ABSTRACT

Firm-Level Risk Exposures and Stock Returns in the Wake of COVID-19   [open pdf - 0B]

From the Abstract: "Firm-level stock returns differ enormously in reaction to COVID-19 [coronavirus disease 2019] news. We characterize these reactions using the 'Risk Factors' discussions in pre-pandemic 10-K filings and two text-analytic approaches: expert-curated dictionaries and supervised machine learning (ML). Bad COVID-19 news lowers returns for firms with high exposures to travel, traditional retail, aircraft production and energy supply - directly and via downstream demand linkages - and raises them for firms with high exposures to healthcare policy, e-commerce, web services, drug trials and materials that feed into supply chains for semiconductors, cloud computing and telecommunications. Monetary and fiscal policy responses to the pandemic strongly impact firm-level returns as well, but differently than pandemic news. Despite methodological differences, dictionary and ML approaches yield remarkably congruent return predictions. Importantly though, ML operates on a vastly larger feature space, yielding richer characterizations of risk exposures and outperforming the dictionary approach in goodness-of-fit. By integrating elements of both approaches, we uncover new risk factors and sharpen our explanations for firm-level returns. To illustrate the broader utility of our methods, we also apply them to explain firm-level returns in reaction to the March 2020 Super Tuesday election results."

Author:
Publisher:
Date:
2021-02-03
Series:
Copyright:
Becker Friedman Institute
Retrieved From:
Becker Friedman Institute: https://bfi.uchicago.edu/
Media Type:
application/pdf
URL:
Help with citations