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ABSTRACT 

The purpose of this thesis is to provide a workbook of the game theory topics 

covered in the course SO4410 Models of Conflict. The thesis also provides a software 

toolkit, which enables students to solve the problems easier and faster, therefore focusing 

more on analyses of the situation than on the actual mathematical side of the problem.  

The workbook gives a basic review of the fundamental concepts and a detailed 

explanation for solving ‘simple’ game theory problems by pen and paper. Topics cover 

two and three person games. Two person games include (1) zero-sum games and their 

solutions in the pure or mixed strategy, (2) partial-sum games without communication 

between the players, and (3) communication among players and its effect on the game. 

Three person games focus on likely coalitions among the players. 

The toolkit covers two person zero-sum games, the Nash arbitration scheme, 

strategic moves, prudential and equalizing strategies in partial-sum games, 3-person 

games, and a supplemental template for linear programming problems with up to 10 

variables and 30 constraints. 
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I. INTRODUCTION 

In mathematics, you don't understand things. You just get used to them.  

– Johann von Neumann  

 

Conflict is as ancient as humankind, and the extreme end of conflict is war. 

Military professionals spend a great deal of time studying the nature of conflict, and for 

that reason, defense analysis students study modeling course sequences that allow them 

to use mathematical tools in social settings. 

Not everyone has a mathematical background; therefore, some concepts used in 

the sequences are difficult for students to comprehend. In particular, the SO4410 – 

Models of Conflict, which focuses mainly on the basics of game theory, can be difficult to 

understand. 

The purpose of this thesis is to provide a workbook of the game theory topics, 

which are covered in the course, and to introduce the concepts intuitively. The thesis is 

not a substitute for the books and articles assigned in SO4410 but rather a facilitating 

supplement with explanatory illustrations and computational processes. The Toolkit not 

only gives the solutions but also adds graphical representation for better comprehension.  

Models of conflict assume rational decision makers, trying to maximize decision 

makers’ payoffs. In game theory, the term rationality has a different meaning than most 

people think. Rationality does not mean what we think is best or wise; to be rational, 

actors have to be able (1) to define their objectives, however foolish they appear to 

others, (2) to formulate sufficiently different alternative strategies, and (3) to choose a 

strategy that maximizes their objective. 

So the question then becomes: “What should / will the rational value maximizing 

player do?” 



 2

THIS PAGE INTENTIONALLY LEFT BLANK 



 3

II. ZERO-SUM GAMES 

Zero-sum games entail games where one player wins and the other player loses. 

There is no room for cooperation and the interests are in total conflict. Each player has a 

certain set of strategies from which he can choose, and he is unaware of the choices of the 

other player. The resulting payoff is then determined by the combination of strategies. 

Since one player wins or the other player loses, we can limit the analysis to the payoffs of 

one player.  

The zero-sum game, where (1) Player 1 (let’s call her Rose / Row player) can play 

strategies A and B, and (2) Player 2 (let’s call him Colin / Column player) can play 

strategies C and D, can be described as: 

                        Colin
                   C        D

A AC AD
Rose     

B BC BD
with the real numbers:
                       Colin
                       C     D

A 4 1
Rose           

B 2 3

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

The values in the example are the payoffs for Rose. The negatives are the payoffs 

for Colin. When Rose chooses strategy A, and Colin chooses strategy C, the outcome 

would be 4. 

Hungarian-American mathematician John von Neumann proved that all finite 

two-person zero-sum games have a solution in either pure or mixed strategies. These 

strategies give us an expected value of the game. This idea is described in the MiniMax 

Theorem and serves as a basis for the solution of zero-sum games. 

MiniMax Theorem (Rose – maximizing, Colin – minimizing) – for every finite 

two person zero-sum game there is a solution, (1) and there exists a number V called the 
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value of the game. (2)Rose has a strategy combination such that her average payoff is at 

least V no matter what Colin does, and (3) Colin has a strategy combination such that his 

average payoff is no more than V, without regard to Rose’s choices. 

In real life, the closest we can get to a total conflict is sports or games. And of 

course, war is the ultimate total conflict endeavor. Therefore, we start here. 

Two commanders are facing each other on the battlefield. Rose wants to breach 

the enemy lines. She has two options. Rose can either attack Colin at the city or through 

the adjacent mountains. Colin, on the other hand, faces the question of where to prepare 

the defense. 

Payoffs of Rose’s forces1: 

                                 Colin
                           City         Mountains

City 4 1
Rose  

Mountains 2 3
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

What can we say about this game?  Clearly, the game is in Rose’s favor. There are 

no negative numbers, so Rose can never lose. However, what else? What should a 

rational player do?  Is there an optimal way of playing such a game? 

A. MIXED AND PURE STRATEGIES – DISTINCTION 

In the game, players can either play only one of their available strategies or they 

can play some mixture of strategies. If the players’ optimal strategy is to play only one 

strategy, this is called Pure strategy solution or solution in the Pure strategies. If the 

players’ optimal strategy is a combination of the strategies with certain relative 

frequency, this is called Mixed strategy solution or solution in the Mixed strategy. 

The distinction is for convenience, and it helps one solve some games more 

quickly. Of course, the pure strategy is the mixed strategy where one of the strategies has 

the probability of playing 100 percent. 

                                                 
1 Payoffs are arbitrary. 



 5

It is important also to note that in the pure strategy solution one can be assured of 

winning at least the smallest amount in the strategy. However, in the mixed strategy one 

can only be assured that, over the long haul, the average payoff will be of a certain value. 

In the short term, it does not have to apply, and one must be careful with the decision or 

advice of what to do. To illustrate this, it can be thought of as the difference between 

winning a sure $500 and winning $1000 at 50 percent probability, even though from the 

expected value point, these are equivalent. The risk tolerance is different from person to 

person and has to be considered in the interpretation of the insights provided by game 

theory. 

When there is a choice between a pure strategy and mixed, i.e., that yield the 

same value, it is preferable to choose a pure strategy solution. First, it guarantees the 

outcome in every play. Second, a pure strategy solution is usually easier to implement. 

One does not have to care about randomization of the strategies or their coordination. 

Furthermore, pure strategy solution does not require secrecy as a part of the strategy. The 

results of the game will not be influenced by the opponent’s knowledge of one’s next 

move. However, secrecy is hard to achieve in real life; therefore, pure strategy solutions 

are preferable. 
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III. ZERO-SUM GAMES – PURE STRATEGIES  

A. DOMINANT AND DOMINATED STRATEGIES 

In order to ensure a clear understanding of the terms, it’s important to start with 

the definitions. 

Definitions: 

 “A strategy S dominates strategy T if every outcome in S is at least as good as the 

corresponding outcome in T, and at least one outcome in S is strictly better than the 

corresponding outcome in T.”2 

Dominant strategy is a strategy that dominates all the other strategies of the 

player. 

Dominated strategy is a strategy that is dominated by at least one of the other 

strategies of the player. 

Why would one care about dominance? The reason is articulated in the 

dominance principle, “A rational player should never play a dominated strategy.”3 All the 

outcomes in the dominated strategy are equal or less than the outcomes in some other 

strategy. Therefore, it would not be beneficial for the player to play a dominated strategy. 

The player can always get better outcomes by not playing it, independent of what the 

other player does. 

Dixit and Nalebuff in Thinking Strategically give similar advice: “If you have a 

dominant strategy, use it.”4 The dominant strategy outcomes are always better or equal to 

the outcomes of the player’s other strategies. The game theory assumes rational, value 

                                                 
2 Philip D. Straffin, Game Theory and Strategy, New Mathematical Library, Vol. 36, (Washington: 

Mathematical Association of America, 1993), 8. 
3 Ibid., 8. 
4 Avinash K. Dixit and Barry Nalebuff, Thinking Strategically: The Competitive Edge in Business, 

Politics, and Everyday Life, 1st ed. (New York: Norton, 1991), 86. 
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maximizing players. The reason for playing a dominant strategy is obvious. If the player 

maximizes and every other strategy is worse, the player should use a dominant strategy. 

1. How to Find Dominant Strategy: 

Consider the following game with our commanders. It is a zero-sum game where 

Rose is trying to maximize and Colin minimize. This time they have three possible 

courses of action and the game with Rose’s payoffs is: 

                    Colin
                A     B    C  

2 3 5A
Rose  9 6 7B

4 3 4C

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

The easiest way for one to find a dominant strategy is to place a mark at the 

maximum value in each column. When the marks are all in the same row, one can see 

that this row is Rose’s dominant strategy, and she should always play it because all of the 

other strategies are either worse or indifferent for her. 

                    Colin
                A       B      C  

2 3 5 A
Rose  9* 6* 7*B

4 3 4 C

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

One can repeat the same process for Colin. Only this time one places the mark at 

the minimum value in each row. As shown, the marks are not in the same column and 

Colin does not have a dominant strategy. 

                    Colin
                A       B      C  

2* 3  5 A
Rose  9 6* 7 B

4 3* 4 C

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 



 9

Colin’s best response for Rose-B is to play Colin-B, as it gives him the best value 

that he can achieve. The solution of the game is then Rose-B, Colin-B with the value of 

the game equal to 6. 

Unfortunately, not all of the games are this simple. 

B. SADDLE POINT 

Definition: Saddle point 

“An outcome in a game (with the payoffs to the row player - maximizing) is called 

a saddle point if the entry at the outcome is both less than or equal to any entry in its 

row, and greater than or equal to any entry in its column.” 5 

At this point, it is useful to read again von Neumann MiniMax theorem. A saddle 

point is a special case where both players can reach the value of the game by playing one 

of the strategies 100 percent of the time. 

Saddle point principle: “If a matrix game has a saddle point, both players should 

play a strategy which contains it.”6 

The reason behind the saddle point principle is obvious. The value of the saddle 

point guarantees the outcome for both players. Switching to any other strategy gives an 

opponent a chance to respond with the strategy that is beneficial to him. However, when 

the player uses saddle point strategy, the opponent can only do worse. To sum up, no 

player has incentive to change a strategy and leave the saddle point strategy combination. 

This is illustrated in the 3-D model of the game, where the payoffs are depicted as 

the height. The saddle point is the lowest point in one direction and the highest from the 

other. The optimal choice is to stay there. On a chart, one can also see why this point is 

called a saddle point; with a little bit of imagination, it looks like a saddle. 

                                                 
5 Philip D.Straffin, Game Theory and Strategy, New Mathematical Library, Vol. 36, (Washington: 

Mathematical Association of America, 1993), 9. 
6 Ibid., 9. 
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C1

C2

C3
R1

R2

R3

0

6

 

Now that it is known why the saddle point is important for the solution of the 

game, the subsequent question is, “How can one find it?”  There are two options. For 

simple games, one can use the arrow method. As the game gets bigger and more 

complicated, it is better to use a more general numerical method. 

1. Arrow Method 

Consider the following game with commanders: it is a zero-sum game where 

Rose is trying to maximize and Colin minimize. Each commander can focus on three 

strategies. 

                              Colin
                         C1  C2    C3

R1 3 1 2
Rose           R2 6 4 6

R3 3 1 2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Working systematically, one starts with Rose as she is trying to maximize the 

payoffs and prefers the higher values. When Colin is playing C1, Rose prefers to play R2 

over R1 and R2 over R3. Accordingly, one places the arrows with the direction from the 

lower entries (Payoffs) to the higher entries in the same column and continues with the 

same procedure in the remaining columns. 

When the preference arrows for Rose have been completed, one does the same for 

Colin. However, this time as Colin is trying to minimize, he prefers lower payoffs. 

Accordingly, the arrow goes in direction from higher to lower entries in the rows. 
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                                                      Colin
                                        C1              C2              C3

3 1 2R1

Rose                          R2 6 4 6

R3 3 1 2

→ ←⎛ ⎞
⎜ ↓ ↓ ↓⎜
⎜ → ←
⎜
↑ ↑ ↑⎜

⎜ → ←⎝

⎟
⎟
⎟
⎟
⎟
⎟
⎠

 

Saddle point is the entry where no arrow aims out of the saddle point. If we do not 

depict the indifferent values, it is the value where all of the arrows aim in. In this 

example, it is the combination Rose-R2, Colin-C2 and the value of the game  

is 4. 

2. General Numerical Method 

Finding a saddle point using the arrow method is a little bit confusing when the 

players have more than three strategies. The game table is easily filled with arrows and 

the probability of potential error increases. In this case, it is better for one to use a 

numerical method using the MaxiMin and MiniMax. 

Consider the following game with our commanders. It is a zero-sum game where 

Rose is trying to maximize and Colin minimize, and each commander has five strategies 

from which to choose. 

                                                      Colin
                                         C1    C2    C3   C4   C5    Minimum in Row

1 0 4 1 5R1
6 2 6 8 0R2
1 3 5 7 1Rose                          R3

R4 7 4 7
R5

0
0
1

5 4 4 Maximum of Minimum
3 2 1 4 8 1 (MaxiMin)

Maximum in Column  7 4 7 8 8
                                Minimum of Maximum (MiniMax)

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
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Rose Maximin = 4
Colin Minimax = 4
Rose Maximin = Colin Minimax = 4 = Value of the Game  

One starts with Rose. Rose wants to maximize her payoff. In this case she chooses 

the strategy R1; she can get no less than 0 (Colin-C2). It is the minimum payoff for 

strategy R1. She can do the same for the rest of her strategies. Now she has the worst-

case values of her respective strategies. From these strategies, she should pick the 

strategy that gives her the highest payoff. In other words, she should choose the 

maximum payoff from the minimum payoffs in row. This strategy/strategies are called 

MaxiMin strategy. By choosing the MaxiMin strategy, she guarantees herself at least the 

MaxiMin value. If Colin does not play optimally, she can get more, because all of the 

payoffs in the MaxiMin strategy are equal or higher. 

Now the game is analyzed from Colin’s point of view. He wants the payoffs to be 

as small as possible. Accordingly, one calculates the worst outcomes for each of his 

strategies. This time, it is the maximum values in columns. His payoff for the chosen 

strategy cannot be worse than the maximum in the column. Colin is minimizing, so he 

should choose the strategy with the lowest maximum. These strategies are called the 

MiniMax strategy. 

If the value of Rose’s MaxiMin strategy and Colin’s MiniMax strategy are the 

same, the saddle point has been found, and the game is solved. Saddle point lies at the 

intersection of the MaxiMin and MiniMax strategy. Assuming both players play 

optimally, no player can get a better outcome by switching to some other strategy. In the 

example, the saddle point is at Rose-R4 and Colin-C2 with the value of the game at 4. 

The process then is for one to first write the minimum values in each row right of 

the matrix and mark the maximum of the minimum values.  Second, one writes the 

maximum values in each column and marks the maximum of the minimum values. If the 

marked values are the same, game has a saddle point at the intersection of the 

corresponding strategies. 
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a. Games with More than One Saddle Point 

The zero-sum game can have more than one saddle point. In this case, all 

the saddle points have the same value and nicely form a rectangle. 

                                                      Colin
                                         C1    C2    C3   C4   C5    Minimum in Row

3 1 6 2 2R1
R2 7 4 5 4 7

Rose                          R3 3 3 2 1 3
R4 6 4 6
R5

1

4
1

4 5 4 Maximum of Minimum
3 1 2 3 8 1 (MaxiMin)

Maximum in Column  7 4 6 4 8
                                Minimum of Maximum (MiniMax)

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
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IV. ZERO-SUM GAMES – MIXED STRATEGIES 

Not all of the games have a saddle point and solution in the pure strategies. If the 

MaxiMin and MiniMax are not the same, the players can still play their MiniMax and 

MaxiMin strategies, but the outcome is not optimal; they can do better by playing some 

mix of strategies. 

Mixed strategy is “a strategy that involves the random choice of pure strategies, 

according to particular probabilities. A mixed strategy of a player is optimal if it 

guarantees the value of the game.”7 

The definition has a couple of key points deserving explanation. First, the choice 

has to be truly random. Unlike the games with the saddle point where secrecy is not 

required for successful play, in the mixed strategies secrecy is crucial. The opponent who 

knows in advance, what the choice of strategy would be, can take advantage of the 

knowledge and respond with his best counter strategy. A better way to surprise the 

opponent is to surprise oneself and entrust the choice to some random generator or choice 

picker. In nature, there are plenty of random events or technical means that can be used. 

Next, what are these particular probabilities? Probability indicates the relative 

frequency of playing a strategy. In theory, a player can choose the probabilities at will, 

and, of course, the sum of the probabilities has to be equal to one. Any particular 

probabilities can be played. However, in the game theory arena, one is assumed to be a 

rational, value-maximizing player. Therefore, one hopes to find a probability mix that can 

guarantee the player his best achievable outcome against the optimally playing opponent. 

From von Neumann’s MiniMax theorem, it is clear that the mix guarantees the value of 

the game. 

                                                 
7 Consortium for Mathematics and Its Applications, For all Practical Purposes: Mathematical 

Literacy in Today's World, 6th ed. (New York: W.H. Freeman, 2003), 582. 
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A. HOW TO SOLVE OPTIMAL MIXED STRATEGIES 

In the following, methods for finding the optimal strategy mix are described, and 

the thesis covers the following: the method of using the graphical description of the 

game, the expected value method, and Williams’s method of oddments. Additionally, the 

thesis will explain how to convert the game into a linear program and leave the 

numerically difficult process to the software solvers. 

As an illustrative example, two volleyball teams will try to decide what plays to 

make. In volleyball, basically, there are two options for the offensive team. It can either 

try to overcome the opponent by attacking from the center or from the side. The opponent 

faces the question of where to prepare the blocks. Rose is captain of the offensive team, 

and Colin is the captain of blocking team. Success percentages of the offensive team 

follows. 

                                   Colin - blocking
                                     center    side    

side 0.7 0.2
Rose - attacking  

center 0.3 0.8
⎛ ⎞
⎜ ⎟
⎝ ⎠  

Neither team has a dominant strategy, nor is there a saddle point. What should 

they decide to play? 

1. Graphical Method 

The Graphical method is a basic and easy way of solving the game. However, the 

results are not precise enough, so one must be careful with the interpretations. One must 

question the sensitivity of the resulting mix of strategies; however, sometimes it is good 

enough. 

A graphical depiction of the game8 with a separate graph for each team is shown 

below. 

                                                 
8 See Appendix 2: how to create the graphical representation. 
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Value of the Game / p Value of the Game
 

Colin Minimizing

0.5 0.5

0

0.2

0.4

0.6

0.8

1

-0.25 0 0.25 0.5 0.75 1 1.25

Rose Pure Side Attack Rose Pure Center Attack

Colin Pure Block center Colin Pure Block Side

Value of the Game / q Value of the Game
 

The values from the graphs can be readily understood. In the example, Rose’s 

optimal mixed strategy is to attack 50 percent of the time from the side and 50 percent of 

the time from the center. Over time, this assures her success at 0.5 (value of the game). 

Colin’s optimal strategy is to prepare the block at the center 60 percent of the time and 40 

percent from the side. The value of the game is the same, a 50 percent success for the 

offensive side. 
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2. Expected Value Method 

The Expected value method is a general method for solving a game. Equalizing 

the expected value for an opponent’s strategies is a universal method for any zero-sum 

game. In principle, one is trying to find a mix of strategies that removes the opponent’s 

decisions from consideration. If the expected value for any mix of opponent’s strategies 

is equal, it does not matter what the opponent plays, the value of the game stays the same. 

If p is assigned as the probability of strategy for Rose-Center, the probability of 

strategy for Rose-Side is then 1-p (sum of probabilities has to be 1). Accordingly, for 

Colin-Side the probability is q and Colin-Center is 1-q.   

                                   Colin - blocking
                                     center    side    

side 0.7 0.2 1
Rose - attacking  

center 0.3 0.8
                                         1-

p
p

q

−⎛ ⎞
⎜ ⎟
⎝ ⎠

q

 

Now, the game is analyzed from Rose’s point of view: 

If Colin would play his Pure-Center, Rose can expect the payoff to be: 

(Colin-Center) 0.7*(1 ) 0.3*EV p p= − +  

If Colin would play his Pure-Side, Rose can expect the payoff to be: 

(Colin-Side) 0.2*(1 ) 0.8*EV p p= − +  

As stated earlier, the goal is to try to remove the opponent’s decision from 

consideration. If these two expected values are equal, it does not matter what Colin plays. 

One can solve the following equation with one unknown variable. 
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(Colin-Center) (Colin-Side)
0.7*(1 ) 0.3* 0.2*(1 ) 0.8*

0.7 0.7 0.3 0.2 0.2 0.8
0.7 0.4 0.2 0.6

1.0 0.5
0.5

1 0.5
Value of the Game 0.7*0.5 0.3*0.5 0.35 0.15 0.5

EV EV
p p p p

p p p p
p p
p
p
p

=
− + = − +
− + = − +

− = +
− = −

=
− =

= + = + =

 

The solution for Rose: Rose’s optimal strategy is to attack 50 percent at the center 

and 50 percent at the side. She can expect to have a success ratio of 0.5. 

Similarly, from Colin’s point of view: 

If Rose would play her Pure-Side, Colin can expect the payoff to be: 

(Rose-Side) 0.7*(1 ) 0.2*EV q q= − +  

If Rose would play her Pure-Center, Colin can expect the payoff to be: 

(Rose-Center) 0.3*(1 ) 0.8*EV q q= − +  

Equalizing and solving: 

(Rose-Side) (Rose-Center)
0.7*(1 ) 0.2* 0.3*(1 ) 0.8*

0.7 0.7 0.2 0.3 0.3 0.8
0.7 0.5 0.3 0.5

1.0 0.4
0.4

1 0.6
Value of the game 0.7*0.6 0.2*0.4 0.42 0.08 0.5

EV EV
q q q q

q q q q
q q
q
q
q

=
− + = − +
− + = − +

− = +
− = −

=
− =

= + = + =

 

The solution for Colin: Colin’s optimal strategy is to prepare 60 percent at the 

center and 40 percent at the side. He can expect to lower Rose’s success ratio to 0.5. 

 The expected value principle is used in linear programming techniques for 

solving games with many strategies. 
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3. William’s Method of Oddments 

William’s method of oddments is used for solving 2x2 zero-sum games without a 

saddle point (check for pure strategy solution first). Some people find it easier than the 

expected value method. The weakness of the method is in its limited usability; it is valid 

only for games with two players and two strategies each. 

                                   Colin - blocking
                                     center    side    

0.7 0.2 0.5 0.5 0.5/(0.5 0.5) 0.5side 0.7 0.2
Rose - attacking  

0.center 0.3 0.8 0.3 0.8 0.5

− = + =⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟ − =⎝ ⎠ 5 0.5/(0.5 0.5) 0.5

                              0.7 0.3 0.2 0.8

                                      0.4 0.6
  
                                       0.6 0.4
                      0.6/(0.6 0.4) 0.4/(0.6 0.4

+ =

− −

+ + )
                                        0.6 0.4

 

The method is shown above. For Rose, one must take absolute value of the 

difference between the payoffs for her respective strategy. If one interchanges the 

absolute values, the ratio with which she should play the strategies is then discovered. 

The same procedure is repeated for Colin. Simple but limited. 

B. REDUCTION OF THE GAME USING ELIMINATION OF THE 
DOMINATED STRATEGIES 

When one tries to solve the game using pen and paper, it is useful to simplify the 

game by trying to reduce the number of strategies of each player. Assuming that no 

rational player would play the dominated strategy, the payoffs in this strategy can be 

deleted from the matrix. After deleting a dominated strategy, one forms a new matrix and 

checks for any other dominated strategy. The process is repeated until there are no  
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dominated strategies. Even when players do not have the dominant strategy in the 

original game, after the reduction there can be a dominant strategy. At the very least, any 

irrelevant strategies have been eliminated. 

Example: 

                                                      Colin
                                        C1    C2    C3   C4   C5    

R1 4 2 5 2 3
R2 2 1 0 2 2

Rose                          R3 3 2 4 2 4
R4 5 0 6 1 1
R5 1 3 7 8 7

⎛
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟

⎜ ⎟
⎠

 

Rose-R2 is dominated by Rose-R3  Delete 

                                                      Colin
                                        C1    C2    C3   C4   C5    

R1 4 2 5 2 3
R2

Rose                          R3 3 2 4 2 4
R4 5 0 6 1 1
R5 1 3 7 8 7

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜
⎜
⎜
⎜
⎝ ⎠

⎟
⎟
⎟
⎟

 

Colin-C3, C4 and C5 are dominated by Colin-C2  Delete 

                                                      Colin
                                        C1    C2    C3   C4   C5    

R1 4 2
R2

Rose                          R3 3 2
R4 5 0
R5 1 3

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Rose-R3 is dominated by Rose-R1  Delete R3. The game has been reduced 

from 5x5 to 3x2. 
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Resulting game after the reduction of irrelevant (dominated) strategies 

                                          Colin
                                        C1   C2    

R1 4 2
Rose                          R4 5 0

R5 1 3

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
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V. PARTIAL-SUM GAMES 

In the partial-sum (non zero-sum) game, the payoffs of the players are not strictly 

opposed. The success of one player does not always mean failure for the other. As the 

interests of the players are not totally in conflict, such a game offers the opportunities for 

cooperation in order to achieve mutually advantageous outcomes. These opportunities do 

not rule out the competitive side of the game. Players still want to achieve their best 

possible outcome. 

Cooperation requires communication in order to achieve some coordinated 

strategy. As communication is the key component, partial-sum will be analyzed with 

three different assumptions. The game can be played: 

1) Without Communication 

2) With Communication before the game 

3) With Cooperation 

A. PARETO PRINCIPLE 

As is shown in the previous chapters, it is rational for the player to play a 

dominant strategy (if he has one) in the zero-sum game.  Does this principle apply in the 

partial-sum games? The following game attempts to answer this question. 

                      Colin 
                   C           D    

A (3, 3) (1, 4)
Rose  

B (4, 1) (2, 2)
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Both players have a dominant strategy. Rose gets better outcomes by playing 

Rose-B and Colin by playing Colin-D. When both players use their dominant strategy the 

result is BD [2,2]. However, looking at the game, outcome AC [3,3] is better for both of 

them. In this game, use of the dominant strategy leads to the less preferable outcome. 
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Economist Wilfredo Pareto proposed that one should not accept the solution when there 

is some other possibility, which is better for everybody involved. 

Pareto Principle: “To be acceptable as a solution of the game, an outcome should 

be Pareto Optimal.” 9 

Pareto Optimal: The outcome where neither player can improve payoff without 

hurting (decreasing the payoff) of the other player. 

As in this case, group rationality (Pareto) is sometimes in conflict with the 

individual rationality (dominant). The eventual outcome depends on the players. 

Obtaining a Pareto optimal outcome usually requires some sort of communication and 

cooperation among the players. 

With the assumption that the outcome should be Pareto optimal, the next question 

is, “What is Pareto optimal, and what is it not (Pareto inferior)?” The simplest way for 

this to be understood is to draw a payoff polygon of the game. On the chart, the X-axis 

depicts the payoffs of Rose, and the Y-axis depicts the payoffs of Colin. By plotting the 

pure strategy solutions on the chart, one can see that the convex (everything inside) 

polygon enclosing the pure strategy solutions is then the payoff polygon or the feasible 

region. Therefore, the points inside the polygon are the possible solutions of the game. 

Graphically: 

A:C [3 , 3]

A:D [1 , 4]

B:C [4 , 1]

B:D [2 , 2]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Pareto optimal 

 

                                                 
9 Philip D.Straffin, Game Theory and Strategy, New Mathematical Library, Vol. 36, (Washington: 

Mathematical Association of America, 1993), 69. 
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The solution point is Pareto optimal when there is not some other possible 

solution point north / east / north-east of this point. If one were to imagine (draw) lines 

heading north and east from this point and find that there are no possible solutions in this 

quadrant, the point is Pareto optimal. Pareto optimal points form the northeastern 

boundary of the payoff polygon. In the chart above, it is line AD-AC, and AC-BC. 

Pareto optimal can be just a single point, line segment, or several line segments. 

Examples of some polygons and their Pareto optimal outcomes: 

A:C [4 , 4]

A:D [2 , 3]

B:C [3 , 2]

B:D [1 , 1]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A:C [4 , 4]

A:D [2 , 3]

B:C [4 , 2]

B:D [1 , 1]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A:C [3 , 3]

A:D [1 , 2]

B:C [4 , 1]

B:D [2 , 2]

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A:C [2 , 3]

A:D [5 , 0]

B:C [4 , 1]

B:D [3 , 2]

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6

Pareto Optimal

 
The lower right game is actually a constant sum game, which can be converted 

into a zero-sum. In the zero-sum game, all outcomes are Pareto optimal. 
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VI. PARTIAL-SUM GAMES WITHOUT COMMUNICATION 

A. EQUILIBRIUMS 

As the zero-sum games have a saddle point, the partial-sum games have 

equilibriums. Correspondingly, once the players play the strategies forming equilibrium, 

they cannot unilaterally improve their payoffs. 

For finding the equilibrium outcomes in the pure strategy, the same idea of 

movement diagram, as in the zero-sum games, is used. Only this time each player has a 

separate set of payoffs. It is necessary to compare appropriate values. 

                            Colin 
                   C                     D    

A (3, 3) (1, 4)
Rose  

B (4, 1) (2, 2)

⎛ ⎞→⎜ ⎟
↓ ↓⎜ ⎟

⎜ ⎟⎜ ⎟→⎝ ⎠

  
                            Colin 
                   C                     D    

(4, 4) (1, 3)A
Rose  

B (3, 1) (2, 2)

⎛ ⎞←
⎜ ⎟

↑ ↓⎜ ⎟
⎜ ⎟⎜ ⎟→⎝ ⎠

 

In the left game, both players have a dominant strategy and BD [2,2] is the 

probable outcome without communication. Rose-B and Colin-D is also an equilibrium 

outcome, as all arrows are heading in.10 The right game has two equilibriums, AC [4,4] 

and BD [2,2]. 

In the zero-sum games, saddle points do not always exist. The same applies for 

partial-sum games. To illustrate, one should consider the game below. This game does 

not have pure strategy equilibrium. There is no point where all arrows are heading in. 

 
                            Colin 
                   C                     D    

A (3,4) (2,3)
Rose  

B (4,1) (1,2)

←⎛ ⎞
⎜ ⎟↓ ↑⎜ ⎟
⎜ ⎟→⎝ ⎠

 

                                                 
10 More precisely, none of the arrows is heading out. 
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John F. Nash proved that every two-person game has at least one equilibrium 

either in Pure or in Mixed strategies.11  The equilibriums are also called Nash 

Equilibriums. Nash Equilibrium in the mixed strategy is formed by equalizing strategies 

of the respective players. 

B. EQUALIZING STRATEGIES 

Equalizing strategies, if adopted, assure that neither player can gain by switching 

to some other strategy. The use of equalizing strategy ‘stymies’ the other player’s 

position and removes his choices from consideration. 

In the game above, Rose can equalize the payoffs of Colin when she plays Colin’s 

game and Colin’s game is the zero-sum game with Colin’s payoffs. 

Colin's Game / Rose - Equalizing / Colin Maximizing
                      Colin 
                  C            D    

A 4 3
Rose  

B 1 2

←⎛ ⎞
⎜ ⎟↓ ↓⎜ ⎟
⎜ ⎟→⎝ ⎠

 

This game has a saddle point at BD. However, B and D are not equalizing 

strategies. They do not equalize the Colin Payoffs. The graph shows the solution. 

Equalizing

4

1

3

2

0

2.5

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

-0.25 0 0.25 0.5 0.75 1 1.25

Rose Pure A Rose Pure B Colin Pure C Colin Pure D  mixed 

Minimizing

 

                                                 
11 John F. Nash, "Equilibrium Points in n-Person Games," Proceedings of the National Academy of 

Sciences of the United States of America 36, no. 1 (January 15, 1950): 48-49. 
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In this case, Rose’s Equalizing strategy ½ A and ½ B is not Rose’s optimal 

strategy. However, it equalizes Colin’s payoffs. It does not matter what Colin does; his 

payoff will be 2.5. Rose can stymie Colin’s position when she plays the intersection of 

the lines Colin-Pure C and Colin-Pure D. For calculation of the probabilities one can use 

either the expected value method or method of oddments.  One would do well to 

remember, however, that probabilities have to comply with: 

1 2

1 2

, [0,1]
1

p p
p p

∈
+ =

 

In other words, they have to intersect between Rose-Pure A and Rose-Pure B; 

otherwise, the equalizing strategy does not exist.  

Similarly, Colin can equalize Rose’s payoffs by playing an equalizing strategy in 

Rose’s game. 

Rose's game / Colin - Equalizing / Rose - Maximizing
                      Colin 
                C               D    

A 3 2
Rose  

B 4 1

→⎛ ⎞
⎜ ⎟↓ ↑⎜ ⎟
⎜ ⎟→⎝ ⎠

 

Equalizing

3

2

4

1
0

2.5

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

-0.25 0 0.25 0.5 0.75 1 1.25

Rose Pure A Rose Pure B Colin Pure C Colin Pure D  mixed 

 
Colin’s equalizing strategy is ½ C and ½ D. This will give Rose the payoff 2.5. If 

both players play equalizing strategy, the result is the Nash Equilibrium point [2.5,2.5]. 
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Nash equilibriums in partial-sum games have some problematic properties. In the 

zero-sum games, saddle points were equivalent and interchangeable. They were also 

Pareto optimal. None of these carry over to partial-sum games. 

 

                            Colin 
                   C                    D    

(4, 4) (1, 3)A
Rose  

B (3, 1) (2, 2)

⎛ ⎞←
⎜ ⎟

↑ ↓⎜ ⎟
⎜ ⎟⎜ ⎟→⎝ ⎠

 

B:C[3,1]

A:D[1,3]

Nash EQ 
B:D[2,2]

Nash EQ 
[2.5,2.5]

Nash EQ 
A:C[4,4]

0
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1.5
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2.5
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3.5

4

4.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 
 

The game above has three Nash Equilibriums: two in pure strategies and one in 

mixed strategy. Each one of the Nash Equilibriums, once adopted, fixes the players’ 

payoffs, and players can not unilaterally improve their position. Each equilibrium is 

different, so for which one should they try? In this game, the answer is simple because 

point AC[4,4] is Pareto optimal. However, this is not always the case. 

As the outcomes for Nash Equilibrium in a mixed strategy are obtained from the 

other player’s game without regard to one’s own payoffs, the resulting outcome for the 

players is usually low. 
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C. PRUDENTIAL STRATEGIES – STATUS QUO 

The player’s worst-case scenario in the partial-sum game happens when the 

opponent turns hostile. The opponent’s goal is no longer to maximize his own payoffs, 

but to minimize the payoffs of the other. What should the player do in such a case? What 

is his optimal strategy? 

A consideration of the following game will help illustrate: 

                      Colin 
                   C           D    

A (2, 1) (3, 2)
Rose  

B (4, 3) (1, 4)
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

When Colin turns hostile and tries to minimize Rose’s payoffs, he disregards his 

own payoffs. Now it is a zero-sum game with Rose’s payoffs, and Rose should play her 

MaxiMin strategy in order to assure herself at least the value of game. 

Rose's Game / Rose - Maximizing / Colin - Minimizing 
                  Colin 
                C        D    

A 2     3
Rose  

B 4     1
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Rose’s optimal strategy in this game is to play ¾ A and ¼ B with the value of the 

game 2.5. In a partial-sum game, this strategy is called Rose’s prudential strategy and 

the corresponding value of the game is called Rose’s security level. No matter what 

Colin does, Rose can guarantee herself at least the security level. 

Similarly for Colin, when Rose turns hostile, Colin should respond with his 

prudential strategy in his game. 

Colin's Game / Colin - Maximizing / Rose - Minimizing 
                  Colin 
                C        D    

A 1     2
Rose  

B 3     4
⎛ ⎞
⎜ ⎟
⎝ ⎠
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Colin’s game has a saddle point at AD, and his prudential strategy is to play D all 

the time with the security level (value of the game) equal to 2. 

The intersection of the security levels is called a status quo. The players can not 

do worse even in the worst possible scenario. From the payoff polygon of the game 

below, it is obvious that the outcome is not Pareto Optimal. The outcome also is not 

equilibrium. Both players can do better by playing some other strategy mix. There is still 

a possibility of moving in the Northeast direction. 

 

 

A:C[2,1]

A:D[3,2]

B:C[4,3]

B:D[1,4]

Xo - Rose's 
Security Level

Yo - Colin's 
Security Level
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A:C[2,1]

A:D[3,2]

B:C[4,3]

B:D[1,4]

Xo - Rose's 
Security Level

Yo - Colin's 
Security Level

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
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WEST
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Minimax strategies in the zero-sum games produce stability. This does not apply 

in the partial-sum games and “there is no cogent general solution concept for non-zero-

sum games.”12 However, games where there exists at least one Pareto optimal 

equilibrium outcome or there are more such outcomes, which are equivalent and 

interchangeable, are solvable in the strict sense. These Pareto optimal equilibriums are 

reasonable outcomes of the game13 in the games without communication. 

                                                 
12 Philip D.Straffin, Game Theory and Strategy, New Mathematical Library, Vol. 36, (Washington: 

Mathematical Association of America, 1993), 70. 
13 Ibid., 70. 
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VII. PARTIAL-SUM GAMES – COMMUNICATION  
BEFORE THE GAME 

Up to this point, the games were played without communication between the 

players. This chapter gives an overview of what can happen when the players can 

communicate and how communication influences the outcomes of the game. 

In this chapter, players will try to unilaterally improve their position by making 

conditional or unconditional commitments called strategic moves. They will not 

cooperate. The problem of communication lies in credibility. The purpose of this text is 

not to offer a guide for achieving credibility of communication. Rather, the thesis focuses 

on analyzing what options players have, and the credibility of their commitment is taken 

as a given. 

A. FIRST MOVE 

The first move can be described as the ability of the player to either make a move 

(play a strategy) before the other player or make a commitment to play some strategy 

under all circumstances. These options are considered interchangeable during an analysis 

of the game. The critical question remains: is it preferable for the player to play first or 

force the other player to move first? 

                      Colin 
                   C           D    

A (4, 2) (1, 1)
Rose  

B (2, 3) (3, 4)
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

In this game, neither player has a dominant strategy. The likely outcome, without 

communication, can be BC [2,3] as the intersection of maximin strategies Rose-B, Colin-

C. Can the players improve their outcome by playing the first move or forcing the other 

to play? 

The illustration begins with Rose: What will happen when Rose plays A and what 

will happen when she plays B? If Rose plays Rose-A, then Colin, looking at his outcome, 
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would choose Colin-C, as it gives him a higher payoff than Colin-D. The result is AC 

[4,2]. If Rose plays Rose-B, then Colin replies with D, and the outcome is BD [3,4]. By 

comparing these two outcomes, one can see that it is better for Rose to play A, as it gives 

Rose her best outcome with the payoff 4. Still further one can question whether the 

outcome is better than the likely outcome without communication. In this case the answer 

is yes; therefore, it is preferable for Rose to play first (Rose-A) in order to get her best 

outcome. 

If Rose A  then Colin C   [4 , 2]
If Rose B  then Colin D   [3 , 4]

Better for Rose [4 ,2]

Better than Rose's likely outcome? Yes

 

The same can be done for Colin. Colin has a first move to play D with Rose 

responding B. This gives Colin his best outcome DB [3,4]. 

If Colin C  then Rose A   [4, 2]
If Colin D  then Rose B   [3, 4]

Better for Colin [3, 4]

Better than Colin's likely outcome? Yes

 

To illustrate further, another example is given. Again the players do not have 

dominant strategies so the likely outcome, when Rose and Colin play maximin strategies, 

is AC [2,3] 

                      Colin 
                   C           D    

A (2, 3) (3, 1)
Rose  

B (4, 2) (1, 4)
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

First move Rose: 

If Rose A  then Colin C   [2 , 3]
If Rose B  then Colin D   [1 , 4]

Better for Rose [2 ,3]

Better than Rose's likely outcome? Equal
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Rose has a first move, but the result is not better than the likely outcome without 

communication. Nevertheless, Rose can secure her likely outcome by playing Rose-A. 

First move Colin: 

If Colin C  then Rose B   [4, 2]
If Colin D  then Rose A   [3, 1]

Better for Colin [4, 2]

Better than Colin's likely outcome? No

 

Colin does not have a first move. In both cases, Rose can respond with a strategy 

that is worse for Colin than the likely outcome. Looking at Rose’s payoffs one can see 

that it is beneficial for Rose to force Colin to move first. If Colin has to move, he would 

likely choose to play C (better than D). Rose would then play Rose-A and get her best 

outcome. 

The Game of Chicken is an example of a game where both players can get their 

best outcome by making the first move. 

B. THREAT 

Threat is one type of conditional commitment. It is a commitment to play a 

certain strategy as a reaction to the opponent’s choice of strategy. In the case of threat, it 

hurts both players. If the other player believes it (the threat is credible), one of the pure 

strategy solutions is taken out of consideration. How can one know whether the players 

have the option of making a threat? 

                      Colin 
                   C           D    

A (1, 1) (3, 2)
Rose  

B (4, 3) (2, 4)
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

In this game, Colin has a dominant strategy Colin-D and the likely outcome 

without communication can be AD [3,2]. The example begins with Colin. Does Colin 

have a threat? 
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Without communication, Rose plays A. However, Colin would like to force Rose 

to play B, so his threat is against A. He says, “If you (Rose) play A, I (Colin) will 

sacrifice my payoffs in order to hurt you. Normally I would play D, but if you play A, I 

will respond with C.” 

The following analyzes whether this is a workable threat: 

[ ]
Normally:
If Rose A then Colin D    3  , 2
Threat:

If Rose A  then Colin C   [1 ,1]              It hurts Colin, hurts Rose it is a threat
If Rose B  then Colin D   [2 , 4]

Better for Rose [2 , 4]

Better than Colin's likely outcome? Yes

 

Colin would normally respond with D at Rose-A. His threat is to play C as a 

response to Rose-A. The threat hurts both players, as their payoffs are lower than an 

outcome without communication. If Rose plays B, Colin will play D. Now Rose has to 

decide what is better for her. She chooses between AC [1,1] and BD[2,4].  Therefore it is 

better for Rose to play B, as it gives her a higher payoff (1<2).  The outcome of the game 

is then BD, and Colin gets his best outcome. Colin has a threat, and it works alone. 

In the same vein, Rose is analyzed. She would like to force Colin to play C and 

she threatens D. 

[ ]
Normally:
If Colin D then Rose A    3  , 2
Threat:
If Colin D  then Rose B   [2   ,4]     It hurts Rose, but it is benficial to Colin - Not a threat  

Rose does not have a threat, as her conditional commitment would be beneficial 

to Colin. 

The next game is an example where Rose has a threat, but it does not work 

independently. Colin has a dominant strategy C and the likely outcome, without 

communication, would be AC [2,4]. 
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                      Colin 
                   C           D    

A (2, 4) (3, 3)
Rose  

B (1, 2) (4, 1)
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Rose would like to force Colin to play D, and her threat is focused on C. 

Normally:
If Colin C  then Rose A   [2 , 4]
Threat:

If Colin C  then Rose B   [1, 2] It hurts Colin, hurts Rose; it is a threat
If Colin D  then Rose B   [4, 1]

Better for Colin [1, 2]

 

Even with Rose’s threat, it is still better for Colin to play C. By playing C, Colin 

gets 2 which is a better outcome than complying with the threat and getting 1. Sometimes 

when a player has a threat which does not work by itself, the player can combine it with 

some other conditional move. 

C. PROMISE 

Another type of conditional move is called the promise. The promise is hurtful 

for a player and beneficial to the opponent. As in the case of the threat, a promise has 

an ability to remove one pure strategy solution from consideration. Again, it is necessary 

to first explore whether the player has the option to make a promise and then how the 

game would evolve. 

                      Colin 
                   C           D    

A (2, 2) (3, 1)
Rose  

B (4, 3) (1, 4)
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

In this game, neither player has a dominant strategy. The players would probably 

play their maximin strategies. The likely outcome, without communication, is AC [2,2]. 
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Colin would like to persuade Rose to play B. His promise then focuses on this 

strategy.14  Normally, if Rose plays B, Colin responds with D and the resulting payoff is 

BD[1,4]. However, Colin promises to hurts himself and plays Colin-C. It would look like 

the following: 

[ ]
Normally:
If Rose B then Colin D    1  , 4
Promise:

If Rose B  then Colin C   [4 , 3]              It hurts Colin, beneficial to Rose; it is a promise
If Rose A  then Colin C   [2 , 2]

Better for Rose [4 , 3]

Better than Colin's likely outcome? Yes
The conditions for the existence of promise have been met. The promise hurts Colin and 

is beneficial to Rose. For Rose it is advantageous to comply; she can get her best 

outcome. By doing so, she allows Colin to get his second best outcome, which is better 

than the likely outcome without communication. Colin has a threat, which works 

independently. 

Now to consider a previous game where Rose has a threat which does not work 

alone; does she have a promise? As a reminder, Colin has a dominant strategy C and the 

likely outcome without communication would be AC[2,4]. 

                      Colin 
                   C           D    

A (2, 4) (3, 3)
Rose  

B (1, 2) (4, 1)
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Rose would like Colin to play D. Her promise focuses on D. 

                                                 
14 Threat is focused (threatens) on the strategy which the player would like to eliminate and promise is 

focused on strategy he would like the other player to play. 
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[ ]
Normally:
If Colin D then Rose B    4  ,1
Promise:

If Colin D  then Rose A   [3, 3]              It hurts Rose, beneficial to Colin; it is a promise
If Colin C  then Rose A   [2, 4]

Better for Colin [2, 4]
Rose has a promise to play A in case Colin plays D. It hurts her and is beneficial to Colin. 

However, it is still better for Colin to play C and get his best outcome. 

D. COMBINATION OF THREATS AND PROMISES 

In the last game, Rose has a threat and promise and neither one works 

independently. What if Rose were to make the threat and promise together? 

                      Colin 
                   C           D    

A (2, 4) (3, 3)
Rose  

B (1, 2) (4, 1)
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Threat:
If Colin C then Rose B [1 , 2]

Promise:
If Colin D then Rose A[3 , 3]

Better for Colin [3 , 3]

 

In this case, when threat eliminates outcome AC [2,4] and promise eliminates BD 

[4,1], Colin has to choose between the remaining two options. It is better for him to play 

D with the result AD [3,3]. The result is second best for Rose, and the combination of 

threat and promise works for her. 
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VIII. PARTIAL-SUM GAMES – COOPERATIVE SOLUTION 

Up to this point, this thesis has analyzed the partial-sum game with the 

assumption of non-cooperation between the players. The players either did not 

communicate at all, or tried to improve their position unilaterally by using some sort of 

strategic moves. The results were not always Pareto optimal; this means that there was 

room for improvement for at least one of the players without hurting the other. Now the 

thesis looks at the game from a different strategic perspective. 

Assumption: the players decide to cooperate in order to improve their payoffs. 

They can sit behind the negotiation table and make an agreement or they can call for the 

help of an outside arbiter to solve their problem. 

Von Neumann and Morgensten proposed that the arbitrated solution to the partial-

sum game should be (1) Pareto optimal and (2) at or above the security level of the 

players.15 This appears reasonable. Pareto optimal outcome tells us that there is no other 

outcome better for both players or better for one player without hurting the other. The at-

or-above the security level condition ensures that no player is forced to accept the 

solution that is worse for him than the solution of the game played without 

communication. These two combined conditions give the range of solutions from which 

to choose. They are called the negotiation set. Look at an example. 

                      Colin 
                   C           D    

A (4, 2) (3, 0)
Rose  

B (1, 1) (2, 4)
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

                                                 
15 John Von Neumann and Oskar Morgenstern, Theory of Games and Economic Behavior, 60th 

anniversary ed. (Princeton, N.J.; Woodstock: Princeton University Press, 2004). 
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A:C [4 , 2]

A:D [3 , 0]

B:C [1 , 1]

B:D [2 , 4]

SQ [3 , 1.6]

Xo = 3

Yo = 1.6

-2

-1

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Negotiation Set

 
The next question that needs consideration involves the point from the negotiation 

set the arbiter should choose. Considering that there are many points in the negotiation 

set, one must discern which one is fair. 

A. NASH ARBITRATION SCHEME 

Definition: 

“If SQ(status quo)=(x0,y0), then the arbitrated solution point N is the point (x,y) in 

the polygon with x≥ x0 and y≥y0 which maximizes the product (x- x0)*(y- y0 ).”16 

Status quo point in the definition is the likely outcome of the game when the 

negotiation fails. An arbitrated solution should be better for both players than the status 

quo; this is incorporated in the definition by x≥ x0 and y≥y0. Status quo is the minimum 

the players can get. Everything above is improvement of their gain. The solution has to  

 

                                                 
16 Philip D.Straffin, Game Theory and Strategy, New Mathematical Library, Vol. 36, (Washington: 

Mathematical Association of America, 1993), 105; John F. Nash, "The Bargaining Problem," Econometrica 
18, no. 2 (April, 1950): 155. 
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maximize their joint utility. The objective function (x - x0)*(y - y0), maximizes these 

‘above security level’ utilities. In other words, it has to maximize the area of the 

rectangle. 

A:C [4 , 2]

A:D [3 , 0]

B:C [1 , 1]

B:D [2 , 4]

SQ [3 , 1.6]                   .

Xo = 3

Yo = 1.6

-2

-1

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Negotiation Set

y-y0

x-x0

Extension

 
Solution N is called the Nash Point in honor of John Nash. It turns out that a 

solution lies at ½ of the height (y-axis player) and ½ of the basis (x-axis player) of the 

triangle formed by the Pareto optimal line segment (sometimes has to be extended) and 

status quo lines. Such a solution is fair in some sense. It maximizes the available space 

and gives both players an equal part of what they can expect. 

When the calculated Nash Point is outside of the Pareto optimal line, the solution 

of the game is the closest pure strategy solution (corner point). One could argue that this 

does not give both players an equal share; however, it is still the best (fairest) possible 

solution. 

The arbitrated solution of the game in the Nash arbitration scheme depends on the 

status quo point. Again, one must consider what is likely to happen when the negotiation 

fails. The answer is beyond the scope of game theory, as it has to include many outside 

considerations. One possible choice is the status quo formed by the players’ security 
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levels, as this is the worst-case scenario. It can also be the status quo after some strategic 

moves were used. Nash argued for optimal threat status quo.17 

Calculating the Nash Point as maximization of (x - x0)*(y - y0) is quite 

complicated. An easier approach is described next. However, this equation is useful when 

more than one Pareto optimal line exists and one has to decide upon which line the Nash 

Point lies. This can be resolved by calculation of the payoff for each Pareto optimal pure 

strategy solution. The Nash point lies at the Pareto optimal lines with the highest pure 

strategy payoff. 

B. NASH ARBITRATION – HOW TO SOLVE 

                      Colin 
                   C           D    

A (4, 2) (2, 0)
Rose  

B (1, 3) (3, 4)
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Rose and Colin are not satisfied with the results of their game above and decide to 

cooperate in order to increase their payoff. They bring their case to the arbiter, and he 

suggests using the Nash arbitration scheme for their problem. Rose and Colin know that 

in case their negotiation fails they would use prudential strategies and end up at the status 

quo SQ[2.5,2]. 

There are two options for solving the new problem. It can be done graphically or 

numerically. It is obvious that a graphical option is easier but less precise. The process is 

illustrated by using a graphical solution, which shows the interdependency of variables. 

1. Graphical Solution of Nash Arbitration 

To begin, one draws a payoff polygon and security levels and determines the 

Pareto optimal line. If the line does not intercept both security levels, then the line must 

be lengthened in order to form a triangle. 

The result looks like this. 

                                                 
17 John F. Nash, "Two-Person Cooperative Games," Econometrica 21, no. 1 (January, 1953): 128. 
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A:C [4 , 2]

A:D [2 , 0]

B:C [1 , 3]

B:D [3 , 4]

SQ [2.5 , 2]

Xo = 2.5

Yo = 2
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The next step includes drawing a rectangle and its diagonal line in order to divide 

the height and basis in two. The Nash point is located at the intersection of the Pareto 

optimal line and the diagonal line. It is possible to measure its coordinates. If it is outside 

the negotiation set, the Nash Point is the closest strategy solution. 

A:C [4 , 2]

A:D [2 , 0]

B:C [1 , 3]

B:D [3 , 4]

SQ [2.5 , 2]

NashPoint [3.25,3.5]

Xo = 2.5

Yo = 2

-2

-1

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Once the Nash Point is found, one has to decide what the players should do in 

order to achieve an arbitrated outcome. The solution lies at the line segment BD-AC; 

therefore, they have to play these pure strategy options with certain relative frequency 

(probabilities). To discover how often the point should be played, one must measure the 

distance from one of the points to the Nash point and divide it with the overall length of 

the BD-AC line segment. One minus the result gives the answer. The same process 

applies for the second point or just the addition to one. 

The results are that Rose and Colin should play BD 75% of the time and AC 25% 

of the time. They also have to agree upon some system that ensures that they will play 

their strategy in coordination. The game is the most difficult case for coordination. 

Because when Rose plays A, Colin has to play C, and when Rose plays B, Colin has to 

play D. Sometimes it can be easier when only one player has to change the strategy in 

order to get Nash Point. 

2. Numerical Solution of Nash Arbitration 

A simple formula for Nash Point: 

0 0Nash Point ,
2 2

b bX Y
m

⎛ ⎞
+ +⎜ ⎟⎜ ⎟

⎝ ⎠
 

Where m is the slope of the Pareto optimal line, X0,Y0 are the security levels of the 

respective players and b is the height of the triangle formed by Security Levels and 

Pareto optimal line. 

To begin, one must calculate (enumerate) the equation of the Pareto optimal 

line segment from two known points: 

2 1

2 1

1 1

[3, 4], [4, 2]

2 4 2 2
4 3 1
4 ( 2*3) 4 ( 6) 10

2 10

line

line

BD AC
y mx b

Y Ym
X X

b Y mX
y x

= =
= +

− − −
= = = = −

− −
= − = − − = − − =
= − +
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Next, one calculates the height of the triangle, which is the intercept of the 

Pareto optimal line and X Security Level and subtract Y0. 

0

0

Height of the triangle 

2*2.5 10 5 10 5

5 2 3

i

i

i line

b
Y mX b
Y
b Y Y
b

=
= +
= − + = − + =
= −
= − =

 

Finally, one has everything necessary to calculate the coordinates of the Nash 

Point. 

0 0

0

0

Nash Point ,
2 2

3 32.5 2.5 3.25
2 2 2 4

32 3.5
2 2

Nash Point (3.25,3.5)

Nash

Nash

b bX Y
m

bX X
m

bY Y

⎛ ⎞
+ +⎜ ⎟⎜ ⎟

⎝ ⎠

= + = + = + =
−

= + = + =

 

A graphical depiction of the calculation follows below. 

A:C [4 , 2]

A:D [2 , 0]

B:C [1 , 3]

B:D [3 , 4]

SQ [2.5 , 2]

NashPoint [3.25 , 3.5]
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What remains is to calculate the relative frequency of the pure strategy options. 

For clearer understanding, the process is depicted in the graph below. 

A:C [ 4 , 2 ]

B:D [ 3 , 4 ]

0.25 0.75

<-  1-  >

1.
5

0.
5

<-
  2

  -
>

NashPoint [3.25 , 3.5]

0

0.5

1

1.5
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2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 
In the graphical method, the length of the line segments must be measured. It is 

possible to calculate the length of the line segment but there is an easier way: one can 

calculate the difference on the X-axis between the Nash Point and the Pure Strategy 

solution and divide it by the difference between the Pure Strategy solutions. 

1-  is the relative frequency of AC

1-  is the relative frequency of BD

Nash AC

BD AC

Nash BD

BD AC

X X
X X

X X
X X

−
−

−
−

18   

Absolute value in the equation is there for convenience; it eliminates from 

consideration which number is higher and avoids the confusion of negative numbers. 

Using the equation: 

                                                 
18 AC and BD are from the example, substitute for appropriate strategy combination. 
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AC[4,2] ; BD [3,4]; Nash Point[3.25,3.5]
3.25 4 -0.75

1- =1- =1-0.75=0.25 % of AC
4 3 1

and
3.25 3 0.25

1- =1- =1-0.25=0.75 % BD
4 3 1

−
−

−
−

 

The end result is that the players should cooperate and play pure strategy 

combination AC 25% of the time and pure strategy combination BD 75% of the time. 
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IX. 3-PERSON GAMES 

Up to this point, the thesis has analyzed games involving two players. However, 

most games in the real world involve more than two players, and as the number of 

players increases, the complexity of the game increases enormously. This thesis, 

however, limits the analysis to 3-person zero-sum (constant sum) games.  

This chapter is an introduction into the vast area of n-person19 games. It deals 

with the description of the 3-person game and equilibriums. Furthermore, the chapter 

covers the analysis of likely coalitions among the players and the idea of sidepayments.  

To illustrate, a game with three players is considered. They will be called Rose, 

Colin and Larry. Each player has two strategies from which to choose; therefore, the 

game has 2x2x2=8 possible outcomes. This is described in the form of a tree diagram. 

Larry-E = ACE
Colin-C

 Larry-F = ACF
Rose-A

Larry-E = ADE
Colin-D

Larry-F  = ADF

Larry-E = BCE
Colin-C

Larry-F = BCF
Rose-B

Larry-E = BDE 
Colin-D

Larry-F = BDF  

                                                 
19 n is three and more 
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Rose can pick from strategies A and B. Colin responds with C or D. Larry can 

play E or F for each strategy combination of the previous players. The solution and 

payoffs are then determined by a combination of the three pure strategies of the 

respective players. 

A. EQUILIBRIUMS 

As in two person games, it is possible to find equilibriums by using a movement 

diagram. It is just slightly more complicated than in two person games. It is necessary to 

compare appropriate values. For example, Larry’s payoffs for BDE and BDF. The logic 

is as follows: when Rose plays B, and Colin plays D, what is better for Larry? 

The following movement diagram analyzes a zero-sum game among Rose, Colin 

and Larry. 

(1,1,2) (-4,3,1) (3, 2, 1) (-5,12,-7)
                                  

(2, 4,2) (-5,10,-5) (2,1,-3) ( 2,3, 1)

− −

− − −

A

B

Rose

C           Colin          D C           Colin          D

E                        Larry                                  F

Equilibriums  
In this game, Colin has a dominant strategy, Colin-D. The idea of the dominant 

strategy is applicable even in the n-person games. Similarly as in partial-sum, a game 

playing dominant strategy does not assure the best outcome. Nevertheless, without the 

use of communication, if the player has a dominant strategy, it is preferable to use it. 

This game has two equilibriums, ADE and BDF. It can be seen that all arrows are 

heading inward. It is possible to see that in 3-person games, equilibriums are not 

equivalent and interchangeable even in a zero-sum game. They are indifferent for Colin, 

but Rose would prefer BDF[-2,3,-1] and Larry ADE[-4,3,1]. If Larry tries for his favorite 

equilibrium and plays Larry-E, and Rose tries her favorite Rose-B, the result would be 
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BDE(-5,10,-5)20. It is worse for both of them and good news for Colin. There is no 

simple solution theory for what the players should do. 

B. LIKELY COALITIONS 

When the players can communicate, it is natural that they try to form coalitions. 

An illustration of how it would look if Larry and Colin decided to form a coalition 

against Rose is given below. The game is zero-sum, so it is possible to focus only on 

Rose’s payoffs. The resulting sub game is then: 

Rose v. Colin and Larry 

Larry-E Larry-E Larry-F Larry-F
Colin-C Colin-D Colin-C Colin-D

A 1 -4 3 -5
Rose     

B 2 -5 2 -2

 

The best way to play a zero-sum game is to play Maximin/Minimax strategy. This 

prudent strategy assures the value of the game for the players. Using the software toolkit 

provided in the thesis, the optimal strategy of the players is: 

Rose alone:   75% of A and 25% of B 

Coalition Larry & Colin: 75% of DE and 25% of DF 

Value of the game:   -4.25 for Rose / +4.25 for Coalition 

As a result, the coalition wins 4.25. However, this is only half of the answer. It is 

also important for one to know how the payoffs are divided between members of the 

coalition. The payoffs of the players for each strategy combination are different, so it is 

necessary to treat them separately. One begins by calculating the relative frequency of 

playing of each strategy combination. For example, using the ADE strategy combination: 

Rose plays A 75 percent of the time and the coalition plays DE 75 percent of the time. If 

these are multiplied, one gets a relative frequency of ADE that is 56.25 percent. Now, if 

one were to multiply each original payoff for ADE  

                                                 
20 Assuming that Colin plays dominant strategy Colin-D 
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[-4,3,1] by this relative frequency, the adjusted payoffs would be [-2.25, 1.6875, 0.5325]. 

When this is done for all outcomes, the values of each player are added. An illustration of 

this follows: 

 Strategy    Frequency of playing   Original payoffs          Adjusted payoffs
 A x CE .75 0 =0         [1,1,2]
A x DE .75 .75 =0.5625 [-4,3,1]
A x CF .75 0 =0         [3,-2,-1]
A x DF .75 .25 =0.1875 [-5,12,-7]
B x CE

[0,0,0]
[ 2.25,1.6875,0.5325]

[0,0,0]
[ 0.9375,2.25, 1.3125]

       
.25 0 =0         [2,-4,2] [0,0,0]

B x DE .25 .75 =0.1875 [-5,10,-5] [ 0.9375,1.875, 0.93
B x CF .25 0 =0         [2,1,-3]
B x DF .25 .25 =0.0625 [-2,3,-1]

−

− −

− − 75]
[0,0,0]

[ 0.125,0.1875, 0.0625]

Sum Up Rose/Colin/Larry                                                  [-4.25,6,-1.75]       

− −

 

Rose receives her value of the game -4.25. Colin receives 6, and Larry receives  

-1.75. Therefore, it is Colin, who is doing well in this coalition. One could consider other 

possible coalitions:  

Colin v. Rose and Larry 

Larry-E Larry-E Larry-F Larry-F
Rose-A Rose-B Rose-A Rose-B

C 1 -4 -2 1
Colin     

D 3 10 12 3

 

Results: 

Colin alone:   100% of D 

Coalition Rose and Larry: 100% of AE 

Value of the game:  3 for Colin / -3 for Coalition 

Division of payoffs:  [-4,3,1] 
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Larry v. Rose and Colin 

Colin-C Colin-C Colin-D Colin-D
Rose-A Rose-B Rose-A Rose-B

A -2 2 1 -5
Larry     

B -1 -3 -7 -1

 

 

Results: 

Larry alone:   50% of E and 50% of F 

Coalition Rose and Colin: 33.33 % of AD and 66.66 of BD 

Value of the game:  3 for Larry / -3 for Coalition 

Division of payoffs:  [-3.833, 6.833, -3]  

 

It is possible to imply what coalition is likely to occur by comparing the results 

for all three possible coalitions. Larry would prefer to play in coalition with Rose. Colin 

would prefer to be with Rose, and Rose would prefer to be with Colin. When two players 

prefer to play with each other, a coalition is likely to occur. Therefore, for this game, the 

most likely coalition is Rose and Colin, as both players can receive their best outcome 

playing together. However, sometimes the players do not have a preference of another 

player, and so it is not possible to say what coalition is likely to form. 

Rose    alone              -4.25  
            with Colin      -3.83     Most preferred 
            with Larry      -4
----------------------------------------------------------
Colin   alone              3
            with Rose       6.83      Most preferred 
            with Larry      6
----------------------------------------------------------
Larry   alone              -3
            with Rose       1           Most preferred 
            with Colin      -1.75
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C.  SIDEPAYMENTS 

Larry is certainly not happy with the likely coalition between Rose and Colin. He 

tries to find a way to persuade Colin to play with him. If Larry would give Colin, for the 

sake of argument, one unit, Colin’s total payoff would then be seven, and he would have 

an incentive to play with Larry. Larry’s payoff in this case would be -2.75 (-1.75-1), 

which is still better than playing alone and ending up with -3. This idea is called 

sidepayment. 

Sidepayments are not possible in all games because it’s necessary for payoffs to 

be transferable. It is hard to transfer one’s good feelings or, for example, health. 

Generally, it is difficult to place a value on nonmaterial things. Also, payoffs have to be 

comparable. One unit of utility has to mean the same for both players. Fortunately, it is 

possible to express most games in the economic area in terms of money, with the caveat 

that sometimes the value of one dollar is not the same for all the players. 

A further difficulty with the sidepayments is that nothing can stop Rose from 

offering Colin 0.25 of unit and beat Colin’s offer.  The players then can place bids and 

counter bids in a circular manner. There is a whole field of game theory that deals with 

which coalition can form and how the payoffs should be divided among the players. 
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APPENDIX 1 – TOOLKIT MANUAL 

This manual, for the software toolkit included in the thesis, uses the following 

format. 

File name: Name of the file containing the template. 

Lpslink.dll: Yes/No – tells whether it is necessary to install lpslink.dll. It is an 

open source lpsolve solver using the simplex method. One can copy the file in user path 

or into C:\WINDOWS\system32. One can also double click on CopyLink.bat. It copies 

the dynamic library automatically into the appropriate space. 

Description: Brief description of the software tool and its purpose. 

Assumptions: Any necessary assumptions used in the model. 

Instructions: Instructions tell the user how and where to input the data, which 

and in what order to push the command buttons. 

Screenshots: Annotated screenshots facilitate understanding of the templates. 

Additional information for all parts of the toolkit: 

- Excel spreadsheets are protected against accidental damage. There is no 

password, so the templates and macros can be adjusted according to user needs. 

- The names of the players and their strategies can be changed; this change is then 

reflected in the answers for easier readability and understanding. 

- Macros have to be enabled in order to function properly. 
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 A. ZERO-SUM GAME: MAXIMIN & MINIMAX, SADDLE POINT 

File name: ZeroSum_MaxiMin_MiniMax_SaddlePoint.xls 

Lpslink.dll: No 

Description: Solver finds the MaxiMin strategies of the Row player and 

MiniMax strategies of the Column player. If the values are equal, it marks the 

intersection as Saddle point and writes it out. The color legend also tells whether the 

strategy is dominant or not. Graphs are helpful for visualization of the problem. 

Assumptions:  Row player is maximizing. Column player is minimizing. Row 

player’s payoffs. 

Instructions: Write the payoffs in the appropriate cells, starting from left upper 

corner.  Write the number of strategies for each player and hit solve button. 

Screenshots: 

# of strategies

Dominant Strategy
Saddle Point

Payoffs

Color coded
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B. ZERO-SUM GAME: TWO PLAYERS / TWO STRATEGIES 

File name: ZeroSum_2x2.xls 

Lpslink.dll: No 

Description: Solver finds a value of the game and optimal strategies of the 

players. It tells whether the solution is in pure strategy or mixed strategy.  Solver shows a 

movement diagram of the game and graphical solution. In the numerical part, it uses and 

shows both methods covered in the thesis (expected value method and method of 

oddments). The process of reaching the solution is intentionally detailed to help with the 

understanding of the problem. 

Assumptions: Row player is maximizing. Column player is minimizing. Row 

player’s payoffs. 

Instructions: Write the payoffs and hit solve button. 

Screenshots: 

Graphical solution

Expected value method

Method of oddments

Results

Movement diagram

Payoffs
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C. ZERO-SUM GAME: TWO PLAYERS / UP TO TEN STRATEGIES 

File name: ZeroSum_UpTo10x10.xls 

Lpslink.dll: Yes 

Description: Solver finds a value of the game and optimal strategies of the 

players. Solver calculates the results for each player separately. It allows for the 

comparison of the values of the game (should be equal) and checks whether it works 

properly. Solver also incorporates a graphical depiction of the game. Sometimes it offers 

interesting insights; sometimes it is just a mess. 

Assumptions: Row player is maximizing. Column player is minimizing. Row 

player’s payoffs. 

Instructions: Write the payoffs in the appropriate cells, starting from left upper 

corner.  Write the number of strategies for each player and hit solve button. 

Screenshots:  

Visual 
Interpretation

Relative 
frequencies of 

optimal strategy  

Value of the 
Game

# of Strategies

Payoffs

 



 61

D. PARTIAL-SUM GAME: PRUDENTIAL STRATEGIES 

File name: PartialSum_Prudential_SecurityLevels.xls 

Lpslink.dll: Yes 

Description: Solver finds prudential strategies of the players in the partial-sum 

game, when the opponent turns hostile. The value of the game, when prudential strategy 

is used, is the player’s security level. The solution is divided into two annotated sub-

games, where one player is maximizing, and the other is minimizing. The graph shows 

the payoff polygon and the security levels of the players. 

Assumptions: Rose’s prudential strategy – In Rose’s game (Rose’s payoffs), 

Rose is maximizing and Colin is minimizing. Colin’s prudential strategy – In Colin’s 

game (Colin’s payoffs), Colin is maximizing and Rose is minimizing. 

Instructions: Write the payoffs of the players in the MainPrud sheet and hit the 

solve button. It solves the game and switches to the Solution sheet. 

Screenshots: 

Appropriate payoffs

Relative frequency of
Prudential strategy

Value of the game 
/ security level

Payoff polygon
&

Security Levels

Solution

Game description
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E. PARTIAL-SUM GAME: EQUALIZING STRATEGIES AND NASH 
EQUILIBRIUMS 

File name: PartialSum_Equalizing_NashEquilibriums.xls 

Lpslink.dll: No 

Description: The solver finds the Nash Equilibriums and equalizing strategies of 

the players in the partial-sum game. The values of the game, when the players use 

equalizing strategy, form Nash Equilibrium in the mixed strategy. The solution is divided 

into two annotated sub-games, where one player is maximizing, and the other is 

equalizing. The graph shows the payoff polygon and Nash Equilibriums. 

Assumptions: Rose’s equalizing strategy – In Colin’s game (Colin’s payoffs), 

Colin is maximizing, and Rose is equalizing. Colin’s equalizing strategy – In Rose’s 

game (Rose’s payoffs), Rose is maximizing, and Colin is equalizing.  

Instructions: Write the payoffs of the players in the MainEqual sheet and hit the 

solve button. 

Screenshots: 

Equalizing strategies

Nash Equilibriums
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F. PARTIAL-SUM GAME: NASH ARBITRATION 

File name: PartialSum_NashArbitration.xls 

Lpslink.dll: Yes 

Description: The solver solves the Nash arbitration and finds a Nash point. It 

solves a game from a Status Quo point. The solver provides a detailed graphical solution.  

A status quo, based on the security levels of the players, is built in. It is also possible to 

choose a different starting point. 

Assumptions: Both players are maximizing. Status Quo lies inside the payoff 

polygon. Fair solution maximizes (x-x0)*(y-y0). 

Instructions: Write payoffs of the players in the NashArbitrationSQ sheet. Set a 

status quo by pushing Solve Security levels SQ button or write the required status quo. 

Solve the game  Solve button. 

Screenshots:  
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Sheet – Solution1, solution in the pure strategy 

Solution1

A:C [1 , 0]

A:D [5 , 3.2]

B:C [3 , 4]

B:D [6 , 1]

SQ [3 , 2.06451612903226]

NashPoint [5 , 3.2]

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9

 
Sheet – Solution2Step1, solution in the mixed strategy 

Solution2 Step1 

A:C [1 , 3]

A:D [4 , 2]

B:C [2 , 4]

B:D [3 , 1]

SQ [2 , 3]

NashPoint [2.5 , 3.5]

Xo = 2

Yo = 3

b/|m| = 1

b/2|m| = 0.5

b 
= 

1

b 
/ 2

 =
 0

.5

NASH POINT       
(Xo+b/2|m|, Yo+ b/2) 

m...slope of the pareto 
optimal line   b...height of 

the triangle

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Sheet – Solution2Step2, solution in the mixed strategy 

Solution2 Step2 

A:D [ 4 , 2 ]

B:C [ 2 , 4 ]

0.5

1.5

<-2->

1.
5

0.
5

<-
2-

>
 Row has to play 75% of B 

and 25% of A

 Column has to play 25% of 
D and 75% of C

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 
 
G. PARTIAL-SUM GAME: STRATEGIC MOVES 

File name: PartialSum_StrategicMoves.xls 

Lpslink.dll: No 

Description: The solver analyzes the options available to the players. The Toolkit 

solves the first move, threat, promise, and their combinations. The solver finds whether a 

player has a strategic move, if the move works and whether the outcome is better than a 

likely outcome without communication. 

Assumptions: The solver assumes that the moves are credible and feasible. The 

solver assumes that player wants the opponent to play opposite strategy than the 

opponent’s strategy in likely outcome without communication. The likely outcome in this 

solver is determined as follows: (1) The solver checks for dominant strategies. If at least 

one player has a dominant strategy, the opponent chooses the better outcome for him and 

the combination is the likely outcome. If not, (2) the solver uses the intersection of 

MaxiMin strategies of the players. 
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Instructions: First, calculate the likely outcome (likely outcome button). Then, 

analyze the game (solve strategic moves button). If it’s desirable to have a different likely 

outcome, it is possible to write the payoffs and strategies in the appropriate place and hit 

solve strategic moves. In this case, it is necessary to write the resulting payoffs and 

precise strategy combination. Any misspelling causes failure and wrong results. 

Screenshots: 

Payoffs

Ordered outcomes
for each player

Results

Hint on where the outcome 
comes from

Likely outcome
You can write your 

outcome here
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H. 3 – PERSON: COALITIONS 

File name: 3Person.xls  

Lpslink.dll: Yes 

Description: The solver analyzes possible coalitions and which coalition is likely 

to form. The solver checks whether it is a constant sum-game and analyzes three possible 

coalitions. It tells the value of the game in the sub-games, optimal prudential strategies, 

and how the payoffs are divided among the members of the coalition. A summary of the 

payoffs for each option shows what the players would like to do.  Arrows can be used for 

determination of the Nash equilibrium. 

Assumptions: The game has to be either constant-sum or zero-sum. In the sub-

game player v. coalition, both sides play prudential strategy. The game is without 

sidepayments. 

Instructions: Write payoffs of the players in the Main3Person sheet and hit 

Solve button. 

Screenshots: 

Summary of the payoffs 
and evaluation

Three possible sub-games

Movement diagram

Payoffs
Constant-sum/zero-

sum check
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I. LINEAR PROGRAMMING 

File name: LP_lpsolve_5Variables.xls and LP_lpsolve_10Variables.xls 

Lpslink.dll: Yes 

Description: This is a template for solving LP. The solver uses the open source 

lpsolve library for the solution (simplex method). By using this template, one does not 

have to worry about the proper structure of the input data required by lpsolve. 

Assumptions: The problem has to be bounded; otherwise, the software does not 

work (error code 3). 

Instructions: Always start from the left. First, write the coefficient of the 

objective function. Second, write whether the results should be integer (write 1) or real 

(write 0). Third, determine whether it is a maximizing or minimizing problem. Next, 

write the constraints and finally hit solve button. For inequality and Max/Min use scroll 

down menus. 

Screenshots:  

Constraints

Forces solver to find 
real or integers

Maximizing
Minimizing

Solution Coefficients of the 
objective function

 



 69

APPENDIX 2 – HOW TO MAKE A CHART FOR A 2X2 ZERO-SUM 
GAME  

A Zero-Sum game between Rose and Colin with these payoffs will be considered.  

                     Colin
                     C    D    

A 5 2
Rose       

B 1 3
     

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

It is simple for one to make a graphical depiction of the game. It is necessary to 

create two graphs, one for each player. The following illustration begins with Rose. 

Step 1. Make a graph with the values on the x-axis 0 to 1 and on the y-axis large 

enough to accommodate the highest and lowest payoffs. In the graph on the x-axis, erect 

a perpendicular line intersecting the axis in the 0 and 1. These lines will represent Rose’s 

Pure strategies.  

Rose Pure A Rose Pure B

0
1
2
3
4
5
6
7

0 0.25 0.5 0.75 1

 

Step 2. Rose has options to play either strategy A, or strategy B, or some 

combination of these two strategies.  

If Rose would play only strategy A (pure Strategy) her payoffs would be 5 (Colin-

C) and 2 (Colin-D).Points [0, 5], [0, 2]. Place the values on the graph. 

The same can be done for Rose's strategy B. If Rose would play only strategy 2 

her payoffs would be 1(Colin-C) and 3 (Colin-D) Points [1, 1], [1, 3].  
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Rose Pure A Rose Pure B
Colin Pure C

Colin Pure D
Colin Pure C

Colin Pure D

0
1
2
3
4
5
6
7

0 0.25 0.5 0.75 1

 

Step 3. Now connect points depicting the values of Colin's strategies. Colin Pure 

Strategy 1 [0, 5] and [1, 1].Colin Pure Strategy 2 [0, 2] and [1, 3]. 

5

1
2

3

Rose Pure A Rose Pure B

Colin Pure C

Colin Pure D

0
1
2
3
4
5
6
7

0 0.25 0.5 0.75 1

 

The resulting graph depicts the game from Rose's point of view. 

The same process is used for creating the graph for Colin. 

Step 1. 

Colin Pure C Colin Pure D

0
1
2
3
4
5
6
7

0 0.25 0.5 0.75 1
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Step 2. 

Colin Pure C Colin Pure D
Rose Pure A

Rose Pure A
Rose Pure B

Rose Pure B

0
1
2
3
4
5
6
7

0 0.25 0.5 0.75 1

 

Step 3. 

5

2
1

3

Colin Pure C Colin Pure D

Rose Pure A

Rose Pure B
0
1
2
3
4
5
6
7

0 0.25 0.5 0.75 1

 

The graphical depiction shows very clearly whether the game has saddle point. In 

the 2x2 zero-sum game, the game has the saddle point only when at least one player has a 

dominant strategy. In the graph, it is easy to see: the lines do not intersect each other on 

the open interval (0,1). 
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APPENDIX 3 – HOW TO CONVERT THE GAME INTO LINEAR 
PROGRAM  

For more complicated games, such as 3x3 and more, the best way is to convert the 

game and use linear programming (LP) solvers or the toolkit provided with this thesis. 

Otherwise, one would have to try all possible intersections of the expected values 

functions. This is a polynomial problem, and as such, the number of possible solutions 

increases quickly. 

1

2

1         2

                    Colin
                  C        D    

A AC AD
Rose   

B BC BD
                 

p
p

q q

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

In the linear program, there is the objective function and a set of constraints that 

limit our solution. Objective function in game theory is the value of the game, which is 

necessary to either maximize or minimize. For Rose (maximizing) it is: 

Objective function: 

Value of the game (v)  maximize 

Subject to constraints: 

1 2

1 2

1 2

* *

* *

1.                   1    Probabilities has to be equal to 1
2.     ( )
3.     ( )

For       0
0    
0

p p
EV Colin C v
EV Colin D v

v
AC p BC p v
AD p BD p v

+ =
− ≥
− ≥

≥
+ − ≥
+ − ≥

  

By changing:  p1, p2, v  

Constraints 2 and 3 are derived from the minimax theorem. All values of the 

game (possible solutions) have to be less than or equal to expected value of all of Colin’s 



 74

pure strategies. The feasible region is restricted from the above by Colin pure strategies. 

The value of the game determined by mixed strategy p1 and p2 has to be less or equal.  

For Colin (minimizing) the LP is: 

 Objective function: 

Value of the game (v)  minimize 

Subject to constraints: 

1 2

1 2

1 2

* *

* *

1.                   1   
2.      ( - )
3.      ( - )

For       0
0    
0

q q
EV Rose A v
EV Rose B v

v
AC q AD q v
BC q BD q v

+ =
≤
≤
≥

+ − ≤
+ − ≤

 

By changing:  p1, p2, v  

This time the candidate solutions have to be higher than or equal to the expected 

value of all of Rose’s pure strategies. The feasible region is restricted from below. 

We have created the LP in general; the exact procedure for solver set up differs 

from solver to solver. For example in the Excel solver or the LP solve solver used in the 

toolkit, it is not possible to define the objective function just as one variable. This 

limitation can be overcome by adjusting the objective function. 

Example: p1+ p2+v  maximize 

By adjusting the objective function this way, the solver readily solves the 

problem. We only have to keep in mind that the result has to be subtracted by p1+ p2=1 in 

order to get the value of the game.  

The Excel solver also uses the approximation method, so be aware of possible 

errors in the results. 
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