of public health consequences, the safety record of the U.S. nuclear power industry in comparison with other major commercial energy technologies has been excellent. During approximately 3,160 reactor-years of operation in the United States, the only incident at a commercial nuclear power plant that might lead to any deaths or injuries to the public has been the Three Mile Island accident, in which more than half the reactor core melted. A study of 32,000 people living within 5 miles of the reactor when the accident occurred found no significant increase in cancer rates through 1998, although the authors noted that some potential health effects “cannot be definitively excluded.”

55 *Nuclear Engineering International*, “Average 12-Month Load Factor and Average Lifetime Load Factor by Country to the End March 2010,” August 2010, p.32.

The relatively small amounts of radioactivity released by nuclear plants during normal operation are not generally believed to pose significant hazards, although some groups contend that routine emissions are unacceptably risky. There is substantial scientific uncertainty about the level of risk posed by low levels of radiation exposure; as with many carcinogens and other hazardous substances, health effects can be clearly measured only at relatively high exposure levels. In the case of radiation, the assumed risk of low-level exposure has been extrapolated mostly from health effects documented among persons exposed to high levels of radiation, particularly Japanese survivors of nuclear bombing in World War II.

NRC announced April 7, 2010, that it had asked the National Academy of Sciences (NAS) to “perform a state-of-the-art study on cancer risk for populations surrounding nuclear power facilities.” Unlike in previous studies, NAS is to examine cancer diagnosis rates, rather than cancer deaths, potentially increasing the amount of data. The new study would also use geographic units smaller than counties to determine how far members of the study group are located from reactors, to more clearly determine whether there is a correlation between cancer cases and distance from reactors.57

NRC’s safety regulations are designed to keep the probability of accidental core damage (fuel melting) below one in 10,000 per year for each reactor. The regulations also are intended to ensure that reactor containments would be successful at least 90% of the time in preventing major radioactive releases during a core-damage accident. Therefore, the probability of a major release at any given reactor is intended to be below one in 100,000 per year.58 (For the current U.S. fleet of about 100 reactors, that rate would yield an average of one core-damage accident every 100 years and a major release every 1,000 years.) On the other hand, some groups challenge the complex calculations that go into predicting such accident frequencies, contending that accidents with serious public health consequences may be more frequent.59

Reactor Safety in the Former Soviet Bloc

The Chernobyl accident was by far the worst nuclear power plant accident to have occurred anywhere in the world. At least 31 persons died quickly from acute radiation exposure or other injuries, and thousands of additional cancer deaths among the tens of millions of people exposed to radiation from the accident may occur during the next several decades.

According to a 2006 report by the Chernobyl Forum organized by the International Atomic Energy Agency, the primary observable health consequence of the accident was a dramatic increase in childhood thyroid cancer. The Chernobyl Forum estimated that about 4,000 cases of thyroid cancer have occurred in children who after the accident drank milk contaminated with high levels of radioactive iodine, which concentrates in the thyroid. Although the Chernobyl Forum found only 15 deaths from those thyroid cancers, it estimated that about 4,000 other cancer deaths may have occurred among the 600,000 people with the highest radiation exposures,

plus an estimated 1% increase in cancer deaths among persons with less exposure. The report estimated that about 77,000 square miles were significantly contaminated by radioactive cesium.60 Greenpeace issued a report in 2006 estimating that 200,000 deaths in Belarus, Russia, and Ukraine resulted from the Chernobyl accident between 1990 and 2004.61

Licensing and Regulation

For many years, a top priority of the nuclear industry was to modify the process for licensing new nuclear plants. No electric utility would consider ordering a nuclear power plant, according to the industry, unless licensing became quicker and more predictable, and designs were less subject to mid-construction safety-related changes required by NRC. The Energy Policy Act of 1992 (P.L. 102-486) largely implemented the industry’s licensing goals.

Nuclear plant licensing under the Atomic Energy Act of 1954 (P.L. 83-703; U.S.C. 2011-2282) had historically been a two-stage process. NRC first issued a construction permit to build a plant and then, after construction was finished, an operating license to run it. Each stage of the licensing process involved complicated proceedings. Environmental impact statements also are required under the National Environmental Policy Act.

Over the vehement objections of nuclear opponents, the Energy Policy Act of 1992 provided a clear statutory basis for one-step nuclear licenses. Under the new process, NRC can issue combined construction permits and operating licenses (COLs) and allow completed plants to operate without delay if they meet all construction requirements—called “inspections, tests, analyses, and acceptance criteria,” or ITAAC. NRC would hold preoperational hearings on the adequacy of plant construction only in specified circumstances.

DOE’s Nuclear Power 2010 program had paid up to half the cost of several COLs and early site permits to test the revised licensing procedures. However, the COL process cannot be fully tested until construction of new reactors is completed. At that point, it could be seen whether completed plants will be able to operate without delays or whether adjudicable disputes over construction adequacy may arise. As discussed above, Section 638 of the Energy Policy Act of 2005 authorizes federal payments to the owner of a completed reactor whose operation is delayed by regulatory action. The nuclear industry is asking Congress to require NRC to use informal procedures in determining whether ITAAC have been met, eliminate mandatory hearings on uncontested issues before granting a COL, and make other changes in the licensing process.62 The May 12 Kerry-Lieberman discussion draft includes the industry’s proposal to eliminate the mandatory hearing requirement on uncontested issues.

A fundamental concern in the nuclear regulatory debate is the performance of NRC in issuing and enforcing nuclear safety regulations. The nuclear industry and its supporters have regularly complained that unnecessarily stringent and inflexibly enforced nuclear safety regulations have burdened nuclear utilities and their customers with excessive costs. But many environmentalists,

nuclear opponents, and other groups charge NRC with being too close to the nuclear industry, a
situation that they say has resulted in lax oversight of nuclear power plants and routine
exemptions from safety requirements.

Primary responsibility for nuclear safety compliance lies with nuclear plant owners, who are
required to find any problems with their plants and report them to NRC. Compliance is also
monitored directly by NRC, which maintains at least two resident inspectors at each nuclear
power plant. The resident inspectors routinely examine plant systems, observe the performance of
reactor personnel, and prepare regular inspection reports. For serious safety violations, NRC often
dispatches special inspection teams to plant sites.

In response to congressional criticism, NRC has reorganized and overhauled many of its
procedures. The Commission has moved toward “risk-informed regulation,” in which safety
enforcement is guided by the relative risks identified by detailed individual plant studies. NRC’s
risk-informed reactor oversight system, inaugurated April 2, 2000, relies on a series of
performance indicators to determine the level of scrutiny that each reactor should receive.63

Reactor Security

Nuclear power plants have long been recognized as potential targets of terrorist attacks, and
critics have long questioned the adequacy of requirements for nuclear plant operators to defend
against such attacks. All commercial nuclear power plants licensed by NRC have a series of
physical barriers against access to vital reactor areas and are required to maintain a trained
security force to protect them.

A key element in protecting nuclear plants is the requirement that simulated terrorist attacks,
monitored by NRC, be carried out to test the ability of the plant operator to defend against them.
The severity of attacks to be prepared for is specified in the “design basis threat” (DBT).

EPACT05 required NRC to revise the DBT based on an assessment of terrorist threats, the
potential for multiple coordinated attacks, possible suicide attacks, and other criteria. NRC
approved the DBT revision based on those requirements on January 29, 2007. The revised DBT
does not require nuclear power plants to defend against deliberate aircraft attacks. NRC
contended that nuclear facilities were already required to mitigate the effects of large fires and
explosions, no matter what the cause, and that active protection against airborne threats was being
addressed by U.S. military and other agencies.64 After much consideration, NRC voted February
17, 2009, to require all new nuclear power plants to incorporate design features that would ensure
that, in the event of a crash by a large commercial aircraft, the reactor core would remain cooled
or the reactor containment would remain intact, and radioactive releases would not occur from
spent fuel storage pools.65 The rule change was published in the Federal Register June 12, 2009.66

63 For more information about the NRC reactor oversight process, see http://www.nrc.gov/NRR/OVERSIGHT/
ASSESS/index.html.
64 NRC Office of Public Affairs, NRC Approves Final Rule Amending Security Requirements, News Release No. 07-
65 Nuclear Regulatory Commission, Final Rule—Consideration of Aircraft Impacts for New Nuclear Power Reactors,
Commission Voting Record, SECY-08-0152, February 17, 2009.
66 Nuclear Regulatory Commission, “Consideration of Aircraft Impacts for New Nuclear Power Reactors,” Final Rule,
74 Federal Register 28111, June 12, 2009. This provision is codified at 10 CFR 50.150.
NRC rejected proposals that existing reactors also be required to protect against aircraft crashes, such as by adding large external steel barriers. However, NRC did impose some additional requirements related to aircraft crashes on all reactors, both new and existing, after the 9/11 terrorist attacks of 2001. In 2002, as noted above, NRC ordered all nuclear power plants to develop strategies to mitigate the effects of large fires and explosions that could result from aircraft crashes or other causes. An NRC regulation on fire mitigation strategies, along with requirements that reactors establish procedures for responding to specific aircraft threats, was approved December 17, 2008. The fire mitigation rules were published in the Federal Register March 27, 2009.

Other ongoing nuclear plant security issues include the vulnerability of spent fuel pools, which hold highly radioactive nuclear fuel after its removal from the reactor, standards for nuclear plant security personnel, and nuclear plant emergency planning. NRC’s March 2009 security regulations addressed some of those concerns and included a number of other security enhancements.

EPACT05 required NRC to conduct force-on-force security exercises at nuclear power plants every three years (which was NRC’s previous policy), authorized firearms use by nuclear security personnel (preempting some state restrictions), established federal security coordinators, and required fingerprinting of nuclear facility workers.

(For background on security issues, see CRS Report RL34331, Nuclear Power Plant Security and Vulnerabilities, by Mark Holt and Anthony Andrews.)

Decommissioning

When nuclear power plants reach the end of their useful lives, they must be safely removed from service, a process called decommissioning. NRC requires nuclear utilities to make regular contributions to special trust funds to ensure that money is available to remove radioactive material and contamination from reactor sites after they are closed.

The first full-sized U.S. commercial reactors to be decommissioned were the Trojan plant in Oregon, whose decommissioning completion received NRC approval on May 23, 2005, and the Maine Yankee plant, for which NRC approved most of the site cleanup on October 3, 2005. The Trojan decommissioning cost $429 million, according to reactor owner Portland General Electric, and the Maine Yankee decommissioning cost about $500 million. Decommissioning of the Connecticut Yankee plant cost $790 million and was approved by NRC on November 26, 2007. NRC approved the cleanup of the decommissioned Rancho Seco reactor site in California on

70 E-mail communication from Bob Capstick, Connecticut Yankee Atomic Power Company, August 28, 2008.
October 7, 2009. The decommissioning of Rancho Seco was estimated to cost $500 million, excluding future demolition of the cooling towers and other remaining plant structures.

After nuclear reactors are decommissioned, the spent nuclear fuel (SNF) accumulated during their operating lives remains stored in pools or dry casks at the plant sites. About 2,800 metric tons of spent fuel is currently stored at nine closed nuclear power plants. “Until this SNF is removed from these nine sites, the sites cannot be fully decommissioned and made available for other purposes,” DOE noted in a 2008 report. President Obama’s decision to terminate development of an underground spent fuel repository at Yucca Mountain, NV, has increased concerns about the ultimate disposition of spent fuel at decommissioned sites.

Nuclear Accident Liability

Liability for damages to the general public from nuclear incidents is addressed by the Price-Anderson Act (primarily Section 170 of the Atomic Energy Act of 1954, 42 U.S.C. 2210). EPACT05 extended the availability of Price-Anderson coverage for new reactors and new DOE nuclear contracts through the end of 2025. (Existing reactors and contracts were already covered.)

Under Price-Anderson, the owners of commercial reactors must assume all liability for nuclear damages awarded to the public by the court system, and they must waive most of their legal defenses following a severe radioactive release (“extraordinary nuclear occurrence”). To pay any such damages, each licensed reactor with at least 100 megawatts of electric generating capacity must carry the maximum liability insurance reasonably available, which was raised from $300 million to $375 million on January 1, 2010. Any damages exceeding $375 million are to be assessed equally against all 100-megawatt-and-above power reactors, up to $111.9 million per reactor. Those assessments—called “retrospective premiums”—would be paid at an annual rate of no more than $17.5 million per reactor, to limit the potential financial burden on reactor owners following a major accident. According to NRC, all 104 commercial reactors are currently covered by the Price-Anderson retrospective premium requirement.

For each nuclear incident, the Price-Anderson liability system currently would provide up to $12.6 billion in public compensation. That total includes the $375 million in insurance coverage carried by the reactor that suffered the incident, plus the $111.9 million in retrospective premiums from each of the 104 currently covered reactors, totaling $12.0 billion. On top of those payments, a 5% surcharge may also be imposed, raising the total per-reactor retrospective premium to $117.5 million and the total available compensation to about $12.6 billion. Under Price-Anderson, owners of commercial reactors must assume all liability for nuclear damages awarded to the public by the court system, and they must waive most of their legal defenses following a severe radioactive release (“extraordinary nuclear occurrence”). To pay any such damages, each licensed reactor with at least 100 megawatts of electric generating capacity must carry the maximum liability insurance reasonably available, which was raised from $300 million to $375 million on January 1, 2010. Any damages exceeding $375 million are to be assessed equally against all 100-megawatt-and-above power reactors, up to $111.9 million per reactor. Those assessments—called “retrospective premiums”—would be paid at an annual rate of no more than $17.5 million per reactor, to limit the potential financial burden on reactor owners following a major accident. According to NRC, all 104 commercial reactors are currently covered by the Price-Anderson retrospective premium requirement.

75 Reactors smaller than 100 megawatts must purchase an amount of liability coverage determined by NRC but are not subject to retrospective premiums. Total liability for those reactors is limited to $560 million, with the federal government indemnifying reactor operators for the difference between that amount and their liability coverage (Atomic Energy Act sec. 170 b. and c.).
Anderson, the nuclear industry’s liability for an incident is capped at that amount, which varies depending on the number of covered reactors, the amount of available insurance, and an inflation adjustment. Payment of any damages above that liability limit would require congressional approval under special procedures in the act.

EPACT05 increased the limit on per-reactor annual payments to $15 million from the previous $10 million, and required the annual limit to be adjusted for inflation every five years. As under previous law, the total retrospective premium limit is adjusted every five years as well. Both the annual and total limits were most recently adjusted October 29, 2008. For the purposes of those payment limits, a nuclear plant consisting of multiple small reactors (100-300 megawatts, up to a total of 1,300 megawatts) would be considered a single reactor. Therefore, a power plant with six 120-megawatt pebble-bed modular reactors would be liable for retrospective premiums of up to $111.9 million, rather than $671.4 million (excluding the 5% surcharge).

The Price-Anderson Act also covers contractors who operate hazardous DOE nuclear facilities. EPACT05 set the liability limit on DOE contractors at $10 billion per accident, to be adjusted for inflation every five years. The first adjustment under EPACT, raising the liability limit to $11.961 billion, took effect October 14, 2009. The liability limit for DOE contractors previously had been the same as for commercial reactors, excluding the 5% surcharge, except when the limit for commercial reactors dropped because of a decline in the number of covered reactors. Price-Anderson authorizes DOE to indemnify its contractors for the entire amount of their liability, so that damage payments for nuclear incidents at DOE facilities would ultimately come from the Treasury. However, the law also allows DOE to fine its contractors for safety violations, and contractor employees and directors can face criminal penalties for “knowingly and willfully” violating nuclear safety rules.

EPACT05 limited the civil penalties against a nonprofit contractor to the amount of management fees paid under that contract. Previously, Atomic Energy Act §234A specifically exempted seven nonprofit DOE contractors and their subcontractors from civil penalties and authorized DOE to automatically remit any civil penalties imposed on nonprofit educational institutions serving as DOE contractors. EPACT05 eliminated the civil penalty exemption for future contracts by the seven listed nonprofit contractors and DOE’s authority to automatically remit penalties on nonprofit educational institutions.

The Price-Anderson Act’s limits on liability were crucial in establishing the commercial nuclear power industry in the 1950s. Supporters of the Price-Anderson system contend that it has worked well since that time in ensuring that nuclear accident victims would have a secure source of compensation, at little cost to the taxpayer. Extension of the act was widely considered a prerequisite for new nuclear reactor construction in the United States. Opponents contend that Price-Anderson inappropriately subsidizes the nuclear power industry by reducing its insurance costs and protecting it from some of the financial consequences of the most severe conceivable accidents.

The United States is supporting the establishment of an international liability system that, among other purposes, would cover U.S. nuclear equipment suppliers conducting foreign business. The

Constitution on Supplementary Compensation for Nuclear Damage (CSC) will not enter into force until at least five countries with a specified level of installed nuclear capacity have enacted implementing legislation. Such implementing language was included in the Energy Independence and Security Act of 2007 (P.L. 110-140, section 934), signed by President Bush December 19, 2007. Supporters of the Convention hope that more countries will join now that the United States has acted. Aside from the United States, three countries have submitted the necessary instruments of ratification, but the remaining nine countries that so far have signed the convention do not have the required nuclear capacity for it to take effect. Ratification by a large nuclear energy producer such as Japan would allow the treaty to take effect, as would ratification by two significant but smaller producers such as South Korea, Canada, Russia, or Ukraine.

Under the U.S. implementing legislation, the CSC would not change the liability and payment levels already established by the Price-Anderson Act. Each party to the convention would be required to establish a nuclear damage compensation system within its borders analogous to Price-Anderson. For any damages not covered by those national compensation systems, the convention would establish a supplemental tier of damage compensation to be paid by all parties. P.L. 110-140 requires the U.S. contribution to the supplemental tier to be paid by suppliers of nuclear equipment and services, under a formula to be developed by DOE. Supporters of the convention contend that it will help U.S. exporters of nuclear technology by establishing a predictable international liability system. For example, U.S. reactor sales to the growing economies of China and India would be facilitated by those countries’ participation in the CSC liability regime.

Nuclear Waste Management

One of the most controversial aspects of nuclear power is the disposal of radioactive waste, which can remain hazardous for thousands of years. Each nuclear reactor produces an annual average of about 20 metric tons of highly radioactive spent nuclear fuel, for a nationwide total of about 2,000 metric tons per year. U.S. reactors also generate about 40,000 cubic meters of low-level radioactive waste per year, including contaminated components and materials resulting from reactor decommissioning.78

The federal government is responsible for permanent disposal of commercial spent fuel (paid for with a fee on nuclear power production) and federally generated radioactive waste, whereas states have the authority to develop disposal facilities for most commercial low-level waste. Under the Nuclear Waste Policy Act (42 U.S.C. 10101, et seq.), spent fuel and other highly radioactive waste is to be isolated in a deep underground repository, consisting of a large network of tunnels carved from rock that has remained geologically undisturbed for hundreds of thousands of years. As amended in 1987, NWPA designated Yucca Mountain in Nevada as the only candidate site for the national repository. The act required DOE to begin taking waste from nuclear plant sites by 1998—a deadline that even under the most optimistic scenarios will be missed by more than 20 years. DOE filed a license application with NRC for the proposed Yucca Mountain repository in June 2008.

The Obama Administration “has determined that developing the Yucca Mountain repository is not a workable option and the Nation needs a different solution for nuclear waste disposal,” according to the DOE FY2011 budget justification. As a result, no funding for Yucca Mountain or DOE’s Office of Civilian Radioactive Waste Management (OCRWM), which had run the program, was requested for FY2011. DOE filed a motion with NRC to withdraw the Yucca Mountain license application on March 3, 2010. An NRC licensing panel denied DOE’s withdrawal motion June 29, 2010, and the matter is now before the full Commission. The license withdrawal is also being opposed in federal court by states that have defense-related waste awaiting permanent disposal. NRC began closing down its review of the Yucca Mountain license application on October 1, 2011, the start of the new fiscal year, a move that has also sparked controversy.

Alternatives to Yucca Mountain are being evaluated by the Blue Ribbon Commission on America’s Nuclear Future, which was formally established by DOE on March 1, 2010, and held its first meeting March 25-26. Congress provided $5 million for the Commission in the FY2010 Energy and Water Development Appropriations Act.

The FY2010 OCRWM budget request of $198.6 million sought only enough funding to continue the Yucca Mountain licensing process and to evaluate alternative policies, according to DOE. The request was about $90 million below the FY2009 funding level, which was nearly $100 million below the FY2008 level. More than 2,000 waste program contract employees were terminated during FY2009, and the remaining OCRWM staff of about 630 was eliminated along with the office during FY2010.

During consideration of the FY2010 appropriations request, the House agreed with the Administration’s plans to provide funding solely for Yucca Mountain licensing activities and for a blue-ribbon panel to review waste management options. The House approved the Administration budget request, including $5 million for the blue-ribbon review. However, the House-passed bill specified that the review must include Yucca Mountain as one of the alternatives, despite the Administration’s contention that the site should no longer be considered. According to the House Appropriations Committee report, “It might well be the case that an alternative to Yucca Mountain better meets the requirements of the future strategy, but the review does not have scientific integrity without considering Yucca Mountain.” The Senate also recommended approval of the Administration request, but without any restrictions on the blue-ribbon panel, and the House report language was dropped in conference.

Funding for the nuclear waste program in the past has been provided under two appropriations accounts. The Administration’s FY2010 request was divided evenly between an appropriation from the Nuclear Waste Fund, which holds fees paid by nuclear utilities, and the Defense Nuclear Waste Disposal account, which pays for disposal of high-level waste from the nuclear weapons program. The Senate Appropriations Committee report called for the Secretary of Energy to suspend fee collections, “given the Administration’s decision to terminate the Yucca Mountain

repository program while developing disposal alternatives,” but the language was dropped in conference. Energy Secretary Steven Chu in October 2009 rejected requests from the nuclear industry and state utility regulators to suspend the fee, saying the revenues were still necessary, and nuclear utilities and regulators filed lawsuits to stop the fee in April 2010.82

The Yucca Mountain project faces regulatory uncertainty, in addition to the Obama Administration’s policy review. A ruling on July 9, 2004, by the U.S. Court of Appeals for the District of Columbia Circuit overturned a key aspect of the Environmental Protection Agency’s (EPA’s) regulations for the planned repository.83 The three-judge panel ruled that EPA’s 10,000-year compliance period was too short, but it rejected several other challenges to the rules. EPA published new standards on October 15, 2008, that would allow radiation exposure from the repository to increase after 10,000 years.84 The State of Nevada has filed a federal Appeals Court challenge to the EPA standards. (For more information on the EPA standards, see CRS Report RL34698, EPA’s Final Health and Safety Standard for Yucca Mountain, by Bonnie C. Gitlin.)

NWPA required DOE to begin taking waste from nuclear plant sites by January 31, 1998. Nuclear utilities, upset over DOE’s failure to meet that deadline, have won two federal court decisions upholding the department’s obligation to meet the deadline and to compensate utilities for any resulting damages. Utilities have also won several cases in the U.S. Court of Federal Claims. DOE estimates that liability payments would eventually total $11 billion if DOE were to begin removing waste from reactor sites by 2020, the previous target for opening Yucca Mountain.85 (For more information, see CRS Report R40996, The Yucca Mountain Litigation: Liability Under the Nuclear Waste Policy Act (NWPA) of 1982, by Todd Garvey, CRS Report R40202, Nuclear Waste Disposal: Alternatives to Yucca Mountain, by Mark Holt, and CRS Report RL33461, Civilian Nuclear Waste Disposal, by Mark Holt.)

Nuclear Weapons Proliferation

Renewed interest in nuclear power throughout the world has led to increased concern about nuclear weapons proliferation, because technology for making nuclear fuel can also be used to produce nuclear weapons material. Of particular concern are uranium enrichment, a process to separate and concentrate the fissile isotope uranium-235, and nuclear spent fuel reprocessing, which can produce weapons-useable plutonium.

The International Atomic Energy Agency (IAEA) conducts a safeguards program that is intended to prevent civilian nuclear fuel facilities from being used for weapons purposes, but not all potential weapons proliferators belong to the system, and there are ongoing questions about its

effectiveness. Several proposals have been developed to guarantee nations without fuel cycle facilities a supply of nuclear fuel in exchange for commitments to forgo enrichment and reprocessing, which was one of the original goals of the Bush Administration’s Global Nuclear Energy Partnership, now called the International Framework for Nuclear Energy Cooperation.86

Several situations have arisen throughout the world in which ostensibly commercial uranium enrichment and reprocessing technologies have been subverted for military purposes. In 2003 and 2004, it became evident that Pakistani nuclear scientist A.Q. Khan had sold sensitive technology and equipment related to uranium enrichment to states such as Libya, Iran, and North Korea. Although Pakistan’s leaders maintain they did not acquiesce in or abet Khan’s activities, Pakistan remains outside the Nuclear Nonproliferation Treaty (NPT) and the Nuclear Suppliers Group (NSG). Iran has been a direct recipient of Pakistani enrichment technology.

IAEA’s Board of Governors found in 2005 that Iran’s breach of its safeguards obligations constituted noncompliance with its safeguards agreement, and referred the case to the U.N. Security Council in February 2006. Despite repeated calls by the U.N. Security Council for Iran to halt enrichment and reprocessing-related activities, and imposition of sanctions, Iran continues to develop enrichment capability at Natanz and at a site near Qom disclosed in September 2009. Iran insists on its inalienable right to develop the peaceful uses of nuclear energy, pursuant to Article IV of the NPT. Interpretations of this right have varied over time. Former IAEA Director General Mohamed ElBaradei did not dispute this inalienable right and, by and large, neither have U.S. government officials. However, the case of Iran raises perhaps the most critical question in this decade for strengthening the nuclear nonproliferation regime: How can access to sensitive fuel cycle activities (which could be used to produce fissile material for weapons) be circumscribed without further alienating non-nuclear weapon states in the NPT?

Leaders of the international nuclear nonproliferation regime have suggested ways of reining in the diffusion of such inherently dual-use technology, primarily through the creation of incentives not to enrich uranium or reprocess spent fuel. The international community is in the process of evaluating those proposals and may decide upon a mix of approaches. At the same time, there is debate on how to improve the IAEA safeguards system and its means of detecting diversion of nuclear material to a weapons program in the face of expanded nuclear power facilities worldwide.

(For more information, see CRS Report RL34234, Managing the Nuclear Fuel Cycle: Policy Implications of Expanding Global Access to Nuclear Power, coordinated by Mary Beth Nikitin; and CRS Report R41216, 2010 Non-Proliferation Treaty (NPT) Review Conference: Key Issues and Implications, coordinated by Paul K. Kerr and Mary Beth Nikitin.)

Federal Funding for Nuclear Energy Programs

The following tables summarize current funding for DOE nuclear energy programs and NRC. The sources for the funding figures are Administration budget requests and committee reports on the Energy and Water Development Appropriations Acts, which fund DOE and NRC. FY2009 funding for energy and water programs was included in the Omnibus Appropriations Act for

86 The organization approved a new mission statement with the name change at its June 2010 meeting in Ghana. See http://www.gneppartnership.org.
FY2009 (P.L. 111-8), signed March 11, 2009. Detailed funding tables for the act are provided by the Committee Print of the House Committee on Appropriations on H.R. 1105. FY2010 funding is included in the Energy and Water Development and Related Agencies Appropriations Act, 2010 (P.L. 111-85, H.Rept. 111-278), signed October 28, 2009. The FY2011 DOE funding request for nuclear energy has been significantly reorganized, as discussed in the earlier section on Nuclear Energy Research and Development. The Senate Appropriations Committee approved an FY2011 Energy and Water Development funding bill on July 22, 2010 (S. 3635, S.Rept. 111-228). The House Appropriations Committee’s Energy and Water Development Subcommittee approved its version of the measure on July 15, 2010.87 Pending final congressional action, FY2011 funding is currently being provided under a short-term continuing resolution (P.L. 111-242).

Table 2. Funding for the Nuclear Regulatory Commission

(budget authority in millions of current dollars)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor Safety</td>
<td>788.3</td>
<td>806.8</td>
<td>804.1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Nuclear Materials and Waste</td>
<td>197.3</td>
<td>220.2</td>
<td>229.4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Yucca Mountain Licensing</td>
<td>49.0</td>
<td>29.0</td>
<td>10.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Inspector General</td>
<td>10.9</td>
<td>10.9</td>
<td>10.1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Total NRC budget authority</td>
<td>1,045.5</td>
<td>1,066.9</td>
<td>1,053.6</td>
<td>—</td>
<td>1064.3</td>
</tr>
<tr>
<td>—Offsetting fees</td>
<td>-870.6</td>
<td>-912.2</td>
<td>-915.3</td>
<td>—</td>
<td>924.3</td>
</tr>
<tr>
<td>Net appropriation</td>
<td>174.9</td>
<td>154.7</td>
<td>138.3</td>
<td>—</td>
<td>140.0</td>
</tr>
</tbody>
</table>

a. Not available.
b. Not specified.

Table 3. DOE Funding for Nuclear Activities

(budget authority in millions of current dollars)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>University programs</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>—</td>
<td>5.0</td>
</tr>
<tr>
<td>Nuclear Power 2010</td>
<td>177.5</td>
<td>105.0</td>
<td>0</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>Generation IV Nuclear Systems</td>
<td>178.6</td>
<td>220.1</td>
<td>0</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>Reactor Concepts</td>
<td>195.0</td>
<td>—</td>
<td>188.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nuclear Hydrogen Initiative</td>
<td>7.4</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>Fuel Cycle R&D</td>
<td>142.6</td>
<td>136.0</td>
<td>201.0</td>
<td>—</td>
<td>191.0</td>
</tr>
<tr>
<td>Nuclear Energy Enabling Technologies</td>
<td>99.3</td>
<td>—</td>
<td>62.0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>International Nuclear Power Programs</td>
<td>3.0</td>
<td>—</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiological Facilities Management</td>
<td>66.1</td>
<td>72.0</td>
<td>66.8</td>
<td>—</td>
<td>61.8</td>
</tr>
<tr>
<td>Idaho Facilities Management</td>
<td>140.0</td>
<td>173.0</td>
<td>162.5</td>
<td>—</td>
<td>173.0</td>
</tr>
<tr>
<td>Program Direction</td>
<td>73.0</td>
<td>73.0</td>
<td>91.5</td>
<td>—</td>
<td>91.5</td>
</tr>
<tr>
<td>Total, Nuclear Energy<sup>b</sup></td>
<td>791.4</td>
<td>786.6</td>
<td>824.1</td>
<td>824.1</td>
<td>783.2</td>
</tr>
<tr>
<td>Civilian Nuclear Waste Disposal<sup>c</sup></td>
<td>288.4</td>
<td>196.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

a. Not available.
b. Excludes funding provided under other accounts.
c. Funded by a 1-mill-per-kilowatt-hour fee on nuclear power, plus appropriations for defense waste disposal and homeland security.

Legislation in the 111th Congress

H.R. 513 (Forbes)

New Manhattan Project for Energy Independence. Establishes program to develop new energy-related technologies, including treatment of nuclear waste. Introduced January 14, 2009; referred to Committee on Science and Technology.

H.R. 1698 (Van Hollen)

Establishes a Green Bank to finance qualified clean energy projects. Nuclear power projects could receive financing only after exhausting all other existing federal financial support. Introduced March 24, 2009; referred to Committees on Ways and Means and Energy and Commerce.

H.R. 1812 (Bachmann)

H.R. 1936 (Lowey)

Nuclear Power Licensing Reform Act of 2009. Expands requirements for nuclear plant evacuation plans from a 10-mile radius to a 50-mile radius and makes reactor license renewals subject to the same criteria as a new plant. Introduced April 2, 2009; referred to Committee on Energy and Commerce.
H.R. 1937 (Lowey)
Requires NRC to distribute safety-related fines imposed on a nuclear plant to surrounding counties to help pay for emergency planning. Introduced April 2, 2009; referred to Committee on Energy and Commerce.

H.R. 2454 (Waxman)

H.R. 2768 (Wamp)
Declares that any reference to clean energy in federal law shall be considered to include nuclear energy. Introduced June 9, 2009; referred to Committee on Energy and Commerce.

H.R. 2828 (Bishop)
American Energy Innovation Act. Amends EPACT Title XVII loan guarantee provisions, modifies DOE standby support program for new reactors, reauthorizes the Nuclear Power 2010 program, establishes a tax credit for investments in manufacturing capacity for nuclear plant components, allows the Nuclear Waste Fund to be used for spent fuel reprocessing, modifies reactor licensing requirements, establishes an investment tax credit for nuclear power plants, authorizes temporary spent fuel storage agreements, requires DOE to offer to settle lawsuits for nuclear waste disposal delays, prohibits NRC from considering nuclear waste storage when licensing new nuclear facilities, and prohibits new waste facilities authorized under the act from being located in Nevada. Introduced June 11, 2009; referred to multiple committees.

H.R. 2846 (Boehner)
American Energy Act. Requires expedited procedures for nuclear plant licensing, establishes goal of licensing 100 new reactors by 2030, establishes uranium reserve, requires continued development of the Yucca Mountain repository unless it is found scientifically unsuitable, removes the statutory limit on Yucca Mountain disposal capacity, allows the Nuclear Waste Fund to be used for reprocessing, requires NRC to determine that sufficient waste disposal capacity will be available for proposed new reactors, establishes a National Nuclear Energy Council to advise the Secretary of Energy, and provides investment tax credit for nuclear power plants. Introduced June 12, 2009; referred to multiple committees.

H.R. 3009 (Ross)
H.R. 3183 (Pastor)

H.R. 3385 (Barton)

Authorizes DOE to use the Nuclear Waste Fund to pay for grants or long-term contracts for spent nuclear fuel recycling or reprocessing and places the Waste Fund off-budget. Introduced July 29, 2009; referred to committees on Energy and Commerce and the Budget.

H.R. 3448 (Pitts)

Streamline America’s Future Energy Nuclear Act. Requires NRC to establish expedited nuclear plant licensing procedures, requires NRC to reduce the time required to certify new reactor designs by half, requires NRC to develop technology-neutral guidelines for nuclear plant licensing, establishes a National Nuclear Energy Council to advise the Secretary of Energy, authorizes a final year of appropriations for the Nuclear Power 2010 program, requires DOE to prepare a schedule for accelerating completion of the Next Generation Nuclear Plant from 2021 to 2015, and limits fees and procedural restrictions on uranium mining on federal lands. Introduced July 31, 2009; referred to Committees on Energy and Commerce and Natural Resources.

H.R. 3505 (Gary Miller)

American Energy Production and Price Reduction Act. Prohibits NRC from considering nuclear waste storage when licensing new nuclear facilities and establishes investment tax credit for the costs of obtaining a nuclear manufacturing certification from the American Society of Mechanical Engineers. Introduced July 31, 2009; referred to multiple committees.

H.R. 4741 (Fattah)

Clean Energy Act of 2010. Revises loan guarantee authority under EPACT05, authorizes DOE cooperative agreements for licensing small modular reactors, and authorizes funding for research on spent nuclear fuel recycling and advanced reactors. Introduced March 3, 2010; referred to multiple committees.

S. 591 (Reid)

H.R. 5505 (Burgess)

Used Fuel Prize Act of 2010. Authorizes the Secretary of Energy to establish monetary prizes for achievements in designing and proposing nuclear energy used fuel alternatives. Introduced June 10, 2010; referred to Committees on Science and Technology and Ways and Means.

H.R. 5866 (Gordon)

H.R. 5899 (Nunes)

Roadmap for America’s Energy Future. Includes provisions to increase the number of U.S. nuclear power plants, encourage recycling of spent nuclear fuel, and declare confidence in the availability of nuclear waste disposal capacity. Introduced July 28, 2010; referred to multiple committees.

H.R. 5910 (Lowey)

Authorizes the Secretary of Homeland Security to designate no-fly zones around certain nuclear power plants. Introduced July 28, 2010; referred to Committee on Transportation and Infrastructure.

H.R. 6386 (Christopher H. Smith)

Requires nuclear power plants to notify NRC and state and local governments within 24 hours of unplanned radioactive releases above allowable limits. Introduced September 29, 2010; referred to Committee on Energy and Commerce.

S. 807 (Nelson)

SMART Energy Act. Authorizes funds for NRC to expedite nuclear plant license applications, authorizes nuclear workforce training program, establishes interagency working group to increase U.S. nuclear plant component manufacturing base, authorizes construction of a spent nuclear fuel recycling development facility, modifies the Standby Support program for new reactors, modifies the EPACT loan guarantee program, expands the nuclear power production tax credit, and provides accelerated depreciation for new reactors. Introduced April 2, 2009; referred to Committee on Finance.

S. 861 (Graham)

Rebating America’s Deposits Act. Requires the President to certify that the Yucca Mountain site continues to be the designated location for a nuclear waste repository under the Nuclear Waste Policy Act. If such a certification is not made within 30 days after enactment or is subsequently revoked, the Treasury is to refund all payments, plus interest, made by nuclear reactor owners to the Nuclear Waste Fund. DOE is to begin shipping defense-related high-level radioactive waste to
Yucca Mountain by 2017 or pay $1 million per day to each state in which such waste is located. Introduced April 22, 2009; referred to Committee on Energy and Natural Resources.

S. 1333 (Barrasso)

Clean, Affordable, and Reliable Energy Act of 2009. Includes provisions to take the Nuclear Waste Fund off-budget, authorize DOE to use the Nuclear Waste Fund to pay for grants or long-term contracts for spent nuclear fuel recycling or reprocessing, and prohibit NRC from denying licenses for new nuclear facilities because of a lack of waste disposal capacity. Introduced June 24, 2009; referred to Committee on Finance.

S. 1462 (Bingaman)

American Clean Energy Leadership Act of 2009. Establishes Clean Energy Deployment Administration to administer DOE assistance, including loan guarantees, for nuclear energy and other energy technologies. Establishes a national commission to study nuclear waste management alternatives and requirements for nuclear fuel cycle research. Introduced and reported as an original measure from the Committee on Energy and Natural Resources July 16, 2009 (S.Rept. 111-48).

S. 1733 (Kerry)

S. 2052 (Mark Udall)/H.R. 5163 (Altmire)

Nuclear Energy Research Initiative Improvement Act. Authorizes DOE research to reduce nuclear reactor manufacturing and construction costs, including research on small modular reactors. Senate bill introduced October 29, 2009; referred to Committee on Energy and Natural Resources. Hearing held (S.Hrg. 111-375). House bill introduced April 28, 2010; referred to Committee on Science and Technology.

S. 2776 (Alexander)

Clean Energy Act of 2009. Revises DOE loan guarantee program, authorizes DOE assistance for small modular reactors, requires NRC to consider waste disposal to be adequate for potential new reactors, and authorizes funding for nuclear workforce development and research. Introduced November 16, 2009; referred to Committee on Energy and Natural Resources.

S. 2812 (Bingaman)/H.R. 5164 (Altmire)

Nuclear Power 2021 Act. Establishes a cost-shared program between DOE and the nuclear industry to develop and license standard designs for two reactors below 300 megawatts of electric generating capacity. Senate bill introduced November 20, 2009; referred to Committee on Energy
and Natural Resources. Hearing held (S.Hrg. 111-375). House bill introduced April 28, 2010; referred to committees on Energy and Commerce and Science and Technology.

S. 3060 (Hatch)

S. 3322 (Voinovich)/H.R. 5979 (Upton)

S. 3535 (Burr)

Next Generation Energy Security Act of 2010. Includes tax credits and other provisions to encourage construction of new nuclear power plants, extends duty suspensions for nuclear plant components, and establishes policy for spent fuel treatment and storage. Introduced June 24, 2010; referred to Committee on Finance.

S. 3618 (Voinovich)

Enabling the Nuclear Renaissance Act. Declares nuclear energy to be clean energy, provides financing for new nuclear power plants, provides for licensing of small modular reactors, changes the nuclear licensing process, encourages nuclear workforce training, encourages development of nuclear energy infrastructure, and establishes a U.S. Nuclear Fuel Management Corporation. Introduced July 20, 2010; referred to Committee on Finance.

S. 3635 (Dorgan)

Energy and Water Development Appropriations Bill for FY2011. Includes funding for DOE nuclear energy programs and NRC. Reported as an original measure by the Committee on Appropriations July 22, 2010 (S.Rept. 111-228).

Author Contact Information

Mark Holt
Specialist in Energy Policy
mholt@crs.loc.gov, 7-1704